BIOCHEMICAL EVALUATION OF TULBAGHIA VIOLACEA HARV. RHIZOMES IN DIET INDUCED HYPERCHOLESTROLEMIC RATS

A THESIS

“Submitted in fulfilment of the requirements for the degree of

PHILOPHIAE DOCTOR (PhD BIOCHEMISTRY)”

DEPARTMENT OF BIOCHEMISTRY AND MICROBIOLOGY,
FACULTY OF SCIENCE AND AGRICULTURE,
UNIVERSITY OF FORT HARE,

By
OLORUNNISOLA, OLUBUKOLA SINBAD

SUPERVISOR: PROF AJ AFOLAYAN
CO-SUPERVISOR: PROF G BRADLEY

MAY, 2012
A THESIS

“Submitted in fulfillment of the requirements for the degree of

PHILOSOPHIAE DOCTOR (PhD BIOCHEMISTRY)”

DEPARTMENT OF BIOCHEMISTRY AND MICROBIOLOGY,

FACULTY OF SCIENCE AND AGRICULTURE,

UNIVERSITY OF FORT HARE,

By

OLORUNNISOLA, OLUBUKOLA SINBAD

SUPERVISOR: PROF AJ AFOlayan

CO-SUPERVISOR: PROF G BRADLEY

MAY, 2012
DEDICATION

This thesis is dedicated to the Lord God Mighty Jesus Christ.
DECLARATION

I, the undersigned, declare that this dissertation submitted to the University of Fort Hare for the award of degree of Philosophiae Doctor (PhD Biochemistry) in the Faculty of Science and Agriculture, School of Biological and Environmental Science contains my independent work and has not been submitted for any degree at any other University in partial or entirely for the award of any degree. I further declare that all sources cited are indicated and acknowledged by means of comprehensive list of references.

Name: OLORUNNISOLA OLUBUKOLA SINBAD

Signature:

Date:

ACKNOWLEDGMENTS

I am grateful to the Lord God Jesus Christ for his protection, provision and guidance in the course of this programme.

I would like to express my sincere gratitude to my supervisor Prof AJ Afolayan. Thank you for your useful advice and comments not only about my work but also about life in general. The Lord God will reward you perfectly. I am also very grateful to my co-supervisor; Prof G Bradley for the interest, support and constructive criticisms he gave me during the course of this program.

I convey my deepest thanks and regards to my family especially my wife and children for their endurance, constant support and encouragement.

Avery special thanks to National Research Foundation of South Africa for their financial support.

I will like to thank every member of the phytomedicine research group most especially my friends Olufunmiso O. Olajuyigbe and Dr Ezekel Green for his love, endurance and encouragement.

My appreciation also goes to Miss Nolukholo Mketo for her love, support and contribution toward the success of this work.

Lastly, I will like to thank the traditional healers, Sangomas and herbalists who provided ethnobotanical information during our survey.
TABLE OF CONTENTS

DEDICATION.. iii

DECLARATION .. iv

ACKNOWLEDGMENT .. v

TABLE OF CONTENT .. vi

LIST OF TABLES .. xv

LIST OF PLATES .. xv

LIST OF FIGURES ... xvii

LIST OF ABBREVIATIONS .. xxiv

ABSTRACT ... xxvi

CHAPTER 1

Introduction and Literature Review

1.1 Introduction .. 1

1.2 Atherosclerosis ... 2

1.2.1 Prevalence of Atherosclerosis and Risk Factors .. 3

1.2.2 Classification of Atherosclerosis Lesions ... 4

1.2.3 Pathophysiology of Atherosclerosis ... 7

1.2.4 Early Fatty Streak Development ... 9

1.2.5 Early Fibroatheroma ... 9
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.6 Advanced Atheroma</td>
<td>10</td>
</tr>
<tr>
<td>1.2.7 Complex Lesion Development</td>
<td>10</td>
</tr>
<tr>
<td>1.2.8 Role of Oxidative Stress in Etiology of Atherosclerosis</td>
<td>11</td>
</tr>
<tr>
<td>1.2.9 Atherosclerosis: Diagnosis and Treatment</td>
<td>12</td>
</tr>
<tr>
<td>1.2.9.1 Treatment of Atherosclerosis</td>
<td>12</td>
</tr>
<tr>
<td>1.3 Medicinal Plants and Disease Management</td>
<td>14</td>
</tr>
<tr>
<td>1.4 Aims and Objectives of the Study</td>
<td>18</td>
</tr>
<tr>
<td>1.4.1 Specific Objectives</td>
<td>18</td>
</tr>
<tr>
<td>1.4.1.1 Ethnobotanical Survey of Plants</td>
<td>18</td>
</tr>
<tr>
<td>1.4.1.2 In vitro and in vivo Antioxidant activities of Extract of T. violacea</td>
<td>18</td>
</tr>
<tr>
<td>1.4.1.3 In vitro and in vivo Toxicity Evaluation of Extract of T. violacea</td>
<td>18</td>
</tr>
<tr>
<td>1.4.1.4 Anti-hyperlipidemia and clinical significance of T. violacea Extract</td>
<td>18</td>
</tr>
<tr>
<td>1.4.1.5. In vivo Anti-atherosclerotic Properties of Tulbaghia violacea Rhizomes in South African Herbal Medicine</td>
<td>19</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>20</td>
</tr>
<tr>
<td>Ethnobotanical Survey of Medicinal Plants used in the Management of Heart Diseases in the Nkonkobe Municipality South Africa</td>
<td>20</td>
</tr>
<tr>
<td>2.0 Introduction</td>
<td>21</td>
</tr>
<tr>
<td>2.1 Materials and Methods</td>
<td>22</td>
</tr>
</tbody>
</table>
2.2. Study Area ...22

2.1 Methodology ...22

2.2 Intellectual Property Agreement Statement ...23

2.3 Compliance Statement..23

2.4 Results and Discussion ...23

CHAPTER 3 ...27

In vitro and in vivo toxicity evaluation of methanolic extract of Tulbaghia violacea in Wistar Rats...27

3.0 Introduction ...28

3.1 Material and Methods ...29

3.2 Collection of Plant Materials ..29

3.3 Preparation and Extraction of Plant Materials ...30

3.4 Extraction of Essential Oil ..30

3.5 Brine Shrimps Lethality Test ..30

3.6 In vivo Toxicity Evaluation ..31

3.6.1 Animals ...31

3.6.2 Acute Oral Toxicity ...32

3.6.3 Sub-chronic Toxicity ...32

3.6.4 Hematological and Biochemical Analysis ..33
3.6.5 Histological Studies ...33

3.7 Statistical Analysis ...33

3.8 Results and Discussion ...34

3.8.1 Brine Shrimps Cytotoxicity Bioassay ..34

3.8.2 Acute Toxicity ..38

3.8.3 Sub-chronic Toxicity ...38

3.8.4 Biochemical and Hematology parameters40

3.8.4.1 Biochemical Parameters ..42

3.8.4.2 Hematological parameters ..47

3.9 Conclusion ...50

CHAPTER 4 ...51

In vitro and In vivo Antioxidant Activities of Methanolic Extract of *Tulbaghia violacea* Rhizomes *Harv* ...51

4.0 Introduction ...52

4.1 Material and Methods ..53

4.1.1 Chemicals ..53

4.1.2 Collection of Plant Materials ..53

4.1.2.1 Preparation and Extraction of Plant Materials53

4.1.3 Extraction of Essential Oil ..53
4.1.3.1 GC-MS Analysis of the Oil ...54
4.1.3.2 Identification of Chemical Component ..54
4.1.4 Phytochemical Contents of *T. violacea* Rhizomes54
4.1.4.1 Total Phenolic Determination ...54
4.1.4.1 Total flavonoid Determination ...55
4.1.4.2 Total Tannin Determination ...55
4.1.5 *In vitro* Antioxidant Activity ...56
4.1.5.1 DPPH Radical Scavenging Activity ..56
4.1.5.2 Nitric Oxide Scavenging Activity ...56
4.1.5.3 Lipid Peroxidation and Thiobarbituric Acid Reaction57
4.1.5.4.1 Reducing Power of Oil Extract ..58
4.1.5.4.2 Reducing Power of Fresh and Dried Extracts of *T. violacea*58
4.1.5.5 *H₂O₂* Inhibitory Activity of Fresh and Dried Extracts of *T. violacea*59
4.2 *In vivo* Antioxidant Evaluation of *T. violacea*59
4.2.1 Animals ...59
4.2.2 Experimental Design ...60
4.2.3 Preparation of Liver Homogenate ..60
4.3 Biochemical Estimation parameters ..61
4.3.1 Total Protein and Albumin ..61
4.3.2 Malonydialdehyde ...61
4.3.3 Superoxide Dismutase ...61
4.3.4 Catalase Activity ...62
4.3.5 Estimation of Glutathione Peroxidase Activity62
4.3.6 Estimation of Reduced Glutathione63
4.4 Statistical Analysis ...63
4.5 Results and Discussion ..63
4.5.1 GC.MS Analysis of the Essential Oil63
4.5.2 Total phenolics, flavonoid, flavonol, tannin and proanthocyanidin Content64
4.5.3 In vitro Scavenging Activities of extracts T. violacea66
4.5.3.1 DPPH Radical Scavenging Activity of extracts of T. violacea66
4.5.3.2 Nitric Oxide Scavenging Activity of extracts of T. violacea69
4.5.3.3 Lipid Peroxidation Activity ...71
4.5.3.4 Reducing Power of the Extract ..73
4.5.3.5 Hydrogen Peroxide Radical Scavenging Activity75
4.5.4 In vivo Antioxidant Activity ..77
4.5.4.1 Effect of the Extracts on Lipid Peroxidation in Normal Rats77
4.5.4.2 Effect of the Extracts on Serum Antioxidant enzymes in Rats fed Normal Diet79
4.5.4.3 Effect of extract of *T. violacea* on lipid peroxidation and antioxidant Enzymes in Diet Induced Hypercholesterolemia rats...81

4.6 Conclusion ..87

CHAPTER 5..88

Anti-hyperlipidemia of *T. violacea* Extract...88

5.0 Introduction...89

5.1 Material and Methods...90

5.1.1 Collection of Plant Materials..90

5.1.2 Plant Material and Preparation...90

5.2 Animals..90

5.3 Cholesterol Supplemented diet...90

5.4 Experimental Design...91

5.5 Determination of Biochemical Parameters ..91

5.5.1 Assessment of Lipid Profile and Biochemical Parameters.......................91

5.6 Statistical Analysis...92

5.7 Results and Discussion...92

5.7.1 Effect of rhizome of *T. violacea* on Serum Lipid profile in Rats on normal diet92

5.7.2 Effect of *T. violacea* on Serum Lipid Profile of hypercholesterolemic Rats94

5.7.3 Effect of extract of *T. violacea* on changes in Body Weight of Rats98
5.7.4 Effect of Extract on Biochemical Parameters……………………………………….99

5.8 Conclusion………………………………………………………………………………102

CHAPTER 6………………………………………………………………………………103

In vivo Anti-atherogenic Properties of RTV in Diet Induce Atherogenic Rats……………103

6.0 Introduction…………………………………………………………………………….104

6.1 Materials and Methods………………………………………………………………105

6.2 Plant Collection and Extract Preparation…………………………………………105

6.2.1 Preparation and Extraction of Plant Materials was as described in section 3.3……105

6.3 Animals…………………………………………………………………………………105

6.4 Experiment Design……………………………………………………………………106

6.5 Sample Collection and Preparation…………………………………………………107

6.6 Hematological Analysis………………………………………………………………107

6.7 Biochemical Assay……………………………………………………………………107

6.7.1 Determination of catalase activity (CAT)…………………………………………108

6.7.2 Determination of superoxide dismutase activity………………………………108

6.7.3 Malondialdehyde……………………………………………………………………109

6.8 Histopathological Examination of Liver and Aorta……………………………..109

6.9 Statistical Analysis……………………………………………………………………109

6.10 Results and Discussion…………………………………………………………….110
6.11 Conclusion ..120

CHAPTER 7 ..121

7.0 GENERAL DISCUSSION ..122

7.1 Toxicity Evaluation ..123

7.2 Antioxidant Activity Evaluation ...124

7.3 Antilipidemia and Antiatherosclerotic and Activities ..125

7.4 Possible Mechanisms ...126

7.5 Conclusion ...127

7.6 Recommendation ...128

References ..129
LIST OF TABLES

Table 1a: The classification of atherosclerotic lesions according to the American Heart Association ... 5

Table 1b: Classification of autopsy-verified atherosclerotic lesions 6

Table 2: The plants used for the treatment of cardiovascular diseases in Nkonkobe Municipality of South Africa and their predisposing factors 25

Table 3: Body weights of male and female rats after 28 days of oral administration of methanolic extracts of T. violacea rhizomes... 40

Table 4: Relative organ weight of rats after 28 days treatment with methanolic rhizome extracts of T. violacea .. 40

Table 5: Effect of daily administration of rhizomes of T. violacea extracts for 28 days on biochemical profiles of the control and treated rats in the sub-chronic toxicity study..... 45

Table 6: Haematological parameters of rats treated with the T. violacea extract for 28 days. 49

Table 7: GC-MS analyses of T. violacea rhizome essential oil .. 64

Table 8: Polyphenol content of methanolic extracts of fresh and dried rhizomes of T. violacea ... 65

Table 9: Effective inhibitory concentration for nitric oxide and lipid peroxidation of oil extract of rhizomes of T. violacea ... 69

Table 10: Effective inhibitory concentration for DPPH, hydrogen peroxide radical scavenging activity and lipid peroxidation .. 70
Table 11: Effect of crude extract of rhizomes of *T. violacea* on thiobarbituric acids (TBARS) and reduced glutathione (GSH) in tissues of rats maintaining on high-cholesterol diet ……83

Table 12: Effect of methanolic extracts of *T. violacea* on lipids profile of rats fed a normal diet………..
LIST OF FIGURES

Figure 1: The sequence of events in the development of atherosclerosis 8

Figure 2: Determination of IC₅₀ of fresh methanolic extract of rhizome (FMRTV) of *T.
violacea* against brime shrimps nauplii ... 35

Figure 3: Determination of IC₅₀ of dried methanolic extract of rhizome (DMRTV) of *T.
violeca* against brime shrimps nauplii ... 36

Figure 4: Determination of IC₅₀ of essential oil of rhizome of *T. violacea* against brime
shrimps nauplii ... 37

Figure 5: Percentage weight increase of the control and treated female rats in the subchronic
toxicity study ... 41

Figure 6: Percentage weight increase of the control and treated male rats in the subchronic
toxicity study ... 41

Figure 7a “Photomicrograph of cross section of the liver of normal Rats” 46

Figure 7b: “Photomicrograph of cross section of the liver of Rats treated with 500 mg/kg/
body weight” ... 46

Figure 8: DPPH Scavenging effects of oil extracts from rhizomes of *T. violacea*, vitamin C
and BHT ... 68

Figure 9: DPPH Scavenging effects of fresh and dried extracts from rhizomes of *T violacea*
and vitamin C ... 69

Figure 10: lipid peroxidation Scavenging effects of oil extracts from rhizomes of *T violacea*,
vitamin C and BHT ... 71
Figure 11: lipid peroxidation Scavenging ability of methanolic extracts of fresh and dried rhizomes of *T. violacea* (RTV) ...72

Figure 12: Reducing power of methanolic extract of fresh and dried rhizome of *T. violacea*.74

Figure 13: Ferric ion reducing power of oil extracts from rhizomes of *T. violacea*, vitamin C and BHT...75

Figure 14: Hydrogen peroxide Scavenging ability of methanolic extracts of fresh and dried rhizomes of *T. violacea* (RTV)……………………………………………………........77

Figure 15: Malondialdehyde (MDA) levels in plasma of rats 28 days after administration…78

Figure 16: Superoxide dismutase (SOD) levels in the plasma of rats 28 days after administration …...80

Figure 17: Glutathione peroxidase (GPX) levels in the plasma of rats 28 days after administration …...80

Figure 18: Catalase (CAT) levels in the plasma of rats 28 days after administration……..81

Figure 19: Effects of methanolic extract of rhizomes of *T. violacea* on antioxidant enzymes from aorta homogenate of rats fed a high cholesterol diet ….................................84

Figure 20: Effects of methanolic extract of rhizomes of *T. violacea* treatment on antioxidant enzymes from liver homogenate of rats fed a high cholesterol diet…………………85

Figure 21: Effects of methanolic extract of rhizomes of *T. violacea* treatment on antioxidant enzymes from heart homogenate of rats fed a high cholesterol diet……………..86

Figure 22a: Photomicrograph of liver section from a rat treated with high cholesterol diet ..96
Figure 22b: Photomicrograph of liver section from a normal rat ….................................96
Figure 22c: Photomicrograph of liver section of rat fed with high cholesterol diet and RTV

Figure 22d: Photomicrograph of liver section of rat fed with high cholesterol diet and Atorvastatin

Figure 23: The growth response of rats fed with normal diet, high cholesterol diet (HCD) and HCD plus RTV extract

Figure 24: Effect of RTV extract on activities of tissue antioxidant enzymes in aorta of diet induced atherogenic rats

Figure 25: Effect of RTV extract on activities of tissue antioxidant enzymes in liver of diet induced atherogenic rats

Figure 26a: Photomicrograph of cross section of the aorta of Normal

Figure 26b: Photomicrograph of cross section of the aorta of atherogenic rats

Figure 26c: Photomicrograph of cross section of the aorta of atherogenic rats treated with RTV extracts

Figure 26d: Photomicrograph of cross section of the aorta of atherogenic rats treated with atrovastin
LIST OF PAPERS PUBLISHED FROM THIS THESIS

Paper I

Paper II

Paper III

Paper IV

Paper V
Paper VI

Paper VII

Paper VIII

LIST OF ABBREVIATIONS

TC, Total cholesterol; LDL, low-density lipoprotein;
TG, Triglycerides
HDL, high density lipoprotein;
TBARS, Thiobarbituric acid reactive substances;
SOD- Superoxide dismutase;
GPx - Glutathione peroxidase;
RBCs- Red blood cells;
WBCs, White blood cells;
Hb, Hemoglobin;
NO – Nitric oxide;
HCD - High cholesterol diet
ECM - Extracellular matrix.
EC- Endothelial cells
SMC- Smooth muscle cells
RTV- Rhizomes of *Tulbaghia violacea.*
ABTS- 2, 2’- azinobis [3-ethylbenzothiazoline-6-sulfonic acid] diammonium salt.
DPPH- 1, 1-diphenyl-2- picrylhydrazyl,
O$_2^-$ Superoxide anions
H_2O_2 - Hydrogen peroxide

NO - Nitric oxide

TCFA - Thin-cap fibroatheroma

PLT - Platelet
GENERAL ABSTRACT
GENERAL ABSTRACT

Discovery of cheap, nontoxic and readily available antiatherosclerotic drugs is an extraordinary challenge in this modern world. Atherosclerosis and cardiovascular diseases have been predicted to be the leading cause of death by the year 2030. Hence, this thesis was designed to search for plant(s) with anti-atherogenic properties, investigate its possible side effects and extrapolate its likely mechanism(s) of action.

An ethnobotanical survey was employed in identification of locally important plants used for the management and treatment of cardiovascular diseases and its predisposing factors in Nkonkobe Municipality, Eastern Cape in South Africa. Information on the names of plants, their parts used and methods of preparation was collected through a questionnaire which was administered to herbalists, traditional healers and rural dwellers. The most frequently used plant (Rhizomes of *Tulbaghia violacea* Harv.) was investigated for toxicity using brine shrimp lethality (*in vitro*) and *in vivo* toxicity test (acute and subchronic) on rats to determine safety dosage. The *in vitro* antioxidant and free radical scavenging activity of the plant was investigated using models such as 1,1-diphenyl-2- picrylhydrazyl (DPPH), superoxide anions, hydrogen peroxide (H$_2$O$_2$), nitric oxide (NO), 2,2’- azinobis [3-ethylbenzothiazoline-6-sulfonic acid] diammonium salt (ABTS), lipid peroxidation inhibition and the ferric reducing agent. Phytochemical content and the effect of oral administration of fresh methanolic extract rhizomes of *Tulbaghia violacea* (250, 500 mg/kg, bwt/day) on Lipid peroxidation (TBARS), serum and tissue antioxidant enzymes in normal, hypercholesterolemic and diet induced atherogenic rats were also assessed. More so, the potential of the extract (250 and 500 mg/kg, bwt) to protect against atherogenic diet (4% cholesterol 1% cholic acid and 0.5% thiouracil) induced fatty streaks formation, dyslipidemia, oxidative stress and endothelial dysfunction was also investigated.
Ethnobotanical study revealed that 19 plant species are used for the treatment of heart related diseases in the Municipality. 53% of the plants mentioned were used for the management of chest pain, 47% for high blood pressure, 42% for heart disease, 16% for stroke and 11% for the treatment of hypercholesterolemia. *Tulbaghia violacea* was repeatedly mentioned as the plant species used for the treatment of high blood pressure and predisposing factors in the study area.

The brine shrimp cytotoxicity test revealed that fresh, dried methanolic extracts and essential oil of the *T. violacea* exhibited a high degree of cytotoxic activity with IC$_{50}$ values of 18.18 (fresh) and 19.24 (dried) μg/ml. An IC$_{50}$ value of 12.59 μg/ml was obtained for the essential oil of the plant. The low cytotoxicity values obtained, suggested that rhizome of *T. violacea* may serve as a potential source of antimicrobial and anticancer agents.

In vivo acute study of single oral administration of 5g/kg dose does not produce mortality or significant behavioral changes during 14 days observation. In the sub-chronic study, the extract (250, 500 mg/kg/bwt/ day) administered for a period of 28 days showed no mortality or morbidity. The weekly body and organ weight of the rats showed no significant differences between the control and the rats treated with the extract. The extract at all doses does not show any effect on of biomarkers of liver or renal damage. However, a significant decrease in the activity of ΓGT was observed in the extract treated groups. Hematological evaluation revealed that oral administration of fresh methanolic extracts of rhizomes of *T. violacea* does not cause anaemia or leucocytosis in the animals. Furthermore, histopathology results of the internal organs revealed no detectable inflammation. These results demonstrated that the rhizome extract of *T. violacea* was potentially safe for consumption orally even in chronic concentration.
In vitro antioxidant evaluation showed that the essential oil, fresh and dried methanolic extracts exhibited potent antioxidant activities in a concentration dependent manner. Phytochemical investigation reveals that the fresh and the dry extract of RTV are rich in flavonoid, flavonol, phenols, tannin and proanthocyanidin, while the essential oil contained dimethy disulfide, dimethyl trisulfide, (methyl methylthio) methyl, 2,4-dithiapentane (11.35 %) and (methylthio) acetic acid, 2- (methylthio) ethanol, 3-(methylthio) - and propanenitrile (7.20 %). The fresh extract had higher radicals scavenging activity than the essential oil or dried extract, with 50 % inhibition of DPPH, hydrogen peroxide and lipid peroxidation at a concentration of 35.0 ± 0.12, 19.3 ± 0.11 and 17.9 ± 0.15 μg/ml respectively. Oral administration of methanolic extract of RTV in 125, 250 and 500 mg/kg to female Wistar rats significantly inhibited reduction of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT). The extracts also inhibited (p< 0.05) lipid peroxidation in normal, high cholesterol and diet induced atherosclerosis fed rats in a dose dependant manner. Also the extract (250 and 500 mg/kg/bwt/day) caused a significant (p<0.05) improvement in body weight of treated animals compared with untreated hypercholesterolemia control rats. The extracts also protected significantly (p<0.05) against atherogenic diet induced liver damage or fatty streaks formation in the aorta as revealed by histological examination. The anti-cholesterolema and anti-atherosclerotic activities of the extract compared favorably well with standard drugs Gemfibrozil and Atorvastatin respectively. Conclusively, rhizomes of T. violacea possess significant anti-atherogenic activity and its mechanism of action(s) may be due to its antioxidant and anti-hypercholesterolemia properties. The results of this study also suggested that rhizome of T. violacea is relatively safe for human consumption and it may be used as an alternative to garlic.
INTELECTUAL PROPERTY AND AGREEMENT STATEMENT

All the elderly and the traditional healers who contributed to this ethnobotanical survey were adequately financially rewarded, and given verbal assurances that the results of this research shall not be used for commercial purposes but to serve as information to the community and the entire Eastern Cape.

ETHICAL COMMITTEE APPROVAL

The study involving the use of animals in this project was carried out following the approval of the Ethical Committee on Animal Use and Care of the University of Fort Hare.

COMPLIANCE STATEMENT

No part of this study in any form has been or will be commercialized; instead the entire thesis is meant to be used as a tool for information dissemination on the medicinal plants used for the treatment of cardiovascular diseases in Eastern Cape Province of South Africa.

_____________________________ ______________________________
Supervisor signature Student signature