Bayesian hierarchical modelling with application in spatial epidemiology
- Authors: Southey, Richard Robert
- Date: 2018
- Subjects: Bayesian statistical decision theory , Spatial analysis (Statistics) , Medical mapping , Pericarditis , Mortality Statistics
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/59489 , vital:27617
- Description: Disease mapping and spatial statistics have become an important part of modern day statistics and have increased in popularity as the methods and techniques have evolved. The application of disease mapping is not only confined to the analysis of diseases as other applications of disease mapping can be found in Econometric and financial disciplines. This thesis will consider two data sets. These are the Georgia oral cancer 2004 data set and the South African acute pericarditis 2014 data set. The Georgia data set will be used to assess the hyperprior sensitivity of the precision for the uncorrelated heterogeneity and correlated heterogeneity components in a convolution model. The correlated heterogeneity will be modelled by a conditional autoregressive prior distribution and the uncorrelated heterogeneity will be modelled with a zero mean Gaussian prior distribution. The sensitivity analysis will be performed using three models with conjugate, Jeffreys' and a fixed parameter prior for the hyperprior distribution of the precision for the uncorrelated heterogeneity component. A simulation study will be done to compare four prior distributions which will be the conjugate, Jeffreys', probability matching and divergence priors. The three models will be fitted in WinBUGS® using a Bayesian approach. The results of the three models will be in the form of disease maps, figures and tables. The results show that the hyperprior of the precision for the uncorrelated heterogeneity and correlated heterogeneity components are sensitive to changes and will result in different results depending on the specification of the hyperprior distribution of the precision for the two components in the model. The South African data set will be used to examine whether there is a difference between the proper conditional autoregressive prior and intrinsic conditional autoregressive prior for the correlated heterogeneity component in a convolution model. Two models will be fitted in WinBUGS® for this comparison. Both the hyperpriors of the precision for the uncorrelated heterogeneity and correlated heterogeneity components will be modelled using a Jeffreys' prior distribution. The results show that there is no significant difference between the results of the model with a proper conditional autoregressive prior and intrinsic conditional autoregressive prior for the South African data, although there are a few disadvantages of using a proper conditional autoregressive prior for the correlated heterogeneity which will be stated in the conclusion.
- Full Text:
- Date Issued: 2018
- Authors: Southey, Richard Robert
- Date: 2018
- Subjects: Bayesian statistical decision theory , Spatial analysis (Statistics) , Medical mapping , Pericarditis , Mortality Statistics
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/59489 , vital:27617
- Description: Disease mapping and spatial statistics have become an important part of modern day statistics and have increased in popularity as the methods and techniques have evolved. The application of disease mapping is not only confined to the analysis of diseases as other applications of disease mapping can be found in Econometric and financial disciplines. This thesis will consider two data sets. These are the Georgia oral cancer 2004 data set and the South African acute pericarditis 2014 data set. The Georgia data set will be used to assess the hyperprior sensitivity of the precision for the uncorrelated heterogeneity and correlated heterogeneity components in a convolution model. The correlated heterogeneity will be modelled by a conditional autoregressive prior distribution and the uncorrelated heterogeneity will be modelled with a zero mean Gaussian prior distribution. The sensitivity analysis will be performed using three models with conjugate, Jeffreys' and a fixed parameter prior for the hyperprior distribution of the precision for the uncorrelated heterogeneity component. A simulation study will be done to compare four prior distributions which will be the conjugate, Jeffreys', probability matching and divergence priors. The three models will be fitted in WinBUGS® using a Bayesian approach. The results of the three models will be in the form of disease maps, figures and tables. The results show that the hyperprior of the precision for the uncorrelated heterogeneity and correlated heterogeneity components are sensitive to changes and will result in different results depending on the specification of the hyperprior distribution of the precision for the two components in the model. The South African data set will be used to examine whether there is a difference between the proper conditional autoregressive prior and intrinsic conditional autoregressive prior for the correlated heterogeneity component in a convolution model. Two models will be fitted in WinBUGS® for this comparison. Both the hyperpriors of the precision for the uncorrelated heterogeneity and correlated heterogeneity components will be modelled using a Jeffreys' prior distribution. The results show that there is no significant difference between the results of the model with a proper conditional autoregressive prior and intrinsic conditional autoregressive prior for the South African data, although there are a few disadvantages of using a proper conditional autoregressive prior for the correlated heterogeneity which will be stated in the conclusion.
- Full Text:
- Date Issued: 2018
A review of generalized linear models for count data with emphasis on current geospatial procedures
- Authors: Michell, Justin Walter
- Date: 2016
- Subjects: Spatial analysis (Statistics) , Bayesian statistical decision theory , Geospatial data , Malaria -- Botswana -- Statistics , Malaria -- Botswana -- Research -- Statistical methods
- Language: English
- Type: Thesis , Masters , MCom
- Identifier: vital:5582 , http://hdl.handle.net/10962/d1019989
- Description: Analytical problems caused by over-fitting, confounding and non-independence in the data is a major challenge for variable selection. As more variables are tested against a certain data set, there is a greater risk that some will explain the data merely by chance, but will fail to explain new data. The main aim of this study is to employ a systematic and practicable variable selection process for the spatial analysis and mapping of historical malaria risk in Botswana using data collected from the MARA (Mapping Malaria Risk in Africa) project and environmental and climatic datasets from various sources. Details of how a spatial database is compiled for a statistical analysis to proceed is provided. The automation of the entire process is also explored. The final bayesian spatial model derived from the non-spatial variable selection procedure using Markov Chain Monte Carlo simulation was fitted to the data. Winter temperature had the greatest effect of malaria prevalence in Botswana. Summer rainfall, maximum temperature of the warmest month, annual range of temperature, altitude and distance to closest water source were also significantly associated with malaria prevalence in the final spatial model after accounting for spatial correlation. Using this spatial model malaria prevalence at unobserved locations was predicted, producing a smooth risk map covering Botswana. The automation of both compiling the spatial database and the variable selection procedure proved challenging and could only be achieved in parts of the process. The non-spatial selection procedure proved practical and was able to identify stable explanatory variables and provide an objective means for selecting one variable over another, however ultimately it was not entirely successful due to the fact that a unique set of spatial variables could not be selected.
- Full Text:
- Date Issued: 2016
- Authors: Michell, Justin Walter
- Date: 2016
- Subjects: Spatial analysis (Statistics) , Bayesian statistical decision theory , Geospatial data , Malaria -- Botswana -- Statistics , Malaria -- Botswana -- Research -- Statistical methods
- Language: English
- Type: Thesis , Masters , MCom
- Identifier: vital:5582 , http://hdl.handle.net/10962/d1019989
- Description: Analytical problems caused by over-fitting, confounding and non-independence in the data is a major challenge for variable selection. As more variables are tested against a certain data set, there is a greater risk that some will explain the data merely by chance, but will fail to explain new data. The main aim of this study is to employ a systematic and practicable variable selection process for the spatial analysis and mapping of historical malaria risk in Botswana using data collected from the MARA (Mapping Malaria Risk in Africa) project and environmental and climatic datasets from various sources. Details of how a spatial database is compiled for a statistical analysis to proceed is provided. The automation of the entire process is also explored. The final bayesian spatial model derived from the non-spatial variable selection procedure using Markov Chain Monte Carlo simulation was fitted to the data. Winter temperature had the greatest effect of malaria prevalence in Botswana. Summer rainfall, maximum temperature of the warmest month, annual range of temperature, altitude and distance to closest water source were also significantly associated with malaria prevalence in the final spatial model after accounting for spatial correlation. Using this spatial model malaria prevalence at unobserved locations was predicted, producing a smooth risk map covering Botswana. The automation of both compiling the spatial database and the variable selection procedure proved challenging and could only be achieved in parts of the process. The non-spatial selection procedure proved practical and was able to identify stable explanatory variables and provide an objective means for selecting one variable over another, however ultimately it was not entirely successful due to the fact that a unique set of spatial variables could not be selected.
- Full Text:
- Date Issued: 2016
- «
- ‹
- 1
- ›
- »