IMPLEMENTATION OF A 150KVA BIOMASS GASIFIER SYSTEM FOR COMMUNITY ECONOMIC EMPOWERMENT IN SOUTH AFRICA

NTSHENGEDZENI SAMPSON MAMPHWELI

Submitted in fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (PhD)

in the Faculty of Science and Agriculture
at the University of Fort Hare

Promoter: Professor E L Meyer

December 2009
To my mother, father, siblings, wife and child Nakisani
ACKNOWLEDGEMENTS

My profound and sincere thanks to:

- My promoter, Professor E. L. Meyer for his excellent motivation and guidance throughout the project.
- Mr Gero Eckermann and his Carbo Consult team for their technical assistance.
- Mr Guenther Freudendahl for his technical assistance.
- The National Research Foundation and Eskom for provision of funding for the project and construction of the biomass gasifier.
- The South African National Energy Research Institute for funding provision.
- Govan Mbeki Research and development Centre at the University of Fort Hare for funding.
- All members of the Fort Hare Institute of Technology for their assistance with administrative aspects of the project, constructive criticism during seminar presentations and encouragement.
- Mr. Albert Bosrotsi and Mr. Brian Clarke from the University of Fort Hare science workshop for their technical assistance.
- Special thanks to my wife Pinkie, my father and siblings who constantly encouraged me throughout the project.
SUMMARY

There is growing interest in research and development activities on biomass gasification technologies as an alternative to fossil fuels technologies. However not much has been done in terms of technology transfer, particularly in under-developed and developing countries such as South Africa. This is mainly because of the lack of resources such as funding. Most parts of the under-developed and developing countries fall within rural areas and semi-urban centers, which are endowed with biomass resources. South Africa has a number of sawmill operators who generate tons of biomass waste during processing of timber; the large proportion of this is burned in furnaces as a means for waste management while a very small proportion is collected and used by people in rural areas for cooking their food. The majority of people in rural areas of South Africa are either unemployed or cannot afford the current energy services.

The main aim of this research was to establish the viability of electricity generation for community economic development through biomass gasification, specifically using the locally designed System Johansson Biomass Gasifier™ (SJBG), and to establish the efficiency of the gasifier and associated components with a view of developing strategies to enhance it. The study established the technical and economic feasibility of using the SJBG to generate low-cost electricity for community empowerment. The study also developed strategies to improve the particle collection efficiency of the cyclone. In addition to this, a low-cost gas and temperature monitoring system capable of monitoring gas and temperature at various points of the gasifier was developed. The system was built from three Non-Dispersive Infrared gas sensors, one Palladium/Nickel gas sensor and four type K thermocouples. The study also investigated the impact of fuel compartment condensates on gasifier conversion efficiency. This is an area that has not yet been well researched since much has been done on energy recovery using combined heat and power applications that do not utilize the energy in condensates because these are produced in the gasifier and drained with chemical energy stored in them. The study established that the condensates do not have a significant impact on efficiency.

Keywords: Gasifier, electricity generation, conversion efficiency, community empowerment.
2.1.6. Engine safety filters ... 26
2.1.7. Gas engine .. 26

2.2. FACTORS INFLUENCING THE EFFICIENCY OF FIXED BED BIOMASS
GASIFIER SYSTEMS ... 28
2.2.1. Definition of gasifier efficiency .. 28
2.2.2. Impact of gasifier/reactor design on efficiency 30
2.2.3. Impact of equivalence ratio on gasifier efficiency 35
2.2.4. Impact of pressure on gasifier efficiency 36
2.2.5. Impact of fuel properties on gasifier efficiency 37
2.2.6. Effect of air temperature on efficiency 38

2.3. PRODUCTION AND COMPOSITION OF CONDENSATES IN THE GASIFIER 40

2.4. SYSTEM JOHANSSON BIOMASS GASIFIER FUEL REQUIREMENTS . 42

CHAPTER 3 ... 43
RESEARCH METHODOLOGY .. 43

3.1. INTRODUCTION .. 43
3.2. DEVELOPMENT OF A GAS AND TEMPERATURE PROFILING SYSTEM 43
3.2.1. Components assembly ... 44
3.2.2. Non-Dispersive Infrared gas sensors operational theory 45
3.2.3. Palladium/Nickel (Pd/Ni) gas sensor theory of operation 48
3.2.4. CR1000 Data logger ... 51
3.2.4. The complete gas and temperature monitoring system 51
3.3. INVESTIGATION OF THE IMPACT OF CONDENSATES ON GASIFIER
EFFICIENCY .. 56
3.3.1. Experimental setup ... 56
3.3.2. Proximate and ultimate analysis of biomass materials used 59
3.3.3. Freeze dying of condensates ... 61
3.3.4. Mass and energy balance of the system 62
3.4. DEVELOPMENT OF A CYCLONE WITH INTERNAL ELECTRIC FIELD ..
.. 62
3.4.1. Cyclone design performance monitoring 65
3.5. MELANI COMMUNITY ASSESMENT .. 68
3.6. PROJECT FINANCIAL PROJECTIONS .. 68
CHAPTER 4 ... 69
RESULTS AND DISCUSSION .. 69

4.1 SAMPLE DATA MEASURED USING THE GAS AND TEMPERATURE MONITORING SYSTEM BEFORE ITS DEPLOYMENT ... 69

4.1.1. Comparison of the cost of the GTMS and other instruments 73

4.2. IMPACT OF CONDENSATES ON EFFICIENCY 74

4.2.1. Mass and energy balance of the gasifier ... 85

4.3. CYCLONE COLLECTION EFFICIENCY AND EFFECTIVENESS 88

4.4. MELANI VILLAGE COMMUNITY BACKGROUND 92

4.4.1. Age distribution and skills ... 92

4.4.2. Employment status of the community .. 94

4.4.3. Community needs ... 95

4.5. ANALYSIS OF PINE WOOD WASTE FROM SAW MILL 95

4.6. FINANCIAL PREFEASIBILITY .. 98

4.7. GASIFIER INSTALLATION ... 106

4.8. ENVISAGED PROJECT IMPACT ON COMMUNITY 107

CHAPTER 5 ... 111
SUMMARY CONCLUSIONS AND RECOMMENDATIONS 111

5.1. SUMMARY OF FINDINGS ... 111

5.2. SUMMARY OF CONTRIBUTIONS ... 112

5.3. CONCLUSIONS ... 114

5.4. RECOMMENDATIONS FOR FUTURE RESEARCH 114

REFERENCES ... 116

APPENDIX A: RESEARCH OUTPUTS .. 128

A1: PUBLICATIONS ... 128

A2: ACCEPTED FOR PUBLICATION .. 129

A3: SUBMITTED FOR PUBLICATION .. 129

A4: CONFERENCE PAPERS .. 129

A4.1. International conferences ... 129

A4.2. National conferences ... 130
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Overview of the gasification process.</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic diagram of the gasifier.</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Various dimensions of the cyclone.</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Cyclone with internal electric field</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>The packed bed scrubber</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>The gas engine coupled to a 150kVA synchronous generator</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Updraft gasifier</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>Downdraft gasifier</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>Crossdraft gasifier</td>
<td>34</td>
</tr>
<tr>
<td>2.9</td>
<td>Various sections of the gasifier defined by temperature difference and chemical reactions (Not drawn to scale)</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>The bacterial air vent connection</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Basic components of an NDIR sensor</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>The diagram of a Pd/Ni hydrogen sensor</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>The complete Gas and Temperature Profiling System</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>The signal flow diagram for the Gas and Temperature Measuring System</td>
<td>52</td>
</tr>
<tr>
<td>3.6 (a)</td>
<td>Photo showing the fuel compartment condensate trap.</td>
<td>56</td>
</tr>
<tr>
<td>3.6 (b)</td>
<td>Schematic of the fuel compartment condensate trap.</td>
<td>56</td>
</tr>
<tr>
<td>3.7</td>
<td>Bottom part of gasifier showing the condensate tank.</td>
<td>57</td>
</tr>
<tr>
<td>3.8 (a)</td>
<td>The cyclone design.</td>
<td>64</td>
</tr>
<tr>
<td>3.8 (b)</td>
<td>Vortex finder with solenoid</td>
<td>64</td>
</tr>
<tr>
<td>3.9</td>
<td>Experimental design for testing using ferrosilicon powder</td>
<td>65</td>
</tr>
<tr>
<td>3.10</td>
<td>Cyclone connected to the gasifier and gas scrubber supplied with 2kV DC.</td>
<td>67</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison of the results obtained GTPS and other methods.</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Gas profiles obtained using the Gas and</td>
<td></td>
</tr>
</tbody>
</table>
Temperature Monitoring System. 72
Figure 4.3: The relationship between tar content and water content. 77
Figure 4.4: The gas and condensates heating value at various
time intervals. 78
Figure 4.5: The gasifier conversion efficiency over the entire test period. 81
Figure 4.6: The condensates quality and gasifier conversion
efficiency at various time intervals. 82
Figure 4.7: The moisture content of fuel before and
after 30 minutes of operation. 84
Figure 4.8: Cyclone collection efficiency for ferrosilicon of less
than 5 microns particle size with and without the solenoid. 88
Figure 4.9: Cyclone collection efficiency for ferrosilicon of less
than 5 microns particle size with solenoid charged at 1kV-3kV DC. 90
Figure 4.10: Dust/carbon particle collection of cyclone fitted to the
gasifier operated for 150 minutes per each test run. 91
Figure 4.11: Employment status of the community. 94
Figure 4.12: Gasifier installation at Melani village. 106
Figure 4.13: The photo of the bakery container currently
under installation at Melani village 109
LIST OF TABLES

Table 2.1: Equilibrium gas moles at various gasification pressures 37
Table 2.2: The various types of tars produced at various reaction temperatures. 41
Table 3.1: Performance parameters for the hydrogen sensor 53
Table 3.2: The input data used to undertake simulations. 55
Table 3.3: Gasifier operating conditions 59
Table 4.1: Hydrogen data measured during testing of the hydrogen sensor. 69
Table 4.2: Gasifier operating conditions. 70
Table 4.3: Average cost of selected instruments used in gas analysis. 74
Table 4.4: Ultimate and proximate analysis of the eucalyptus wood used for the study. 75
Table 4.5: Water and dry residue (hydrocarbons) content in condensates at various time intervals. 75
Table 4.6: Mass and energy balance of the system. 86
Table 4.7: Community age distribution. 93
Table 4.8: Proximate and ultimate analysis of biomass. 96
Table 4.9: Detailed monthly income statement for year 1. 100
Table 4.10: Notes to explain assumptions made for calculations of financial prefeasibility. 102
Table 4.11: Annual cash flow statement for 7 years. 103
Table 4.12: General expenditure assumptions made for the financial prefeasibility. 104
Table 4.13: General assumptions made for the financial prefeasibility. 105
Table 4.14: The details of the bakery under installation at Melani village. 108
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSIR</td>
<td>Council for Scientific and Industrial research.</td>
</tr>
<tr>
<td>ER</td>
<td>Equivalence ratio.</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy.</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography.</td>
</tr>
<tr>
<td>GC/MS</td>
<td>Gas chromatography mass spectroscopy.</td>
</tr>
<tr>
<td>GTMS</td>
<td>Gas and temperature measuring system.</td>
</tr>
<tr>
<td>LFL</td>
<td>Lower Flammable Limit.</td>
</tr>
<tr>
<td>NDIR</td>
<td>Non-Dispersive Infrared.</td>
</tr>
<tr>
<td>Pd/Ni</td>
<td>Palladium/Nickel.</td>
</tr>
<tr>
<td>ROI</td>
<td>Return on investment.</td>
</tr>
<tr>
<td>SETA</td>
<td>Sector Education and Training</td>
</tr>
<tr>
<td>SJBG</td>
<td>System Johansson Biomass Gasifier</td>
</tr>
<tr>
<td>USD</td>
<td>United States Dollar.</td>
</tr>
</tbody>
</table>
LIST OF UNITS AND SYMBOLS

B Moles of steam supplied per moles of biomass.
C Capacitance.
C-V Capacitance voltage.
cm2 square centimetre.
CH$_4$ Methane.
CH$_3$OH Methanol.
CO Carbon monoxide.
CO$_2$ Carbon dioxide.
C$_{(s)}$ Solid carbon/charcoal.
CPU Central processing unit.
DC Direct current.
G grams.
GWh Gigawatt hours.
HHV High heating value.
H$_2$ Hydrogen.
H$_2$O Water.
Kmol kilo mole.
KJ/mol Kilojoules per mole of gas
KJ/m3 Kilojoules per cubic meter
KJ/kg Kilojoules per kilogram.
Kg kilograms.
kg/s Kilograms per second.
kg/m3 kilograms per cubic meter.
kg/h kilograms per hour.
kW$_{th}$ kilowatt thermal.
kJ/kg°C kilojoules per kilogram degree Celsius.
Kcal/m3 kilocalorie per cubic meter.
kPa Kilopascal.
kV DC kilovolt direct current.
kWh kilowatt hours.
LHV Lower heating value.
L/min Litres per minute.
MI millilitres.
m/s metres per second.
MWe Megawatt electrical.
MJ Mega joules.
MJ/m³ Mega joules per cubic meter
MJ/kg Mega joules per kilogram.
MJ/Nm³ Mega joules per normal cubic meter.
m³/s Cubic meters per second.
Nm³/h Normal cubic metres per hour
N₂ Nitrogen.
P Pressure.
Ppm Parts per million.
R/s Revolutions per second.
Sec Seconds.
SBR Steam biomass ratio.
SD Standard deviation.
T Temperature.
Tₐ Air inlet temperature.
Tₐ Reaction temperature.
µV/°C Micro volt per degree Celsius.
V Voltage.
VDC Voltage direct current.
°C Degree Celsius.