TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of contents</td>
<td>19</td>
</tr>
<tr>
<td>List of Tables</td>
<td>20</td>
</tr>
<tr>
<td>Abstract</td>
<td>21</td>
</tr>
<tr>
<td>Keywords</td>
<td>21</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>22</td>
</tr>
<tr>
<td>2.2 Highlights on some antimicrobial phytochemicals</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Antimicrobial synergisms in plants products</td>
<td>26</td>
</tr>
<tr>
<td>2.4 Combinations of bioactive plant products and different classes of antibiotics with specific mechanism of action</td>
<td>27</td>
</tr>
<tr>
<td>2.5 Perspectives</td>
<td>31</td>
</tr>
<tr>
<td>2.6 Conclusion</td>
<td>32</td>
</tr>
<tr>
<td>References</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2.1: Some major classes of antimicrobial compounds from medicinal plants and their mechanisms of actions…………………………………..40
ABSTRACT

Nowadays, multiple antibiotic resistance by disease-causing microorganisms is a major public health problem. Antimicrobial compounds from plants have been found to be synergistic enhancers in that though they may not possess any antimicrobial properties alone, but when used concurrently with standard drugs they enhance the activity of the drug. The synergistic effect of the association of antibiotic and plant extracts against resistant pathogens leads to new choices for the treatment of infectious diseases. Also synergy between bioactive plant product and antibiotics will confront problems of toxicity and overdose since lesser concentrations of two agents in combination are required, due to these reasons, there is need therefore, for continuous exploration of multidrug resistance modulating principles from plants sources.

Keywords: Medicinal plants, infectious diseases, synergism, resistance, antimicrobial, chemotherapy.
2.1 INTRODUCTION

The plant kingdom has served as an inexhaustible source of useful drugs, foods, additives, flavouring agents, lubricants, colouring agents and gums from time immemorial (Parikh, UM et al., 2005). The therapeutic power of herbs had been recognized since creation of the universe and botanic medicine is one of the oldest practiced professions by mankind (Kambizi and Afolayan, 2001). Medicinal plants have been found useful as antimalaria, antisickling, anti-helminthic, anti-microbial, anti-convulant, anti-hypertensive, and anti-schistosomal (molluscicidal) agents (Prescott, LM et al., 2002). The medicinal actions of plants are unique to particular plant species or groups, consistent with the concept that the combination of secondary products in a particular plant is taxonomically discrete (Parikh, UM et al., 2005). Hugo and Russell (2003) asserted that 80 percent of the populations in developing countries use medicinal plants, and as a result of the importance of herbs in the lives of people, the World Health Organization devoted 27 centers, out of 915 collaborating centers worldwide, for traditional medicine (WHO 2001).

The clinically useful antibiotics now in use have major setbacks. Apart from the narrow spectrum of antimicrobial activity, many of them have been found to be neurotoxic, nephrotoxic, ototoxic or hypertensive and few others cause severe damage to the liver and cause bone-marrow depression (Chong and Pagano, 1997), and importantly; infectious pathogens have developed resistance to all known antibiotics.

Betoni, JEC et al., (2006) demonstrated that plants either contain antimicrobials that can operate in synergy with antibiotics or posses compounds that have no intrinsic antibacterial activity but
are able to sensitize the pathogen to a previously ineffective antibiotic. Synergism is a positive interaction created when two agents combined and exert an inhibitory effect that is greater than the sum of their individual effects. Combination therapy can be used to expand the antimicrobial spectrum, to prevent the emergence of resistant mutants, to minimize toxicity, and to obtain synergistic antimicrobial activity, it could be an alternative to monotherapy for patients with invasive infections that are difficult to treat, such as those due to multi-resistant species and for those who fail to respond to standard treatment (Kamatou, GPP et al., 2006). Antimicrobial compounds used in combination might promote the effectiveness of each agent, with efficacy being achieved using a lower dose of each drug. Pharmacological benefits would accrue, with one drug clearing infection from one body system while the other clears it from a different site (Williamson, 2001). In addition, synergism in antimicrobials could be utilized in an attempt to prevent or delay the emergence in vivo of resistant populations of the pathogenic organisms (Lupetti, A et al., 2002).

Abundant medicinal plants have been used in many forms over the years to treat, manage or control man’s ailments (Prescott, LM et al., 2002), therefore any effort to further explore the medicinal or natural products from man’s botanical flora towards improving health care delivery deserves attention. This article presents an overview of the use of bioactive plant products in combination with standard antibiotics and its implications in antimicrobial chemotherapy.
2.2 HIGHLIGHTS ON SOME ANTIMICROBIAL PHYTOCHEMICALS

The “phyto” of the word phytochemicals is derived from the Greek word phyto, which means plant. Therefore, phytochemicals are defined as bioactive nonessential plant compounds in fruits, vegetables, grains, and other plant foods that have been linked to reducing the risk of major chronic diseases. However, more and more convincing evidences suggest that the benefits of phytochemicals in plants may be even greater than is currently understood (Ames and Gold, 1991). Phytochemicals can be grouped as carotenoids, phenolics, alkaloids, nitrogen-containing compounds, and organosulfur compounds. The most investigated phytochemicals are the phenolics and carotenoids (Ames and Gold, 1991).

Plants have an almost infinite ability to produce aromatic substances, most of which are phenols or their oxygen-substituted derivatives (Kambizi and Afolayan, 2001). Most are secondary metabolites, of which at least 12,000 have been isolated, a number projected to be less than 10% of the total (Van Wyk, BE et al., 1997). In many cases, these substances serve as plant defense mechanisms against predation by microorganisms, insects, and herbivores. Some of the compounds like, terpenoids- give plants their odors and, quinones and tannins are responsible for their pigmentation. Many compounds are responsible for plant flavor (e.g., the terpenoid capsaicin from chili peppers), and some of the same herbs and spices used by humans to season food yield useful medicinal compounds (Pecere, T et al., 2000). The isoquinoline alkaloid emetine from the underground part of Cephalis ipecacuanha- has been used for many years as an amoebicidal drug as well as for the treatment of abscesses due to the spread of Entamoeba histolytica infections (Iwu, MM et al., 1999). Another important compound of plant origin with a
long history of use is quinine- an alkaloid which occurs naturally in the bark of *Cinchona* trees. Apart from its continued usefulness in the treatment of malaria, it can also be used to relieve nocturnal leg cramps (Iwu, MM *et al.*, 1999). Similarly plants have made important contributions in the areas beyond anti-infective, such as cancer therapies. Examples include the antileukaemic alkaloids, vinblatine and vincristine, which were both obtained from the Madagascan periwinkle (*Catharanthus roseus* syn. *Vinca roseus*) (Nelson 1982). Other therapeutic compounds from plants include taxol, homoharringtonine and several derivatives of camptothecin, which are all anticancer medications. A well known benzylisoquinoline alkaloid, papaverine, has been shown to have a potent inhibitory effect on the replication of several viruses including cytomegalovirus, measles and Human Immunodeficient Virus (HIV) (Turano, A *et al.*, 1989). Atropisomeric naphthylisoquinoline alkaloid dimmers, michellamines A, B, and C were isolated from *Ancistrocladus korupensis*, and the three compounds showed potential anti-HIV activities. Kambizi and Afolayan (2001) isolated three compounds from *Aloe ferox*, a plant traditionally used for the treatment of sexually transmitted infections. These compounds include; 1, 8 – dihydroxy – 3 – hydroxymethyl - 9, 10 - anthracenedione (aloe - emodin); 1, 8 – dihydroxy – 3 – methyl - 9, 10 - anthracenedione (chrysophanol), and 10 – C – b – D – glucopyranosyl - 1, 8 – dihydroxy – 3 – hydroxymethyl - 9 - anthracenone (aloin A), and these three compounds exhibited antibacterial activities against *Bacillus subtilis, Staphylococcus epidermidis, Shigella sonnei* and *Escherichia coli*. Aloe emodin has also been reported to be an anticancer agent with selective activity against neuroectodermal tumors (Pecere, A *et al.*, 2000), and generally, both aloe- emodin and aloin A have been associated with other biological and medicinal activities that include laxative action (Van Wyk, BE *et al.*, 1997). Mangena and Muyima (1999) reported antimicrobial activities of essential oils in *Artemisia afra, Pteronia incana* and *Rosmarinus*.
All these plants have been used in the treatment of common cold, diabetes mellitus, bronchial complaints and stomach disorder. The essential oils from these plants were reported to contain such components as Bornylacetate, Camphene, Camphor, 1-8-Cineole, o-Cymene, p-Cymene, Limonene + 1, 8 Cineole, Mycerene, α-Pinene, β-Pinene. α-Thujone, β-Thujone and Verbene to mention a few. Dilika, F et al. (2000) also reported the antibacterial activities of linoleic and oleic acids isolated from the dry leaf of Helichrysum pedunculatum, a plant used to treat wound acquired during male circumcision rites in the Eastern Cape of South Africa, and this study has been corroborated by Aiyegoro, OA et al. (2008a). Two lipophilic phytoalexins: α-amyrin and β-amyrin that have anti-tuberculosis and generally antibacterial activities have also been isolated from Helichrysum kraussii (Prinsloo and Meyer, 2006). Many more compounds with antibacterial potentials from different species of plants have been isolated (Park, MK et al., 2008; Tsao and Yin, 2001; Iwu, MM et al., 1999; Smith, ECJ et al., 2007). It is also notable that, more novel antibacterial compounds have been isolated from plants and their structures elucidated on daily basis but have not been documented in any pharmacopeia. Many plant extracts clearly demonstrate antibacterial properties, although the mechanistic processes are poorly understood. Cowan (1999) describe the mechanism of action for various classes of active components from medicinal plants (Table 2.1)

2.3 ANTIMICROBIAL SYNERGISMS IN PLANTS PRODUCTS

Plants antimicrobials have been found to be synergistic enhancers in that though they may not have any antimicrobial properties alone, but when they are taken concurrently with standard drugs they enhance the effect of that drug (Kamatou, GPP et al., 2006). The synergistic effect
from the association of antibiotic and plant extracts against resistant bacteria leads to new choices for the treatment of infectious diseases. This effect enables the use of the respective antibiotic when it is no longer effective by itself during therapeutic treatment (Nascimento, GGF et al., 2000). The application of synergistic principle is evident in commercial preparations for the treatment of various infections (e.g. the antibiotic augmentin). Traditional healers often use combinations of plants to treat or cure diseases (Kamatou, GPP et al., 2006). One notable example from the ethnobotanical literature is the concomitant administration of various Salvia species with Leonotis leonurus to treat various infections (Masika and Afolayan, 2003). Kamatou, GPP et al. (2006), confirmed the existence of synergism between Salvia chamelaeagnea and Leonotis leonurus, when these two plants extracts were combined together and tested against Bacillus cereus, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. They also reported synergism when the tincture of L. leonurus and various Salvia species were combined together against influenza. Boik (2001) conducted a large number of combination studies using various natural substances and their results strongly suggested that when used in combination, natural substances can produce synergistic effects. It is thought that phenolic compounds such as flavonoids may increase the biological activity of other compounds by synergistic or other mechanisms (Williamson, 2001). Experimental evidence of synergistic actions between plants was also shown in a clinical study on the formulation of Chinese herbs used to treat eczema (Williamson, 2001).
2.4 COMBINATIONS OF BIOACTIVE PLANT PRODUCTS AND DIFFERENT CLASSES OF ANTIBIOTICS WITH SPECIFIC MECHANISM OF ACTION

In the treatment of drug resistant infections, combinations of antibiotics have often been used as this takes advantage of different mechanisms of action. The use of antimicrobial agents displaying synergy is one of the well established indications for combination antimicrobial therapy (Rybak and McGrath, 1996). Combinations of antimicrobials that demonstrate an \textit{in vitro} synergism against infecting strains are more likely to result in successful therapeutic result. Thus, evidence of \textit{in vitro} synergism could be useful in selecting most favorable combinations of antimicrobials for the practical therapy of serious bacterial infections (Hooton, TM \textit{et al.}, 1984).

It has been proven that, in addition to the production of intrinsic antimicrobial compounds, plants also produce multi-drug resistant (MDR) inhibitors which enhance the activity of the antimicrobial compounds (Stermitz, FR \textit{et al.}, 2000a). Tegos, G \textit{et al.} (2002) showed that the activity of presumed plant antimicrobials against Gram-positive and Gram-negative organisms was significantly enhanced by synthetic MDR inhibitors of associated efflux proteins. The findings provided a basis that plants can be prospective sources of natural MDR inhibitors that can modulate the performance of antibiotics against resistant strains.

The screening of crude plant extracts for synergistic interaction with antibiotics is expected to provide ways for the isolation of MDR inhibitors. The ability of crude extracts of plants to potentiate the activity of antibiotics has been observed by some researchers (Aiyegoro, OA \textit{et al.} 2008b; 2009; Sibanda and Okoh 2008; Betoni, JEC \textit{et al.} 2006; Darwish, RM \textit{et al.} 2002; Isogai,
E et al. 2001; Ahmad and Aqil 2006), and it is anticipated to form the basis for the bioassay directed fractionation of potential resistance modulators from plants. Darwish, RM et al. (2002) carried out a study on some Jordanian plants and demonstrated that the efficacy of the antibiotics, gentamycin and chloramphenicol against *S. aureus* were reportedly improved by the use of plant materials. Ahmad and Aqil (2006), also reported that crude extracts of Indian medicinal plants demonstrated synergistic interaction with tetracycline and ciprofloxacin against extended spectrum β-lactamase (ESβL)-producing multidrug-resistant enteric bacteria. Betoni, JEC et al. (2006) also observed synergistic interactions between extracts of Brazilian medicinal plants and eight antibiotics on *S. aureus*. The use of *Catha edulis* extracts at subinhibitory levels, has been reported to reduce the minimum inhibitory concentration (MIC) values of tetracycline, and penicillin G against resistant oral pathogens, *Streptococcus oralis, Streptococcus sanguis* and *Fusobacterium nucleatum* (Al-hebshi, N et al., 2006).

A number of compounds with an *in vitro* activity of reducing the MICs of antibiotics against resistant organisms have also been isolated from plants. Polyphenols (epicatechin gallate and catechin gallate) have been reported to reverse beta-lactam resistance in Methicillin Resistant *S. aureus* (MRSA) (Stapleton, PD et al., 2004). Diterpenes, triterpenes, alkyl gallates, flavones and pyridines have also been reported to have resistance modulating abilities on various antibiotics against resistant strains of *S. aureus* (Marquez, B et al., 2005; Smith, ECJ et al., 2007; Shibata, H et al., 2005 and Oluwatuyi, M et al., 2004).

The synergies detected in the studies mentioned in this subsection were not specific to any group of organisms or class of antibiotics. This suggests that plant crude extracts are blend of
compounds that can enhance the activity of different antibiotics. Plants have been known to contain myriads of antimicrobial compounds (Iwu, MM et al., 1999) such as polyphenols and flavonoids. The antimicrobial and resistance modifying potentials of naturally occurring flavonoids and polyphenolic compounds have been reported in other studies such as Cushnie and Lamb (2005), Sato, Y et al. (2004).

Some of these compounds including polyphenols have been shown to exercise their antibacterial actions/activities through membrane perturbations. This disruption of the cell membrane coupled with the action of beta-lactams on the transpeptidation of the cell membrane could lead to an enhanced antimicrobial effect of the combination (Esimone, CO et al., 2006). It has also been revealed that some plant-derived compounds can improve the in vitro activities of some peptidoglycan inhibiting antibiotics by directly attacking the same site (i.e. peptidoglycan) in the cell wall (Zhao, WH et al., 2001).

While the above explanations may account for the synergy between the extracts and beta-lactam antibiotics that act on the cell wall, it might not apply in the case of the observed synergy with other classes of antibiotics with different targets such as tetracyclines, erythromycin, ciprofloxacin and chloramphenicol. Bacterial efflux pumps are responsible for a considerable level of resistance to antibiotics in pathogenic bacteria (Kumar and Schweizer, 2005). Some plant derived compounds have been observed to augment the activity of antimicrobial compounds by inhibiting MDR efflux systems in bacteria (Tegos, G et al., 2002). 5’-methoxyhydnocarpin is an example of an inhibitor of the NorA efflux pump of S. aureus isolated from Berberis fremontii (Stermitz, FR et al., 2000b). Such compounds are likely to be broad
spectrum efflux inhibitors considering that the synergistic effect of the extract was observed on both Gram-positive and Gram-negative organisms as well as in combination with cell wall inhibiting and protein synthesis inhibiting antibiotics. Importantly, some broad spectrum efflux pump inhibitors have been isolated from some plants (Stermitz, FR et al., 2000b). Smith, ECJ et al. (2007) reported one efflux inhibitor (ferruginol) from the cones of Chamaecyparis lawsoniana, which inhibited the activity of the quinolone resistance pump (NorA), the tetracycline resistance pump, (TetK) and the erythromycin resistance pump, (MsrA) in S. aureus.

2.6 PERSPECTIVES

Traditionally used medicinal plants have received the attention of the pharmaceutical and scientific communities. This involves the isolation and identification of the secondary metabolites produced by the plants and used as the active principles in medical preparations (Taylor, LH et al., 2001). Historically, many plant oils and extracts, such as tea tree, myrrh and clove, have been used as topical antiseptics, or have been reported to have antimicrobial properties. It is important to scientifically investigate those plants which have been used in traditional medicines as potential sources of novel antimicrobial compounds. Also the resurgence of interest in natural therapies and increasing consumer demand for effective, safe, natural products means that quantitative data on plant oils and extracts are required. The primary benefits of using plant-derived medicines are that they are relatively safer than synthetic alternatives, offering profound therapeutic benefits and more affordable treatment (Van Wyk and Gericke, 2000). Plant-based antimicrobials represent vast untapped sources for medicine. Continued and further exploration of plant antimicrobials needs to occur because they have
enormous therapeutic potentials. They are effective in the treatment of infectious diseases while simultaneously mitigating many of the side effects that are often associated with synthetic drugs. Various reports have documented the enhanced antimicrobial activities (i.e. synergistic potentials) of standard antibiotics in combinations with plant extracts even when the organisms are no more susceptible to the drug (Van Wyk and Gericke, 2000).

Synergistic interactions are of vital importance in phytomedicine, to explain the efficacy of apparently low doses of active constituents in an herbal product. This concept, that a whole or partially purified extract of a plant offers advantages over a single isolated ingredient, also underpins the philosophy of herbal medicine. Both literature reports and ethnobotanical records indicate a general consensus on the use of antimicrobially active medicinal plants to provide cheaper drugs that may complement existing supplies from orthodox medicine in the Primary Health programme and/or provide novel or lead compound that may be employed in controlling infections in our communities (Betoni, JEC et al., 2006).

2.7 CONCLUSION

With the relative absence of new antimicrobials and increasing threats arising from the microorganisms, the number of drug options leaves us perilously close to either no or only a single effective agent for some life-threatening infections. Plants, the sleeping giants of the pharmaceutical industry, are an inexhaustible sources of natural drugs that may be employed in combating ailments and inconveniences resulting from microbial attacks thereby, assessing the therapeutic potentials of plants from the traditional African system of medicine could insight us
as to how best these plants can be used in the treatment of diseases, especially, when the synergistic prowess between plants and standard antibiotics is optimally resourced. An important aspect of the research focus of our laboratory involves definite studies of the antimicrobial synergistic potentials of South African medicinal plants. The search for more natural antimicrobial substances is an ongoing exercise.
REFRENCES

Chong KT, Pagano PJ (1997). In vitro combination of PNV-140690, a Human Immunodeficiency Virus type 1 protease inhibitor with Ritonavir against Ritonavir-sensitive and Resistant Clinical

Smith ECJ, Williamson EM, Wareham N, Kaatz GW, Gibbons S (2007). Antibacterials and
modulators of bacterial resistance from the immature cones of *Chamaecyparis lawsoniana*.

Table 2.1. Some major classes of antimicrobial compounds from medicinal plants and their mechanisms of actions (Cowan, 1999).

<table>
<thead>
<tr>
<th>CLASS</th>
<th>SUB-CLASS</th>
<th>EXAMPLE(S)</th>
<th>MECHANISM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenolics</td>
<td>Simple phenols</td>
<td>Catechol, Epicatechin</td>
<td>Substrate deprivation, Membrane disruption</td>
</tr>
<tr>
<td>Phenolics</td>
<td>Phenolic acid</td>
<td>Cinamic acid</td>
<td>Membrane disruption</td>
</tr>
<tr>
<td>Phenolics</td>
<td>Quinones</td>
<td>Hypericin</td>
<td>Bind to adhesins, complex with cell wall and inactivate enzymes.</td>
</tr>
<tr>
<td>Phenolics</td>
<td>Flavonoids</td>
<td>Chrysir</td>
<td>Bind to adhesions</td>
</tr>
<tr>
<td>Phenolics</td>
<td>Flavones</td>
<td>Abyssinome</td>
<td>Inactivate enzymes, inhibit HIV reverse transcriptase</td>
</tr>
<tr>
<td>Phenolics</td>
<td>Tannins</td>
<td>Ellagitannins</td>
<td>Bind to proteins and adhesins, enzyme inhibitor, substrate deprivation, complex with cell wall, membrane disruption, metal ion complexation.</td>
</tr>
<tr>
<td>Phenolics</td>
<td>Coumarins</td>
<td>Warfarin</td>
<td>Interaction with eukaryotic DNA (antiviral activity).</td>
</tr>
<tr>
<td>Terpenoids,</td>
<td></td>
<td>Capsaicin</td>
<td>Membrane disruption</td>
</tr>
<tr>
<td>Essential oils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaloids</td>
<td></td>
<td>Berberine, Piperine</td>
<td>Intercalate into cell wall and/or DNA.</td>
</tr>
<tr>
<td>Lectins</td>
<td></td>
<td>Mannose-specific agglutinin</td>
<td>Block viral fusion or adsorption</td>
</tr>
<tr>
<td>and Polypeptide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectins and</td>
<td></td>
<td>Fabatin</td>
<td>Form disulfide bridge</td>
</tr>
<tr>
<td>Polypeptide</td>
<td>Polyacetylenes</td>
<td>8S-Heptadeca-2(z), 9(z)-diene-4, 6-diyne-1, 8-diol</td>
<td>Membrane disruption</td>
</tr>
</tbody>
</table>