DECLARATION

I, the undersigned, declare that this thesis submitted to the University of Fort Hare for the degree of Doctor of Philosophy in Microbiology in the Faculty of Science and Agriculture, School of Science, and the work contained herein is my original work with exemption to the citations and that this work has not been submitted at any other university in partial or entirety for the award of any degree.

Name:__

Signature:___

Date:___
Acknowledgement

I am grateful to all for making this study a success:

• God almighty, for giving me the wisdom and strength to complete this study, you are worthy of my praises.

• My supervisor, Prof. Anthony Ifeanyi Okoh, you are a rare breed and a genius; I mean it, thank you for your continuous fatherly guidance and valuable input throughout my study. “E o ko ere oko dele o, amin”.

• My co-supervisor, Prof. Afolayan, I thank you sir for been there all the time, “Ese gan ni” sir

• My wife, Adeola Ikeoluwa, Uh, the journey has finally come to the end. Words cannot convey my gratitude for your love, continuing support and words of wisdom throughout my study. You are always awake even when I returned home very late from the lab. You will not do this in vain, in Jesus name, my God will encourage you in all you’re undertaken, amen.

• My Daughter, Precious Olaitan, thank you for your wittiness and kind words of inspiration. You will leave to fulfill your destiny in Jesus mighty name, amen.

• My Son, Bethel Olaposi, I will not return home until you are fast asleep, just to run away from your activities, this had encouraged me to work very hard, you are a source of inspiration to me and I am proud of you, remain blessed in Jesus mighty name, amen.

• My parents thank you for always being an encouragement and for your prayer support during this study. You will leave to reap the fruit of your labour in Jesus mighty name.

• Dr. David Akinpelu. Thank you for your perpetual eagerness to assist and sharing your invaluable expertise.

• My siblings, Olaniran (Nirex), Olalere Frank, Olawuyi Williams and the baby of the house who
is now a mother Olanike, I am proud of you all, stay blessed in Jesus name.

• My colleagues in AEMREG; Emma, Ogbe, Tina, Thulani, Isoken, Zimasa, Koba, Cosa, Timothy, Mayowa and Gusha and Colleagues from phytomedicine (Botany Department); they were always available to offer their assistance. You will always find help in the time of needs; we will all fulfill destiny in the mighty name of Jesus, amen.

• The staff and colleagues in the Department; Mr. Green, Sis Mafu, Fefe, Dele, Nicolene, Collins, Benjy, Fred, Buno etc. you are all wonderful people, keep the good work.

• The member of congregation; RCCG Love assemble, Alice and Delightfulland Fellowship members, I thank you for your prayers and understanding. The almighty God will perfect our life in Jesus mighty name, amen. Keep loving the lord.

• The NRF and GMRDC, for the financial support of my study.

• The last but not the least, all well wishers, who I am unable to mention their name, you are all great people with great minds; see you on top in the mighty name of Jesus, amen.

COPYRIGHT

© Copyright by Olayinka Ayobami Aiyegoro. 2009. All rights reserved.
DEDICATIONS

This thesis is dedicated to my soul mate and wife (Adeola); my beloved daughter (Precious) and my wonderful son (Bethel), to God be the glory.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration………………………………………………………...i</td>
<td></td>
</tr>
<tr>
<td>Acknowledgements………………………………………………...ii</td>
<td></td>
</tr>
<tr>
<td>Dedications………………………………………………………iv</td>
<td></td>
</tr>
<tr>
<td>Table of contents………………………………………………v</td>
<td></td>
</tr>
<tr>
<td>General Abstracts………………………………………………vii</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER

1. General Introduction…………………………………………………………1

2. Use of bioactive plant products in combination with standard antibiotics: implicans in antimicrobial chemotherapy…………………………………19

3. *In vitro* time kill assessment of crude methanol extract of
 Helichrysum pedunculatum leaves……………………………………………………41

4. Studies on the *in vitro* time kill assessment of crude acetone and aqueous extracts of *Helichrysum pedunculatum* leaves………………………56

5. *In vitro* antibacterial time kill studies of leaves extracts of
 Helichrysum longifolium…………………………………………………….76

6. Synergistic interaction of *Helichrysum pedunculatum* leaf extracts
 with antibiotics against wound infection associated bacteria………………95

7. Interactions of antibiotics and extracts of *Helichrysum pedunculatum*
 against bacteria implicated in wound infections…………………………….122

8. *In vitro* antibacterial activities of crude extracts of the leaves of
 Helichrysum longifolium in combination with selected antibiotics…………141
9. Phytochemical Screening and Polyphenolic Antioxidant Activity of Aqueous Crude Leaf Extract of Helichrysum pedunculatum……………………………………167

10. *In vitro* antioxidant activity of the phenolic compounds and phytochemical screening of Helichrysum longifolium: a plant used for circumcision wound healing………………195

11. Isolation of bioactive compounds from Helichrysum longifolium and Helichrysum pedunculatum……………………………………………………………………223

12. General discussion, recommendations and conclusions…………………………………242

Appendices………………………………………………………………………………………………….259
GENERAL ABSTRACT
General Abstract

Helichrysum longifolium and *H. pedunculatum* belong to the Astereceae family and are used extensively in folkloric medicine in South Africa to manage stress-related ailments and as dressings for wounds normally encountered in circumcision rites, bruises, cuts and sores. The *in vitro* antibacterial time-kill studies, the synergistic potentials, the phytochemical screenings and antioxidant potentials as well as the isolation of the bioactive compounds from the extracts of these two plants were carried out in this study.

The *in vitro* antibacterial activities and time kill regimes of crude extracts of *H. pedunculatum* was assessed. The extracts was active against both Gram positive and Gram negative bacteria tested at a concentration of 10 mg/ml. Minimum Inhibitory Concentration (MIC) values for all the susceptible bacteria ranged between 0.1 – 35 mg/ml. The average log reduction in viable cell count in time kill assay ranged between 0.17 \log_{10} to 6.37 \log_{10} cfu/ml after 6 h of interaction, and between 0.14 \log_{10} and 6.99 \log_{10} cfu/ml after 12 h interaction in $1 \times$ MIC and $2 \times$ MIC of the extract. The effect of the aqueous extract was only bacteriostatic on both reference and environmental strains and the clinical isolates were outrightly resistant to aqueous extract. This is worrisome and this could be one reason why, there is an incidence of high death rate resulting from circumcision wounds infection even after treating such wounds with *H. pedunculatum* leaf. *In vitro* antibacterial time kill studies of extracts of *H. longifolium* was assessed. All test bacteria were susceptible to the methanol extract, while none was susceptible to the aqueous extract. Two of the test bacteria were susceptible to the ethyl acetate extract, while ten and seven were susceptible to the acetone and chloroform extracts respectively at the test concentration of 5 mg/ml. The minimum inhibitory concentrations (MICs) ranged between 0.1 and 5.0 mg/ml, while minimum bactericidal concentrations (MBCs) ranged between 1.0 and >5 mg/ml for all the
extracts. Average log reductions in viable cell counts for all the extracts ranged between 0.1 Log10 and 7.5 Log10 cfu/ml after 12 h interaction at 1 × MIC and 2 × MIC. Most of the extracts were rapidly bactericidal at 2 × MIC achieving a complete elimination of most of the test organisms within 12 h exposure time.

The effect of combinations of the crude extracts of *H. pedunculatum* leaves and eight antibiotics was investigated by means of checkerboard and time-kill methods. In the checkerboard method, synergies of between 45.83-56.81% were observed and this is independent of Gram reaction, with combinations in the aqueous extract yielding largely antagonistic interactions (18.75%). The time kill assay also detected synergy that is independent of Gram reaction with a ≥ 3Log10 potentiation of the bactericidal activity of the test antibiotics. We conclude that the crude leaf extracts of *H. pedunculatum* could be potential source of broad spectrum antibiotics resistance modulating compounds.

The interactions between crude extracts of *H. longifolium* in combination with six first-line antibiotics using both the time-kill and the checkerboard methods were carried out. The time-kill method revealed the highest bactericidal activity exemplified by a 6.7 Log10 reduction in cell density against *Salmonella* sp. when the extract and Penicillin G are combined at ½ × MIC. Synergistic response constituted about 65%, while indifference and antagonism constituted about 28.33% and 6.67% in the time kill assay, respectively. The checkerboard method also revealed that the extracts improved bactericidal effects of the antibiotics. About 61.67% of all the interactions were synergistic, while indifference interactions constituted about 26.67% and antagonistic interactions was observed in approximately 11.66%.
The *in vitro* antioxidant property and phytochemical constituents of the aqueous crude leaf extracts of *H. longifolium* and *H. pedunculatum* was investigated. The scavenging activity on superoxide anions, DPPH, H$_2$O$_2$, NO and ABTS; and the reducing power were determined, as well as the flavonoid, proanthocyanidin and phenolic contents of the extracts. The extracts exhibited scavenging activity in all radicals tested due to the presence of relatively high total phenol and flavonoids contents in the extracts. Our findings suggest that *H. longifolium* and *H. pedunculatum* are endowed with antioxidant phytochemicals and could serve as a base for future drugs.

Bioactivity-guided fractionation of the leaves of *H. longifolium* and *H. pedunculatum* yielded two known compounds. From the n-hexane fraction of *H. longifolium* a compound was isolated (Stigmasterol) and from the ethyl acetate fraction of *H. pedunculatum* another compound (β-sitosterol) was isolated. The compounds were isolated and identified using various techniques. The antimicrobial, anti-inflammatory, antioxidant, analgesic and anti-pyretic activities of these compounds have been reported in literatures.

In general, the experiments and tests conducted in this study appear to have justified the folkloric medicinal uses of *H. longifolium* and *H. pedunculatum* for the treatment of stress related ailments and wound infections and make a substantial contribution to the knowledge base of the use of herbal medicine for the treatment of the microbial infections.