A reappraisal of the origin of the Hotazel Fe-Mn Formation in an evolving early Earth system through the application of mineral-specific geochemistry, speciation techniques and stable isotope systematics
- Authors: Mhlanga, Xolane Reginald
- Date: 2020
- Subjects: Manganese ores -- South Africa -- Hotazel , Manganese ores -- Geology , Iron ores -- South Africa -- Hotazel , Iron ores -- Geology , Geochemistry -- South Africa -- Hotazel , Isotope geology -- South Africa -- Hotazel , Geology, Stratigraphic -- Archaean , Geology, Stratigraphic -- Proterozoic , Transvaal Supergroup (South Africa) , Great Oxidation Event
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/146123 , vital:38497
- Description: Marine chemical sediments such as Banded Iron Formations deposited during the Archean-Palaeoproterozoic are studied extensively because they represent a period in the development of the Earth’s early history where the atmospheric O₂ content was below the present levels (PAL) of 21%. Prior to the Great Oxidation Event (GOE) at ca. 2.4 Ga, highly ferruginous and anoxic marine environments were dominated by extensive BIF deposition such as that of the Griqualand West Basin of the Transvaal Supergroup in South Africa. This basin is also thought to record the transition into the first rise of atmospheric O₂ in our planet, from the Koegas Subgroup to the Hotazel Formation dated at ca. 2.43 Ga (Gumsley et al., 2017). Two drill cores from the north eastern part of the Kalahari Manganese Field characterized by a well-preserved and complete intersection of the cyclic Mn-Fe Hotazel Formation were studied at a high resolution (sampled at approximately one-meter interval). Such high-resolution approach is being employed for the first time in this project, capturing in detail the three manganese rich layers intercalated with BIF and the transitions between these lithofacies. The micro-banded BIF is made up of three major phases, namely Fe-Ca-Mg carbonates (ankerite, siderite and calcite), magnetite, and silicates (chert and minor Fe-silicates); laminated transitional lutite consist of mainly hematite, chert and Mn-carbonates, whereas the manganese ore layers are made up of mostly calcic carbonates (Mn-calcite and Ca-kutnahorite) in the form of laminations and ovoids, while Mn-silicates include dominant braunite and lesser friedelite. All three lithofacies are very fine grained (sub-mm scale) and so petrographic and mineralogical observations were obtained mostly through scanning electron microscope analysis for detailed textural relationships with focus on the carbonate fraction. Bulk geochemical studies of the entire stratigraphy of the Hotazel Formation have previously provided great insights into the cyclic nature of the deposit but have not adequately considered the potential of the carbonate fraction of the rocks as a valuable proxy for understanding the chemistry of the primary depositional environment and insights into the redox processes that were at play. This is because these carbonates have always been attributed to diagenetic processes below the sediment-water interface such as microbially-mediated dissimilatory iron/manganese reduction (DIR/DMR) where the precursor/primary Fe-Mn oxyhydroxides have been reduced to result in the minerals observed today. The carbonate fraction of the BIF is made up of ankerite and siderite which co-exist in a chert matrix as anhedral to subhedral grains with no apparent replacement textures. This suggests co-precipitation of the two species which is at apparent odds with classic diagenetic models. Similarly, Mn-carbonates in the hematite lutite and manganese ore (Mn-calcite, kutnahorite, and minor rhodocrosite) co-exist in laminae and ovoids with no textures observed that would suggest an obvious sequential mode of formation during diagenesis. In this light, a carbonate-specific geochemical analysis based on the sequential Fe extraction technique of Poulton and Canfield (2005) was employed to decipher further the cyclic nature of the Hotazel Formation and its primary versus diagenetic controls. Results from the carbonate fraction analysis of the three lithofacies show a clear fractionation of iron and manganese during primary – rather than diagenetic - carbonate precipitation, suggesting a decoupling between DIR and DMR which is ultimately interpreted to have taken place in the water column. Bulk-rock concentration results for minor and trace elements such as Zr, Ti, Sc and Al have been used for the determination of either siliciclastic or volcanic detrital inputs as they are generally immobile in most natural aqueous solutions. These elements are in very low concentrations in all three lithofacies suggesting that the depositional environment had vanishingly small contributions from terrigenous or volcanic detritus. In terms of redox-sensitive transition metals, only Mo and Co appear to show an affinity for high Mn facies in the Hotazel sequence. Cobalt in particular attains a very low abundance in the Hotazel BIF layers at an average of ~ 4 ppm. This is similar to average pre-GOE BIF in South Africa and worldwide. Maxima in Co abundance are associated with transitional hematite lutite and Mn ore layers, but maxima over 100ppm are seen in within the hematite lutite and not within the Mn ore proper where maxima in Mn are recorded. This suggests a clear and direct association with the hematite fraction in the rocks, which is modally much higher in the lutites but drops substantially in the Mn layers themselves. The similarities of bulk-rock BIF and modern-day seawater REE patterns has been used as a key argument for primary controls in REE behaviour and minimal diagenetic modification. Likewise, the three lithofacies of the Hotazel Formation analysed in this study all share similar characteristics with a clear seawater signal through gentle positive slopes in the normalised abundance of LREE versus HREE. Negative Ce anomalies prevail in the entire sample set analysed, which has been interpreted before as a proxy for oxic seawater conditions. However, positive Ce anomalies that are traditionally linked to scavenging and deposition of primary tetravalent Mn oxyhydroxides (e.g., as observed in modern day ferromanganese nodules) are completely absent from the current dataset. The lack of a positive Ce anomaly in the manganese ore and peak Co association with ferric oxides and not with peak Mn, suggests that primary deposition must have occurred within an environment that was not fully oxidizing with respect to manganese. The use of stable isotopes (i.e., C and Fe) was employed to gain insights into redox processes, whether these are thought to have happened below the sediment-water interface or in contemporaneous seawater. At a small scale, all lithofacies of the Hotazel Formation record bulk-rock δ¹³C values that are low and essentially invariant about the average value of -9.5 per mil. This is independent of sharp variations in overall modal mineralogy, relative carbonate abundance and carbonate chemistry, which is clearly difficult to reconcile with in-situ diagenetic processes that predict highly variable δ¹³C signals in response to complex combinations of precursor sediment mineralogy, pore-fluid chemistry, organic carbon supply and open vs closed system diagenesis. At a stratigraphic scale, the carbonate δ¹³C (-5 to -13‰) variations between the different lithologies could instead represent temporal changes in water-column chemistry against well-developed physico-chemical gradients, depth of deposition and biological processes. The low iron isotope values recorded in the hematite lutite and manganese ore samples can be attributed to fractionation effects of initial oxidation of ferrous iron to form Fe-oxyhydroxides in the shallow parts of the basin, from an already isotopically highly depleted aqueous Fe-pool as proposed previously. The slightly higher but still negative bulk-rock δ⁵⁶Fe values of the host BIF can be attributed to water-column Fe isotopic effects at deeper levels between primary Fe oxyhydroxides and an isotopically heavier Fe(II) pool, which was subsequently preserved during diagenetic recrystallization. All above findings were combined into a conceptual model of deposition for the three different lithologies of the Hotazel Formation. The model predicts that free molecular oxygen must have been present within the shallow oceanic environment and implicates both Mn and Fe as active redox “players” compared to classic models that apply to the origin of worldwide BIF prior to the GOE. The deposition of the Hotazel strata is interpreted to have occurred through the following three stages: (1) BIF deposition occurred in a relatively deep oceanic environment above the Ongeluk lavas during marine transgression, where a redoxcline and seawater stratification separated hydrothermally sourced iron and manganese, in response to an active Mn-shuttle mechanism linked to Mn redox cycling. Abundant ferrous iron must have been oxidized by available oxygen but also by oxidised Mn species (MnOOH) and possibly even some soluble Mn(III) complexes. Through this process, Mn(III) was being effectively reduced back into solution along with cobalt(III), as Mn(II) and Co(II) respectively, thus creating maxima in their concentrations. A drawdown of Fe(OH)₃ particles was therefore the only net precipitation mechanism at this stage. Carbonate species of Fe and the abundant magnetite would possibly have formed by reaction between the ferric hydroxides and the deeper Fe(II) pool, while organic matter would also have reacted in the water-column via DIR, accounting for the low δ¹³C signature of Fe carbonate minerals. (2) Hematite lutite formation would have occurred at a relatively shallower environment during marine regression. At this stage, reductive cycling of Fe was minimal in the absence of a deeper Fe(II) reservoir reacting with the ferric primary precipitates. Therefore, DIR progressively gave way to manganese reduction and organic carbon oxidation (DMR), which reduced MnOOH to form Mn(II)-rich carbonates in the form of kutnahorite and Mn-calcite. Co-bearing Fe(OH)₃ would have precipitated and was ultimately preserved as Co-bearing hematite during diagenesis. (3) Deposition of manganese-rich sediment occurred at even shallower oceanic depths (maximum regression) where aerobic organic carbon oxidation replaced DMR, resulting in Ca-rich carbonates such as Mn-bearing calcite and Ca-kutnahorite, yet with a low carbon isotope signature recording aerobic conditions of organic carbon cycling. Mn(III) reduction at this stage was curtailed, leading to massive precipitation of MnOOH which was diagenetically transformed into braunite and friedelite. Simultaneous precipitation of Co-bearing Fe(OH)₃ would have continued but at much more subdued rates. Repeated transgressive-regressive cycles resulted in the cyclic BIF-hematite lutite- manganese ore nature of the Hotazel Formation in an oxidized oceanic environment at the onset of the Great Oxidation Event, which was nonetheless never oxic enough to drive Mn(II) oxidation fully to its tetravalent state. The mineralogy and species-specific geochemistry of the Hotazel strata, and more specifically the carbonate fraction thereof, appear to faithfully capture the chemistry of the primary depositional environment in a progressively evolving Earth System. This project opens the door for more studies focusing on better constraining primary versus diagenetic depositional 2020 Hotazel Fe and Mn deposition mechanisms of iron and manganese during the period leading up to the GOE, and possibly re-defining the significance of Fe and Mn as invaluable redox proxies in a rapidly changing planet.
- Full Text:
- Date Issued: 2020
- Authors: Mhlanga, Xolane Reginald
- Date: 2020
- Subjects: Manganese ores -- South Africa -- Hotazel , Manganese ores -- Geology , Iron ores -- South Africa -- Hotazel , Iron ores -- Geology , Geochemistry -- South Africa -- Hotazel , Isotope geology -- South Africa -- Hotazel , Geology, Stratigraphic -- Archaean , Geology, Stratigraphic -- Proterozoic , Transvaal Supergroup (South Africa) , Great Oxidation Event
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/146123 , vital:38497
- Description: Marine chemical sediments such as Banded Iron Formations deposited during the Archean-Palaeoproterozoic are studied extensively because they represent a period in the development of the Earth’s early history where the atmospheric O₂ content was below the present levels (PAL) of 21%. Prior to the Great Oxidation Event (GOE) at ca. 2.4 Ga, highly ferruginous and anoxic marine environments were dominated by extensive BIF deposition such as that of the Griqualand West Basin of the Transvaal Supergroup in South Africa. This basin is also thought to record the transition into the first rise of atmospheric O₂ in our planet, from the Koegas Subgroup to the Hotazel Formation dated at ca. 2.43 Ga (Gumsley et al., 2017). Two drill cores from the north eastern part of the Kalahari Manganese Field characterized by a well-preserved and complete intersection of the cyclic Mn-Fe Hotazel Formation were studied at a high resolution (sampled at approximately one-meter interval). Such high-resolution approach is being employed for the first time in this project, capturing in detail the three manganese rich layers intercalated with BIF and the transitions between these lithofacies. The micro-banded BIF is made up of three major phases, namely Fe-Ca-Mg carbonates (ankerite, siderite and calcite), magnetite, and silicates (chert and minor Fe-silicates); laminated transitional lutite consist of mainly hematite, chert and Mn-carbonates, whereas the manganese ore layers are made up of mostly calcic carbonates (Mn-calcite and Ca-kutnahorite) in the form of laminations and ovoids, while Mn-silicates include dominant braunite and lesser friedelite. All three lithofacies are very fine grained (sub-mm scale) and so petrographic and mineralogical observations were obtained mostly through scanning electron microscope analysis for detailed textural relationships with focus on the carbonate fraction. Bulk geochemical studies of the entire stratigraphy of the Hotazel Formation have previously provided great insights into the cyclic nature of the deposit but have not adequately considered the potential of the carbonate fraction of the rocks as a valuable proxy for understanding the chemistry of the primary depositional environment and insights into the redox processes that were at play. This is because these carbonates have always been attributed to diagenetic processes below the sediment-water interface such as microbially-mediated dissimilatory iron/manganese reduction (DIR/DMR) where the precursor/primary Fe-Mn oxyhydroxides have been reduced to result in the minerals observed today. The carbonate fraction of the BIF is made up of ankerite and siderite which co-exist in a chert matrix as anhedral to subhedral grains with no apparent replacement textures. This suggests co-precipitation of the two species which is at apparent odds with classic diagenetic models. Similarly, Mn-carbonates in the hematite lutite and manganese ore (Mn-calcite, kutnahorite, and minor rhodocrosite) co-exist in laminae and ovoids with no textures observed that would suggest an obvious sequential mode of formation during diagenesis. In this light, a carbonate-specific geochemical analysis based on the sequential Fe extraction technique of Poulton and Canfield (2005) was employed to decipher further the cyclic nature of the Hotazel Formation and its primary versus diagenetic controls. Results from the carbonate fraction analysis of the three lithofacies show a clear fractionation of iron and manganese during primary – rather than diagenetic - carbonate precipitation, suggesting a decoupling between DIR and DMR which is ultimately interpreted to have taken place in the water column. Bulk-rock concentration results for minor and trace elements such as Zr, Ti, Sc and Al have been used for the determination of either siliciclastic or volcanic detrital inputs as they are generally immobile in most natural aqueous solutions. These elements are in very low concentrations in all three lithofacies suggesting that the depositional environment had vanishingly small contributions from terrigenous or volcanic detritus. In terms of redox-sensitive transition metals, only Mo and Co appear to show an affinity for high Mn facies in the Hotazel sequence. Cobalt in particular attains a very low abundance in the Hotazel BIF layers at an average of ~ 4 ppm. This is similar to average pre-GOE BIF in South Africa and worldwide. Maxima in Co abundance are associated with transitional hematite lutite and Mn ore layers, but maxima over 100ppm are seen in within the hematite lutite and not within the Mn ore proper where maxima in Mn are recorded. This suggests a clear and direct association with the hematite fraction in the rocks, which is modally much higher in the lutites but drops substantially in the Mn layers themselves. The similarities of bulk-rock BIF and modern-day seawater REE patterns has been used as a key argument for primary controls in REE behaviour and minimal diagenetic modification. Likewise, the three lithofacies of the Hotazel Formation analysed in this study all share similar characteristics with a clear seawater signal through gentle positive slopes in the normalised abundance of LREE versus HREE. Negative Ce anomalies prevail in the entire sample set analysed, which has been interpreted before as a proxy for oxic seawater conditions. However, positive Ce anomalies that are traditionally linked to scavenging and deposition of primary tetravalent Mn oxyhydroxides (e.g., as observed in modern day ferromanganese nodules) are completely absent from the current dataset. The lack of a positive Ce anomaly in the manganese ore and peak Co association with ferric oxides and not with peak Mn, suggests that primary deposition must have occurred within an environment that was not fully oxidizing with respect to manganese. The use of stable isotopes (i.e., C and Fe) was employed to gain insights into redox processes, whether these are thought to have happened below the sediment-water interface or in contemporaneous seawater. At a small scale, all lithofacies of the Hotazel Formation record bulk-rock δ¹³C values that are low and essentially invariant about the average value of -9.5 per mil. This is independent of sharp variations in overall modal mineralogy, relative carbonate abundance and carbonate chemistry, which is clearly difficult to reconcile with in-situ diagenetic processes that predict highly variable δ¹³C signals in response to complex combinations of precursor sediment mineralogy, pore-fluid chemistry, organic carbon supply and open vs closed system diagenesis. At a stratigraphic scale, the carbonate δ¹³C (-5 to -13‰) variations between the different lithologies could instead represent temporal changes in water-column chemistry against well-developed physico-chemical gradients, depth of deposition and biological processes. The low iron isotope values recorded in the hematite lutite and manganese ore samples can be attributed to fractionation effects of initial oxidation of ferrous iron to form Fe-oxyhydroxides in the shallow parts of the basin, from an already isotopically highly depleted aqueous Fe-pool as proposed previously. The slightly higher but still negative bulk-rock δ⁵⁶Fe values of the host BIF can be attributed to water-column Fe isotopic effects at deeper levels between primary Fe oxyhydroxides and an isotopically heavier Fe(II) pool, which was subsequently preserved during diagenetic recrystallization. All above findings were combined into a conceptual model of deposition for the three different lithologies of the Hotazel Formation. The model predicts that free molecular oxygen must have been present within the shallow oceanic environment and implicates both Mn and Fe as active redox “players” compared to classic models that apply to the origin of worldwide BIF prior to the GOE. The deposition of the Hotazel strata is interpreted to have occurred through the following three stages: (1) BIF deposition occurred in a relatively deep oceanic environment above the Ongeluk lavas during marine transgression, where a redoxcline and seawater stratification separated hydrothermally sourced iron and manganese, in response to an active Mn-shuttle mechanism linked to Mn redox cycling. Abundant ferrous iron must have been oxidized by available oxygen but also by oxidised Mn species (MnOOH) and possibly even some soluble Mn(III) complexes. Through this process, Mn(III) was being effectively reduced back into solution along with cobalt(III), as Mn(II) and Co(II) respectively, thus creating maxima in their concentrations. A drawdown of Fe(OH)₃ particles was therefore the only net precipitation mechanism at this stage. Carbonate species of Fe and the abundant magnetite would possibly have formed by reaction between the ferric hydroxides and the deeper Fe(II) pool, while organic matter would also have reacted in the water-column via DIR, accounting for the low δ¹³C signature of Fe carbonate minerals. (2) Hematite lutite formation would have occurred at a relatively shallower environment during marine regression. At this stage, reductive cycling of Fe was minimal in the absence of a deeper Fe(II) reservoir reacting with the ferric primary precipitates. Therefore, DIR progressively gave way to manganese reduction and organic carbon oxidation (DMR), which reduced MnOOH to form Mn(II)-rich carbonates in the form of kutnahorite and Mn-calcite. Co-bearing Fe(OH)₃ would have precipitated and was ultimately preserved as Co-bearing hematite during diagenesis. (3) Deposition of manganese-rich sediment occurred at even shallower oceanic depths (maximum regression) where aerobic organic carbon oxidation replaced DMR, resulting in Ca-rich carbonates such as Mn-bearing calcite and Ca-kutnahorite, yet with a low carbon isotope signature recording aerobic conditions of organic carbon cycling. Mn(III) reduction at this stage was curtailed, leading to massive precipitation of MnOOH which was diagenetically transformed into braunite and friedelite. Simultaneous precipitation of Co-bearing Fe(OH)₃ would have continued but at much more subdued rates. Repeated transgressive-regressive cycles resulted in the cyclic BIF-hematite lutite- manganese ore nature of the Hotazel Formation in an oxidized oceanic environment at the onset of the Great Oxidation Event, which was nonetheless never oxic enough to drive Mn(II) oxidation fully to its tetravalent state. The mineralogy and species-specific geochemistry of the Hotazel strata, and more specifically the carbonate fraction thereof, appear to faithfully capture the chemistry of the primary depositional environment in a progressively evolving Earth System. This project opens the door for more studies focusing on better constraining primary versus diagenetic depositional 2020 Hotazel Fe and Mn deposition mechanisms of iron and manganese during the period leading up to the GOE, and possibly re-defining the significance of Fe and Mn as invaluable redox proxies in a rapidly changing planet.
- Full Text:
- Date Issued: 2020
Carbonate petrography and geochemistry of BIF of the Transvaal supergroup : evaluating the potential of iron carbonates as proxies for palaeoproterozoic ocean chemistry
- Authors: Rafuza, Sipesihle
- Date: 2015
- Subjects: Carbonate rocks -- South Africa -- Transvaal Supergroup , Petrology -- South Africa -- Transvaal Supergroup , Geochemistry -- South Africa -- Transvaal Supergroup , Petrology -- South Africa -- Kuruman , Petrology -- South Africa -- Griekwastad , Geology, Stratigraphic -- Proterozoic , Chemical oceanography , Iron
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5089 , http://hdl.handle.net/10962/d1018611
- Description: The subject of BIF genesis, particularly their environmental conditions and ocean chemistry at the time of deposition and their evolution through time, has been a subject of much contentiousness, generating a wealth of proposed genetic models and constant refinements thereof over the years. The prevailing paradigm within the various schools of thought, is the widespread and generally agreed upon depositional and diagenetic model(s) which advocate for BIF deposition under anoxic marine conditions. According to the prevailing models, the primary depositional environment would have involved a seawater column whereby soluble Fe²⁺ expelled by hydrothermal activity mixed with free O₂ from the shallow photic zone produced by eukaryotes, forming a high valence iron oxy-hydroxide precursor such as FeOOH or Fe(OH)₃. An alternative biological mechanism producing similar ferric precursors would have been in the form of photo-ferrotrophy, whereby oxidation of ferrous iron to the ferric form took place in the absence of biological O₂ production. Irrespective of the exact mode of primary iron precipitation (which remains contentious to date), the precipitated ferric oxy-hydroxide precursor would have reacted with co-precipitated organic matter, thus acting as a suitable electron acceptor for organic carbon remineralisation through Dissimilatory Iron Reduction (DIR), as also observed in many modern anoxic diagenetic environments. DIR-dominated diagenetic models imply a predominantly diagenetic influence in BIF mineralogy and genesis, and use as key evidence the low δ¹³C values relative to the seawater bicarbonate value of ~0 ‰, which is also thought to have been the dissolved bicarbonate isotope composition in the early Precambrian oceans. The carbon for diagenetic carbonate formation would thus have been sourced through a combination of two end-member sources: pore-fluid bicarbonate at ~0 ‰ and particulate organic carbon at circa -28 ‰, resulting in the intermediate δ¹³C values observed in BIFs today. This study targets 65 drillcore samples of the upper Kuruman and Griquatown BIF from the lower Transvaal Supergroup in the Hotazel area, Northern Cape, South Africa, and sets out to explore key aspects in BIF carbonate petrography and geochemistry that are pertinent to current debates surrounding their interpretation with regard to primary versus diagenetic processes. The focus here rests on applications of carbonate (mainly siderite and ankerite) petrography, mineral chemistry, bulk and mineral-specific carbon isotopes and speciation analyses, with a view to obtaining valuable new insights into BIF carbonates as potential records of ocean chemistry for their bulk carbonate-carbon isotope signature. Evaluation of the present results is done in light of pre-existing, widely accepted diagenetic models against a proposed water-column model for the origin of the carbonate species in BIF. The latter utilises a combination of geochemical attributes of the studied carbonates, including the conspicuous Mn enrichment and stratigraphic variability in Mn/Fe ratio of the Griquatown BIF recorded solely in the carbonate fraction of the rocks. Additionally, the carbon isotope signatures of the Griquatown BIF samples are brought into the discussion and provide insights into the potential causes and mechanisms that may have controlled these signatures in a diagenetic versus primary sedimentary environment. Ultimately, implications of the combined observations, findings and arguments presented in this thesis are presented and discussed with particular respect to the redox evolution and carbon cycle of the ocean system prior to the Great Oxidation Event (GOE). A crucial conclusion reached is that, by contrast to previously-proposed models, diagenesis cannot singularly be the major contributing factor in BIF genesis at least with respect to the carbonate fraction in BIF, as it does not readily explain the carbon isotope and mineral-chemical signatures of carbonates in the Griquatown and uppermost Kuruman BIFs. It is proposed instead that these signatures may well record water-column processes of carbon, manganese and iron cycling, and that carbonate formation in the water column and its subsequent transfer to the precursor BIF sediment constitutes a faithful record of such processes. Corollary to that interpretation is the suggestion that the evidently increasing Mn abundance in the carbonate fraction of the Griquatown BIF up-section would point to a chemically evolving depositional basin with time, from being mainly ferruginous as expressed by Mn-poor BIFs in the lower stratigraphic sections (i.e. Kuruman BF) to more manganiferous as recorded in the upper Griquatown BIF, culminating in the deposition of the abnormally enriched in Mn Hotazel BIF at the stratigraphic top of the Transvaal Supergroup. The Paleoproterozoic ocean must therefore have been characterised by long-term active cycling of organic carbon in the water column in the form of an ancient biological pump, albeit with Fe(III) and subsequently Mn(III,IV) oxy-hydroxides being the key electron acceptors within the water column. The highly reproducible stratigraphic isotope profiles for bulk δ¹³C from similar sections further afield over distances up to 20 km, further corroborate unabatedly that bulk carbonate carbon isotope signatures record water column carbon cycling processes rather than widely-proposed anaerobic diagenetic processes.
- Full Text:
- Date Issued: 2015
- Authors: Rafuza, Sipesihle
- Date: 2015
- Subjects: Carbonate rocks -- South Africa -- Transvaal Supergroup , Petrology -- South Africa -- Transvaal Supergroup , Geochemistry -- South Africa -- Transvaal Supergroup , Petrology -- South Africa -- Kuruman , Petrology -- South Africa -- Griekwastad , Geology, Stratigraphic -- Proterozoic , Chemical oceanography , Iron
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5089 , http://hdl.handle.net/10962/d1018611
- Description: The subject of BIF genesis, particularly their environmental conditions and ocean chemistry at the time of deposition and their evolution through time, has been a subject of much contentiousness, generating a wealth of proposed genetic models and constant refinements thereof over the years. The prevailing paradigm within the various schools of thought, is the widespread and generally agreed upon depositional and diagenetic model(s) which advocate for BIF deposition under anoxic marine conditions. According to the prevailing models, the primary depositional environment would have involved a seawater column whereby soluble Fe²⁺ expelled by hydrothermal activity mixed with free O₂ from the shallow photic zone produced by eukaryotes, forming a high valence iron oxy-hydroxide precursor such as FeOOH or Fe(OH)₃. An alternative biological mechanism producing similar ferric precursors would have been in the form of photo-ferrotrophy, whereby oxidation of ferrous iron to the ferric form took place in the absence of biological O₂ production. Irrespective of the exact mode of primary iron precipitation (which remains contentious to date), the precipitated ferric oxy-hydroxide precursor would have reacted with co-precipitated organic matter, thus acting as a suitable electron acceptor for organic carbon remineralisation through Dissimilatory Iron Reduction (DIR), as also observed in many modern anoxic diagenetic environments. DIR-dominated diagenetic models imply a predominantly diagenetic influence in BIF mineralogy and genesis, and use as key evidence the low δ¹³C values relative to the seawater bicarbonate value of ~0 ‰, which is also thought to have been the dissolved bicarbonate isotope composition in the early Precambrian oceans. The carbon for diagenetic carbonate formation would thus have been sourced through a combination of two end-member sources: pore-fluid bicarbonate at ~0 ‰ and particulate organic carbon at circa -28 ‰, resulting in the intermediate δ¹³C values observed in BIFs today. This study targets 65 drillcore samples of the upper Kuruman and Griquatown BIF from the lower Transvaal Supergroup in the Hotazel area, Northern Cape, South Africa, and sets out to explore key aspects in BIF carbonate petrography and geochemistry that are pertinent to current debates surrounding their interpretation with regard to primary versus diagenetic processes. The focus here rests on applications of carbonate (mainly siderite and ankerite) petrography, mineral chemistry, bulk and mineral-specific carbon isotopes and speciation analyses, with a view to obtaining valuable new insights into BIF carbonates as potential records of ocean chemistry for their bulk carbonate-carbon isotope signature. Evaluation of the present results is done in light of pre-existing, widely accepted diagenetic models against a proposed water-column model for the origin of the carbonate species in BIF. The latter utilises a combination of geochemical attributes of the studied carbonates, including the conspicuous Mn enrichment and stratigraphic variability in Mn/Fe ratio of the Griquatown BIF recorded solely in the carbonate fraction of the rocks. Additionally, the carbon isotope signatures of the Griquatown BIF samples are brought into the discussion and provide insights into the potential causes and mechanisms that may have controlled these signatures in a diagenetic versus primary sedimentary environment. Ultimately, implications of the combined observations, findings and arguments presented in this thesis are presented and discussed with particular respect to the redox evolution and carbon cycle of the ocean system prior to the Great Oxidation Event (GOE). A crucial conclusion reached is that, by contrast to previously-proposed models, diagenesis cannot singularly be the major contributing factor in BIF genesis at least with respect to the carbonate fraction in BIF, as it does not readily explain the carbon isotope and mineral-chemical signatures of carbonates in the Griquatown and uppermost Kuruman BIFs. It is proposed instead that these signatures may well record water-column processes of carbon, manganese and iron cycling, and that carbonate formation in the water column and its subsequent transfer to the precursor BIF sediment constitutes a faithful record of such processes. Corollary to that interpretation is the suggestion that the evidently increasing Mn abundance in the carbonate fraction of the Griquatown BIF up-section would point to a chemically evolving depositional basin with time, from being mainly ferruginous as expressed by Mn-poor BIFs in the lower stratigraphic sections (i.e. Kuruman BF) to more manganiferous as recorded in the upper Griquatown BIF, culminating in the deposition of the abnormally enriched in Mn Hotazel BIF at the stratigraphic top of the Transvaal Supergroup. The Paleoproterozoic ocean must therefore have been characterised by long-term active cycling of organic carbon in the water column in the form of an ancient biological pump, albeit with Fe(III) and subsequently Mn(III,IV) oxy-hydroxides being the key electron acceptors within the water column. The highly reproducible stratigraphic isotope profiles for bulk δ¹³C from similar sections further afield over distances up to 20 km, further corroborate unabatedly that bulk carbonate carbon isotope signatures record water column carbon cycling processes rather than widely-proposed anaerobic diagenetic processes.
- Full Text:
- Date Issued: 2015
Genesis of BIF-hosted hematite iron ore deposits in the central part of the Maremane anticline, Northern Cape Province, South Africa
- Authors: Land, Jarred
- Date: 2014
- Subjects: Hematite -- South Africa -- Northern Cape , Anticlines -- South Africa -- Northern Cape , Geology, Stratigraphic -- Proterozoic , Hydrothermal deposits -- Northern Cape , Rare earth metals -- Northern Cape , Iron ores -- Geology -- Northern Cape , Transvaal Supergroup (South Africa)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5095 , http://hdl.handle.net/10962/d1020905
- Description: The Paleoproterozoic Transvaal Supergroup in the Northern Cape Province of South Africa is host to high-grade BIF-hosted hematite iron-ore deposits and is the country’s most important source of iron to date. Previous work has failed to provide a robust and all-inclusive genetic model for such deposits in the Transvaal Supergroup; in particular, the role of hydrothermal processes in ore-genesis has not been adequately clarified. Recent studies by the author have produced evidence for hydrothermal alteration in shales (Olifantshoek Supergroup) stratigraphically overlying the iron-ore intervals; this has highlighted the need to reassess current ore-forming models which place residual supergene processes at the core of oregenesis. This thesis focuses on providing new insights into the processes responsible for the genesis of hematite iron ores in the Maremane anticline through the use of newly available exploration drill-core material from the centre of the anticline. The study involved standard mineralogical investigations using transmitted/reflected light microscopy as well as instrumental techniques (XRD, EPMA); and the employment of traditional whole-rock geochemical analysis on samples collected from two boreholes drilled in the centre of the Maremane anticline, Northern Cape Province. Rare earth element analysis (via ICP-MS) and oxygen isotope data from hematite separates complement the whole-rock data. Iron-ore mineralisation examined in this thesis is typified by the dominance of Fe-oxide (as hematite), which reaches whole-rock abundances of up to 98 wt. % Fe₂O₃. Textural and whole-rock geochemical variations in the ores likely reflect a variable protolith, from BIF to Fe-bearing shale. A standard supergene model invoking immobility and residual enrichment of iron is called into question on the basis of the relative degrees of enrichment recorded in the ores with respect to other, traditionally immobile elements during chemical weathering, such as Al₂O₃ and TiO₂. Furthermore, the apparently conservative behaviour of REE in the Fe ore (i.e. low-grade and high-grade iron ore) further emphasises the variable protolith theory. Hydrothermally-induced ferruginisation is suggested to post-date the deposition of the post-Transvaal Olifantshoek shales, and is likely to be linked to a sub-surface transgressive hydrothermal event which indiscriminately transforms both shale and BIF into Fe-ore. A revised, hydrothermal model for the formation of BIF-hosted high-grade hematite iron ore deposits in the central part of the Maremane anticline is proposed, and some ideas of the author for further follow-up research are presented.
- Full Text:
- Date Issued: 2014
- Authors: Land, Jarred
- Date: 2014
- Subjects: Hematite -- South Africa -- Northern Cape , Anticlines -- South Africa -- Northern Cape , Geology, Stratigraphic -- Proterozoic , Hydrothermal deposits -- Northern Cape , Rare earth metals -- Northern Cape , Iron ores -- Geology -- Northern Cape , Transvaal Supergroup (South Africa)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5095 , http://hdl.handle.net/10962/d1020905
- Description: The Paleoproterozoic Transvaal Supergroup in the Northern Cape Province of South Africa is host to high-grade BIF-hosted hematite iron-ore deposits and is the country’s most important source of iron to date. Previous work has failed to provide a robust and all-inclusive genetic model for such deposits in the Transvaal Supergroup; in particular, the role of hydrothermal processes in ore-genesis has not been adequately clarified. Recent studies by the author have produced evidence for hydrothermal alteration in shales (Olifantshoek Supergroup) stratigraphically overlying the iron-ore intervals; this has highlighted the need to reassess current ore-forming models which place residual supergene processes at the core of oregenesis. This thesis focuses on providing new insights into the processes responsible for the genesis of hematite iron ores in the Maremane anticline through the use of newly available exploration drill-core material from the centre of the anticline. The study involved standard mineralogical investigations using transmitted/reflected light microscopy as well as instrumental techniques (XRD, EPMA); and the employment of traditional whole-rock geochemical analysis on samples collected from two boreholes drilled in the centre of the Maremane anticline, Northern Cape Province. Rare earth element analysis (via ICP-MS) and oxygen isotope data from hematite separates complement the whole-rock data. Iron-ore mineralisation examined in this thesis is typified by the dominance of Fe-oxide (as hematite), which reaches whole-rock abundances of up to 98 wt. % Fe₂O₃. Textural and whole-rock geochemical variations in the ores likely reflect a variable protolith, from BIF to Fe-bearing shale. A standard supergene model invoking immobility and residual enrichment of iron is called into question on the basis of the relative degrees of enrichment recorded in the ores with respect to other, traditionally immobile elements during chemical weathering, such as Al₂O₃ and TiO₂. Furthermore, the apparently conservative behaviour of REE in the Fe ore (i.e. low-grade and high-grade iron ore) further emphasises the variable protolith theory. Hydrothermally-induced ferruginisation is suggested to post-date the deposition of the post-Transvaal Olifantshoek shales, and is likely to be linked to a sub-surface transgressive hydrothermal event which indiscriminately transforms both shale and BIF into Fe-ore. A revised, hydrothermal model for the formation of BIF-hosted high-grade hematite iron ore deposits in the central part of the Maremane anticline is proposed, and some ideas of the author for further follow-up research are presented.
- Full Text:
- Date Issued: 2014
The geology of the Proterozoic Haveri Au-Cu deposit, Southern Finland
- Strauss, Toby Anthony Lavery
- Authors: Strauss, Toby Anthony Lavery
- Date: 2004
- Subjects: Geology, Stratigraphic -- Precambrian , Geology, Stratigraphic -- Proterozoic , Ore deposits -- Finland , Geology -- Finland
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5081 , http://hdl.handle.net/10962/d1015978
- Description: The Haveri Au-Cu deposit is located in southern Finland about 175 km north of Helsinki. It occurs on the northern edge of the continental island arc-type, volcano-sedimentary Tampere Schist Belt (TSB) within the Palaeoproterozoic Svecofennian Domain (2.0 – 1.75 Ga) of the Fennoscandian Shield. The 1.99 Ga Haveri Formation forms the base of the supracrustal stratigraphy consisting of metavolcanic pillow lavas and breccias passing upwards into intercalated metatuffs and metatuffites. There is a continuous gradation upwards from the predominantly volcaniclastic Haveri Formation into the overlying epiclastic meta-greywackes of the Osara Formation. The Haveri deposit is hosted in this contact zone. This supracrustal sequence has been intruded concordantly by quartz-feldspar porphyries. Approximately 1.89 Ga ago, high crustal heat flow led to the generation and emplacement of voluminous synkinematic, I-type, magnetite-series granitoids of the Central Finland Granitoid Complex (CFGC), resulting in coeval high-T/low-P metamorphism (hornfelsic textures), and D₁ deformation. During the crystallisation and cooling of the granitoids, a magmatic-dominated hydrothermal system caused extensive hydrothermal alteration and Cu-Au mineralisation through the late-D₁ to early-D₂ deformation. Initially, a pre-ore Na-Ca alteration phase caused albitisation of the host rock. This was closely followed by strong Ca-Fe alteration, responsible for widespread amphibolitisation and quartz veining and associated with abundant pyrrhotite, magnetite, chalcopyrite and gold mineralisation. More localised calcic-skarn alteration is also present as zoned garnetpyroxene- epidote skarn assemblages with associated pyrrhotite and minor sphalerite, centred on quartzcalcite± scapolite veinlets. Post-ore alteration includes an evolution to more K-rich alteration (biotitisation). Late D₂-retrograde chlorite began to replace the earlier high-T assemblage. Late emanations (post-D₂ and pre-D₃) from the cooling granitoids, under lower temperatures and oxidising conditions, are represented by carbonate-barite veins and epidote veinlets. Later, narrow dolerite dykes were emplaced followed by a weak D₃ deformation, resulting in shearing and structural reactivation along the carbonate-barite bands. This phase was accompanied by pyrite deposition. Both sulphides and oxides are common at Haveri, with ore types varying from massive sulphide and/or magnetite, to networks of veinlets and disseminations of oxides and/or sulphides. Cataclastites, consisting of deformed, brecciated bands of sulphide, with rounded and angular clasts of quartz vein material and altered host-rock are an economically important ore type. Ore minerals are principally pyrrhotite, magnetite and chalcopyrite with lesser amounts of pyrite, molybdenite and sphalerite. There is a general progression from early magnetite, through pyrrhotite to pyrite indicating increasing sulphidation with time. Gold is typically found as free gold within quartz veins and within intense zones of amphibolitisation. Considerable gold is also found in the cataclastite ore type either as invisible gold within the sulphides and/or as free gold within the breccia fragments. The unaltered amphibolites of the Haveri Formation can be classified as medium-K basalts of the tholeiitic trend. Trace and REE support an interpretation of formation in a back-arc basin setting. The unaltered porphyritic rocks are calc-alkaline dacites, and are interpreted, along with the granitoids as having an arc-type origin. This is consistent with the evolution from an initial back-arc basin, through a period of passive margin and/or fore-arc deposition represented by the Osara Formation greywackes and the basal stratigraphy of the TSB, prior to the onset of arc-related volcanic activity characteristic of the TSB and the Svecofennian proper. Using a combination of petrogenetic grids, mineral compositions (garnet-biotite and hornblendeplagioclase thermometers) and oxygen isotope thermometry, peak metamorphism can be constrained to a maximum of approximately 600 °C and 1.5 kbars pressure. Furthermore, the petrogenetic grids indicate that the REDOX conditions can be constrained at 600°C to log f(O₂) values of approximately - 21.0 to -26.0 and -14.5 to -17.5 for the metasedimentary rocks and mafic metavolcanic rocks respectively, thus indicating the presence of a significant REDOX boundary. Amphibole compositions from the Ca-Fe alteration phase (amphibolitisation) indicate iron enrichment with increasing alteration corresponding to higher temperatures of formation. Oxygen isotope studies combined with limited fluid inclusion studies indicate that the Ca-Fe alteration and associated quartz veins formed at high temperatures (530 – 610°C) from low CO₂, low- to moderately saline (<10 eq. wt% NaCl), magmatic-dominated fluids. Fluid inclusion decrepitation textures in the quartz veins suggest isobaric decompression. This is compatible with formation in high-T/low-P environments such as contact aureoles and island arcs. The calcic-skarn assemblage, combined with phase equilibria and sphalerite geothermometry, are indicative of formation at high temperatures (500 – 600 °C) from fluids with higher CO₂ contents and more saline compositions than those responsible for the Fe-Ca alteration. Limited fluid inclusion studies have identified hypersaline inclusions in secondary inclusion trails within quartz. The presence of calcite and scapolite also support formation from CO₂-rich saline fluids. It is suggested that the calcic-skarn alteration and the amphibolitisation evolved from the same fluids, and that P-T changes led to fluid unmixing resulting in two fluid types responsible for the observed alteration variations. Chlorite geothermometry on retrograde chlorite indicates temperatures of 309 – 368 °C. As chlorite represents the latest hydrothermal event, this can be taken as a lower temperature limit for hydrothermal alteration and mineralisation at Haveri.The gold mineralisation at Haveri is related primarily to the Ca-Fe alteration. Under such P-T-X conditions gold was transported as chloride complexes. Ore was localised by a combination of structural controls (shears and folds) and REDOX reactions along the boundary between the oxidised metavolcanics and the reduced metasediments. In addition, fluid unmixing caused an increase in pH, and thus further augmented the precipitation of Cu and Au. During the late D₂-event, temperatures fell below 400 °C, and fluids may have remobilised Au and Cu as bisulphide complexes into the shearcontrolled cataclastites and massive sulphides. The Haveri deposit has many similarities with ore deposit models that include orogenic lode-gold deposits, certain Au-skarn deposits and Fe-oxide Cu-Au deposits. However, many characteristics of the Haveri deposit, including tectonic setting, host lithologies, alteration types, proximity to I-type granitoids and P-T-X conditions of formation, compare favourably with other Early Proterozoic deposits within the TSB and Fennoscandia, as well as many of the deposits in the Cloncurry district of Australia. Consequently, the Haveri deposit can be seen to represent a high-T, Ca-rich member of the recently recognised Fe-oxide Cu-Au group of deposits.
- Full Text:
- Date Issued: 2004
- Authors: Strauss, Toby Anthony Lavery
- Date: 2004
- Subjects: Geology, Stratigraphic -- Precambrian , Geology, Stratigraphic -- Proterozoic , Ore deposits -- Finland , Geology -- Finland
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5081 , http://hdl.handle.net/10962/d1015978
- Description: The Haveri Au-Cu deposit is located in southern Finland about 175 km north of Helsinki. It occurs on the northern edge of the continental island arc-type, volcano-sedimentary Tampere Schist Belt (TSB) within the Palaeoproterozoic Svecofennian Domain (2.0 – 1.75 Ga) of the Fennoscandian Shield. The 1.99 Ga Haveri Formation forms the base of the supracrustal stratigraphy consisting of metavolcanic pillow lavas and breccias passing upwards into intercalated metatuffs and metatuffites. There is a continuous gradation upwards from the predominantly volcaniclastic Haveri Formation into the overlying epiclastic meta-greywackes of the Osara Formation. The Haveri deposit is hosted in this contact zone. This supracrustal sequence has been intruded concordantly by quartz-feldspar porphyries. Approximately 1.89 Ga ago, high crustal heat flow led to the generation and emplacement of voluminous synkinematic, I-type, magnetite-series granitoids of the Central Finland Granitoid Complex (CFGC), resulting in coeval high-T/low-P metamorphism (hornfelsic textures), and D₁ deformation. During the crystallisation and cooling of the granitoids, a magmatic-dominated hydrothermal system caused extensive hydrothermal alteration and Cu-Au mineralisation through the late-D₁ to early-D₂ deformation. Initially, a pre-ore Na-Ca alteration phase caused albitisation of the host rock. This was closely followed by strong Ca-Fe alteration, responsible for widespread amphibolitisation and quartz veining and associated with abundant pyrrhotite, magnetite, chalcopyrite and gold mineralisation. More localised calcic-skarn alteration is also present as zoned garnetpyroxene- epidote skarn assemblages with associated pyrrhotite and minor sphalerite, centred on quartzcalcite± scapolite veinlets. Post-ore alteration includes an evolution to more K-rich alteration (biotitisation). Late D₂-retrograde chlorite began to replace the earlier high-T assemblage. Late emanations (post-D₂ and pre-D₃) from the cooling granitoids, under lower temperatures and oxidising conditions, are represented by carbonate-barite veins and epidote veinlets. Later, narrow dolerite dykes were emplaced followed by a weak D₃ deformation, resulting in shearing and structural reactivation along the carbonate-barite bands. This phase was accompanied by pyrite deposition. Both sulphides and oxides are common at Haveri, with ore types varying from massive sulphide and/or magnetite, to networks of veinlets and disseminations of oxides and/or sulphides. Cataclastites, consisting of deformed, brecciated bands of sulphide, with rounded and angular clasts of quartz vein material and altered host-rock are an economically important ore type. Ore minerals are principally pyrrhotite, magnetite and chalcopyrite with lesser amounts of pyrite, molybdenite and sphalerite. There is a general progression from early magnetite, through pyrrhotite to pyrite indicating increasing sulphidation with time. Gold is typically found as free gold within quartz veins and within intense zones of amphibolitisation. Considerable gold is also found in the cataclastite ore type either as invisible gold within the sulphides and/or as free gold within the breccia fragments. The unaltered amphibolites of the Haveri Formation can be classified as medium-K basalts of the tholeiitic trend. Trace and REE support an interpretation of formation in a back-arc basin setting. The unaltered porphyritic rocks are calc-alkaline dacites, and are interpreted, along with the granitoids as having an arc-type origin. This is consistent with the evolution from an initial back-arc basin, through a period of passive margin and/or fore-arc deposition represented by the Osara Formation greywackes and the basal stratigraphy of the TSB, prior to the onset of arc-related volcanic activity characteristic of the TSB and the Svecofennian proper. Using a combination of petrogenetic grids, mineral compositions (garnet-biotite and hornblendeplagioclase thermometers) and oxygen isotope thermometry, peak metamorphism can be constrained to a maximum of approximately 600 °C and 1.5 kbars pressure. Furthermore, the petrogenetic grids indicate that the REDOX conditions can be constrained at 600°C to log f(O₂) values of approximately - 21.0 to -26.0 and -14.5 to -17.5 for the metasedimentary rocks and mafic metavolcanic rocks respectively, thus indicating the presence of a significant REDOX boundary. Amphibole compositions from the Ca-Fe alteration phase (amphibolitisation) indicate iron enrichment with increasing alteration corresponding to higher temperatures of formation. Oxygen isotope studies combined with limited fluid inclusion studies indicate that the Ca-Fe alteration and associated quartz veins formed at high temperatures (530 – 610°C) from low CO₂, low- to moderately saline (<10 eq. wt% NaCl), magmatic-dominated fluids. Fluid inclusion decrepitation textures in the quartz veins suggest isobaric decompression. This is compatible with formation in high-T/low-P environments such as contact aureoles and island arcs. The calcic-skarn assemblage, combined with phase equilibria and sphalerite geothermometry, are indicative of formation at high temperatures (500 – 600 °C) from fluids with higher CO₂ contents and more saline compositions than those responsible for the Fe-Ca alteration. Limited fluid inclusion studies have identified hypersaline inclusions in secondary inclusion trails within quartz. The presence of calcite and scapolite also support formation from CO₂-rich saline fluids. It is suggested that the calcic-skarn alteration and the amphibolitisation evolved from the same fluids, and that P-T changes led to fluid unmixing resulting in two fluid types responsible for the observed alteration variations. Chlorite geothermometry on retrograde chlorite indicates temperatures of 309 – 368 °C. As chlorite represents the latest hydrothermal event, this can be taken as a lower temperature limit for hydrothermal alteration and mineralisation at Haveri.The gold mineralisation at Haveri is related primarily to the Ca-Fe alteration. Under such P-T-X conditions gold was transported as chloride complexes. Ore was localised by a combination of structural controls (shears and folds) and REDOX reactions along the boundary between the oxidised metavolcanics and the reduced metasediments. In addition, fluid unmixing caused an increase in pH, and thus further augmented the precipitation of Cu and Au. During the late D₂-event, temperatures fell below 400 °C, and fluids may have remobilised Au and Cu as bisulphide complexes into the shearcontrolled cataclastites and massive sulphides. The Haveri deposit has many similarities with ore deposit models that include orogenic lode-gold deposits, certain Au-skarn deposits and Fe-oxide Cu-Au deposits. However, many characteristics of the Haveri deposit, including tectonic setting, host lithologies, alteration types, proximity to I-type granitoids and P-T-X conditions of formation, compare favourably with other Early Proterozoic deposits within the TSB and Fennoscandia, as well as many of the deposits in the Cloncurry district of Australia. Consequently, the Haveri deposit can be seen to represent a high-T, Ca-rich member of the recently recognised Fe-oxide Cu-Au group of deposits.
- Full Text:
- Date Issued: 2004
- «
- ‹
- 1
- ›
- »