Development of graphene materials and phthalocyanines for application in dye-sensitized solar cells
- Authors: Chindeka, Francis
- Date: 2020
- Subjects: Dye-sensitized solar cells , Graphene , Phthalocyanines , Molecular orbitals , Impedance spectroscopy
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166092 , vital:41328
- Description: Two sets of dye-sensitized solar cells (DSSCs) were fabricated. In the first set, dye-sensitized solar cells (DSSC) were fabricated by incorporating graphene materials as catalysts at the counter electrode. Platinum was also used as a catalyst for comparative purposes. Different phthalocyanines: hydroxyl indium tetracarboxyphenoxy phthalocyanine (1), chloro indium octacarboxy phthalocyanine (2) and dibenzoic acid silicon phthalocyanine (3) were used as dyes. Complex 3 gave the highest power conversion efficiency (η) of 3.19% when using nitrogen doped reduced graphene oxide nanosheets (NrGONS) as a catalyst at the counter electrode, and TiO2 containing rGONS at the anode. The value obtained is close to 3.8% obtained when using Pt catalyst instead of NrGONS at the cathode, thus confirming that NrGONS is a promising candidate to replace the more expensive Pt. The study also shows that placing rGONS on both the anode and cathode improves efficiency. In the second set, DSSCs were fabricated by using 2(3,5-biscarboxyphenoxy), 9(10), 16(17), 23(24)-tri(tertbutyl) phthalocyaninato Cu (4) and Zn (5) complexes as dyes on the ITO-TiO2 photoanodes containing reduced graphene oxide nanosheets (rGONS) or nitrogen-doped rGONS (NrGONS). The evaluation of the assembled DSSCs revealed that using ITO-TiO2-NrGONS-CuPc (4) photoanode had the highest fill factor (FF) and power conversion efficiency (ɳ) of 69 % and 4.36 % respectively. These results show that the asymmetrical phthalocyanine complexes (4) and (5) showed significant improvement on the performance of the DSSC compared to previous work on symmetrical carboxylated phthalocyanines with ɳ = 3.19%.
- Full Text:
- Date Issued: 2020
Design and fabrication of components of dye sensitised solar cells
- Authors: Msane, Gugu
- Date: 2019
- Subjects: Dye-sensitized solar cells
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/117106 , vital:34478
- Description: In recent decades there has been increasing global concern about the sustainability of our use of fossil fuels, which has led to increased interest in carbon–free sustainable renewable sources such as solar energy. Dye sensitized solar cells (DSSCs) are a cheap and clean technology that harnesses solar energy efficiently and convert it to electrical energy. A DSSC consists of a transparent working electrode coated with a dye-sensitized mesoporous film of nanocrystalline particles of semiconductor e.g. TiO2, an electrolyte containing a suitable redox couple and a platinized counter electrode. All the components of the DSSCs play vital roles in controlling the performance of the cell. The synergy of these components of the cells also needs to be investigated to optimise their interaction and create efficient and stable DSSCs. The information gathered from this investigation can give insight on how to improve the efficiencies of DSSCs. In this research study the semiconductor, transparent conducting layer and sensitizer were designed, optimized one at a time and their effect on the overall efficiency of the DSSCs studied. In this way it was easy to observe the effect of the individual components on the efficiency of the DSSCs. The conventional DSSCs usually use TiO2 as a semiconductor. In this research TiO2 was doped with cerium (Ce) to enhance its optical properties by reducing the band gap. A series of Ce-doped TiO2 with Ce content ranging from 0.1 to 1 mol % were successfully synthesized by an acid catalyzed sol-gel method, and their performance as the photoanodes of dye-sensitized solar cells (DSSCs) was investigated. Ce doping resulted in a red shift in the absorption of the TiO2 indicating narrowing of the band gap. The band gap first narrowed with increase in concentration of dopant up until 0.9 % dopant concentration. After this optimum doping concentration the band gap widened again. DFT calculations showed that Ce doping introduces Ce4f impurity states located just below the conduction band resulting in band gap narrowing. Ce content (0.9%) doped TiO2 photoanodes improved the performance of DSSCs with a conversion efficiency of 2.11% compared to 0,21% for the one with a pure TiO2 under 1 sun, AM1.5. Graphitised/TiO2 nanocomposites were also used a semiconductor to slow down recombination of electrons and holes in the cells. Electrophoretic deposition (EPD) was used to deposit graphitised/TiO2 nanocomposites onto an FTO electrode for application as photoelectrode in dye-sensitized solar cells (DSSCs). An enhanced power conversion efficiency (PCE) of 2.25% was observed for the 0.5 wt% graphene oxide/TiO2 (GO/TiO2) based DSSC which was higher than that of the conversion efficiency of pure TiO2 nanoparticles (i.e. 0.52%). Graphene oxide led to high migration of photoinduced electrons to the conduction band of the collection electrode and inhibition of charge carriers recombination resulting in enhanced photoconversion efficiency. A GO content above 0.5 % resulted in a reduced transparency leading to a decrease in the PCE. 0.5 wt % GO/0.9 Ce–TiO2 Ce based DSSC showed a slightly enhanced efficiency of 2.45%. 0.5 rGO/TiO2 based DSSCs had a high efficiency than 0.5 rGO/TiO2 due to improved conductivity of rGO nanosheets and suppressed recombination of charge carriers. To cut down DSSC production costs a silver wire network transparent conducting polyethylene electrodes was fabricated and used as an indium tin oxide (ITO) alternative substrates in DSSCs. The transmittance of the AgNW network was 82 % which is comparable to ITO substrates. Titanium oxide (TiO2) films on the AgWN/PET substrates were obtained using the electrophoresis method. These substrates were sensitised and used to fabricate a dye sensitised solar cell. From the measured current–voltage or I-V characteristic under AM1.5 illumination of the formed DSSC using AgWN substrates, an open circuit voltage (VOC) of 0.377 V, a short circuit current (ISC) of 0.0067 mA and a fill factor (FF) 25.7 % with an efficiency of 0.00862 % were obtained from a cell of 0.075 cm2 working area. The stability of the cell improved when a room temperature ionic liquid electrolyte was used. Gold nanofiber transparent electrodes were also prepared by the electrospinning techniques and used as an alternative to indium tin oxides substrates. Transparent conducting gold nanofiber (AuNF) transparent conducting electrodes were fabricated by using a low–cost electrospinning process and used as photoelectrodes for DSSCs. TiO2 was deposited on these electrodes by using an electrospray method. DSSC using AuNF as transparent electrodes had a power efficiency of 0.52%, compared to devices made with FTO electrodes (1.48%). DSSCs. Versatile dyes with increased spectral response, stability and suppressed recombination of holes and electrons were synthesised and used as a sensitizers for DSSCs. The boron dipyrrin (BODIPY) chromophore was combined with a carboxy coumarin moiety to create donor–acceptor (dyad) system dyes. Regenerative dyad dyes were formed through covalently linking a porphyrin chromophore to a manganese(II) ion through bridging ligands. These chromophores and also porphyrin and BODIPY dyes were used as sensitisers for DSSCs. The regenerative dye based DSSCs showed a photoconversion efficiency of 4.09% which was higher than the efficiency of the parent porphyrin (2.57%). The enhanced efficiency was attributed to the manganese bypridine cluster in the ZnTPP–Mn bpy supramolecule which acted as an electron donor to the photo-oxidized porphyrin continuously regenerating the porphyrin and preventing its decay.
- Full Text:
- Date Issued: 2019
Development of a computational chemistry scheme for testing the utility of synthetic bacteriochlorin in dye-sensitized solar cells
- Authors: Kota, Ntsika
- Date: 2018
- Subjects: Dye-sensitized solar cells , Computational chemistry , Density functionals , Electronic excitation , Molecular orbitals , Oscillator strengths , Bacteriochlorin
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/62327 , vital:28155
- Description: A computational chemistry scheme, based on density functional theory, was developed for in silico testing of a few bacteriochlorin properties relevant to dye-sensitized solar cells. These properties included electronic excitation wavelengths, molecular orbital energy levels, and oscillator strengths among others. Comparisons were made among four species, using computational proxies for electron injection quantum yield and photo-induced current production. The proxy measures for current production (frontier orbital energy level and short circuit current) made consistent, though qualitative, predictions about the ranking of the four dyes. The proxy measures for electron injection quantum yield (change in planar dipole moment and density of states) made less categorical predictions about the ranking. Overall, the scheme singled out one dye as the worst, but made no conclusive predictions about the relative ranking of the other three. There was insufficient data for comparison of the ranking predictions with experiment.
- Full Text:
- Date Issued: 2018
The characterization and electrochemistry of dye-sensitized solar cells
- Authors: Caga, Noloyiso
- Date: 2013
- Subjects: Dye-sensitized solar cells , Acetonitrile , Electrochemistry , Spectrum analysis
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: vital:11341 , http://hdl.handle.net/10353/d1016069 , Dye-sensitized solar cells , Acetonitrile , Electrochemistry , Spectrum analysis
- Description: In this study a presentation of the technology behind dye-sensitized solar cells, their design as well as the role of the different parts of the cell. The characterization of the cell is divided into four sections namely: the characterization of the paste required to make the TiO2 film and its optical properties using SEM-EDX and XRD analytical techniques; Analysis of the various absorptions of three Ru-based dyes using UV-Vis spectroscopy, Photoluminescence and Fourier Transform Infra-Red spectroscopy; the characterization and the analyses of the entire cell using Electrochemical Impedance Spectroscopy. The nine cells were prepared by examining RuL2(CN)2 , RuL2(NCS)2 or N3 dye and RuL2(NCS)2 TBA+ or N719 dye. [L = 2,2'-bipyridyl-4,4'-dicarboxylic acid ;TBA = tetra-butyl ammonium] were combined with three electrolytes namely: Z–150 , AN–50 and PN–50. The Iodolyte PN–50 is an iodide based low viscosity electrolyte with 50 mM of tri-iodide dissolved in a solvent called propionitrile (PN). The Iodolyte AN–50 is an iodide based low viscosity electrolyte with 50 mM of tri-iodide dissolved in a solvent called acetonitrile (AN). The Iodolyte Z–150 is an iodide based low viscosity electrolyte with 150 mM of tri-iodide dissolved in a solvent called 3-methoxypropionitrile (MPN) and with additives such an ionic liquid, malkylbenziimidazole and guanidine thiocyanate. A solar simulator was utilized with which the standard solar irradiation can be created in laboratory conditions. The fill factors as well as overall performance efficiencies of the these cells are quite low < 1.0%,.
- Full Text:
- Date Issued: 2013
Functionalized Ru(II) polypyridines and phthalocyanines: Potential dyes for dye-sensitized solar cells(DSSCs)
- Authors: Adeloye, Adewale Olufunsho https://orcid.org/0000-0003-1736-5738
- Date: 2011-01
- Subjects: Phthalocyanines , Dye-sensitized solar cells
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24365 , vital:62645
- Description: This study describes the design, synthesis, characterization and preliminary investigation of the solar-to-electrical energy conversion efficiency of ruthenium(II) functionalized polypyridine and phthalocyanine complexes with extended π-conjugation. Polypyridinyl functionalized with anthracene, 2,3-dimethylacrylic acid and 1-methoxy-1-buten-3-yne were synthesized and characterized by infrared, UV-Vis, photoluminescence, 1H and 13C NMR and elemental analysis. The functionalized polypyridine molecules were used to synthesize various ruthenium(II) homoleptic/heteroleptic and/or heteronuclear complexes and their photophysical and electrochemical properties evaluated. The preliminary results of the solar-to-electrical conversion efficiencies of some synthesized Ru(II) polypyridyl complexes were presented in chapter 5. It was found out as expected that the ruthenium(II) polypyridine complexes containing either heteronuclear polypyridine ligands or their thiocyanate analogues of the types [Ru(L1)2L2(PF6)2], [RuL1(L2)2(PF6)2] and [RuL1L2(NCS)2], showed better photophysical properties (red-shifted metal-to-ligand charge-transfer (MLCT) transitions concomitant with enhanced molar extinction coefficients), luminescence and interesting electrochemical redox properties than those containing homonuclear ligand types [Ru(L1)3(PF6)2]. The ruthenium(II) anthracenyl functionalized phthalocyanine complexes which were obtained by electrophilic aromatic substitution reactions in the peripheral positions gave good solubility properties in various organic solvents and also showed interesting near infrared absorption and electroredox characteristics. Cyclic and square wave voltammetries of these complexes revealed major redox processes and the numbers of electron(s) transfer were determined by chronocoulometry. It was established that a mono- and/or multi-electronic transfer reactions can occur in the various ruthenium(II) complexes. The photophysical properties of some complexes showed them to be better and promising candidates in the design of chemosensors, organic light emitting diodes (OLEDs) and as photosensitizers, while their redox-active natures make them potential mediators in electron-transfer for various photochemical processes. However, due to low surface concentration and/or adsorption of some tested complexes on TiO2 semiconductor nanocrystalline particle, low currents were generated and the highest solar-to- electrical conversion efficiency recorded in this study was 0.10 percent. , Thesis (PhD) -- Faculty of Science and Agriculture, 2011
- Full Text:
- Date Issued: 2011-01
Functionalized Ru(II) polypyridines and phthalocyanines: Potential dyes for dye-sensitized solar cells(DSSCs)
- Authors: Adeloye, Adewale Olufunsho https://orcid.org/0000-0003-1736-5738
- Date: 2011-01
- Subjects: Phthalocyanines , Dye-sensitized solar cells
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24343 , vital:62638
- Description: This study describes the design, synthesis, characterization and preliminary investigation of the solar-to-electrical energy conversion efficiency of ruthenium(II) functionalized polypyridine and phthalocyanine complexes with extended π-conjugation. Polypyridinyl functionalized with anthracene, 2,3-dimethylacrylic acid and 1-methoxy-1-buten-3-yne were synthesized and characterized by infrared, UV-Vis, photoluminescence, 1H and 13C NMR and elemental analysis. The functionalized polypyridine molecules were used to synthesize various ruthenium(II) homoleptic/heteroleptic and/or heteronuclear complexes and their photophysical and electrochemical properties evaluated. The preliminary results of the solar-to-electrical conversion efficiencies of some synthesized Ru(II) polypyridyl complexes were presented in chapter 5. It was found out as expected that the ruthenium(II) polypyridine complexes containing either heteronuclear polypyridine ligands or their thiocyanate analogues of the types [Ru(L1)2L2(PF6)2], [RuL1(L2)2(PF6)2] and [RuL1L2(NCS)2], showed better photophysical properties (red-shifted metal-to-ligand charge-transfer (MLCT) transitions concomitant with enhanced molar extinction coefficients), luminescence and interesting electrochemical redox properties than those containing homonuclear ligand types [Ru(L1)3(PF6)2]. The ruthenium(II) anthracenyl functionalized phthalocyanine complexes which were obtained by electrophilic aromatic substitution reactions in the peripheral positions gave good solubility properties in various organic solvents and also showed interesting near infrared absorption and electroredox characteristics. Cyclic and square wave voltammetries of these complexes revealed major redox processes and the numbers of electron(s) transfer were determined by chronocoulometry. It was established that a mono- and/or multi-electronic transfer reactions can occur in the various ruthenium(II) complexes. The photophysical properties of some complexes showed them to be better and promising candidates in the design of chemosensors, organic light emitting diodes (OLEDs) and as photosensitizers, while their redox-active natures make them potential mediators in electron-transfer for various photochemical processes. However, due to low surface concentration and/or adsorption of some tested complexes on TiO2 semiconductor nanocrystalline particle, low currents were generated and the highest solar-to-electrical conversion efficiency recorded in this study was 0.10 percent. , Thesis (PhD) -- Faculty of Science and Agriculture, 2011
- Full Text:
- Date Issued: 2011-01