An investigation into yeast-baculovirus synergism for the improved control of Thaumatotibia leucotreta, an economically important pest of citrus
- Authors: Van der Merwe, Marcél
- Date: 2021-10-29
- Subjects: Baculoviruses , Cryptophlebia leucotreta , Yeast , Natural pesticides , Citrus Diseases and pests , Biological pest control agents , Pests Integrated control , Thaumatotibia leucotreta
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/191236 , vital:45073
- Description: A mutualistic association between Cydia pomonella and yeasts belonging to the genus Metschnikowia has previously been demonstrated. Larval feeding galleries inoculated with M. andauensis, reduced larval mortality and enhanced larval development. Additionally, adult C. pomonella female oviposition preference was also shown to be influenced by the volatiles produced by M. andauensis. This mutualistic relationship was manipulated for biological control purposes, by combining M. pulcherrima with the baculovirus Cydia pomonella granulovirus. The combination of M. pulcherrima with brown cane sugar and CpGV in laboratory assays and field trials resulted in a significant increase in larval mortality. A similar observation was made when M. pulcherrima was substituted for Saccharomyces cerevisiae. This indicates that yeasts harbour the potential for use in biological control, especially when combined with other well-established biocontrol methods. Thaumatotibia leucotreta is a phytophagous insect endemic to southern Africa. It is highly significant to the South African citrus industry due to its classification as a phytosanitary pest by most international markets. An integrated pest management programme has been implemented to control T. leucotreta. The baculovirus Cryptophlebia leucotreta granulovirus forms one component of this programme and is highly effective. In this study, we proposed to determine which yeast species occur naturally in the gut of T. leucotreta larvae and to examine whether any of the isolated yeast species, when combined with the CrleGV-SA, enhance its effectiveness. Firstly, Navel oranges infested with T. leucotreta larvae were collected from geographically distinct citrus-producing regions across South Africa. This led to the isolation and identification of six yeast species from the gut of T. leucotreta larvae via PCR amplification and sequencing of the internal transcribed spacer region and D1/D2 domain of the large subunit. Six yeast species were identified, viz. Meyerozyma guilliermondii, Hanseniaspora uvarum, Clavispora lusitaniae, Kluyveromyces marxianus, Pichia kudriavzevii and Pichia kluyveri. Additionally, Saccharomyces cerevisiae was included as a control in all trials due to its commercial availability and use in the artificial diet used to rear T. leucotreta. Secondly, larval development and attraction assays were conducted with the isolated yeast species. Thaumatotibia leucotreta larvae that fed on Navel oranges inoculated with M. guilliermondii, P. kluyveri, H. uvarum, and S. cerevisiae had accelerated developmental periods and reduced mortality rates. Additionally, it was demonstrated that T. leucotreta neonates were attracted to YPD broth cultures inoculated with P. kluyveri, H. uvarum, P. kudriavzevii and K. marxianus for feeding. Thirdly, oviposition preference assays were conducted with adult T. leucotreta females to determine whether the isolated yeast species influence their egg-laying in two-choice and multiple-choice tests. Navel oranges were inoculated with a specific yeast isolate, and mated adult females were left to oviposit. Meyerozyma guilliermondii, P. kudriavzevii and H. uvarum were shown to influence adult T. leucotreta female oviposition preference in two-choice tests. However, multiple-choice tests using the aforementioned yeast species did not mimic these results. Lastly, a series of detached fruit bioassays were performed to determine the optimal yeast:virus ratio, test all isolated yeast species in combination with CrleGV-SA and to further enhance yeast/virus formulation through the addition of an adjuvant and surfactant. CrleGV-SA was applied at a lethal concentration that would kill 50 % of T. leucotreta larvae. The optimal yeast concentration to use alongside CrleGV-SA was determined. Pichia kluyveri, P. kudriavzevii, K. marxianus and S. cerevisiae in combination with CrleGV-SA increased larval mortality compared to CrleGV-SA alone. The inclusion of molasses and BREAK-THRU® S 240 to P. kudriavzevii and S. cerevisiae plus CrleGV-SA formulations greatly enhanced their efficacy. Additionally, semi-field trials were initiated using P. kudriavzevii and S. cerevisiae, with promising preliminary results being obtained, although more replicates need to be performed. The experiments performed in this study provide a platform for further research into the application of a yeast/virus combination as a novel control and monitoring option for T. leucotreta in the field. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Van der Merwe, Marcél
- Date: 2021-10-29
- Subjects: Baculoviruses , Cryptophlebia leucotreta , Yeast , Natural pesticides , Citrus Diseases and pests , Biological pest control agents , Pests Integrated control , Thaumatotibia leucotreta
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/191236 , vital:45073
- Description: A mutualistic association between Cydia pomonella and yeasts belonging to the genus Metschnikowia has previously been demonstrated. Larval feeding galleries inoculated with M. andauensis, reduced larval mortality and enhanced larval development. Additionally, adult C. pomonella female oviposition preference was also shown to be influenced by the volatiles produced by M. andauensis. This mutualistic relationship was manipulated for biological control purposes, by combining M. pulcherrima with the baculovirus Cydia pomonella granulovirus. The combination of M. pulcherrima with brown cane sugar and CpGV in laboratory assays and field trials resulted in a significant increase in larval mortality. A similar observation was made when M. pulcherrima was substituted for Saccharomyces cerevisiae. This indicates that yeasts harbour the potential for use in biological control, especially when combined with other well-established biocontrol methods. Thaumatotibia leucotreta is a phytophagous insect endemic to southern Africa. It is highly significant to the South African citrus industry due to its classification as a phytosanitary pest by most international markets. An integrated pest management programme has been implemented to control T. leucotreta. The baculovirus Cryptophlebia leucotreta granulovirus forms one component of this programme and is highly effective. In this study, we proposed to determine which yeast species occur naturally in the gut of T. leucotreta larvae and to examine whether any of the isolated yeast species, when combined with the CrleGV-SA, enhance its effectiveness. Firstly, Navel oranges infested with T. leucotreta larvae were collected from geographically distinct citrus-producing regions across South Africa. This led to the isolation and identification of six yeast species from the gut of T. leucotreta larvae via PCR amplification and sequencing of the internal transcribed spacer region and D1/D2 domain of the large subunit. Six yeast species were identified, viz. Meyerozyma guilliermondii, Hanseniaspora uvarum, Clavispora lusitaniae, Kluyveromyces marxianus, Pichia kudriavzevii and Pichia kluyveri. Additionally, Saccharomyces cerevisiae was included as a control in all trials due to its commercial availability and use in the artificial diet used to rear T. leucotreta. Secondly, larval development and attraction assays were conducted with the isolated yeast species. Thaumatotibia leucotreta larvae that fed on Navel oranges inoculated with M. guilliermondii, P. kluyveri, H. uvarum, and S. cerevisiae had accelerated developmental periods and reduced mortality rates. Additionally, it was demonstrated that T. leucotreta neonates were attracted to YPD broth cultures inoculated with P. kluyveri, H. uvarum, P. kudriavzevii and K. marxianus for feeding. Thirdly, oviposition preference assays were conducted with adult T. leucotreta females to determine whether the isolated yeast species influence their egg-laying in two-choice and multiple-choice tests. Navel oranges were inoculated with a specific yeast isolate, and mated adult females were left to oviposit. Meyerozyma guilliermondii, P. kudriavzevii and H. uvarum were shown to influence adult T. leucotreta female oviposition preference in two-choice tests. However, multiple-choice tests using the aforementioned yeast species did not mimic these results. Lastly, a series of detached fruit bioassays were performed to determine the optimal yeast:virus ratio, test all isolated yeast species in combination with CrleGV-SA and to further enhance yeast/virus formulation through the addition of an adjuvant and surfactant. CrleGV-SA was applied at a lethal concentration that would kill 50 % of T. leucotreta larvae. The optimal yeast concentration to use alongside CrleGV-SA was determined. Pichia kluyveri, P. kudriavzevii, K. marxianus and S. cerevisiae in combination with CrleGV-SA increased larval mortality compared to CrleGV-SA alone. The inclusion of molasses and BREAK-THRU® S 240 to P. kudriavzevii and S. cerevisiae plus CrleGV-SA formulations greatly enhanced their efficacy. Additionally, semi-field trials were initiated using P. kudriavzevii and S. cerevisiae, with promising preliminary results being obtained, although more replicates need to be performed. The experiments performed in this study provide a platform for further research into the application of a yeast/virus combination as a novel control and monitoring option for T. leucotreta in the field. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2021
- Full Text:
- Date Issued: 2021-10-29
Yeast-baculovirus synergism: investigating mixed infections for improved management of the false codling moth, Thaumatotibia leucotreta
- Authors: Van der Merwe, Marcél
- Date: 2018
- Subjects: Cryptophlebia leucotreta , Baculoviruses , Yeast , Citrus Diseases and pests , Biological pest control agents , Pests Integrated control
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62963 , vital:28347
- Description: Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) or otherwise commonly known as the false codling moth is an indigenous pest of the citrus industry in southern Africa. The pest is highly significant as it impacts negatively on the export of fresh citrus fruits from South Africa to international markets. To control T. leucotreta in South Africa, an integrated pest management (IPM) programme has been implemented. One component of this programme is the baculovirus Cryptophlebia leucotreta granulovirus (CrleGV-SA) which has been formulated into the products Cryptogran™ and Cryptex®. It has previously been reported that there is a mutualistic association between Cydia pomonella (L.) (Lepidoptera: Tortricidae) also known as codling moth, and epiphytic yeasts. Cydia pomonella larval feeding galleries were colonised by yeasts and this, in turn, reduced larval mortality and enhanced larval development. It has been demonstrated in laboratory assays and field trials that combining yeast and brown cane sugar with Cydia pomonella granulovirus (CpGV) significantly increased larval mortality and lowered the proportion of injured apple fruit. This suggests that yeasts can enhance the effectiveness of an insect virus in managing pest larvae. In this study, we proposed to determine which species of yeast occur naturally in the digestive tract, frass and on the epidermis of T. leucotreta larvae and to examine whether any of these yeasts, when combined with the CrleGV-SA, have a synergistic effect in increasing mortality of T. leucotreta larvae. Firstly, Navel oranges infested with T. leucotreta larvae were collected from orchards in Sundays River Valley in Eastern Cape of South Africa. Larvae were extracted and analysed for the presence of yeast on their surface, or in their gut and frass. Four yeasts were isolated from T. leucotreta larvae and identified down to species level via PCR amplification and sequencing of internal transcribed spacer (ITS) region and D1/D2 domain of the large subunit (LSU) of rDNA region. These yeasts were isolated from the frass, epidermis and digestive tract of T. leucotreta larvae. The yeast isolates were identified as Meyerozyma caribbica, Pichia kluyveri, Pichia kudriavzevii and Hanseniaspora opuntiae. A yeast preference assay was conducted on female T. leucotreta moths to examine whether any of the isolated yeast species affected their oviposition preference. Navel oranges were inoculated with the isolated yeast species at a concentration of 6 × 108 cells.ml-1. The assay also included a Brewer’s yeast and distilled water control. Pichia kudriavzevii was shown to be the preferred yeast species for oviposition, as significantly more eggs were deposited on Navel oranges inoculated with this yeast compared to the other treatments. Lastly, a detached fruit bioassay was performed to evaluate the efficacy of mixing P. kudriavzevii with CrleGV-SA to enhance T. leucotreta larvae mortality. Pichia kudriavzevii was selected as it was demonstrated as having an effect on the oviposition preference of female T. leucotreta moths. The concentration at which P. kudriavzevii was applied remained the same as in the preference assay while CrleGV-SA was applied at lethal concentration required to kill 50 % of the population (9.31 × 107 OBs.ml-1). Although an increase in larval mortality was observed between CrleGV-SA being applied alone and the yeast/virus mixture, this result was determined not to be statistically significant. The experiments performed in this study provide a platform for further research into the application of a yeast-virus combination as a novel control option for T. leucotreta in the field. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- Authors: Van der Merwe, Marcél
- Date: 2018
- Subjects: Cryptophlebia leucotreta , Baculoviruses , Yeast , Citrus Diseases and pests , Biological pest control agents , Pests Integrated control
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62963 , vital:28347
- Description: Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) or otherwise commonly known as the false codling moth is an indigenous pest of the citrus industry in southern Africa. The pest is highly significant as it impacts negatively on the export of fresh citrus fruits from South Africa to international markets. To control T. leucotreta in South Africa, an integrated pest management (IPM) programme has been implemented. One component of this programme is the baculovirus Cryptophlebia leucotreta granulovirus (CrleGV-SA) which has been formulated into the products Cryptogran™ and Cryptex®. It has previously been reported that there is a mutualistic association between Cydia pomonella (L.) (Lepidoptera: Tortricidae) also known as codling moth, and epiphytic yeasts. Cydia pomonella larval feeding galleries were colonised by yeasts and this, in turn, reduced larval mortality and enhanced larval development. It has been demonstrated in laboratory assays and field trials that combining yeast and brown cane sugar with Cydia pomonella granulovirus (CpGV) significantly increased larval mortality and lowered the proportion of injured apple fruit. This suggests that yeasts can enhance the effectiveness of an insect virus in managing pest larvae. In this study, we proposed to determine which species of yeast occur naturally in the digestive tract, frass and on the epidermis of T. leucotreta larvae and to examine whether any of these yeasts, when combined with the CrleGV-SA, have a synergistic effect in increasing mortality of T. leucotreta larvae. Firstly, Navel oranges infested with T. leucotreta larvae were collected from orchards in Sundays River Valley in Eastern Cape of South Africa. Larvae were extracted and analysed for the presence of yeast on their surface, or in their gut and frass. Four yeasts were isolated from T. leucotreta larvae and identified down to species level via PCR amplification and sequencing of internal transcribed spacer (ITS) region and D1/D2 domain of the large subunit (LSU) of rDNA region. These yeasts were isolated from the frass, epidermis and digestive tract of T. leucotreta larvae. The yeast isolates were identified as Meyerozyma caribbica, Pichia kluyveri, Pichia kudriavzevii and Hanseniaspora opuntiae. A yeast preference assay was conducted on female T. leucotreta moths to examine whether any of the isolated yeast species affected their oviposition preference. Navel oranges were inoculated with the isolated yeast species at a concentration of 6 × 108 cells.ml-1. The assay also included a Brewer’s yeast and distilled water control. Pichia kudriavzevii was shown to be the preferred yeast species for oviposition, as significantly more eggs were deposited on Navel oranges inoculated with this yeast compared to the other treatments. Lastly, a detached fruit bioassay was performed to evaluate the efficacy of mixing P. kudriavzevii with CrleGV-SA to enhance T. leucotreta larvae mortality. Pichia kudriavzevii was selected as it was demonstrated as having an effect on the oviposition preference of female T. leucotreta moths. The concentration at which P. kudriavzevii was applied remained the same as in the preference assay while CrleGV-SA was applied at lethal concentration required to kill 50 % of the population (9.31 × 107 OBs.ml-1). Although an increase in larval mortality was observed between CrleGV-SA being applied alone and the yeast/virus mixture, this result was determined not to be statistically significant. The experiments performed in this study provide a platform for further research into the application of a yeast-virus combination as a novel control option for T. leucotreta in the field. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
Structural studies on yeast eIF5A using biomolecular NMR and molecular dynamics
- Authors: Sigauke, Lester Takunda
- Date: 2015
- Subjects: Molecular dynamics , Reverse transcriptase , HIV (Viruses) , HIV infections , Eukaryotic cells , Yeast
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4547 , http://hdl.handle.net/10962/d1017927
- Description: Eukaryotic initiation factor 5A, eIF5A, is a ubiquitous eukaryotic protein that has been shown to influence the translation initiation of a specific subset of mRNAs. It is the only protein known to undergo hypusination in a two-step post translational modification process involving deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH) enzymes. Hypusination has been shown to influence translation of HIV-1 and HTLV-1 nuclear export signals, while the involvement of active hypusinated eIF5A in induction of IRES mediated processes that initiate pro-apoptotic process have inspired studies into the manipulation of eIF5A in anti-cancer and anti-diabetic therapies. eIF5A oligomerisation in eukaryotic systems has been shown to be influenced by hypusination and the mechanism of dimerisation is RNA dependent. Nuclear magnetic resonance spectroscopy approaches were proposed to solve the structure of the hypusinated eIF5A in solution in order to understand the influence of hypusination on the monomeric arrangement which enhances dimerisation and activates the protein. Cleavage of the 18 kDa protein monomer by introduction of thrombin cleavage site within the flexible domain was thought to give rise to 10 kDa fragments accessible to a 600 MHz NMR spectrometer. Heteronuclear single quantum correlation experiments of the mutated isotopically labelled protein expressed in E. coli showed that the eIF5A protein with a thrombin cleavage insert, eIF5AThr (eIF5A subscript Thr), was unfolded. In silico investigations of the behaviour of eIF5A and eIF5AThr (eIF5A subscript Thr) models in solution using molecular dynamics showed that the mutated model had different solution dynamics to the native model. Chemical shift predictors were used to extract atomic resolution data of solution dynamics and the introduction of rigidity in the flexible loop region of eIF5A affected solution behaviour consistent with lack of in vivo function of eIF5AThr (eIF5A subscript Thr) in yeast. Residual dipolar coupling and T₁ relaxation times were calculated in anticipation of the extraction of experimental data from RDC and relaxation dispersion experiments based on HSQC measurable restraints.
- Full Text:
- Date Issued: 2015
- Authors: Sigauke, Lester Takunda
- Date: 2015
- Subjects: Molecular dynamics , Reverse transcriptase , HIV (Viruses) , HIV infections , Eukaryotic cells , Yeast
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4547 , http://hdl.handle.net/10962/d1017927
- Description: Eukaryotic initiation factor 5A, eIF5A, is a ubiquitous eukaryotic protein that has been shown to influence the translation initiation of a specific subset of mRNAs. It is the only protein known to undergo hypusination in a two-step post translational modification process involving deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH) enzymes. Hypusination has been shown to influence translation of HIV-1 and HTLV-1 nuclear export signals, while the involvement of active hypusinated eIF5A in induction of IRES mediated processes that initiate pro-apoptotic process have inspired studies into the manipulation of eIF5A in anti-cancer and anti-diabetic therapies. eIF5A oligomerisation in eukaryotic systems has been shown to be influenced by hypusination and the mechanism of dimerisation is RNA dependent. Nuclear magnetic resonance spectroscopy approaches were proposed to solve the structure of the hypusinated eIF5A in solution in order to understand the influence of hypusination on the monomeric arrangement which enhances dimerisation and activates the protein. Cleavage of the 18 kDa protein monomer by introduction of thrombin cleavage site within the flexible domain was thought to give rise to 10 kDa fragments accessible to a 600 MHz NMR spectrometer. Heteronuclear single quantum correlation experiments of the mutated isotopically labelled protein expressed in E. coli showed that the eIF5A protein with a thrombin cleavage insert, eIF5AThr (eIF5A subscript Thr), was unfolded. In silico investigations of the behaviour of eIF5A and eIF5AThr (eIF5A subscript Thr) models in solution using molecular dynamics showed that the mutated model had different solution dynamics to the native model. Chemical shift predictors were used to extract atomic resolution data of solution dynamics and the introduction of rigidity in the flexible loop region of eIF5A affected solution behaviour consistent with lack of in vivo function of eIF5AThr (eIF5A subscript Thr) in yeast. Residual dipolar coupling and T₁ relaxation times were calculated in anticipation of the extraction of experimental data from RDC and relaxation dispersion experiments based on HSQC measurable restraints.
- Full Text:
- Date Issued: 2015
Bioaccumulation of metal cations by yeast and yeast cell components
- Authors: Brady, Dean
- Date: 1993
- Subjects: Yeast , Yeast fungi -- Biotechnology , Cations , Metal ions
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4046 , http://hdl.handle.net/10962/d1004107 , Yeast , Yeast fungi -- Biotechnology , Cations , Metal ions
- Description: The aim of the project was to determine whether a by-product of industrial fermentations, Saccharomyces cerevisiae, could be utilized to bioaccumulate heavy metal cations and to partially define the mechanism of accumulation. S. cerevisiae cells were found to be capable of accumulating Cu²⁺in a manner that was proportional to the external Cu²⁺ concentration and inversely proportional to the concentration of biomass. The accumulation process was only minimally affected by temperature variations between 5 and 40°C or high ambient concentrations of sodium chloride. The accumulation process was however considerably affected by variations in pH, bioaccumulation being most efficient at pH 5 - 9 but becoming rapidly less so at either extreme of pH. Selection for copper resistant or tolerant yeast diminished the yeast's capacity for Cu²⁺ accumulation. For this and other reasons the development of heavy metal tolerance in yeasts was deemed to be generally counterproductive to heavy metal bioaccumulation. The yeast biomass was also capable of accumulating other heavy metal cations such as c0²⁺ or Cd²⁺. The yeast biomass could be harvested after bioaccumulation by tangential filtration methods, or alternatively could be packed into hollow fibre microfilter membrane cartridges and used as a fixed-bed bioaccumulator. By immobilizing the yeast in polyacrylamide gel and packing this material into columns, cu²⁺, C0²⁺ or Cd²⁺ could be removed from influent aqueous solutions yielding effluents with no detectable heavy metal, until breakthrough point was reached. This capacity was hypothesized to be a function of numerous "theoretical plates of equilibrium" within the column. The immobilized biomass could be eluted with EDTA and recycled for further bioaccumulation processes with minor loss of bioaccumulation capacity. Yeast cells were fractionated to permit identification of the major cell fractions and molecular components responsible for metal binding. Isolation of the yeast cell walls permitted investigation of their role in heavy metal accumulation. Although the amino groups of chitosan and proteins, the carboxyl groups of proteins, and the phosphate groups of phosphomannans were found to be efficient groups for the accumulation of copper, the less effective hydroxyl groups of the carbohydrate polymers (glucans and mannans) had a similar overall capacity for copper accumulation owing to their predominance in the yeast cell wall. The outer (protein-mannan) layer of the yeast cell wall was found to be a better Cu²⁺ chelator than the inner (chitinglucan) layer. It appeared that the physical condition of the cell wall may be more important than the individual macromolecular components of the cell wall in metal accumulation. It was apparent that the cell wall was the major, if not the sole contributor to heavy metal accumulation at low ambient heavy metal concentrations. At higher ambient metal concentrations the cytosol and vacuole become involved in bioaccumulation. Copper and other metals caused rapid loss of 70% of the intracellular potassium, implying permeation of the plasma membrane. This was followed by a slower "leakage" of magnesium from the vacuole which paralleled Cu²⁺ accumulation, suggesting that it may represent some form of ion-exchange. An intracellular copper chelating agent of approximately 2 kDalton molecular mass was isolated from copper tolerant yeast. This chelator was not a metallothionein and bound relatively low molar equivalents of copper compared to those reported for metallothionein. Treatment of the biomass with hot alkali yielded two biosorbents, one soluble (which could be used as a heavy metal flocculent), and an insoluble biosorbent which could be formed into a granular product to be used in fixed-bed biosorption columns. The granular biosorbent could accumulate a wide range of heavy metal cations in a semispecific manner and could be stored in a dehydrated form indefinitely, and rehydrated when required. Bioaccumulation by live algae was investigated as an alternative to yeast based processes. Various strains of algae, of which Scenedesmus and Selenastrum were the most effective, were found to be capable of accumulating heavy metals such as Cu²⁺, Pb²⁺ and Cr³⁺.
- Full Text:
- Date Issued: 1993
- Authors: Brady, Dean
- Date: 1993
- Subjects: Yeast , Yeast fungi -- Biotechnology , Cations , Metal ions
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4046 , http://hdl.handle.net/10962/d1004107 , Yeast , Yeast fungi -- Biotechnology , Cations , Metal ions
- Description: The aim of the project was to determine whether a by-product of industrial fermentations, Saccharomyces cerevisiae, could be utilized to bioaccumulate heavy metal cations and to partially define the mechanism of accumulation. S. cerevisiae cells were found to be capable of accumulating Cu²⁺in a manner that was proportional to the external Cu²⁺ concentration and inversely proportional to the concentration of biomass. The accumulation process was only minimally affected by temperature variations between 5 and 40°C or high ambient concentrations of sodium chloride. The accumulation process was however considerably affected by variations in pH, bioaccumulation being most efficient at pH 5 - 9 but becoming rapidly less so at either extreme of pH. Selection for copper resistant or tolerant yeast diminished the yeast's capacity for Cu²⁺ accumulation. For this and other reasons the development of heavy metal tolerance in yeasts was deemed to be generally counterproductive to heavy metal bioaccumulation. The yeast biomass was also capable of accumulating other heavy metal cations such as c0²⁺ or Cd²⁺. The yeast biomass could be harvested after bioaccumulation by tangential filtration methods, or alternatively could be packed into hollow fibre microfilter membrane cartridges and used as a fixed-bed bioaccumulator. By immobilizing the yeast in polyacrylamide gel and packing this material into columns, cu²⁺, C0²⁺ or Cd²⁺ could be removed from influent aqueous solutions yielding effluents with no detectable heavy metal, until breakthrough point was reached. This capacity was hypothesized to be a function of numerous "theoretical plates of equilibrium" within the column. The immobilized biomass could be eluted with EDTA and recycled for further bioaccumulation processes with minor loss of bioaccumulation capacity. Yeast cells were fractionated to permit identification of the major cell fractions and molecular components responsible for metal binding. Isolation of the yeast cell walls permitted investigation of their role in heavy metal accumulation. Although the amino groups of chitosan and proteins, the carboxyl groups of proteins, and the phosphate groups of phosphomannans were found to be efficient groups for the accumulation of copper, the less effective hydroxyl groups of the carbohydrate polymers (glucans and mannans) had a similar overall capacity for copper accumulation owing to their predominance in the yeast cell wall. The outer (protein-mannan) layer of the yeast cell wall was found to be a better Cu²⁺ chelator than the inner (chitinglucan) layer. It appeared that the physical condition of the cell wall may be more important than the individual macromolecular components of the cell wall in metal accumulation. It was apparent that the cell wall was the major, if not the sole contributor to heavy metal accumulation at low ambient heavy metal concentrations. At higher ambient metal concentrations the cytosol and vacuole become involved in bioaccumulation. Copper and other metals caused rapid loss of 70% of the intracellular potassium, implying permeation of the plasma membrane. This was followed by a slower "leakage" of magnesium from the vacuole which paralleled Cu²⁺ accumulation, suggesting that it may represent some form of ion-exchange. An intracellular copper chelating agent of approximately 2 kDalton molecular mass was isolated from copper tolerant yeast. This chelator was not a metallothionein and bound relatively low molar equivalents of copper compared to those reported for metallothionein. Treatment of the biomass with hot alkali yielded two biosorbents, one soluble (which could be used as a heavy metal flocculent), and an insoluble biosorbent which could be formed into a granular product to be used in fixed-bed biosorption columns. The granular biosorbent could accumulate a wide range of heavy metal cations in a semispecific manner and could be stored in a dehydrated form indefinitely, and rehydrated when required. Bioaccumulation by live algae was investigated as an alternative to yeast based processes. Various strains of algae, of which Scenedesmus and Selenastrum were the most effective, were found to be capable of accumulating heavy metals such as Cu²⁺, Pb²⁺ and Cr³⁺.
- Full Text:
- Date Issued: 1993
The effect of hydrostatic carbon dioxide pressure and extracellular ethanol on the performance of the yeast strain Saccharomyces cerevisiae during fermentation
- Authors: Longden, Nicholas Guy
- Date: 1993
- Subjects: Brewing -- Microbiology , Yeast , Fermentation , Saccharomyces cerevisiae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4044 , http://hdl.handle.net/10962/d1004105 , Brewing -- Microbiology , Yeast , Fermentation , Saccharomyces cerevisiae
- Description: The brewing industry constantly experiences problems in trying to maintain the quality of beer produced. Unfavourable conditions during fermentation may alter the performance of the yeast strain Saccharomyces cerevisiae, resulting in a "poor" end-product. It has been established that high concentrations of extracellular ethanol, when added to the fermentation medium inhibit yeast activity. It has been recently suggested that increased carbon dioxide pressure could inactivate the yeast activity adding to further brewing problems. The aim of this study was to investigate the effect of extracellular carbon dioxide pressure and ethanol addition, on yeast performance when added to a fermentation medium, and to establish whether an inhibitory relationship existed between ethanol and carbon dioxide pressure, when combined and added to the fermentation medium. Dissolved C0₂ in the medium, medium pH and substrate utilisation were analysed daily during a fermentation, as were membrane fatty acid composition. These parameters were used to assess the effect of ethanol and carbon dioxide on the yeast performance and consequently the final end-product. Supplementing the medium with extracellular ethanol, even as low as 5%, was shown to inhibit yeast performance during fermentation. This effect was even more marked as the ethanol concentration was increased, with almost total inhibition of yeast activity occuring after the addition of 15% ethanol (v/v). A similar effect was observed when elevated C0₂ pressures were applied to the medium, and although low C0₂ pressures initially induced the synthesis of saturated yeast membrane fatty acids, elevated C0₂ pressures (greater than 1,0 atm.) was shown to follow a similar inhibitory trend, if not as dramatic, as ethanol. A combination of both ethanol and C0₂ pressure showed a further increase in the level of yeast inhibition, although the low C0₂ pressure appeared to initially inhibit the toxicity of ethanol on the yeast. Increasing the levels of the C0₂/ethanol treatment (1,0 atm.), showed a synergistic effect on yeast performance. The results of this study indicate that both extracellular ethanol and carbon dioxide do appear to inhibit yeast performance and affect membrane fatty acid composition of the cells by inhibiting the synthesis of the respective fatty acid. This affect has a significant bearing on the general metabolism of the yeast cell.
- Full Text:
- Date Issued: 1993
- Authors: Longden, Nicholas Guy
- Date: 1993
- Subjects: Brewing -- Microbiology , Yeast , Fermentation , Saccharomyces cerevisiae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4044 , http://hdl.handle.net/10962/d1004105 , Brewing -- Microbiology , Yeast , Fermentation , Saccharomyces cerevisiae
- Description: The brewing industry constantly experiences problems in trying to maintain the quality of beer produced. Unfavourable conditions during fermentation may alter the performance of the yeast strain Saccharomyces cerevisiae, resulting in a "poor" end-product. It has been established that high concentrations of extracellular ethanol, when added to the fermentation medium inhibit yeast activity. It has been recently suggested that increased carbon dioxide pressure could inactivate the yeast activity adding to further brewing problems. The aim of this study was to investigate the effect of extracellular carbon dioxide pressure and ethanol addition, on yeast performance when added to a fermentation medium, and to establish whether an inhibitory relationship existed between ethanol and carbon dioxide pressure, when combined and added to the fermentation medium. Dissolved C0₂ in the medium, medium pH and substrate utilisation were analysed daily during a fermentation, as were membrane fatty acid composition. These parameters were used to assess the effect of ethanol and carbon dioxide on the yeast performance and consequently the final end-product. Supplementing the medium with extracellular ethanol, even as low as 5%, was shown to inhibit yeast performance during fermentation. This effect was even more marked as the ethanol concentration was increased, with almost total inhibition of yeast activity occuring after the addition of 15% ethanol (v/v). A similar effect was observed when elevated C0₂ pressures were applied to the medium, and although low C0₂ pressures initially induced the synthesis of saturated yeast membrane fatty acids, elevated C0₂ pressures (greater than 1,0 atm.) was shown to follow a similar inhibitory trend, if not as dramatic, as ethanol. A combination of both ethanol and C0₂ pressure showed a further increase in the level of yeast inhibition, although the low C0₂ pressure appeared to initially inhibit the toxicity of ethanol on the yeast. Increasing the levels of the C0₂/ethanol treatment (1,0 atm.), showed a synergistic effect on yeast performance. The results of this study indicate that both extracellular ethanol and carbon dioxide do appear to inhibit yeast performance and affect membrane fatty acid composition of the cells by inhibiting the synthesis of the respective fatty acid. This affect has a significant bearing on the general metabolism of the yeast cell.
- Full Text:
- Date Issued: 1993
- «
- ‹
- 1
- ›
- »