The role of microhabitats within mangroves: an invertebrate and fish larval perspective
- Authors: Vorsatz, Lyle Dennis
- Date: 2020
- Subjects: Mangrove ecology -- South Africa , Mangrove forests -- South Africa , Niche (Ecology) , Rhizophora mucronata , Acanthaceae , Rhizophoraceae , Fishes -- Larvae -- South Africa , Aquatic ecology -- South Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167644 , vital:41499
- Description: Microhabitats provided through structural complexity are central for the diversity, productivity, connectivity and niche differentiation within and among ecosystems. Mangrove forests afford juvenile fish and invertebrates with nursery and recruitment habitats, facilitated by the fine scale configuration of their specialised root systems. Although the importance of mangroves for resident and transient juveniles is well recognised, the roles that mangrove microhabitats play for larvae is not yet comprehensively understood. This study aimed to determine how microhabitats with varying degrees of complexity influence the composition, abundance and distribution of larval communities that inhabit mangrove forests and the physiological responses of larvae to acute temperature variations in relation to ontogenetic stage and microenvironment exposure. Two relatively pristine study sites were selected to represent a warm temperate and subtropical mangrove system in the Eastern Cape and KwaZulu-Natal on the east coast of South Africa, respectively. The differences in complexity among the root systems of Rhizophora mucronata, Avicennia marina and Bruguiera gymnorhiza were assessed using 3D scanning and the computed 3D models were then analysed using four complexity metrics. Results indicated that A. marina is the most complex in terms of surface-volume ratio, R. mucronata has the most interstitial space among its roots and B. gymnorhiza and R. mucronata differ in their fractal dimensions. Larvae collected in each microhabitat at each site using light traps showed that, despite temperature and salinity homogeneity across microenvironments, spatio-temporal differences occurred in both fish and invertebrate assemblages. This trend suggests that microhabitat structural complexity exerts an influence on larval community composition by acting as a microscape of available habitat, which ensures ecological linkages within and among the mangrove forest and adjacent ecosystems. In addition, the oxygen consumption rates of mangrove-associated brachyuran larvae varied according to mangrove microhabitat, whereby larvae collected at less complex environments had the highest metabolic rates at increased temperatures. Moreover, ontogenetic shifts in physiology were prevalent as older brachyuran larvae were more eurythermal than earlier stages, suggesting that thermally stressful events will have a greater impact on recently spawned larvae. Overall, the interstitial spaces within individual root systems are the most important complexity measure, as utilisation of these mangrove microhabitats is scale-dependent, and larvae will most likely occupy spaces inaccessible to large predators. Likewise, microscale variation in the environmental conditions and ontogenetic stage of brachyuran larvae within the mangrove microscape, can amplify the physiological responses to rapid temperature variations. Results suggest that early stage larvae are the most vulnerable to mass-mortality, and if thermally stressful events increase in frequency, duration and magnitude, the larval supply for the successful recruitment into adult populations could be under threat. Through linking how mangrove microhabitat complexity influences larvae in terms of community metrics and physiology, this study paves the way for further advancement of our understanding of how microscale processes emerge into meso- and macroscale patterns and influence the stability and functioning of highly productive ecosystems.
- Full Text:
- Date Issued: 2020
- Authors: Vorsatz, Lyle Dennis
- Date: 2020
- Subjects: Mangrove ecology -- South Africa , Mangrove forests -- South Africa , Niche (Ecology) , Rhizophora mucronata , Acanthaceae , Rhizophoraceae , Fishes -- Larvae -- South Africa , Aquatic ecology -- South Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167644 , vital:41499
- Description: Microhabitats provided through structural complexity are central for the diversity, productivity, connectivity and niche differentiation within and among ecosystems. Mangrove forests afford juvenile fish and invertebrates with nursery and recruitment habitats, facilitated by the fine scale configuration of their specialised root systems. Although the importance of mangroves for resident and transient juveniles is well recognised, the roles that mangrove microhabitats play for larvae is not yet comprehensively understood. This study aimed to determine how microhabitats with varying degrees of complexity influence the composition, abundance and distribution of larval communities that inhabit mangrove forests and the physiological responses of larvae to acute temperature variations in relation to ontogenetic stage and microenvironment exposure. Two relatively pristine study sites were selected to represent a warm temperate and subtropical mangrove system in the Eastern Cape and KwaZulu-Natal on the east coast of South Africa, respectively. The differences in complexity among the root systems of Rhizophora mucronata, Avicennia marina and Bruguiera gymnorhiza were assessed using 3D scanning and the computed 3D models were then analysed using four complexity metrics. Results indicated that A. marina is the most complex in terms of surface-volume ratio, R. mucronata has the most interstitial space among its roots and B. gymnorhiza and R. mucronata differ in their fractal dimensions. Larvae collected in each microhabitat at each site using light traps showed that, despite temperature and salinity homogeneity across microenvironments, spatio-temporal differences occurred in both fish and invertebrate assemblages. This trend suggests that microhabitat structural complexity exerts an influence on larval community composition by acting as a microscape of available habitat, which ensures ecological linkages within and among the mangrove forest and adjacent ecosystems. In addition, the oxygen consumption rates of mangrove-associated brachyuran larvae varied according to mangrove microhabitat, whereby larvae collected at less complex environments had the highest metabolic rates at increased temperatures. Moreover, ontogenetic shifts in physiology were prevalent as older brachyuran larvae were more eurythermal than earlier stages, suggesting that thermally stressful events will have a greater impact on recently spawned larvae. Overall, the interstitial spaces within individual root systems are the most important complexity measure, as utilisation of these mangrove microhabitats is scale-dependent, and larvae will most likely occupy spaces inaccessible to large predators. Likewise, microscale variation in the environmental conditions and ontogenetic stage of brachyuran larvae within the mangrove microscape, can amplify the physiological responses to rapid temperature variations. Results suggest that early stage larvae are the most vulnerable to mass-mortality, and if thermally stressful events increase in frequency, duration and magnitude, the larval supply for the successful recruitment into adult populations could be under threat. Through linking how mangrove microhabitat complexity influences larvae in terms of community metrics and physiology, this study paves the way for further advancement of our understanding of how microscale processes emerge into meso- and macroscale patterns and influence the stability and functioning of highly productive ecosystems.
- Full Text:
- Date Issued: 2020
Discontinuous gully erosion as a mechanism of wetland formation: a case study of the Kompanjiesdrif basin, Kromrivier, Eastern Cape, South Africa
- Authors: Lagesse, Juliette V
- Date: 2018
- Subjects: Arroyos -- South Africa -- Kromme River (Eastern Cape) , Arroyos -- Erosion -- South Africa -- Kromme River (Eastern Cape) , Climatic geomorphology -- South Africa -- Kromme River (Eastern Cape) , Sedimentation and deposition -- South Africa -- Kromme River (Eastern Cape) , Alluvial fans -- South Africa -- Kromme River (Eastern Cape) , Wetland ecology -- South Africa -- Kromme River (Eastern Cape) , Rhizophoraceae , Palmiet (Prionium serratum)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/60540 , vital:27791
- Description: The Kompanjiesdrif basin is an unchannelled valley bottom palmiet wetland located near the headwaters of the Kromrivier in the Eastern Cape of South Africa. The wetland itself is underlain by Bokkeveld shales with the bordering mountain ranges comprising more resistant Table Mountain Group quarzitic sandstones. The valley is relatively planar and broad in form over a width of approximately 200 m. None of the existing controls that are considered to lead to valley widening and longitudinal slope reduction are immediately apparent. The basin lies on the Post Africa II erosion surface; with no evidence of a resistant lithology which might act as a local base level, limiting rates of vertical erosion and inducing lateral planing in upstream reaches via a meandering channel. The possible role of sagging of the basin due to long term deep chemical weathering of bedrock is discounted as the lithologies in the basin are sedimentary in origin and thus not susceptible to chemical weathering. The degree to which climate and sea level changes affected rates of incision and subsequent slope reduction is unclear, although their potential influence should be acknowledged. This study examined the geomorphic dynamics as discerned from the sedimentary record and morphology of the wetland basin, which provide a snapshot into the long-term processes which lowered the longitudinal slope and widened this valley. Coring within the wetland to depths of 1 - 3.3 m revealed that the sedimentary fill generally comprised an upward fining sequence, with sand or fine sand at the base, grading into silt and clay and organic material in the upper sections of cores. Occasional instances of multiple fine sand layers were observed in a few of the cores. An increase in the organic content of material from the north to the south side of the wetland and the occurrence of multiple thin layers of sand in the stratigraphy, highlighted the role of the northern tributary alluvial fans in influencing valley form. Sediment from north bank alluvial fans seem to periodically, partially impound the wetland basin. Surveyed transects across the wetland basin along with subsurface coring to the depth to refusal, illustrated a localised increase in longitudinal slope downstream of the nodes of tributary alluvial fan deposits, which impinge on the trunk stream basin. Coupled with the presence of deep, drowned, trench-like features (up to 8 m deep) beneath floating mats of palmiet, which were predominantly free of sedimentary fill and found opposite tributary alluvial fans; confirmed that the northern tributaries play a major role in the structure and geomorphic dynamics of the basin. The trench-like features appeared to be remnants of deep, narrow, discontinuous gullies. Dating of sediment from the base of these features (460-7040 BP) confirmed that they were formed prior to European settlement in the area. Therefore, it is suggested that the localised increase in longitudinal slope, caused by sediment deposition on the alluvial fans, transgresses a geomorphic threshold slope and that gully erosion is thus initiated. The process of repeated gully erosion leads to planing of bedrock and longitudinal slope reduction. Gully erosion forms an integral component of a cycle of deposition and incision referred to as “cut-and-fill”. During each iteration of the cycle of cutting and filling, gullies form in novel locations leading to gradual valley widening. Over geological time scales, the planing of bedrock and resultant valley widening creates a broad planar valley with a very low longitudinal slope; producing conditions suitable for unchannelled valley bottom wetland formation.
- Full Text:
- Date Issued: 2018
- Authors: Lagesse, Juliette V
- Date: 2018
- Subjects: Arroyos -- South Africa -- Kromme River (Eastern Cape) , Arroyos -- Erosion -- South Africa -- Kromme River (Eastern Cape) , Climatic geomorphology -- South Africa -- Kromme River (Eastern Cape) , Sedimentation and deposition -- South Africa -- Kromme River (Eastern Cape) , Alluvial fans -- South Africa -- Kromme River (Eastern Cape) , Wetland ecology -- South Africa -- Kromme River (Eastern Cape) , Rhizophoraceae , Palmiet (Prionium serratum)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/60540 , vital:27791
- Description: The Kompanjiesdrif basin is an unchannelled valley bottom palmiet wetland located near the headwaters of the Kromrivier in the Eastern Cape of South Africa. The wetland itself is underlain by Bokkeveld shales with the bordering mountain ranges comprising more resistant Table Mountain Group quarzitic sandstones. The valley is relatively planar and broad in form over a width of approximately 200 m. None of the existing controls that are considered to lead to valley widening and longitudinal slope reduction are immediately apparent. The basin lies on the Post Africa II erosion surface; with no evidence of a resistant lithology which might act as a local base level, limiting rates of vertical erosion and inducing lateral planing in upstream reaches via a meandering channel. The possible role of sagging of the basin due to long term deep chemical weathering of bedrock is discounted as the lithologies in the basin are sedimentary in origin and thus not susceptible to chemical weathering. The degree to which climate and sea level changes affected rates of incision and subsequent slope reduction is unclear, although their potential influence should be acknowledged. This study examined the geomorphic dynamics as discerned from the sedimentary record and morphology of the wetland basin, which provide a snapshot into the long-term processes which lowered the longitudinal slope and widened this valley. Coring within the wetland to depths of 1 - 3.3 m revealed that the sedimentary fill generally comprised an upward fining sequence, with sand or fine sand at the base, grading into silt and clay and organic material in the upper sections of cores. Occasional instances of multiple fine sand layers were observed in a few of the cores. An increase in the organic content of material from the north to the south side of the wetland and the occurrence of multiple thin layers of sand in the stratigraphy, highlighted the role of the northern tributary alluvial fans in influencing valley form. Sediment from north bank alluvial fans seem to periodically, partially impound the wetland basin. Surveyed transects across the wetland basin along with subsurface coring to the depth to refusal, illustrated a localised increase in longitudinal slope downstream of the nodes of tributary alluvial fan deposits, which impinge on the trunk stream basin. Coupled with the presence of deep, drowned, trench-like features (up to 8 m deep) beneath floating mats of palmiet, which were predominantly free of sedimentary fill and found opposite tributary alluvial fans; confirmed that the northern tributaries play a major role in the structure and geomorphic dynamics of the basin. The trench-like features appeared to be remnants of deep, narrow, discontinuous gullies. Dating of sediment from the base of these features (460-7040 BP) confirmed that they were formed prior to European settlement in the area. Therefore, it is suggested that the localised increase in longitudinal slope, caused by sediment deposition on the alluvial fans, transgresses a geomorphic threshold slope and that gully erosion is thus initiated. The process of repeated gully erosion leads to planing of bedrock and longitudinal slope reduction. Gully erosion forms an integral component of a cycle of deposition and incision referred to as “cut-and-fill”. During each iteration of the cycle of cutting and filling, gullies form in novel locations leading to gradual valley widening. Over geological time scales, the planing of bedrock and resultant valley widening creates a broad planar valley with a very low longitudinal slope; producing conditions suitable for unchannelled valley bottom wetland formation.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »