DECLARATION

I, Simphiwe Mhlontlo, hereby declare that this dissertation is the result of my own original work, unless where specifically indicated in the text, and acknowledgement is made to the work of others.

Dated……………this day of……………2008

Signed ………………………

S. Mhlontlo

Place: University of Fort Hare, Alice
DEDICATION

This work is dedicated to my parents Chaplain Luvuyo and Virginia Ntombikayise Mhlontlo.
“Because of what you have done, the ground will be under curse. You will have to work hard all your life to make it produce enough food for you. It will produce weeds and thorns, and you will have to eat wild plants”

Genesis 3: 17-18 (Today’s English Version)
ABSTRACT

Amaranthus is among the nutritious indigenous plant species that are gathered from the wild in the Eastern Cape to prepare a traditional meal known as ‘imifino’ or ‘isigwampa’ to supplement the necessary proteins, vitamins and minerals which are poor in maize-based meals. *Amaranthus* species are adapted to wild conditions unsuitable for exotic vegetables and could be cultivated but information on its fertility requirements, as sole or intercrop, is the key for its domestication and production as a leafy vegetable, particularly where manure is used. Two dry-land and one glasshouse experiments were conducted to study the effects of sheep kraal manure application rate, intercropping with maize and soil type on growth, fresh and dry matter yields, nutrient uptake and grain yield of a local *Amaranthus* accession that grows wild in the Eastern Cape. Sheep kraal manure rates ranging from 0 to 10 t ha\(^{-1}\) and an NPK {2:3:4(30) + 0.5% Zn} fertilizer as a positive control, applied at rates recommended for spinach, were tested.

In the Gqumahashe experiment, where *Amaranthus* was grown as a sole crop, low manure rates (≤ 2.5 t ha\(^{-1}\)) resulted in plant heights and fresh matter yields which were comparable to those in the unfertilized control, whereas higher rates (5 and 10 t ha\(^{-1}\)) and recommended NPK fertilizer had higher levels both at 30 and 60 days after transplanting (DAT) at \(p < 0.05\). At 30 DAT, manure application rates of ≥ 2.5 t ha\(^{-1}\) and the NPK fertilizer treatment, produced greater shoot dry-matter yields (29.35, 30.75 and 37.68 g plant\(^{-1}\)) than the unfertilized control (17.11 g plant\(^{-1}\)) at \(p < 0.05\). Uptake of N and P in the leaves increased with increase in manure application rate with N uptake reaching a maximum (308 mg plant\(^{-1}\)) at a manure rate of 2.5 t ha\(^{-1}\) which corresponded with the maximum dry matter yield. There was no effect of manure rate or fertilizer on residual soil N and Ca, whereas P, K, Mg and Zn increased.

In a pot experiment with soils from Ntselamanzi and Gqumahashe Villages, manure rates ≥ 2.5 t ha\(^{-1}\) resulted in plant heights and fresh matter yield that compared well with the NPK fertilizer treatment in the Gqumahashe soil whereas only the 10 t ha\(^{-1}\) manure treatment was comparable to the NPK fertilizer treatment in the Ntselamanzi soil. Only
treatments with ≥ 5 t ha$^{-1}$ manure had stem girth (1.00 and 1.07 cm) that compared well to NPK fertilizer (1.03 cm) in the Ntselamanzi soil whereas in the Gqumahashe soil, all manure levels compared well to NPK fertilizer (1.02 cm). However, no significant difference was observed in plant height and stem girth and fresh matter due to soil type. In both soils, the 1.3-10 t ha$^{-1}$ manure treatments had dry leaf weight comparable to plants fertilized with NPK fertilizer (3.72 g plant$^{-1}$ for the Ntselamanzi soil and 3.65 g plant$^{-1}$ for the Gqumahashe soil) and were bigger than the unfertilized control (2.2 g plant$^{-1}$ for the Ntselamanzi soil and 1.38 g plant$^{-1}$ for the Gqumahashe soil) at $p < 0.05$.

Uptake of N, P and K increased as result of manure application but nonetheless, it was less when compared to plants fertilized with NPK fertilizer in both soils.

In a field intercropping experiment carried out at Ntselamanzi, growth and yield of sole and intercropped Amaranthus plants grown with manure improved when compared to the unfertilized control and compared well to NPK fertilizer. At 30 days after transplanting (DAT), both sole and intercropped plants grown with ≥ 2.5 t ha$^{-1}$ manure had fresh and dry matter yield comparable to plants fertilized with NPK fertilizer. At 60 DAT, intercropped plants grown with all manure levels had bigger fresh matter yield when compared to unfertilized control (836.0 g plant$^{-1}$) whereas for sole cropped plants only those grown with ≥ 2.5 t ha$^{-1}$ compared to NPK fertilizer (1467.7 g plant$^{-1}$) at $p < 0.05$. Uptake of N, P, K, Ca and Mg increased with increase in manure application in both sole and intercropped Amaranthus. Whereas Amaranthus did not suffer from the competition in the intercrop, maize biomass and grain yield were severely reduced with the effects being evident after 60 DAT. Based on results of this study, it is therefore suggested that, if Amaranthus is to be intercropped with maize under dry land conditions of the Central Region of the Eastern Cape, sheep manure should at least be applied at rate of ≥ 2.5 t ha$^{-1}$ and Amaranthus be harvested at 30 DAT.

Keywords: Amaranthus accession, dry matter, intercropping, maize grain yield, nutrient composition, residual soil nutrients, sheep kraal manure
ACKNOWLEDGEMENTS

A word of praise goes to the Almighty God whose Divine wisdom and fortification has guided and brought me to this level of education.

The research was funded by Cannon Collins Education Trust for Southern Africa (CCETSA), National Research Foundation (NRF) and the Eastern Cape Department of Agriculture, for which I am grateful.

I am very thankful to my supervisors, Dr P. Muchaonyerwa and Prof P. N. S. Mnkeni, whose profound supervision guided me during the challenging phases of the study.

The Eastern Cape Department of Agriculture granted me a study leave for this study. My humble gratitude is due to the Management of Döhne Agricultural Development Institute for the support, and to the Analytical Services at Döhne Agricultural Development Institute for analyzing some of soil and plant samples. My gratitude is also due to Dr T. T. Silwana, Dr P. J. Masika, and Agricultural and Rural Development Research Institute (ARDRI) staff for their encouragement.

I am grateful for the different roles played by staff of the Faculty of Science and Agriculture (University of Fort Hare), especially Ms M. F. Maphaha, Mrs Virginia Bomali and Mr Welcome Seti, to make this study a success.

My sincere gratitude is due to the farming communities of Gqumahashe and Ntselamanzi Villages for allowing me to conduct experiments in their fields, and Mr Andile Mali who opened his kraal for me to collect manure.

Last but not least, my profound recognition goes to my relatives and friends; my parents Chaplain Luvuyo and Virginia Ntombizayise; my brothers Phumezo, Vuyisa and Mwezi; my sister Thibaza, my daughter Ngewalisiwe and my friend Ntombozuko Mafu for the unwavering support they have given me in times of need.
TABLE OF CONTENTS

PREFACE PAGE

DECLARATION

DEDICATION

ABSTRACT

ACNOWLEDGEMENTS

LIST OF TABLES

LIST OF FIGURES

ACRONYMS

CHAPTER 1: GENERAL INTRODUCTION AND LITERATURE REVIEW

1.1 GENERAL INTRODUCTION 1
1.2 HYPOTHESES 4
1.3 OBJECTIVES 4
1.4 LITERATURE REVIEW 4
 1.4.1 BOTANY OF *AMARANTHUS* 4
 1.4.2 FOOD USES AND NUTRITIVE VALUE OF *AMARANTHUS* 6
 1.4.3 AGRONOMY OF *AMARANTHUS* 7
 1.4.3.1 Climatic requirements 7
 1.4.3.2 Pests and diseases 8
 1.4.3.3 Soil requirements 8
1.4.3.4 Fertilization of *Amaranthus* 9
1.4.3.5 Animal manure as a potential fertilizer for
Amaranthus 9
1.4.3.6 Seedbed preparation and planting 10
1.4.3.7 Harvesting of *Amaranthus* 11

1.4.4 INTERCROPPING AS A FARMING SYSTEM IN THE
EASTERN CAPE 12

CHAPTER 2: EFFECTS OF SHEEP KRAAL MANURE ON GROWTH, YIELD
AND LEAF NUTRIENT COMPOSITION OF A LOCAL *AMARANTHUS*
ACCESSION IN THE CENTRAL REGION OF THE EASTERN CAPE

2.1 INTRODUCTION 14

2.2 MATERIAL AND METHODS 15

2.3 RESULTS AND DISCUSSIONS 16

2.3.1 Effects of sheep manure application rates on growth of
Amaranthus 16
2.3.2 Sheep manure application effects on fresh yield of
Amaranthus 17
2.3.3 Effects of sheep manure rates on dry matter and grain yield of
Amaranthus 19
2.3.4 Sheep manure effects on nutrient composition and uptake of
Amaranthus leaves 20
2.3.5 Effects of sheep manure application rates on residual soil
nutrient composition 22

2.4 CONCLUSIONS 24
CHAPTER 3: EFFECTS OF SHEEP KRAAL MANURE APPLICATION RATES ON GROWTH, YIELD AND NUTRIENT COMPOSITION OF A VEGETABLE AMARANTHUS ACCESSION GROWN IN TWO DIFFERENT SOILS UNDER GLASSHOUSE CONDITIONS

3.1 INTRODUCTION 25

3.2 MATERIALS AND METHODS 26

3.3 RESULTS AND DISCUSSIONS 28
 3.3.1 Chemical and physical properties of the experimental soils used in the glasshouse study 28
 3.3.2 Effects of sheep manure application rates on growth of Amaranthus in two different soils 28
 3.3.3 Effects of sheep manure application rates on fresh and dry matter yields of Amaranthus in two different soils 30
 3.3.4 Effects of sheep manure application rates on nutrient composition and uptake of Amaranthus leaves grown in two different soils 32
 3.3.5 Effects of sheep manure application rates on residual soil nutrients in two different soils 35

3.4 CONCLUSIONS 38

CHAPTER 4: EFFECTS OF SHEEP KRAAL MANURE APPLICATION RATES ON GROWTH, NUTRIENT UPTAKE AND YIELD OF A VEGETABLE AMARANTHUS ACCESSION INTERCROPPED WITH MAIZE IN CENTRAL EASTERN CAPE, SOUTH AFRICA

4.1 INTRODUCTION 39

4.2 MATERIALS AND METHODS 40
4.3 RESULTS AND DISCUSSIONS

4.3.1 Effects of sheep kraal manure application rates on growth of Amaranthus intercropped with maize 42

4.3.2 Effects of sheep kraal manure application rates on fresh and dry matter yields of Amaranthus intercropped with maize 45

4.3.3 Effects of sheep manure rates on nutrient composition and uptake of Amaranthus leaves intercropped with maize 30 DAT 48

4.3.4 Effects of sheep manure application rates on shoot matter yield of maize intercropped with Amaranthus 30 and 60 DAT 52

4.3.5 The effects of sheep manure application rates on maize grain yield intercropped with Amaranthus 54

4.3.6 The effects of sheep kraal manure application rates on residual soil nutrients 57

4.3.7 Evaluation of Amaranthus dry shoot and maize grain yields at 30 and 60 DAT using partial and total Land Equivalent Ratio (LER) 59

4.4 CONCLUSIONS 62

CHAPTER 5: GENERAL DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

5.1 GENERAL DISCUSSION 63

5.2 CONCLUSIONS AND RECOMMENDATIONS 70

5.3 RECOMMENDATIONS FOR FURTHER STUDIES 71

REFERENCES 72
APPENDICES

APPENDIX 1. ANALYSIS OF VARIANCE FOR THE GQUMAHASHE FIELD WORK (CHAPTER 2) 79

APPENDIX 2. ANALYSIS OF VARIANCE FOR GLASSHOUSE WORK (CHAPTER 3) 85

APPENDIX 3. ANALYSIS OF VARIANCE FOR NTSELAMANZI FIELD WORK (CHAPTER 4) 90

LIST OF TABLES

Table 2.1: Effects of sheep kraal manure application on growth of Amaranthus 17

Table 2.2: Effects of sheep kraal manure application on fresh matter yield of Amaranthus 18

Table 2.3: Effects of sheep kraal manure application on dry matter yield of Amaranthus 20

Table 2.4: Effects of sheep kraal manure application on nutrient concentrations in Amaranthus leaves at 30 DAT 21

Table 2.5: Effects of sheep kraal manure rate on nutrient amounts in Amaranthus leaves at 30 DAT 22

Table 2.6: Effects of sheep kraal manure application rates on residual soil nutrient composition 23

Table 3.1: Chemical and physical properties of Ntselamanzi and Gqumahashe soils 29

Table 3.2: Effects of sheep manure application rates on growth of Amaranthus in two soils under glasshouse conditions 30

Table 3.3: Effects of sheep manure application rates on fresh weight of Amaranthus in different soils under glasshouse conditions 31
Table 3.4: Effects of sheep manure application rates on dry weight of *Amaranthus*
 in different soils under glasshouse conditions 32
Table 3.5: Effects of sheep manure application rates on nutrient composition of
 Amaranthus leaves in two soils under glasshouse conditions 34
Table 3.6: Effects of manure application rates on nutrient uptake of *Amaranthus*
 leaves in two soils under glasshouse conditions 35
Table 3.7: Effects of manure application rates on residual nutrients in two soils
 under glasshouse conditions 37
Table 4.1: Effects of kraal manure application and intercropping with maize on
 growth of *Amaranthus* 44
Table 4.2: Effects of kraal manure application and intercropping with maize on
 fresh matter yield of *Amaranthus* 46
Table 4.3: Effects of kraal manure application and intercropping with maize on dry
 matter yield of *Amaranthus* 47
Table 4.4: Effects of sheep manure rates and intercropping with maize on nutrient
 composition of *Amaranthus* leaves 50
Table 4.5: Effects of sheep manure application and intercropping with maize on nutrient uptake of *Amaranthus* leaves 51
Table 4.6: Effects of kraal manure application and intercropping with *Amaranthus*
 on growth and shoot matter yield of maize 30 DAT 53
Table 4.7: Effects of kraal manure application and intercropping with *Amaranthus*
 on growth and shoot matter yield of maize 60 DAT 53
Table 4.8: Effects of sheep kraal manure application rates and intercropping with maize on residual soil nutrients

Table 4.9: Effects of sheep kraal manure application rates and intercropping of *Amaranthus* and maize on partial *Amaranthus* dry shoot and maize grain yields at 30 DAT

Table 4.10: Effects of sheep kraal manure application rates and intercropping of *Amaranthus* and maize on partial *Amaranthus* dry shoot and maize grain yields at 60 DAT

LIST OF FIGURES

Figure 4.1: Effects of sheep kraal manure application rates and intercropping with *Amaranthus* on maize grain yield

Figure 4.2: Relationship between maize dry shoot yield at 30 DAT (a) and 60 DAT (b) with grain yield
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ARC</td>
<td>Agricultural Research Council</td>
</tr>
<tr>
<td>ARDRI</td>
<td>Agricultural and Rural Development Research Institute</td>
</tr>
<tr>
<td>CCETSA</td>
<td>Cannon Collins Education Trust of Southern Africa</td>
</tr>
<tr>
<td>CS</td>
<td>Cropping System</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>DAT</td>
<td>Days after transplanting</td>
</tr>
<tr>
<td>df</td>
<td>Degrees of freedom</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>Gqu</td>
<td>Gqumahashe</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>LER</td>
<td>Land Equivalent Ratio</td>
</tr>
<tr>
<td>LSD</td>
<td>Least Significant Difference</td>
</tr>
<tr>
<td>LWP</td>
<td>Leaf water potential</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>Ntse</td>
<td>Ntselamanzi</td>
</tr>
<tr>
<td>NRF</td>
<td>National Research Foundation</td>
</tr>
<tr>
<td>OC</td>
<td>Organic Carbon</td>
</tr>
<tr>
<td>RCBD</td>
<td>Randomized Complete Block Design</td>
</tr>
<tr>
<td>RWC</td>
<td>Relative Water Content</td>
</tr>
<tr>
<td>t</td>
<td>ton</td>
</tr>
</tbody>
</table>