Thermal physiology of juvenile red roman seabream, Chrysoblephus laticeps after long-term exposure to low pH conditions
- Authors: Allison, Caitlin
- Date: 2023-10-13
- Subjects: Climatic changes , Ocean acidification , Basal metabolism , Chrysoblephus laticeps , Thermal tolerance (Physiology) , Phenotypic plasticity , Fishes Climatic factors
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424323 , vital:72143
- Description: Climate change has caused a combination of effects on the physiology of fishes. Of particular concern are the effects of thermal variability and ocean acidification. Organismal energy budgets change throughout ontogeny and research into the metabolic scope during early life stages is particularly useful in identifying potential bottlenecks. The first part of this thesis aimed to assess the absolute aerobic scope (AAS, described as the difference between the maximum and standard metabolic rates) of individual juveniles from a protected population of the endemic, commercially important seabream, Chrysoblephus laticeps, across a range of ecologically relevant temperatures (T = 11, 14, 18, 22˚C) under present-day conditions (pH = 8.03, pCO2 ≈ 420 μatm) using intermittent flow respirometry. The second component sought to investigate how long-term exposure (from fertilisation to juvenile, ~100 days exposure) to high-pCO2/hypercapnic conditions (pH = 7.63, pCO2 ≈ 1400 μatm), would affect the AAS of juvenile C. laticeps over a range of temperatures. Lower pH conditions were predicted to cause a decrease in the AAS of treatment animals due to additional energetic costs of acid-base regulation. The findings of the first data chapter demonstrated that juvenile C. laticeps reared under current CO2 conditions are tolerant to a wide range of thermal conditions, and individuals with a broad aerobic scope will be the best suited to coping with enhanced thermal variability. In contrast to the expected outcomes of the second data chapter, juvenile C. laticeps reared under high pCO2 conditions displayed greater AAS at high and low temperatures when compared with specimens from high pH conditions. Whilst a high degree of individual phenotypic variation was observed in the metabolic response of both groups, this was reduced at the lower and upper extreme temperatures for high pH and low pH animals respectively. Notably, the variation in treatment animal’s SMR was significantly diminished across all temperatures tested, compared to only a localised reduction in the SMR of high pH animals at cold temperatures. This may be indicative of compensatory pathways affecting energy restructuring and thermally-governed physiological trade-offs under hypercapnia. Given these results, juvenile C. laticeps appear to be more resilient to ocean acidification than anticipated, potentially owing to intrapopulation metabolic phenotypic diversity. This is likely attributed to the parental lineage originating in the Tsitsikamma MPA, which is thought to boast greater phenotypic diversity as a consequence of the refuge that these conservation areas offer from exploitation. Owing to the restriction imposed by the availability of surviving, captive-reared juveniles, the sample size used in this study was relatively low. However, owing to the repeated-measures nature of this research the sample size was sufficient to offer suitable statistical power for the polynomial mixed model used in the analysis. Future research should incorporate both physiological and behavioural responses to multiple environmental stressors to better understand covariation between these two traits, and to detect any behavioural trade-offs that might arise through compensation. In addition, these trials should be repeated using offspring from outside of the MPA to compare whether the same level of resilience and metabolic phenotypic diversity would be present in an exploited population. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2023
- Full Text:
- Date Issued: 2023-10-13
The link between behavioural plasticity and aerobic scope phenotypes in predicting the survival of Chrysoblephus laticeps under climate variability
- Authors: Bailey, Lauren Ashleigh
- Date: 2023-03-29
- Subjects: Chrysoblephus laticeps , Phenotypic plasticity , Fishes Climatic factors , Fishes Physiology , Fishes Behavior , Respirometry , Anthropocene , Thermal tolerance (Physiology)
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/422606 , vital:71961 , DOI 10.21504/10962/422606
- Description: Thermal variability in the marine environment is likely to have a considerable effect on fishes as it impacts physiological performance and vital (i.e metabolism, foraging and swimming style) and non-vital (i.e. reproductive fitness) energetic processes. When fish are subjected to thermal stress, they may primarily respond by changing their behaviour. Species that have broad phenotypic behavioural plasticity (i.e. defined as the ability to adjust behavioural activity in presiding environmental conditions in order to remain within their optimal thermal range) may have a competitive advantage. Fish behavioural plasticity may take many forms. Some species may seek out thermal refugia by changing their phenology or distribution, while others alter the timing of their seasonal and spawning migrations in response to a changing environment. Although fishes can use behavioural changes to cope with climate change impacts, there does appear to be variability in the behavioural responses within species. However, if alterations in behaviour are insufficient to ensure that the individual remains within their optimal thermal range, physiological acclimation (i.e. defined as the process in which an organism adjusts to prevailing conditions by broadening their thermal performance curve so that their performance is maximized in the new thermal environment) may be required. Therefore, there is a critical link between the behaviour and thermal physiology of fishes, particularly in a world where they are facing increasing thermal stress. , Thesis (PhD) -- Faculty of Science, Ichthyology and Fisheries Science, 2023
- Full Text:
- Date Issued: 2023-03-29
Phenotypic plasticity of metabolic rate in an afrotropical bird species (Euplectes orix) across a temperature gradient
- Authors: Van de Ven, Tanja Maria Francisca Nicole
- Date: 2012
- Subjects: Phenotypic plasticity , Evolutionary genetics
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10718 , http://hdl.handle.net/10948/d1012659 , Phenotypic plasticity , Evolutionary genetics
- Description: Avian species are known to have the capacity to respond to environmental changes through physiological adjustments. The process whereby organisms adjust their phenotype without genetic change is termed phenotypic plasticity and it is mostly observed to be a phenotypic improvement to ecological challenges. Metabolic rate (MR), which is the rate of energy expenditure in a species, is a highly flexible physiological parameter which results in a great diversity of avian standardised metabolic rates. Like birds from high latitudes, Afrotropical bird species are expected to have the capacity to adjust their energy expenditure to match the availability of resources. Previous studies on the flexibility of physiological parameters in birds have focused on the magnitude of change of physiological adjustments and the cues inducing these changes. Comparative research has furthermore investigated metabolic rates across aridity, altitude, latitude and temperature gradients. Recently, a clear dichotomy has become evident with elevated metabolic rates observed in high latitude birds in winter and a down-regulation of metabolic rates observed in birds exposed to low latitude mild winters. In this study, the shape of the reaction norm, the magnitude, the reversibility, the direction and the rate of change of two physiological parameters, basal metabolic rate (BMR) and summit metabolic rate (Msum), were investigated in a coastal and an inland population of Southern Red Bishops (Euplectes orix) through seasonal acclimatisation and laboratory acclimation. Summer and winter basal metabolic rates as well as body mass, were highly flexible traits in free-ranging coastal and inland Red Bishops. Birds acclimatised to a mild coastal climate in winter exhibited reduced basal and summit metabolic rates, whereas birds originating from a more variable inland climate increased basal metabolic rate in winter, but did not show increases of Msum in winter. Red Bishops responded to short term thermal acclimation under laboratory conditions by gradually changing body mass. Acclimation periods of 21 days revealed a negative relationship between body mass and acclimation air temperature. Peak responses of basal metabolic rate to ambient temperature change were observed in both coastal and inland birds between two and eight days after the change in acclimation air temperature. The influences of seasonal acclimatisation on energy expenditure differed between coastal and inland birds, however, during laboratory acclimation individuals from the two populations showed no difference in response. Within the individuals of the coastal and inland Southern Red Bishops, phenotypic flexibility is observed in body mass, basal metabolic rate and summit metabolic rate as a response to environmental changes. This flexibility is thought to increase thermoregulatory capacities of the Southern Red Bishop in different habitats and climates.
- Full Text:
- Date Issued: 2012