Purification and partial characterisation of cathepsin D from ostrich skeletal muscle, and its activity during meat maturation
- Authors: Krause, Jason
- Date: 2009
- Subjects: Proteolytic enzymes , Ostrich products industry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10313 , http://hdl.handle.net/10948/1461 , Proteolytic enzymes , Ostrich products industry
- Description: Cathepsin D, a muscle proteinase, participates in lysosomally mediated protein degradation in vivo. This enzyme has been proposed to play a significant role in the postmortem proteolysis process apparently associated with tenderisation. The lack of data on the postmortem characteristics of ostrich meat, especially on the ageing process and its influence on meat tenderness, called for an investigation into this process. There is no data available for purified ostrich cathepsin D, and the aim of this study was, therefore, to isolate, purify and characterise cathepsin D from ostrich skeletal muscle and subsequently investigate the possible role that it may have in the tenderisation process of meat. Cathepsin D was successfully isolated and purified from ostrich skeletal muscle using pepstatin A-agarose chromatography. The purified enzyme was composed of two subunits (14 and 29kDa). The amino acid composition as well as the N-terminal amino acid sequence of both subunits were determined. Kinetic parameters (Km and Vm), thermodynamic parameters (Ea, ∆H, ∆S and ∆G) and functional characteristics (effect of pH, temperature and various inhibitors on cathepsin D activity) were determined and are reported in this study. Ostrich muscle cathepsin D showed a pH optimum of 4 and a temperature optimum of 45°C. The activity of cathepsin D was strongly inhibited by pepstatin A and DTT. Purified ostrich cathepsin D displayed kinetic and functional properties similar to previously reported values from various species. The effect of storage on the activity of cathepsin D was investigated over a 30 day period. It was established that substantial postmortem cathepsin D activity remained throughout the storage period, to implicate cathepsin D, fulfilling a possible role in meat maturation.
- Full Text:
- Date Issued: 2009
- Authors: Krause, Jason
- Date: 2009
- Subjects: Proteolytic enzymes , Ostrich products industry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10313 , http://hdl.handle.net/10948/1461 , Proteolytic enzymes , Ostrich products industry
- Description: Cathepsin D, a muscle proteinase, participates in lysosomally mediated protein degradation in vivo. This enzyme has been proposed to play a significant role in the postmortem proteolysis process apparently associated with tenderisation. The lack of data on the postmortem characteristics of ostrich meat, especially on the ageing process and its influence on meat tenderness, called for an investigation into this process. There is no data available for purified ostrich cathepsin D, and the aim of this study was, therefore, to isolate, purify and characterise cathepsin D from ostrich skeletal muscle and subsequently investigate the possible role that it may have in the tenderisation process of meat. Cathepsin D was successfully isolated and purified from ostrich skeletal muscle using pepstatin A-agarose chromatography. The purified enzyme was composed of two subunits (14 and 29kDa). The amino acid composition as well as the N-terminal amino acid sequence of both subunits were determined. Kinetic parameters (Km and Vm), thermodynamic parameters (Ea, ∆H, ∆S and ∆G) and functional characteristics (effect of pH, temperature and various inhibitors on cathepsin D activity) were determined and are reported in this study. Ostrich muscle cathepsin D showed a pH optimum of 4 and a temperature optimum of 45°C. The activity of cathepsin D was strongly inhibited by pepstatin A and DTT. Purified ostrich cathepsin D displayed kinetic and functional properties similar to previously reported values from various species. The effect of storage on the activity of cathepsin D was investigated over a 30 day period. It was established that substantial postmortem cathepsin D activity remained throughout the storage period, to implicate cathepsin D, fulfilling a possible role in meat maturation.
- Full Text:
- Date Issued: 2009
Purification and partial characterization of a Myofibril-Bound Serine Protease and its endogenous inhibitor from skeletal muscle of the ostrich
- Tshidino, Shonisani Cathphonia
- Authors: Tshidino, Shonisani Cathphonia
- Date: 2008
- Subjects: Proteolytic enzymes , Ostrich products industry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10330 , http://hdl.handle.net/10948/703 , Proteolytic enzymes , Ostrich products industry
- Description: The ostrich is becoming an important source of meat for humans in developed and developing countries. This study was conducted to purify and characterize myofibrilbound serine protease (MBSP) and its endogenous inhibitor (MBSPI) from skeletal muscle of the ostrich. It is well documented that MBSP is tightly bound to myofibrils and its endogenous inhibitor has been purified from the same tissue of other studied mammalian species. Literature supports an association of MBSP and its endogenous inhibitor with the degradation of myofribrillar proteins, resulting in the softening of muscle that lead to the conversion of muscle into meat with the control of the inhibitor. MBSP was successfully dissociated from washed myofibrils by 40 percent ethylene glycol at pH 8.5. Following centrifugation, MBSP was partially purified in two chromatographic steps, namely Toyopearl Super Q 650S and p-aminobenzamidine-Agarose. On the other hand, MBSPI was fractionated from the sarcoplasmic fraction using 75 percent ammonium sulfate saturation, followed by centrifugation and partially purified by three chromatographic steps, namely Toyopearl Super Q 650S, Superdex 200 and HiTrap SP HR. Ostrich MBSP was physicochemically and kinetically characterized, while MBSPI was only physicochemically characterized. Ostrich MBSP revealed an Mr of 21 kDa, cleaving synthetic fluorogenic substrates specifically at the carboxyl side of arginine residues. Optimum pH and temperature of ostrich MBSP were 8.0 and 40˚C, respectively. Kinetic parameters (Km and Vmax values) were calculated from Lineweaver-Burk plots. The characteristics of ostrich MBSP were compared to the values obtained for commercial bovine trypsin in this study, as well as that obtained for MBSP from various fish species and mouse. The results suggest that ostrich MBSP is a trypsin-like serine protease, thereby confirming the existence of MBSP in ostrich skeletal muscle. Partially purified ostrich MBSPI (Mr 17 kDa) (one form) shares 100 percent identity to myoglobin from the same species, while 2 other forms of MBSPI (Mr values of 35 and 36 kDa) exhibited high sequence identity to glyceraldehyde 3- phosphate dehydrogenase (GAPDH) (76 percent) from human and rat.
- Full Text:
- Date Issued: 2008
- Authors: Tshidino, Shonisani Cathphonia
- Date: 2008
- Subjects: Proteolytic enzymes , Ostrich products industry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10330 , http://hdl.handle.net/10948/703 , Proteolytic enzymes , Ostrich products industry
- Description: The ostrich is becoming an important source of meat for humans in developed and developing countries. This study was conducted to purify and characterize myofibrilbound serine protease (MBSP) and its endogenous inhibitor (MBSPI) from skeletal muscle of the ostrich. It is well documented that MBSP is tightly bound to myofibrils and its endogenous inhibitor has been purified from the same tissue of other studied mammalian species. Literature supports an association of MBSP and its endogenous inhibitor with the degradation of myofribrillar proteins, resulting in the softening of muscle that lead to the conversion of muscle into meat with the control of the inhibitor. MBSP was successfully dissociated from washed myofibrils by 40 percent ethylene glycol at pH 8.5. Following centrifugation, MBSP was partially purified in two chromatographic steps, namely Toyopearl Super Q 650S and p-aminobenzamidine-Agarose. On the other hand, MBSPI was fractionated from the sarcoplasmic fraction using 75 percent ammonium sulfate saturation, followed by centrifugation and partially purified by three chromatographic steps, namely Toyopearl Super Q 650S, Superdex 200 and HiTrap SP HR. Ostrich MBSP was physicochemically and kinetically characterized, while MBSPI was only physicochemically characterized. Ostrich MBSP revealed an Mr of 21 kDa, cleaving synthetic fluorogenic substrates specifically at the carboxyl side of arginine residues. Optimum pH and temperature of ostrich MBSP were 8.0 and 40˚C, respectively. Kinetic parameters (Km and Vmax values) were calculated from Lineweaver-Burk plots. The characteristics of ostrich MBSP were compared to the values obtained for commercial bovine trypsin in this study, as well as that obtained for MBSP from various fish species and mouse. The results suggest that ostrich MBSP is a trypsin-like serine protease, thereby confirming the existence of MBSP in ostrich skeletal muscle. Partially purified ostrich MBSPI (Mr 17 kDa) (one form) shares 100 percent identity to myoglobin from the same species, while 2 other forms of MBSPI (Mr values of 35 and 36 kDa) exhibited high sequence identity to glyceraldehyde 3- phosphate dehydrogenase (GAPDH) (76 percent) from human and rat.
- Full Text:
- Date Issued: 2008
Purification and characterisation of 20S proteasome from ostrich skeletal muscle and its role in meat tenderisation
- Authors: Thomas, Adele René
- Date: 2004
- Subjects: Proteolytic enzymes , Ostrich products industry
- Language: English
- Type: Thesis , Doctoral , DPhil
- Identifier: vital:11081 , http://hdl.handle.net/10948/320 , Proteolytic enzymes , Ostrich products industry
- Description: The proteasome is renowned for its high molecular weight, multisubunit and mulicatalytic nature. One of its many suggested roles is the degradation of myofibrillar proteins, and therefore it has been proposed to play a role in the meat tenderisation process. The aim of this study was therefore to isolate, purify and characterise the 20S proteasome from ostrich skeletal muscle, with a view to ultimately investigating its role in the tenderisation process of ostrich meat. The 20S proteasome was successfully isolated and purified from ostrich skeletal muscle using Toyopearl Super Q-650S, Sephacryl S-300, hydroxylapatite and Mono Q chromatographies. The intact molecule showed a molecular weight of 725 K and a pI of 6.67. The subunits showed a molecular weight range of 22.2-33.5 K and a pI range of 3-9. 2D-PAGE revealed at least 14 polypeptides. The amino acid composition of the intact enzyme and of each of the eight subunits separating on SDSPAGE, as well as the N-terminal sequences of five of the eight subunits, were determined. The trypsinlike (Tr-L), chymotrypsin-like (ChT-L), peptidylglutamyl peptide hydrolase (PGPH) and caseinolytic activities showed pH optima of 11, 9, 7-8 and 10.3, and temperature optima of 40, 60, 70 and 60oC, respectively. The pH stability range for all four activities was 5-12. The ChT-L and PGPH activities showed thermostabilities up to 60oC, whereas the Tr-L and caseinolytic activities were stable up to 40o C. The enzyme showed complex kinetics. It was inhibited by the peptide aldehyde Z-LLL-CHO and cysteine protease inhibitors. Cations had negligible effects on the enzyme, excepting for Ca2+ and Mg2+. Of the detergents tested, SDS had the most potent stimulatory effect, particularly on the PGPH and caseinolytic activities. The fatty acid studies showed that unsaturation enhanced the ChT-L and the caseinolytic activities, while it completely suppressed the Tr-L activity. Heating at 60oC for 1-2 min stimulated the caseinolytic and PGPH activities. The studies on the role of ostrich skeletal muscle 20S proteasome in ostrich meat tenderisation suggested a definite but minor role of this enzyme, based on the fact that it remained active throughout the 12 days of storage of ostrich M. iliofibularis meat at 4oC and that it participated in myofibril degradation of post-mortem muscle, but to a small degree. These results support the proposal that the proteasome comes into play after the calpains have initiated degradation. However, there was a lack of improvement in tenderness values and minimal myofibrillar degradation over the 12-day storage period of the ostrich M. iliofibularis meat, leading to the conclusion that the tenderisation of this meat was incomplete after 12 days.
- Full Text:
- Date Issued: 2004
- Authors: Thomas, Adele René
- Date: 2004
- Subjects: Proteolytic enzymes , Ostrich products industry
- Language: English
- Type: Thesis , Doctoral , DPhil
- Identifier: vital:11081 , http://hdl.handle.net/10948/320 , Proteolytic enzymes , Ostrich products industry
- Description: The proteasome is renowned for its high molecular weight, multisubunit and mulicatalytic nature. One of its many suggested roles is the degradation of myofibrillar proteins, and therefore it has been proposed to play a role in the meat tenderisation process. The aim of this study was therefore to isolate, purify and characterise the 20S proteasome from ostrich skeletal muscle, with a view to ultimately investigating its role in the tenderisation process of ostrich meat. The 20S proteasome was successfully isolated and purified from ostrich skeletal muscle using Toyopearl Super Q-650S, Sephacryl S-300, hydroxylapatite and Mono Q chromatographies. The intact molecule showed a molecular weight of 725 K and a pI of 6.67. The subunits showed a molecular weight range of 22.2-33.5 K and a pI range of 3-9. 2D-PAGE revealed at least 14 polypeptides. The amino acid composition of the intact enzyme and of each of the eight subunits separating on SDSPAGE, as well as the N-terminal sequences of five of the eight subunits, were determined. The trypsinlike (Tr-L), chymotrypsin-like (ChT-L), peptidylglutamyl peptide hydrolase (PGPH) and caseinolytic activities showed pH optima of 11, 9, 7-8 and 10.3, and temperature optima of 40, 60, 70 and 60oC, respectively. The pH stability range for all four activities was 5-12. The ChT-L and PGPH activities showed thermostabilities up to 60oC, whereas the Tr-L and caseinolytic activities were stable up to 40o C. The enzyme showed complex kinetics. It was inhibited by the peptide aldehyde Z-LLL-CHO and cysteine protease inhibitors. Cations had negligible effects on the enzyme, excepting for Ca2+ and Mg2+. Of the detergents tested, SDS had the most potent stimulatory effect, particularly on the PGPH and caseinolytic activities. The fatty acid studies showed that unsaturation enhanced the ChT-L and the caseinolytic activities, while it completely suppressed the Tr-L activity. Heating at 60oC for 1-2 min stimulated the caseinolytic and PGPH activities. The studies on the role of ostrich skeletal muscle 20S proteasome in ostrich meat tenderisation suggested a definite but minor role of this enzyme, based on the fact that it remained active throughout the 12 days of storage of ostrich M. iliofibularis meat at 4oC and that it participated in myofibril degradation of post-mortem muscle, but to a small degree. These results support the proposal that the proteasome comes into play after the calpains have initiated degradation. However, there was a lack of improvement in tenderness values and minimal myofibrillar degradation over the 12-day storage period of the ostrich M. iliofibularis meat, leading to the conclusion that the tenderisation of this meat was incomplete after 12 days.
- Full Text:
- Date Issued: 2004
- «
- ‹
- 1
- ›
- »