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Abstract

We develop a formalism suitable to infer the background geometry of a general spherically sym-

metric dust universe directly from data on the past lightcone. This direct observational approach

makes minimal assumptions about inaccessible parts of the Universe. The non-parametric and

Bayesian framework we propose provides a very direct way to test one of the most fundamental

underlying assumptions of concordance cosmology viz. the Copernican principle. We present

the Copernicus algorithm for this purpose. By applying the algorithm to currently available

data, we demonstrate that it is not yet possible to confirm or refute the validity of the Coperni-

can principle within the proposed framework. This is followed by an investigation which aims to

determine which future data will best be able to test the Copernican principle. Our results on

simulated data suggest that, besides the need to improve the current data, it will be important

to identify additional model independent observables for this purpose. The main difficulty with

current data is their inability to constrain the value of the cosmological constant. We show how

redshift drift data could be used to infer its value with minimal assumptions about the nature

of the early Universe. We also discuss some alternative applications of the algorithm.
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1

Introduction and review

In this thesis we further explore ideas developed in [3] and adopt an observational approach

to cosmology. The scientific endeavour behind cosmology is to provide a model of the large

scale structure of the Universe. A complete model of the Universe should be able to explain its

origin, evolution and eventual fate, while accurately accounting for astronomical observations.

The peculiarity of the cosmological experiment makes this a very challenging task which, in

general, requires a number of assumptions. It will be useful to review some ideas behind the

scientific method, in particular its application to physics, before elaborating on this statement.

At the most fundamental level, the aim of theoretical physics is to provide an objective descrip-

tion of the Universe as a whole, at every conceivable scale. However, since we cannot observe

the Universe on all scales, we have to content ourselves with an incomplete information set. For

a complete model of the Universe the laws of physics must, using the language of mathematics,

be extrapolated to these inaccessible scales. A common strategy is to formulate a mathemati-

cal model for a problem, test it at accessible intermediate scales, and then deduce information

about the Universe at inaccessible scales by looking at the limiting behaviour of the model.

This process has been very successful in establishing the local laws of physics i.e. at spatial

scales ranging, roughly, between the size of a proton and the size of the solar system, and time

scales ranging between approximately 10−15s - 1010s. It often happens that we can confirm

the compatibility of a particular model when, with advances in technology and experimental

techniques, we obtain data at scales that were hitherto inaccessible. Of course, because data

are never perfect, it is practically impossible to confirm that any particular model is in fact

the only correct model. The more common situation is to have a number of models which

give degenerate predictions within the range of scales at which data are available. A field of

research can be considered to be in the precision phase when the objective becomes to improve

the quality of the data until, for all practical purposes, the only surviving models give virtually

1



2 1. INTRODUCTION AND REVIEW

indistinguishable predictions. In accordance with Occam’s razor, we then select the simplest

model which gives an adequate fit to the data. This concept plays a very important role in

scientific reasoning. Note that, on small spatial and short temporal scales, our experiments

are usually repeatable under a wide variety of environmental circumstances and with different

initial conditions. Since astrophysical observations are made from what is effectively a single

space-time point (i.e. here and now), this is not possible on cosmological scales. One way to

achieve a deeper level of scrutiny in cosmology is to supplement the top-down approach with a

bottom-up methodology, a distinction which we will now clarify1.

In a top-down approach we start with an intuitive description of the cosmological model (or

models). A convenient way to achieve this is to invoke certain gauge choices and to parametrise

the model. In particular, the parametrisation can be chosen to express prior beliefs which we

might want to confront with data. It is not surprising that this is the most common approach

to cosmology since it allows us to gain an intuitive understanding of the model. The bottom-up

approach, on the other hand, aims to be as general and rigorous as possible. In particular, it

invokes the minimum number of assumptions required to generate data for the class of mod-

els under consideration. It can therefore be employed to test the assumptions that go into

model specification during the top-down approach. The observational approach to cosmology

(see section 2.4) aims to achieve this by relaxing certain symmetry assumptions and working

backwards from the data towards the class of allowable cosmological models. The concordance

model of cosmology relies on a number of assumptions, not all of which can be tested at the

same time. The aim of this thesis is to develop a framework that invokes minimal assumptions

to reconstruct the background geometry of the Universe. We should therefore motivate our

reasons for wanting to do so.

It is often said that, because of the drastic improvement in the availability and quality of data,

cosmology has entered an era of precision science. Indeed the concordance model of cosmology

is an extremely good model which can accurately account for most, if not all, observations.

However, there are certain aspects of the model that we do not fully understand. Examples

include the flatness, horizon, relic and cosmological constant problems (see §4 of [5] for exam-

ple). Our current understanding is that the Universe has been expanding, from a very hot and

dense state, for approximately 14 billion years i.e. the standard Big Bang model. Evidence2

for the expansion came from observations made by Hubble and Humason between 1929 and

1931 [8, 9]. By measuring the recession velocities of galaxies as a function of distance (i.e. the

1Note that the terms bottom-up and top-down can have different meanings depending on the context.
2Note that Georges Lemâıtre proposed an expanding universe model two years before Hubble in 1927 [6]. He

was also the first to put forth the Big Bang hypothesis [7].
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Figure 1.1: Union 2.1 distance modulus vs redshift [4]. This figure has taken from the Supernova

Cosmology Project’s website http://supernova.lbl.gov/union/. Note that the bibliography

of [4] should be consulted for the references shown in the figure.

famous Hubble diagram), they were able to conclude that the Universe must be expanding.

Even though, at H0 ≈ 500 km
sMpc, their result was off by about an order of magnitude, it placed

the expansion of the Universe on firm observational grounds. This led to widespread adoption

of the (homogeneous and isotropic) expanding models of Friedmann, Lemâıtre, Robertson and

Walker (FLRW), which supported the Big Bang hypothesis. For a long time it was believed

that the background dynamics of the late-time Universe could be sufficiently well described by

the Einstein-de Sitter (EdS) (i.e. flat, dust dominated with no cosmological constant) subclass

of FLRW models. The revolution came from observations of distant supernovae nearly seventy

years later. When interpreted within an FLRW context, these observations tend to indicate

that the expansion of the Universe recently (since z ≈ 1) started accelerating. The most likely

interpretation of this result is that the cosmological constant must be non-zero [10, 11, 12]

and dominates the dynamics of the Universe at late times. A wealth of follow up supernovae

observations have since solidified this conclusion. In Figure 1.1 we show the Union 2.1 [4] su-

pernovae data (see section 3.4). Note that, when accounting for systematics, these data alone

do not place very tight constraints on the cosmological parameters. As shown in Figure 1.2, the

tightest constraints currently come from combining the measured 2-point correlation functions

(equivalently power spectra) of galaxies and the cosmic microwave background (CMB).

The CMB is one of the strongest observations in support of the Big Bang hypothesis. Its ex-

istence was confirmed, quite accidentally, in 1964 when Wilson and Penzias [13] noticed that

http://supernova.lbl.gov/union/


4 1. INTRODUCTION AND REVIEW

Figure 1.2: Combined constraints on Ωm and ΩΛ [4]. This figure has been taken from the

Supernova Cosmology Project’s website http://supernova.lbl.gov/union/.

the effective noise temperature of the Holmdel Horn Antenna was higher than expected. The

discrepancy could be explained by the existence of the CMB. The CMB is a uniform bath

of electromagnetic radiation with a spectrum very near to that of a black-body. Today this

radiation is detected in the microwave region and is thought to have been emitted, almost si-

multaneously, once the Universe had cooled (and expanded) enough for photons to decouple

from baryonic matter. With this view it would necessarily permeate throughout the entire

universe and, in FLRW models, be very homogeneous. Of course in practice, since our ob-

servations are made from a single vantage point, it is only possible to measure its departure

from isotropy. After subtracting the dipole term, which we believe originates from our pecu-

liar velocity with respect to the fundamental four velocity (see section 2.2), the temperature

of the CMB is indeed remarkably isotropic. Observations from WMAP [14] and the Planck

satellite [15] indicate that the CMB temperature varies by a maximum of 10−5K over the entire

sky. The temperature fluctuations are thought to correspond to tiny inhomogeneities in the

gravitational potential at the time of decoupling. In the inflationary paradigm (see §8 of [5]

for example) these inhomogeneities are generated by quantum fluctuations of the inflaton field

and seed structure formation later on. One of the greatest successes of the standard model is

accurately accounting for the spectrum of observed temperature (and polarization) fluctuations

over a large range of scales. This spectrum, shown in Figure 1.3, is measured by constructing

the two point correlation function of the CMB temperature. The shape of the spectrum can be

http://supernova.lbl.gov/union/
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Figure 1.3: CMB power spectrum measured by the Planck collaboration [15]. This figure has

been taken from the European Space Agency’s website http://sci.esa.int/jump.cfm?oid=

51555.

predicted in linearly perturbed FLRW models and is very sensitive (albeit slightly degenerately

so) to the cosmological parameters. As can be seen from Figure 1.3 the standard model fits the

data remarkably well. When combined with supernovae observations these data already place

impressive constraints on the cosmological parameters (see Figure 1.2 for the joint constraints

on Ωm and ΩΛ for example). These can be tightened even further by also computing the galaxy

power spectrum.

The above view supports the idea that the Universe was highly homogeneous at early times

with galaxies and galaxy clusters emerging at late times as structures grow by gravitational

collapse. Galaxy surveys such as the Sloan Digital Sky survey (SDSS) [16] map the distribu-

tion of galaxies about our space-time location. By averaging the number of galaxies observed

behind a certain patch of sky (within a specific redshift bin), and constructing the galaxy cor-

relation function, we can therefore also measure the power spectrum of density fluctuations.

The observed power spectrum of density fluctuations can be reproduced in a perturbed FLRW

model and seems to support our current understanding of structure formation (see §5 of [5] for

example). A particular feature of this spectrum is the presence of baryon acoustic oscillations

(BAO) (see [17] for example).

The contribution to the gravitational potential from matter is believed to be almost completely

dominated by cold dark matter with baryons accounting for only about 10-15% of the total mat-

http://sci.esa.int/jump.cfm?oid=51555
http://sci.esa.int/jump.cfm?oid=51555
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Figure 1.4: BAO power spectrum measured by the BOSS colaboration [18]. This figure has

been taken from the SDSSIII website https://www.sdss3.org/surveys/boss.php.

ter in the Universe. Of these two only baryons are expected to interact with radiation. Up until

decoupling, the photon-baryon plasma oscillates under the competing effects of pressure and

gravitational collapse. These acoustic oscillations can be shown to propagate at a characteristic

speed (cs) proportional to the baryon to photon ratio. As photons decouple from the plasma

they start free streaming and the pressure on baryons suddenly drops to effectively zero. The

baryon acoustic waves are then frozen, and leave an imprint on the baryons at a characteristic

scale proportional to the distance travelled by the sound wave up until decoupling. This feature

is observed as a peak in the galaxy correlation function at comoving scale of approximately 150

Mpc (see [18] for example). Figure 1.4 shows the relative amplitude of the measured power

spectrum (normalised by the power spectrum obtained in the absence of baryons). The shape

of this feature is also sensitive to the values of the cosmological parameters and can therefore be

used to constrain the model. As shown in Figure 1.2, impressive constraints can be derived on

Ωm and ΩΛ by combining supernovae, CMB and BAO data (see [4] for constraints on some of

the other parameters). We could keep adding more data (e.g. weak lensing [19], redshift-space

distortions [20], galaxy clusters [21]) and systematically tighten the constraints until we are

“certain” that we have the correct values of the cosmological parameters. Doing so we would

find, with rather high certainty, that the Universe currently contains about 70% dark energy in

the form of a cosmological constant (or vacuum energy), approximately 25% dark matter and

only about 5% ordinary matter which adheres to the standard model of particle physics. This is

https://www.sdss3.org/surveys/boss.php


7

the best fit ΛCDM model. However it should be kept in mind that there are many assumptions

involved in gathering these data, many of which are only valid if the background dynamics of

the Universe can indeed be described by an FLRW model. These data therefore cannot be

employed when using a bottom up approach to cosmology. Before getting into the details of

this approach, it will be useful to review the main assumptions that go into the standard model.

The two assumptions at the heart of FLRW cosmology are:

1. that gravity is sufficiently well described by general relativity (GR) on cosmological scales,

2. that on large enough scales the spatial sections of the Universe are statistically homoge-

neous and isotropic i.e. the cosmological principle.

When either of these assumptions are relaxed the data can be interpreted with vastly differ-

ent outcomes. It is known for example that certain modified theories of gravity (see [22] for

example) have the potential to account for the apparent late-time acceleration of the Universe

without the need to introduce dark energy. Modified theories of gravity can also describe galac-

tic rotation curves without the need to introduce dark matter. However, such theories must

also be compatible with all other available constraints, in particular those on violations of the

equivalence principle. The advent of precision cosmology has ruled out many exotic models that

were hitherto considered plausible. With GR being the simplest classical theory of gravity, the

scientific method also dictates that, before any of the survivors can be adopted by the scientific

community, they would have to give even better predictions that GR. In this thesis we do not

question its validity. It is, after all, only 100 years young. Instead our focus will be on cosmo-

logical models which relax the cosmological principle.

It is important to realise that any cosmological model which relaxes the cosmological principle

will give degenerate predictions with the standard model (as long as they allow for a cosmo-

logical constant). Our faith in the standard model stems from the fact that it is the simplest

model that can account for all currently available data. In this thesis we will scrutinise the

symmetry assumptions of the standard model using an observational methodology. Note that

the observational formalism is not completely without assumptions. These are discussed in

detail in §2 (see §2.4 in particular), where we present the theoretical foundations on which the

remainder of the thesis relies. However, even under these assumptions, we currently do not have

access to enough model independent data to completely relax the symmetry assumptions of the

standard model. Indeed, there are very few (if any) observables that can be obtained without

presupposing a cosmological model. This is the topic of §3. As we discus there, current data are

barely sufficient to constrain spherically symmetric dust models of the Universe. Note that it



8 1. INTRODUCTION AND REVIEW

is crucial to allow for a cosmological constant within our proposed framework. If we are to test

the foundations of concordance cosmology our framework must generalise the standard ΛCDM

model. This makes it more difficult to find analytic solutions for the model, especially in obser-

vational coordinates. As a result we have to resort to numerical solutions of the Einstein field

equations. This is the topic of §4, where we develop a method to specify the model by setting

initial data on the observer’s past lightcone. The ability to specify initial data in the form of

observables has some major advantages. Note, in particular, that it uniquely fixes the gauge

freedom in our coordinates. However, since the numerical integration scheme requires smooth

functions as input, it also introduces some additional challenges. Observables are inevitably

reported as discrete data. These data therefore need to be smoothed before they can be used

as input to the integration scheme. Although it is possible to smooth data by parametrising

the input functions, we prefer not to parametrise the model because no single parametrisation,

or gauge choice for that matter, can cover the entire space of models considered. We further

elaborate on this in §5, the chapter dedicated to our statistical methodology. In this chapter

we write the ΛLTB model in a non-parametric form and present an algorithm, dubbed the

Copernicus algorithm, which can infer the geometry of the Universe directly from discrete and

imperfect data. Our main results are presented in §6 where we apply the algorithm to currently

available data and test the Copernican principle (CP). We conclude in §7 with a discussion on

possible extensions and applications of the algorithm. There is also an appendix, § A, in which

we derive some supporting results pertaining to spherically symmetric models of the Universe.

Our notation is, for the most part, fairly standard. First of all we employ the Einstein sum-

mation convention in which any index appearing once as a superscript and once as a subscript

implies summation over that index. Lower case Latin indices from the beginning of the alphabet

(a to f) run through 0 to 3. Latin indices from the middle of the alphabet (i to p) run through

1 to 3 and upper case Latin indices only take the values 2 and 3. Employing the convention

in which the metric has signature (−,+,+,+), we will reserve the index zero to denote the

temporal coordinate and the rest for the spatial coordinates. Indices enclosed in round braces

denote symmetrisation over these indices whereas indices enclosed in square brackets imply anti-

symmetrisation. With the exception of §2.3, we will use a prime to refer to partial derivatives

with respect to v (i.e. the radial coordinate down the past lightcone) and an overdot to refer

to the partial derivative with respect to w (i.e. the coordinate which defines the lightcones of

events along the observer’s worldline). In §2.3 a prime and overdot will refer, respectively, to

partial derivatives with respect to the comoving radial coordinate r and the time coordinate t.

This should not cause any ambiguity, an overdot refers to temporal derivatives and a prime to
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spatial derivatives, it will always be clear which coordinate system these derivatives refer to.

To further distinguish between comoving and observational coordinates we will sometimes use

τ
= to emphasise that a relation is only valid in comoving coordinates and

w
= to emphasise that

a relation holds in observational coordinates. Similarly, a subscript zero can refer to either a

quantity evaluated on the current past lightcone or on the current time slice of the observer.

Again the meaning should be unambiguous from the context. The current past lightcone of the

observer will be abbreviated by PLC0 whereas we use the notation Σt0 to refer to the current

time slice. A comma or a ∂ sign followed by an index means partial derivative with respect to

that index whereas a semicolon or a ∇ sign refers to the covariant derivative. Angle brackets

< · > are used to denote ensemble averages. Unless otherwise stated units in which c = G = 1

are employed.



2

General Framework

The purpose of this chapter is to introduce some fundamental concepts in cosmology. None of

the material presented here is entirely original so, to be as concise as possible, the details behind

most derivations are omitted. This chapter borrows extensively from [23, 24, 25, 5, 26, 27].

The general covariance of the Einstein field equations (EFE) allows for an arbitrary choice of

coordinates. However, cosmology aims at modelling the large scale structure of the Universe

and is best understood by choosing coordinate systems that manifest the laws of physics in

an intuitive way. The question of how such a coordinate system should be chosen is therefore

fundamental. Two popular coordinate choices in cosmology are reviewed. The first, comoving

coordinates, is motivated by the particularly transparent 1+3 split of space-time that they result

in. The covariant 1+3 Ehlers-Ellis formalism ([28],[29]) is well known by now (see for example

[25, 30, 31]) and will not be exploited in great depth.

The observational approach of Ellis and co-workers (initiated in [3] with further developments

in [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]) plays an integral role throughout this thesis. This

topic is covered in §2.4. We start this chapter with a brief review of some concepts in relativity.

2.1 Geometry, gravity and relativity

Our end goal is to determine the geometry of the Universe directly from data. Since this

amounts to finding the background cosmological metric of the Universe, the metric tensor

seems an adequate starting point. Adopting general relativity (GR) as the theory of gravity

we assume that spacetime1 can be modelled as a smooth (pseudo-Riemannian) manifold M of

dimension n = 4. The manifold is endowed with a type (0, 2) tensor field g, called the metric,

1Note that by invoking this assumption we associate no energy to the concepts of space and time, they are

simply coordinates on the manifold.

10
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which at each point p inM is a bilinear, symmetric and nondegenerate map defining the inner

product between vectors in the tangent space at p viz. Tp(M). The component view of the

metric tensor gab is its representation in some arbitrary basis. A local coordinate system xa on

an open set U in M induces a basis ea = ∂
∂xa in which case

gab = g(ea, eb) = g(
∂

∂xa
,
∂

∂xb
) ≡ ∂

∂xa
· ∂

∂xb
. (2.1)

This view of the metric lends interpretation to its components in any particular coordinate

system. In any basis however, the metric provides the quadratic form

ds2 = gabdx
adxb, (2.2)

where ds2 is an invariant measure of (spacetime) displacement in the manifold. With our

specified signature (i.e. +2), this displacement is spacelike, timelike or null depending on

whether ds2 > 0,ds2 < 0 or ds2 = 0, respectively. The sets of timelike and non-zero null

vectors each have two disjoint subsets viz. those that are future pointing and those that are

past pointing. We assume that the manifold is time orientable so that the future direction

can be chosen consistently over the whole manifold. Furthermore, the metric tensor provides

the map between vectors and 1-forms (dual vectors) which, in the case of a non-degenerate

pseudo-Riemannian metric, is 1-1 and there exists a symmetric type (2, 0) tensor gab such that

gabg
bc = δ c

a .

The covariant gab and contravariant gab forms of the metric can then be used to raise and lower

tensor indices.

In general, since tensors do not live in M, we need some additional structure to compare

tensors defined at different points in the manifold. This is done by dragging them along a curve

connecting points in M and gives rise to two notions of differentiation. The first, called the

covariant derivative and denoted interchangeably by Aa;b or ∇bAa, requires introducing some

(in general arbitrary) non-tensorial field called the connection Γabc. The change in the vector

Aa along a curve parametrised by λ is then

DAa = Aa,bdx
b + ΓabcA

cdxb, or
DAa

dλ
= ub∇bAa,

where ub = dxb
dλ

is the tangent vector to the curve. The covariant derivative of a general

tensor may then be deduced by demanding that the operator D obeys the product rule for

differentiation. A vector Aa (or indeed any tensor field) is said to be parallelly transported

along a curve if its covariant derivative along the curve is zero i.e.

DAa

dλ
= ub∇bAa = ub(Aa,b + ΓabcA

c) = 0.
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In GR, the principle of equivalence enforces that the connections be symmetric (i.e. torsion

free Γabc = Γacb) and metric compatible (∇cgab = 0) in which case the connections are called

Christoffel symbols and they are explicitly given in terms of the metric by

Γabc =
1

2
gad (gdb,c + gdc,b − gbc,d) .

Another useful way to compare tensors defined at different points on a manifold is the Lie

derivative. Suppose the curve γ parametrised by λ passes through points p and q an infinitesimal

distance, ε say, apart. The Lie derivative of Xa at the point p along a curve with tangent vector

ξa = dxa
dλ

is defined as

LξXa(p) := lim
ε→0

X ′a(q)−Xa(p)

ε
, (2.3)

where X ′a(q) is the value of the dragged along vector at the point q. Now if p has coordinates

xa then q has coordinates xa + εξa. To evaluate X ′a(q) we view the dragging along operation

as the coordinate transformation x′a = xa− εξa. Applying the tensor transformation law shows

that the definition (2.3) is equivalent to

LξXa = Xa
,bξ

b − ξa,bXb = Xa
;bξ

b − ξa;bXb,

where in the last step we have used the fact that the manifold is torsion free. This definition

extends to arbitrary tensors in a straightforward manner. Furthermore, we say that the vector

ξa is a Killing vector if

Lξgab = ξa;b + ξb;a = 0,

showing that ξa;b is antisymmetric if ξa is a Killing vector. Killing vectors correspond to the

continuous symmetries of the spacetime and can be used in the classification of cosmological

models (see [43] for example).

In GR, gravity is not considered to be a force in the classical sense but rather the manifestation

of curvature. This is captured by the Ricci identities

(∇a∇b −∇b∇a)Ac = RdabcA
d, (2.4)

where Aa is an arbitrary vector field and Rabcd is known as the Riemann tensor. Curvature

is caused by the presence of matter, the physical properties of which can be described by an

energy momentum tensor (EMT) Tab, to be defined shortly. This is captured by the Einstein

field equations

Gab + Λgab = κTab, (2.5)

where Gab = Rab− 1
2Rgab is the Einstein tensor defined in terms of the Ricci tensor Rab = Rcacb

and Ricci scalar R = Raa; Λ is the cosmological constant and, working in units where G = 1 = c,
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κ = 8π is the coupling constant. The EFEs can be written in the equivalent form

Rab + Λgab = κ(Tab −
1

2
Tgab), (2.6)

where T = T aa is the trace of the EMT. The Bianchi identities

∇eRabcd +∇dRabec +∇cRabde = 0, (2.7)

can be contracted (first on ac then on bd) to establish that the divergence of the Einstein tensor

vanishes ∇bGab = 0. By (2.5) this also implies

∇bT ab = 0, (2.8)

which is a statement of local conservation of energy and momentum. This four dimensional form

of the theory is not particularly illuminating from an observer’s point of view. We can better

grasp its meaning by embedding lower dimensional submanifolds to which our intuition lends

itself more easily. In particular, this allows us to construct physically transparent coordinate

systems for observers in the spacetime.

One of the fundamental insights in relativity is that, in the absence of non-gravitational forces,

massive particles travel along timelike geodesics while massless particles propagate along null

geodesics. The inner product operation provided by the metric tensor allows for convenient

computation of a spacetime’s geodesics (see [23] for example). Regardless of the type of geodesics

(spacelike, timelike or null) we can always find an affine parameter λ such that

d2xa

dλ2
+ Γabc

dxb

dλ

dxc

dλ
= 0, or ub∇bua = 0, (2.9)

where ua = dxa
dλ

is tangent to the geodesics. Next we consider two affinely parametrised neigh-

bouring geodesics γ1 and γ2 and imagine a family of interpolating geodesics between them. The

whole family of geodesics can then be described collectively with relations of the form xa(s, λ),

where s ∈ [0, 1] labels the geodesics (i.e. s = 0 at γ1 and s = 1 at γ2) and λ is an affine

parametrisation (for timelike, spacelike or null geodesics). Then the vector field ua = ∂xa

∂λ is

everywhere tangent to the geodesics satisfying ub∇bua = 0. We may consider another family

of curves obtained by varying s while keeping λ fixed. These curves will have tangent vector

ξa = ∂xa

∂s . We now define the connecting vector as ξa(0, λ) (i.e. ξa evaluated on γ1). Evaluating

the Lie derivatives, and using the fact that the partial derivatives commute, we find

Luξa = Lξua = 0, ⇒ ub∇bξa = ξb∇bua. (2.10)

This is an important result, when combined with the geodesic equation ub∇bua = 0, it shows

that ξaua is constant along γ1. The parametrisation can be chosen so that ξaua = 0 initially,
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in which case they remain orthogonal along the geodesic. The acceleration of the connecting

vector is described by the geodesic deviation equations

D2ξa

dλ2
= −Rabcdubξcud. (2.11)

We now turn very briefly to a concept that stems from adopting the (weak) equivalence principle

in the form “free falling observers cannot distinguish the local effects of gravity (curvature) from

acceleration in flat spacetime”. As a result it is always possible to find a coordinate system at

any given point p of the spacetime such that

gab(p) = ηab, and Γabc(p) = 0, (2.12)

where ηab = diag[−1, 1, 1, 1] is the Minkowski metric in rectangular coordinates. This idea can

be extended to an entire geodesic (see [44, 24] for example). It is therefore always possible

to introduce local coordinates xa = (t, xi) such that the connections vanish and the metric

is Minkowski on the geodesic. Such coordinates are called Fermi normal coordinates (FNCs).

The implication is that a free falling observer is always able to construct a tetrad basis eµ i.e.

four mutually orthogonal basis vectors, the components of which can be written in terms of a

local coordinate basis. Denoting the FNCs attached to an observer by xa, we find the tetrad

components e a
µ (xb) which must satisfy

eµ = e a
µ (xb)

∂

∂xa
⇔ eµ(f) = e a

µ (f)
∂f

∂xa
, eiµ = eµ(xi). (2.13)

Parallelly propagating this tetrad along the geodesic defines an unambiguous coordinate basis

for an observer travelling along it. If the observer is subject to non-gravitational forces this

coordinate basis might not be well defined throughout the history of the Universe. This can

lead to subtle complications that will not be considered here (see [30] for example). We would not

gain anything by it because we are going to assume that the observer is located at the origin

of a spherically symmetric universe containing only barotropic fluids. This ensures geodesic

motion for the observer2. Supposing that the observer has 4-velocity ua, we can define (locally

for now) projection tensors that project parallel and orthogonal to ua. The component of any

vector Xa parallel to ua is

Xa
|| = UabX

b, where Uab := −uaub, Uaa = 1, UabU
b
c = Uac. (2.14)

The tensor that projects into the 3-dimensional instantaneous rest spaces, Σt say, orthogonal

to ua is defined by

hab = gab + uaub, habh
b
c = hac, haa = 3, habu

b = 0. (2.15)

2Recall that the origin of a spherically symmetric universe is a special point with maximal symmetry. This

implies that pressure gradients must vanish there.
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The components of any vector Xa orthogonal to ua follows from the projection

Xa
⊥ = habX

b.

Decomposing the metric tensor into gab = hab + Uab we see that an observer moving with ua

perceives an arbitrary displacement xa → xa + dxa as being decomposed into a time difference

δt2 = (−uadxb)2 and a spatial distance δl2 = habdx
adxb according to

ds2 = habdx
adxb − (uadx

a)2 = (δl)2 − (δt)2 (2.16)

Attaching FNCs to an observer allows us to conclude that, at any point p along the geodesic,

we can find coordinates such that the metric in Σt is the three dimensional Euclidean metric

at p. This facilitates the introduction of spherical coordinates (r, θ, φ) in which the metric at p

takes the form

γij =


1 0 0

0 r2 0

0 0 r2 sin2(θ)

 . (2.17)

We can therefore always construct a spherical basis in Σt which, by parallel propagation, is

well defined along the worldline of the observer. This is most reconcilable with our physical

intuition, almost all of which stems from combining the weak equivalence principle with a

covariant formulation of special relativity.

Recall that in special relativity the velocities of two particles moving relative to each other are

related by a boost factor γ as

ũa = γ(ua + va), where uav
a = 0, vav

a > 0, γ =
1√

1− vava
. (2.18)

Here va is the relative velocity of the frame ũa as seen by ua. Decomposing va into its magnitude

v =
√
vava and direction ea, we can write the four momentum as

pa = mũa = mγ(ua + vea) = Eua + pea, E = γm, p = γmv, (2.19)

where E = −uapa is the energy of the particle and p is the magnitude of its three momentum

p2 = habp
apb. Accordingly we find the familiar relation

pap
a = −m2 = p2 − E2. (2.20)

An explicit expression for ea can now be given in terms of pa by projecting with (2.15) and

normalising

ea =
habp

b√
habpapb

, eae
a = 1. (2.21)
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When the particle is massless it follows from (2.20) that E = p. As a result the decomposition

(2.19) can be written as

ka = Eua + pea = E(ua + ea) = (−ubkb) (ua + ea) , and ea =
habk

b

(−uckc)
, (2.22)

where we use a different symbol ka to distinguish the massless case. The local flatness theorem

ensures that these relations always hold locally. However, since they have been written down in

covariant form, the above relations must be valid in any coordinate system. We may therefore

adopt them in general relativity by using the metric tensor gab (as opposed to ηab).

2.2 Matter and Energy Description

We usually assume the following constituents for the matter and energy in the Universe:

• Ordinary standard model matter, the vast majority of which are photons and baryons.

• Dark matter.

• Dark energy.

There is strong evidence, both astrophysical (eg. from galactic rotation curves) and cosmological

(eg. growth of density perturbations), that there must be an additional form of non-relativistic

matter in the Universe that does not interact with radiation, or at best only interacts very

weakly with radiation. We call it cold (since it is non-relativistic) dark (because it does not

interact with radiation in any way but gravitationally) matter (CDM). It is not yet clear exactly

where, or indeed if, it fits into the standard model of particle physics but a number of candidates

have been identified [45]. It is also possible that modified theories of gravity (see [22] and [46] for

comprehensive reviews) can account for certain observations without the need for dark matter.

However, it is very difficult to propose modified theories of gravity which can compete with

GR on a large range of scales while also being compatible with certain well tested physical

principles (e.g. theories where the metric can couple differently to different types of matter

obviously violate the equivalence principle [47]). Even when people agree that there must be

some additional form of matter in the Universe, not all of them agree on what it is. A number

of experiments attempting to detect it, either directly or indirectly, have been initiated (see [45]

for a review).

Dark energy, be it in the form of a cosmological constant, quintessence (see [48] for example)

or perfect fluid, is on even less sure footing. The classical evidence for its existence comes

mainly from the Hubble diagram which, under the assumption that the Universe is spatially



2.2. MATTER AND ENERGY DESCRIPTION 17

homogeneous and isotropic, tends to indicate that the expansion of the Universe recently started

accelerating. The acceleration can be explained if the Universe undergoes a transition from a

matter dominated era to an era dominated by a cosmological constant. Allowing for a non-zero

cosmological constant therefore gives a much better fit to the Hubble diagram but raises the

question of what the cosmological constant actually is. This is a question which is not easy to

answer (see [49, 50, 51] for example) and we will make almost no attempt to do so. Here we will

simply note that, in treating space and time simply as coordinates on a manifold, GR almost

takes the existence of spacetime for granted. Space (or what we call the vacuum) is not merely

the absence of energy. Indeed, quantum theory associates energy to the vacuum, called the

vacuum energy ρvac. Noting that Λ can be interpreted as a perfect fluid with equation of state

w = −1 and constant energy density, it is perhaps not surprising to find a value of Λ 6= 0 when

fitting a cosmological model that does not properly account for the presence of vacuum energy.

The problem, known as the cosmological constant problem, is that quantum theory predicts a

value of ρvac which is between 60 to 120 orders of magnitude larger than the value measured in

cosmology. We will make no attempt to resolve this discrepancy. We will, however, suggest a

way to obtain its value in the simplest generalisation of ΛCDM models (see §6).

It is also possible that the Universe is not accelerating at all but that the “acceleration” is a

remnant of unjustified symmetry or averaging assumptions. We know for example that the real

universe is not homogeneous and isotropic at all scales. On small scales, << 1 Gpc say, the

real universe is clearly lumpy with multiple structures of vastly different sizes. It then becomes

a question of how to relate the field equations at two different scales. Clearly we have to rely

on some sort of averaging procedure (see [52] for example). More specifically, suppose we are

given a metric gab and energy momentum tensor Tab suitable for a particular scale. We then

compute the LHS and the RHS of the field equations (2.5) separately and form the residual

εab = Gab − κTab. We then repeat this procedure over a number of small regions and find the

average of the residual < εab >. The problem is that, because averaging does not in general

commute with taking derivatives, the result will be different depending on whether we average

before or after forming the residual. The fact that εab is proportional to Λgab necessitates

caution on our part (see [53, 54] for reviews of the backreaction and coarse graining problems).

Inhomogeneities on small scales can also have other interesting consequences (see for example

[55, 56]). However, we will be more concerned with the large scale structure of the Universe.

Our aim in the remainder of this thesis is to test whether incorrect symmetry assumptions can

give rise to “acceleration” from large scale (typically ≥ 1Gpc) inhomogeneities. To do so we

need to take a closer look at the RHS of the field equations (2.5). The following two sections
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borrow extensively from the notation and ideas presented in [5] and [25].

2.2.1 Energy momentum tensor

A model describing the energy and matter content of the Universe is one of the essential ingredi-

ents in cosmology. Adopting the fluid approximation we assume that the relativistic energy and

momentum of the matter field can be sufficiently well described by an energy-momentum tensor

T ab. This symmetric rank 2 tensor can be irreducibly split into parts parallel and perpendicular

to ua as

Tab = ρuaub + Phab + 2q(aub) + πab. (2.23)

The above quantities are defined relative to ua by

• ρ = Tabu
aub = relativistic energy density,

• P = 1
3h

a
bT

b
a = isotropic pressure,

• qa = −h c
a Tcbu

b = relativistic momentum density or energy flux,

• πab = h c
a h

d
b Tcd −

1
3habhcdT

cd = anisotropic pressure or stress.

Because of the high degree of observed isotropy in the Universe, a reasonable assumption in

cosmology, especially at late times, is that anisotropic contributions to Tab are negligible i.e.

qa ≈ 0 ≈ πab. The EMT then takes the form of a perfect fluid

Tab = ρuaub + Phab. (2.24)

To complete the specification we also need to prescribe and equation of state for the fluid.

In general an equation of state specifies how the fluids thermodynamic variables (i.e. density,

pressure, temperature T and entropy S) relate to each other. For a perfect fluid the equation

of state can be specified by relations of the form P = P (T, ρ) so that pressure depends on both

temperature and density. Note that irreversible flows are still possible for fluids with equation

of state P = P (T, ρ) (see § 5.2.1 of [25] for example). In cosmology we generally assume that

the fluid flow is reversible and adopt a barotropic equation of state P = P (ρ). This assumption

is usually made for simplicity; it is hard to motivate from a fluid dynamics perspective. It can

be better motivated using a kinetic theory description. Assuming that the particles of the fluid

are in thermodynamic equilibrium (as is expected when the reaction rate is much larger than

the expansion rate of the fluid) they can be modelled as perfect Fermi-Dirac or Bose-Einstein

gases. The particle distribution function can then be used to define macroscopic quantities such

as the particle number density n, energy density ρ and pressure P . We can then get an idea of



2.2. MATTER AND ENERGY DESCRIPTION 19

what the equation of state should be for the different particle species present in the Universe.

It can be shown [57, 5] that in the ultra-relativistic limit T >> m, where m is the mass of the

particle, both bosons and fermions satisfy P = 1
3ρ, whereas in the low energy limit T << m

they satisfy P << ρ. To some extent this justifies the simple linear barotropic equations of

state

P = wρ where w = const. (2.25)

usually employed in cosmology. The dynamics of relativistic particles such as photons is then

described by w = 1
3 . Both CDM and (the vast majority of) baryons are expected to fit into the

non-relativistic regime w << 1. Furthermore, on cosmological scales, the pressure from baryons

is only felt on small scales and is expected to be completely sub-dominant on large scales at late

times. As a result it is usually assumed that baryons can be lumped together with cold dark

matter and described collectively as non-interacting dust (i.e. w = 0). This approximation

is expected to be adequate at late times and on large enough scales. It will not be a good

approximation on small scales. We will henceforth assume that the linear equation of state is

sufficient to describe the late time background dynamics of the Universe on large enough scales.

Once an equation of state has been prescribed the conservation equations (2.8) can be used to

describe the dynamics of the fluid. In particular the rate of change of relativistic energy ρ along

the fluid flow lines is given by

ub∇aT ab = 0. (2.26)

This is the energy conservation equation (ECE). The equations governing conservation of mo-

mentum are found by projecting (2.8) orthogonal to the fluid flow lines

hbc∇aT ab = 0. (2.27)

These are known as the momentum conservation equations (MCE). In §4 we are going to use

(2.26) and (2.27) to evolve the fluid variables from one PLC to the next. In order to compute

them we also need to find the form of ua.

2.2.2 The fundamental 4-velocity

So far we have defined projection tensors w.r.t. the 4-velocity of a single observer. We now

ask whether this idea could be extended to a whole family of observers travelling with a unique

normalised average 4-velocity ua. The sheer diversity of particle species and states present in

the real universe makes this a very difficult and scale dependent problem. It turns out that if

we are able to identify an observer independent (locally Lorentz invariant) 4-current density,

Ja say, then it is possible to define a unique 4-velocity in the direction of Ja if the current is
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conserved i.e. ∇aJa = 0. Suppose we define a particle number 4-current density Na. This

current will be locally Lorentz invariant because any observer will count the same number of

particles regardless of their mass, charge or velocity. Next we may decompose Na into

Na = nua + na, naua = 0, (2.28)

where n = −uaNa is the particle number density and na = habN
b is the particle flux vector

relative to ua. If the number of particles is conserved (i.e. ∇aNa = 0) it is possible to define a

unique 4-velocity ua(p) by insisting that the particle flux vector vanishes in this frame

Na = n(p)u
a
(p). (2.29)

This is called the particle (or Eckart) frame. The existence of the fundamental 4-velocity is

a crucial ingredient in cosmology. There is an inherent averaging scale associated with its

definition. Obviously we could not use stars as the particles of the fluid because we know

that the number of stars is not a conserved quantity. Actually it is very difficult to determine

what the averaging scale is. Our current understanding of structure formation suggests that

structures start forming from (initially small) density perturbations and then over time grow

into the larger structures we observe today. With this view there must be an upper limit on the

possible sizes of structures, anything larger simply would not have had enough time to form by

gravitational collapse. This lends weight to the idea that there is a scale at which the number

of particles remains constant. Note, however, that this scale is dynamical.

We should also mention that particle number is not the only conserved quantity that can be

used to identify the fundamental 4-velocity. Another useful frame, called the energy frame, can

be defined by insisting that the energy flux vanishes in that frame i.e.

qa(e) = T
bch

ab
(e)u

c
(e) = 0. (2.30)

For perfect fluids the energy and particle frames coincide so either could be used to define a

unique hydrodynamic 4-velocity (see [25] for example).

Finally, we note that, once the fundamental frame ua has been specified its covariant derivative

can be decomposed into

∇bua = −u̇aub +
1

3
Θhab + σab + ωab. (2.31)

The above quantities, known as the kinematic quantities, characterise the kinematic features of

the fluid flow and are defined as follows:

• u̇a = ub∇bua = acceleration vector;

• Θ = ∇aua = expansion scalar;
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• σab = hc(ah
d
b)∇cud −

1
3Θhab = shear tensor;

• ωab = ∇[bua] = vorticity tensor.

In cosmology we usually assume that ωab = 0 i.e. the spacetime is irrotational. The shear tensor

σab describes the rate of deformation of the fluid. Note that, while σab = 0 in homogeneous

and isotropic models of the Universe, it is necessarily non-zero in models which are radially

inhomogeneous (see the discussion in the last paragraph of § 3.3.1). As a result it can be used to

construct a consistency relation which tests for the presence of inhomogeneities. The expansion

scalar Θ is the only volume changing kinematic effect. It describes the rate of expansion of the

fluid flow lines. The acceleration vector describes the motion of test particles in the presence

of non-gravitational forces (e.g. pressure gradients). Note that it will vanish in homogeneous

and isotropic models of the Universe regardless of the matter content. It also vanishes for the

spherically symmetric models used in this work but only because the fluid we consider consists

only of dust.

2.3 Comoving formalism

In this section we start by reviewing the Friedmann-Lemâıtre-Roberson-Walker (FLRW) cos-

mological model. We then investigate the more general spherically symmetric cosmological

solutions that will be employed to formulate tests of the Copernican principle (CP) later on.

2.3.1 Maximally symmetric spacetimes

Here we derive the form of the metric in a spatially maximally symmetric universe in comoving

coordinates. This is the most cosmologically relevant example. The symmetries stem from

adopting the cosmological principle i.e. the assumption that, on large enough scales, the spatial

sections of the Universe are statistically homogeneous (invariant under spatial translations) and

isotropic (invariant under spatial rotations).

Definition - Spatial homogeneity A spacetime is considered to be spatially homogeneous

[23] if there exists a one-parameter family of spacelike hypersurfaces Σt foliating the spacetime

in such a way that for each value of t, and any two points p, q ∈ Σt, there exists an isometry of

gab which maps p into q.

By itself homogeneity is already rather restrictive. When supplemented with the additional

assumption of isotropy, however, it drastically restricts the form of the metric.
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Definition - Spatial isotropy Consider an observer moving with 4-velocity ua = dxa
dτ

along

a timelike geodesic γ parametrised by proper time τ . If at any point p on γ we take two arbitrary

linearly independent unit spatial tangent vectors in Σt, e
a
1 and ea2 say, then isotropy implies that

there exists an isometry of the metric gab which rotates ea1 into ea2 while leaving p and ua at p

fixed.

Clearly this can only happen when ea1 and ea2 are both orthogonal to ua. In particular, since the

tangent vectors are chosen arbitrarily, we can always choose any two out of the three mutually

orthogonal basis vectors in Σt. This implies that Σt itself is orthogonal to ua which in turn

establishes that the spacetime is irrotational about ua i.e. ωab = 0 (this is a consequence of

Frobenius’ theorem, see [23] for example). Furthermore, these hypersurfaces can be defined by

relations of the form τ = const. so that ua = −∂aτ is a normal to Σt.

Comoving coordinates xa = (t, yi) can be constructed by labelling each timelike geodesic which

intersect Σt by yi and insisting that they keep their labels as Σt traverses the congruence. This

induces a three dimensional metric hij on Σt. Using the coordinate t to measure proper time

in the frame of an observer travelling with ua, and noting that uau
a = −1 ⇒ dt = −uadxa,

we have

gab = −uaub + hab, ⇒ ds2 = −dt2 + hijdy
idyj .

This is compatible with the interpretation (2.1) of the metric tensor i.e. when Σt is purely

transverse to ua the basis vectors ∂
∂yi

are everywhere orthogonal to ∂
∂t . Note how the metric

has split into distinct temporal dτ2 and spatial hijdy
idyj separations. This is most reconcilable

with our inevitable Newtonian interpretation of the world. Determining the actual form of hij

is not difficult (at least for simply connected manifolds). It can be shown [23] that the Riemann

tensor constructed from hij has to satisfy

(3)Rijkl = Khk[ihj]l, (2.32)

where K can be identified as the trace of the extrinsic curvature. Homogeneity (equivalently

isotropy about each p ∈ Σt) then implies that K must be constant. To find the geometry of

Σt, we simply need to enumerate all the possible spaces of constant curvature corresponding to

K > 0,K = 0 and K < 0. All positive values of K (closed universes) correspond to 3-spheres,

negative values to three dimensional hyperboloids (open universes) and K = 0 (flat universe)

is just ordinary Euclidean space. The spatial part of the metric must be conformally related to

one of these geometries. The homogeneity assumption further restricts the conformal factor to

only depend on the one parameter which labels the hypersurfaces i.e. time t. Thus, in comoving
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coordinates xa = (t, yi), the metric must take the form

ds2 = −dt2 + a(t)2dσ2, dσ2 = γijdy
idyj = dχ2 + f2(χ)dΩ2, (2.33)

where we have introduced “spherical” comoving coordinates yi = (χ, θ, φ) in which dΩ2 =

dθ2 + sin2(θ)dφ2 is the usual solid angle on the sphere and χ is the comoving distance. The

geodesic deviation equation applied to the connecting vector between a congruence of radial

geodesics in Σt can be used to determine the form of the function f(χ). By imposing the

limiting behaviour f(χ) → 0 as χ → 0, it can be shown that f(χ) takes one of three forms

depending on the sign of K viz.

f(χ) =


K−

1
2 sin(

√
Kχ), if K > 0,

χ, if K = 0,

(−K)−
1
2 sinh(

√
−Kχ), if K < 0.

(2.34)

The symmetries have therefore reduced the ten arbitrary functions in the metric to a single

function a(t) and a number K. This is the form of the FLRW metric. Using a radial coordinate

in which r = f(χ), this metric can also be written as

ds2 = −dt2 + a(t)2

(
1

1−Kr2
dr2 + r2dΩ2

)
. (2.35)

Note that the quantity in front of dΩ2 is called the angular diameter or area distance. Denoting

this quantity by D, we find that

D(t, r) = a(t)r, (2.36)

is a separable function of t and r. Substituting (2.35) into the EFE’s (2.5), and using the simple

linear equation of state (2.25), gives the familiar Friedmann and acceleration equations

H2 =

(
ȧ

a

)2

=
κρ

3
− K

a2
+

Λ

3
, (2.37)

ä

a
= −κ

6
(ρ+ 3wρ) +

Λ

3
. (2.38)

These equations are more frequently expressed in terms of the dimensionless density parameters

defined by

Ω =
κρ

3H2
, ΩΛ =

Λ

3H2
, ΩK = − K

H2a2
. (2.39)

With these definitions the Friedmann equation (2.37) gives the constraint

Ω + ΩΛ + ΩK = 1, Ω =
∑
x

Ωx =
∑
x

κρx
3H2

, (2.40)

where we have decomposed the matter term to allow for multiple fluids and x labels components

with different equations of state. In this model the MCE’s (2.27) are identically satisfied and
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the ECE (2.26) gives

ρ̇x + 3Hρx(1 + wx) = 0, ⇒ ρx = ρx0

(
a

a0

)−3(1+wx)

, (2.41)

where wx specifies the equation of state of the fluid with density ρx. Equivalently we could give

this solution in terms of the dimensionless density parameter Ωx as

Ωx = Ωx0

(
a

a0

)−3(1+wx)(H0

H

)2

, (2.42)

which also casts (2.40) into the form

H(a)2 = H2
0

(∑
x

Ωx0

(
a

a0

)−3(1+wx)

+ ΩK0

(
a

a0

)−2

+ ΩΛ0

)
. (2.43)

Given current values for the parameters a0, H0, Ωx0 and either ΩΛ0 or ΩK0, we can therefore

integrate this expression backwards in time to get the age of the Universe as

t0 =

∫ a0

0

da

aH(a)
. (2.44)

Note that, in FLRW models, the scale factor is related to the redshift according to a0
a = 1+z (see

§3.2) so that the a(z) relation is known from the outset. Assuming that the only contribution

to Ωx comes from dust, and normalising a0 = 1, casts (2.43) into the form

H(z) = H0

√
Ωm0(1 + z)3 + ΩK0(1 + z)2 + ΩΛ0, (2.45)

where Ωm0 is the current day density parameter of matter (CDM + baryons). Thus, given

values for H0, Ωm0 and ΩΛ0 (and hence ΩK0 from (2.40)), the H(z) relation follows from (2.45)

and the ρ(z) relation can be found using (2.41) (note ρ0 = 3H2
0 Ωm0/κ). Furthermore, the

comoving distance between an observer located at χ = 0 and an object at redshift z is found

by integrating along a radial null geodesic ds2 = 0 = dΩ2. According to (2.33) the comoving

distance is therefore given by

dχ =
dt

a
=

da

a2H(a)
= − dz

H(z)
, ⇒ χ(z∗) =

∫ z∗

0

dz

H(z)
, (2.46)

and all cosmological distances (see §3.4) can be related to χ(z). Note, in particular, that the

comoving radial distance, r, is given by r(z) = f(χ(z)) with f(χ) defined by (2.34). Using

(2.36) to relate r(z) to the angular diameter distance D(z) then gives

r(z) = (1 + z)D(z).

It should be understood that all the redshift relations given above hold on the current past

lightcone (PLC0) once we have normalised a0 = 1. However, since we can choose to set the
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normalisation of the scale factor at an arbitrary point in time, these relations can also be

extended off the PLC0 by a simple rescaling. This can be used to establish that the relation

r(z) =
(1 + z)D(z)

ac
, (2.47)

holds on an arbitrary past lightcone (PLC). Here ac is a constant which is equal to the value

of the scale factor at the observer located, on an arbitrary PLC, at χ = 0. As we will see it is

not possible to establish such a simple relation between r(z) and D(z) in spherically symmetric

models of the Universe (see §4.3).

It is therefore exceedingly simple to predict the forms of the observables in FLRW models.

Since these are the models under scrutiny, we will, on multiple occasions, compare our results

to the predictions of one such model viz. the ΛCDM model. In Table 2.1 we therefore show

the parameters corresponding to the ΛCDM model which will serve as a reference model in the

remainder of this thesis. The quantity ρc is the current critical density of the Universe and is

defined by

ρc =
3H2

0

8πG
, (2.48)

where G is Newton’s gravitational constant. Note that in FLRW models Ωm = ρ
ρc

. The

observables corresponding to our reference model will be shown in §3 where we also show the

data we currently have available for some of them. Note that the parameter values in 2.1

correspond, approximately, to the current best fit ΛCDM model (see [4] for example). The

form of the observables in an ΛCDM model corresponding to the parameters listed in 2.1 are

shown in Figure 3.3.

Ωm0 ΩΛ0 H0 t0 Λ ρc

0.3 0.7 70 km s−1 Mpc−1 13.5 Gyr 0.114 Gpc−2 9.2× 10−30 g cm−3

Table 2.1: Parameters in the reference ΛCDM model that will be used throughout

2.3.2 Spherically symmetric spacetimes

As we have just seen, the assumption of isotropy always implies that the foliating hypersurfaces

Σt are orthogonal to the fundamental 4-velocity ua. A spherically symmetric universe is obvi-

ously isotropic about its centre of symmetry. The lack of homogeneity however means that the

curvature K is not necessarily constant on each Σt. Thus it is not possible to find the form of

hij simply by enumerating all geometries corresponding to different values of K. It is possible
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to show that the most general form of a spherically symmetric metric takes the canonical form

(see §14 of [27] for example)

ds2 = −N(x, y)2dx2 + 2I(x, y)dxdy +X(x, y)2dy2 +R(x, y)2dΩ2, (2.49)

where we have introduced coordinates xa = [x, y, θ, φ] in which 0 < θ < π, 0 < φ < 2π are

coordinates that sweep out a 2-sphere and at this stage x and y are arbitrary. Choosing x to

measure proper time in the frame of a geodesic observer, and noting that isotropy implies a

hypersurface orthogonal foliation, we may set the coefficient I(x, y) in front of the cross term

dxdy to zero. In this case the function N(t, y) necessarily satisfies N(t, 0) = 1. It cannot

necessarily be set to unity on the whole of Σt because radial inhomogeneity could, for example,

result in non-vanishing pressure gradients at y 6= 0. The function N measures the time lapse

between neighbouring geodesics. Using y = r, where r is a comoving coordinate which labels

the spherical shells foliating Σt, we can write the metric in the more familiar diagonal form

ds2 = −N(t, r)2dt2 +X(t, r)2dr2 +R(t, r)2dΩ2. (2.50)

This metric is suitable for a comoving description of a universe whose energy and momentum

content is spatially spherically symmetric, regardless of the number of fluids present. It should

be clear that in spherical symmetry there are two distinct expansion rates in Σt. One of them,

the radial or longitudinal expansion rate H‖, describes how the volume element changes with dr.

The other one, called the transverse or perpendicular (to the radial direction) expansion rate

H⊥, describes how the volume element changes with dθ, dφ. In terms of the metric components

of (2.50) these are defined by

H‖ =
Ẋ

X
, and H⊥ =

Ṙ

R
. (2.51)

Specialising to a single barotropic fluid, the EMT has contributions from the energy density

ρ = ρ(t, r) and isotropic pressure P = P (t, r) only i.e.

Tab = (ρ+ P )uaub + habP, (2.52)

where ua is the 4-velocity of the fluid. Substituting (2.50) and (2.52) into the field equations

(2.5), and manipulating the equations in exactly the same way as explained in §A.2, we find

that the field equations reduce to

Ṙ′

R′
=

N ′Ṙ

NR′
+
Ẋ

X
(2.53)

κR2R′ρ = M ′, (2.54)

−κR2Ṙwρ = Ṁ, (2.55)
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where we have used that P = wρ and defined the function M(t, r) as

M(t, r) = −RR
′2

X2
+R+

RṘ2

N2
− 1

3
ΛR3. (2.56)

Although it is possible to find first integrals of the ECE (2.26) and MCE (2.27) (see for example

[26]) in the presence of radiation, the dependence of the function M on t makes it very difficult to

write down a physically transparent analogue of the Friedmann equation (2.37). In particular, it

is no longer to parametrise the free functions of the model purely in terms of radial coordinate

on the current time slice Σt0 . This makes the model (known as the Lemâıtre model) very

difficult to interpret. In fact an analytic solution in the presence of Λ is not known. We will not

pursue the Lemâıtre model any further because we are interested in describing the dynamics of

the Universe at late times i.e. during the matter dominated era. Moreover, as shown in § A,

there are certain subtleties behind incorporating radiation and dust into inhomogeneous models

of the Universe. In particular the assumption that the fluids are comoving is no longer allowed.

This has non-trivial consequences for the interpretation of observables which rely on the CMB

(see the discussion in § 6.4).

The model that results from assuming that the fluid is dust (i.e. P = 0) is often called the

Λ-Lemâıtre-Tolman-Bondi (ΛLTB) cosmological model. It is a generalisation of the Lemâıtre-

Tolman-Bondi (LTB) [58, 59, 60] model that includes a cosmological constant. For this model

the exact solution is known (see [61] for example). The absence of pressure simplifies the field

equations significantly. In particular, the MCE shows that the lapse satisfies N ′ = 0 ⇒ N =

N(t). However, since t measures proper time, we must have N = 1. Physically this means that

all matter follows timelike geodesics; in the absence of pressure the only “force” is gravity. Also

with P = 0 (2.55) shows that

Ṁ = 0, ⇒ M = M(r), (2.57)

another drastic simplification. Equation (2.53) immediately gives the first integral

X(t, r) = g(r)R′(t, r), where g(r) =
1√

1 + E(r)
. (2.58)

Here g(r) is a function of integration which we write in terms of the dimensionless function E(r)

for convenience. The metric can now be written as

ds2 = −dt2 +
R′2

1 + E(r)
dr2 +R2dΩ2, E(r) = K(r)r2, (2.59)

where we have written E(r) in terms of the function K(r) which now has the dimensions of

curvature. Substituting (2.58) into the expression for M and dividing through by R3 gives(
Ṙ

R

)2

= H2
⊥ =

M

R3
+

E

R2
+

1

3
Λ (2.60)
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A close analogy with FLRW can be obtained by making the following definitions:

Ωm =
M

H2
⊥R

3
, (2.61)

ΩΛ =
Λ

3H2
⊥
, (2.62)

ΩK =
E

H2
⊥R

2
= 1− Ωm − ΩΛ, (2.63)

where the final constraint in (2.63) follows from substituting these definitions into (2.60). Eval-

uating the dimensionless densities on the current time slice Σt0 , we can also cast (2.60) into a

Friedmann like equation for ΛLTB models

H2
⊥ = H2

⊥0

(
Ωm0

(
R

R0

)−3

+ ΩK0

(
R

R0

)−2

+ ΩΛ0

)
, (2.64)

where it should be understood that all quantities with a subscript 0 are evaluated on Σt0 and

are functions of r only. This equation can be integrated along worldlines with constant radial

coordinate, r = r∗ say, to get the time coordinate as a function of the metric component R

t(R̃)− tB(r∗) =
1

H⊥0

∫ R̃

0

dR

R

√
Ωm

(
R0
R

)3
+ ΩK

(
R0
R

)2
+ ΩΛ

, (2.65)

where tB(r) is a function of integration which allows for a non-simultaneous big bang (therefore

called the bang time function, see [26] for example). The age of the Universe along r = 0 will

be given by t0 = t(R0(0)) if we scale the bang time such that tB(0) = 0. The integrand is an

elliptic function that can be cast into one of Carlson’s symmetric forms viz.

RJ(x, y, z, p) =
3

2

∫ ∞
0

dt

(t+ p)
√
t+ x

√
t+ y

√
t+ z

. (2.66)

Here x, y and z are the (possibly complex) roots of a cubic polynomial (see (A.34) of §A) the

real parts of which must be positive. The elliptic function is only defined when not more than

one of x, y and z are simultaneously zero. In §A it is shown that in this model the age of the

Universe at r = 0 is given by3

t0 =
1

H0

2RJ(−x1,−x2,−x3, 1)

3
√

Ωm(0)
, (2.67)

where the xi are the roots of

(x+ 1)3 +
ΩK

Ωm
(x+ 1)2 +

ΩΛ

Ωm
= 0. (2.68)

3Note that this quantity is not defined in terms of the elliptic integral (2.66) when ΩK and ΩΛ are simultane-

ously zero. However this is just Einstein-de Sitter in which case t0 = 2
3H⊥0

.
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The nature of the roots provides information about the expansion history along any given

wordline. This is easiest to see if we go back to equation (2.60) written in the form

Ṙ =
1√
R

√
M + ER+

ΛR3

3
. (2.69)

Since R, the area distance, must be positive, the positive roots of the polynomial tell us how

many times Ṙ crosses zero. Even a single positive real root along any of the worldlines signifies

that Ṙ must have changed sign along that worldline. Physically this corresponds to a universe

with both expanding and collapsing regions. See the discussion in [61] for further details.

It is worth noting some differences between equation (2.64) and its Friedmann analogue (2.37).

Firstly, in ΛLTB, knowledge of the functions H⊥0(r), Ωm0(r) and either ΩΛ0(r) or ΩK0(r) does

not allow us to write H⊥ directly in terms of the redshift z. The reason for this is that we do

not know the metric function R as a function of the redshift z from the outset. Instead we first

have to solve the null geodesic equations which can be written in terms of the redshift as

dt

dz
= − 1

(1 + z)H‖
and

dr

dz
=

√
1−Kr2

(1 + z)H‖R′
. (2.70)

The solutions to these equations can then be used to express any function in terms of the

redshift and hence confront the model with observations. Also note that the density ρ and its

dimensionless counterpart are not simply related as in the FLRW case (2.39). Using (2.54) gives

κρ = Ω′mH
2
⊥
R

R′
+ 2ΩmH⊥H

′
⊥
R

R′
+ 3ΩmH

2
⊥. (2.71)

Thus he quantity ρ
ρc

is not the same as Ωm in ΛLTB models. However, since R(t, 0) = 0 but

R′(t, 0) 6= 0, we still have that

Ωm0(0) =
κρ0(0)

3H⊥](0)2
, (2.72)

which is the same as in FLRW. Given ρ0(0) and H⊥0(0), (2.72) can be used to find Ωm0(0).

Given also the value of Λ, we can compute t0 using (2.67). Note that t0 is not required to get

the ΛLTB solution in observational coordinates (see §4). However, it is required to compute

the coordinate transformation and if we intend to use the age of the Universe as a data point.

2.4 Observational formalism

The ideas behind the formulation of observational coordinates (OC) developed alongside those

used to study gravitational radiation [62, 63]. Both approaches resulted in coordinate systems

based on null geodesics. OC are based on incoming radial null geodesics and were first used in

[64, 65]. They were introduced in their modern form in [3] and are also discussed in depth in

[25].



30 2. GENERAL FRAMEWORK

Figure 2.1: Observational coordinates: xa = {w, y, θ, φ}

To define observational coordinates, we consider a congruence of null geodesics described by

relations of the form xa(v, s), where v is an affine parameter for the geodesics and s labels

geodesics in the congruence. Then ka = ∂xa

∂v is tangent to the geodesic, ξa = ∂xa

∂s is a connecting

vector and the following relations will hold in general (see §2.1)

kaka = 0, kb∇bka = 0, ξb∇bka = kb∇bξa, kaξa = 0. (2.73)

We now embed a null hypersurface Σ̂ into the spacetime with relations of the form w(xa) =

const. where w is the defining scalar function of Σ̂. Setting ka ∝ ∂aw ensures that the hy-

persurfaces are null since then gab∂aw∂bw ∝ gabkakb = 0. This reveals a strange property of

null hypersurfaces viz. since ka is both parallel and orthogonal to ∂aw, the null geodesics are

confined to lie within Σ̂. We say the null geodesics fill or generate Σ̂. Furthermore, as shown

in [23] for example, it can be established that, when ka ∝ ∂aw, the vector field k = ∂
∂v must

be hypersurface orthogonal. The vorticity of the congruence, defined as ω̂ab = k[a;b], therefore

vanishes. Observational coordinates are defined relative to a central observer moving with 4-

velocity4 ua. We assume that the observer is a fundamental observer whose worldline, denoted

C, is a timelike geodesic. An example might best serve to fix some of these ideas.

Consider an observer in Minkowski spacetime for which an appropriate 1+3 form of the metric

4Indeed the null hypersurfaces Σ̂ cannot be uniquely defined by only specifying ka, we need to specify the

pair (ka, ua). See [23] for example.
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is

ds2 = −dt2 + dr2 + r2dΩ2. (2.74)

Information reaches the observer by means of photons which travel along a null geodesic con-

gruence to the observer’s location q, which is a caustic of the congruence. The only observable

photons are those incoming in radial direction dΩ = 0. As we have set c = 1 we know that the

radial coordinate depends on the observer’s time coordinate via r = t0−t, where t0 is the proper

time at the observer (recall that for an incoming radial geodesic t decreases with increasing r).

This suggests using w = t0 = t+ r as the defining scalar function of the null hypersurface. This

also ensures that w increases towards the future. Substituting dt = dw − dr into (2.74) yields

ds2 = −dw2 + 2dwdr + r2dΩ2. (2.75)

Notice that in the observer’s PLC dw = 0 automatically implies ds2 = 0 radial null geodesics.

Computing the tangent vectors we see that ka = dr
dv δ

a
1 since all of dw,dθ and dφ are zero along

radial null geodesics in the observer’s PLC. In Minkowski spacetime the radial coordinate is

an affine parameter for null geodesics and we may use v = r. Indeed (2.75) is the form of the

metric in observational coordinates for Minkowski spacetime.

Armed with a little bit of intuition we now define observational coordinates xa = {w, y, θ, φ} as

follows:

w: Let w be a coordinate such that the surfaces {w = const.} are the PLCs of events along C.

In general there will still be some freedom in the definition of w which we fix by requiring

that w measures proper time along the observer’s worldline i.e. w|C = τ , and that w = w0

corresponds to the event q. Setting ka := ∂aw means that the ruling geodesics of the PLC

are generated by the null geodesic vector field k = ∂
∂v where

ka =
dxa

dv
, kb∇bka = 0, k[a;b] = 0 and kak

a = w,ak
a = 0. (2.76)

y: Let y be the coordinate measuring distance down the lightcone. We have complete freedom

in how we choose y. Some sensible choices are the area distance D, the cosmological

redshift z or an affine parameter v for the ruling null geodesics. It is also possible to

choose y as one of these on the PLC0 and then insist that it is comoving with the fluid

thereafter (y,au
a = 0 ⇔ u1 = 0). Certain coordinate choices are more convenient for

specific applications. For reasons explained in § 3.2.1, we will find it most convenient to

choose y = v. This choice is used consistently throughout this thesis.

θ, φ: Let θ, φ be angular coordinates such that the geodesics generating the null cone are given

by θ = φ = constant in the surfaces on which w is constant (θ,ak
a = 0 = φ,ak

a). These are
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normalized to be standard spherical coordinates at the observer. They are then paralelly

propagated along C.

The fundamental 4-velocity divides the set of vectors defined at any point in spacetime into two

classes i.e. those that are future pointing and those that are past pointing. A vector Xa is said

to be future or past pointing depending on whether uaX
a < 0 or uaX

a > 0, respectively. With

the stated normalisation of w we have that

kau
a =

∂w

∂xa
dxa

dτ
⇒ kau

a|C = 1, (2.77)

which shows that the tangent vectors ka are past pointing. Also note that the affine parameter

is uniquely defined by specifying that v = 0 on C. In observational coordinates the tangent

vector satisfies

ka
w
= δ0

a, ka
w
=

1

B
δa1 with

1

B
=

dy

dv
. (2.78)

Thus if y = v then B = 1 (but note in this case we cannot treat y as a comoving coordinate).

The fact that ka is hypersurface orthogonal determines some of the metric components directly

ka
w
= δ0

a = gabk
b =

1

B
gabδ

b
1 ⇒ g1a

w
= Bδ0

a. (2.79)

Next introduce functions A,CI and hIJ (arbitrary for now) in the covariant form of the metric

gab =


−A B C2 C3

B 0 0 0

C2 0 h22 h23

C3 0 h23 h33

 . (2.80)

Even though these functions were introduced somewhat arbitrarily they can be interpreted

geometrically as follows. Lets start by noting that, out of the ten components of the Einstein

field equations, four correspond to the complete freedom with which we can choose coordinates.

Thus there remain six degrees of freedom in the metric. At first sight there seems to be seven

free functions in (2.80). However, since B can be set to one with a coordinate choice, there are

only six true degrees of freedom in the metric. Consider now that curves given by v, θ, φ = const.

must have tangent vector ∂/∂w. Using the interpretation of the metric (2.1) we see that the

direction and magnitude of these tangent vectors are given by the scalar products

−A =
∂

∂w
· ∂
∂w

, B =
∂

∂v
· ∂
∂w

, C2 =
∂

∂θ
· ∂
∂w

, C3 =
∂

∂φ
· ∂
∂w

The g0a components of the metric therefore refer to characteristics transverse to the PLC. Since

the intrinsic geometry of the PLC is described by hIJ the null hypersurfaces are two dimensional.
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The weak equivalence principle tells us that locally an observer will experience the Minkowski

geometry. This implies the following central limit conditions [3] for the metric components of

(2.80)

lim
y→0

A = 1, lim
y→0

B = 1, lim
y→0

(CI/y
2) = 0 lim

y→0
(hIJdx

IdxJ/y2) = dΩ2 (2.81)

Furthermore, the limiting behaviour of the metric components as we move away from C can

be established using the geodesic deviation equations (2.11) to describe the dynamics of the

connecting vector ξa. The details can be found in [3], which uses an adaptation of the original

technique used by [44] to obtain local expressions for the metric components and the matter

4-velocity in terms of the null geodesic affine parameter v. We quote the result here since it

will be used in the numerical solution presented in §4. The limiting behaviour of the metric

components in terms of observational coordinates with the choice y = v (these are called optical

coordinates in [3]) are

A(w, v, xI) = 1 +A2(w, xI)v2 +O(v3), (2.82)

B(w, v, xI) = 1, (2.83)

Ci(w, v, x
I) = CI3(w, xI)v3 +O(v4), (2.84)

hIJ(w, v, xI) = diag(1, sin2(θ))v2 + hIJ4(w, xI)v4 +O(v5). (2.85)

Note, in particular, that the first order term in (2.82) is zero so that A,v(0) = 0.

Next we consider the implications of spherical symmetry. Firstly note that there is a difference

between isotropy and spherical symmetry. While spherical symmetry implies isotropy, the

converse is much harder to establish (see §8 of [25]). This highlights a fundamental difference

between the top-down and bottom-up approaches to cosmology. The top-down approach is

simpler because symmetry assumptions about the spacetime necessarily translate to symmetries

in the observables. Working backwards, however, we would have to identify a maximal set of

independent isotropic observables to reach the same conclusion. This highlights an unavoidable

limitation of our formalism. In simple terms, we currently do not have access to enough model

independent data to justify the assumption of spherical symmetry. To establish isotropy in

a dust universe with Λ, an observer would have to measure isotropic area distances, number

counts, bulk velocities and lensing (see §8.5 of [25]). Having admitted this limitation, we will

proceed keeping in mind that the assumption of spherical symmetry is not completely justified.

As we show in §3.3 the null affine parameter is indirectly observable in spherically symmetric

dust universes. We therefore use y = v as the coordinate measuring distance down the PLC. In

this case the observational metric takes the simple form

ds2 = −Adw2 + 2dwdv +D2dΩ2. (2.86)
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Note also that uI = 0 in spherical symmetry otherwise we could define preferred motions on the

sky. The explicit form of ua in observational coordinates is given by (3.16) in § 3.2 where we

write it in terms of the cosmological redshift z. The field equations in observational coordinates

for a spherically symmetric dust universe will be given in §4.1 where we also present a method

to solve them. For now let us note, and this will be a reoccurring theme throughout, that

spherically symmetric dust universes have two functional degrees of freedom, allowing for a

cosmological constant introduces an additional free parameter viz. Λ.



3

Kinematics and observables in

Spherical Symmetry

There is only a finite set of observables available in cosmology. Generating data for these ob-

servables relies on the ability to model astrophysical processes. In this chapter we aim to bridge

the gap between these astrophysical models and the theoretical expressions for the observables.

Understanding the data gathering process, which usually necessitates assuming a cosmological

model, is crucial for the validity of our conclusions since it would be circular to presuppose a

perturbed FLRW model. We therefore aim to be as explicit as possible about the assumptions

that go into the data gathering process. Since we observe the Universe through electromagnetic

radiation we start, borrowing extensively from the presentation given in [25] (see their §5.5 and

§7.1 in particular), with the geometric optics approximation.

3.1 Geometric Optics

Here we apply the geometric optics limit to the electromagnetic field and assume that light

propagation in a curved spacetime can be sufficiently well modelled using ray optics. The

electromagnetic field is most conveniently described in terms of an antisymmetric type (0, 2)

tensor Fab = F[ab] called the electromagnetic field tensor. We can achieve a 1+3 split of the

field relative to ua in terms of its electric Ea and magnetic Ba components

Fab = 2u[aEb] + ηabcB
c where Ea = Fabu

b, Ba =
1

2
ηabcF

cd. (3.1)

Charged particles contribute to the electromagnetic field giving rise to a four current Ja. An

observer moving with four velocity ua will measure this current as

Ja = µua + ja, jau
a = 0, µ = −uaJa, ja = habJ

b, (3.2)

35
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where we interpret µ as the charge density and ja as the three current associated with the field.

Maxwell’s equations can then be succinctly expressed as

∇bF ab = Ja, ∇[aFbc] = 0. (3.3)

Defining Fab = ∇aAb − ∇bAa in terms of the four potential A = [φ,A], where φ is the scalar

potential sourcing the electric field and A the the vector potential sourcing the magnetic field,

ensures that Fab is anti-symmetric. Plugging this definition into the second of (3.3) shows that

it is automatically satisfied. Adding the gradient of an arbitrary scalar function of position to

Aa i.e.

Aa → Aa + ∂af(xi), (3.4)

has no effect of the form of Fab since

Fab = ∇a(Ab + ∂bf)−∇b(Aa + ∂af) = ∇aAb −∇bAa + (∇a∂bf −∇a∂bf) , (3.5)

and the term in braces is zero. We now use this freedom to impose the Lorentz gauge ∇aAa = 0.

The gauge freedom (3.4) still exists provided that f is a harmonic function i.e. ∇a∇af = 0.

The first of Maxwell’s equations can now be written as

∇bF ab = ∇b∇aAb −∇b∇bAa = Ja. (3.6)

Upon using the Ricci identities (2.4), and noting that in a source free region Ja = 0, we find

Maxwell’s equations in vacuum as

∇b∇bAa +RabA
b = 0, ∇aAa = 0. (3.7)

A general solution to this equation is hard to find. However the solutions we are seeking

should describe the paths of photons travelling from the source to the observer propagating

as electromagnetic waves. Furthermore, since the interstellar medium is not conductive, these

waves are not expected to suffer significant attenuation. As a result their phase will vary rapidly

compared to their amplitude. Other than that the solutions we are seeking should be able to

convey arbitrary information i.e. exhibit any mixture of polarisation states, amplitudes and

frequencies. We therefore propose the following ansatz for the four potential

Aa = g(ψ)αa + small terms, (3.8)

where g(ψ) is an arbitrary function of the phase which varies rapidly in comparison with the

amplitude αa. When the spacetime curvature length is large compared to the wavelength of the
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wave1 the small terms do not effect photon propagation and can be ignored. We now define the

propagation vector as

ka := ψ,a ⇒ k[a;b] = 0, (3.9)

and substitute our ansatz (3.8) into (3.7). Since g(ψ) is arbitrary we can equate any of the

coefficients of g, g′ or g′′ to zero. This can be used to establish that [25]

kaka = 0 ⇒ ka∇aψ = 0, (3.10)

2kb∇bαa = −αa∇bkb. (3.11)

Using equation (3.10) together with equation (3.9) shows that the light rays parallel to ka are

null geodesics, as expected. The second of (3.10) shows that

ka∇aψ =
dψ

dv
= 0, ⇒ dg

dv
=

dg

dψ

dψ

dv
= 0, (3.12)

so that ψ(xa) is constant along the path of the ray. The surfaces ψ = const. therefore define the

future lightcones of the emitter. The constancy of the signal g(ψ) along the rays also implies

that the information it conveys remains unchanged. Finally, equation (3.11) establishes that

(see the discussion in §7.1 of [25])

1. the polarisation of light is unaffected by the curvature of spacetime (at least when ignoring

the small terms in (3.8)),

2. the magnitude of the amplitude propagates as

d

dν
α2 = −α2∇aka. (3.13)

The ansatz (3.8) seems to be sufficient to contain the solutions to (3.7) that we are seeking

which therefore justifies the use of the geometric optics approximation to make astrophysical

observations. In almost-FLRW expanding spacetime it is also possible to establish, at large

distances from an isolated systems, that (3.8) is a necessary solution to (3.7). However, light

propagation in general perturbed models of the Universe can have subtle consequences [66, 67]

which merit careful scrutiny. Note that a solution to (3.7) is required if we are to infer the

properties of astrophysical objects from observations made with earth based detectors. An

observer moving with four velocity ua will then be able to relate the measured Fab (determined

from the measured electric Ea and magnetic Ba components using (3.1)) to Fab at the source.

1Since the Ricci curvature R ∼ 1
l2

, where l is the curvature length scale, an equivalent statement is that the

spacetime curvature is small compared to the frequency ν of the wave squared i.e. R << ν2.
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3.2 Redshift

Observations are usually reported as functions of redshift, where the redshift z of a source is

defined as

z :=
λo − λe
λe

=
∆λ

λe
.

Here λ is the wavelength and the subscripts e and o label the emitter and observer respectively.

As discussed in 2.1 the quantity −uaka is proportional to the photon energy E = hν measured

by and observer travelling with ua. If we assume that both the emitter and observer are

fundamental observers, then the cosmological redshift can be found from

1 + z =
λo
λe

=
νe
νo

=
(uak

a)e
(ubkb)o

= (uak
a)e, (3.14)

Since observational coordinates are defined in terms of past pointing ka, the difference between

future and past pointing vectors is a source of potential confusion in the above expression. The

direction must be chosen consistently at both emitter and observer. However, since it is the

observer that will see the redshift, we note that

ka = −(1 + z) (ua + ea) , where ea =
habk

b

(−uckc)
(3.15)

is always used for past pointing ka. This establishes that

1 + z = kau
a = ∂awu

a ⇒ u0 w
= 1 + z and u1 w

=
A(1 + z)2 − 1

2(1 + z)
, (3.16)

where we have used the properties of the ka (2.78) to find u0 in observational coordinates and

then used the normalisation uau
a = 1 with the form of the metric (2.86) to find u1. Also, in

a universe with vanishing vorticity, we know that ua = −∂aτ . In comoving coordinates this

implies2

1 + z = uak
a = −∂aτka, ⇒ k0 τ

= −(1 + z) and k1 τ
=

1 + z

X
, (3.17)

where we have used the property of null vectors kak
a = 0 as well as the metric (2.59) to obtain

the form of k1 in comoving coordinates. Finally, we can use the above expressions to evaluate

the form of the instantaneous direction of propagation of the ray ea in both coordinate systems.

For completeness we quote the result here

e0 w
= −(1 + z), e1 w

= −−A(1 + z)2 − 1

2(1 + z)2
, e0 τ

= 0 e1 τ
=

1

X
. (3.18)

From the expressions for ua, ka and ea it is clear that the redshift already provides some

kinematic information. However we should keep in mind that in reality there are a number

2Since uak
a = −1

a(t)
in FLRW this also justifies our assertion that a0

a
= 1 + z in §2.3.1.
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Figure 3.1: The v(z) relation corresponding to our ΛCDM reference model defined by the

parameters shown in Table 2.1. Note that v(z) tends to an asymptotic maximum indicated by

the dashed line in the figure.

of different contributions to the redshift. Examples include Doppler shifts induced by peculiar

motions and a possible gravitational contribution to the redshift due to inhomogeneities in the

gravitational potential. In what follows we assume that the reported redshift for any particular

data set is the true cosmological redshift and neglect these additional contributions. For brevity

we will sometimes use the shorthand notation u = 1 + z where it should be understood that z

is the true cosmological redshift.

3.2.1 The v(z) relation

Next we obtain the null affine parameter as as a function of redshift. Substituting (3.15) into

the null geodesic and projecting along the direction of propagation of the ray gives

eakb∇bka = −eadz

dv
(ua + ea) + ea(1 + z)2(ub + eb) (∇bua +∇bea) = 0,

dz

dv
= u2eaeb∇bua. (3.19)

If the vorticity and acceleration term in the decomposition of ∇bua can be neglected, the last

term on the right can be identified as the observed expansion rate Hobs defined in (3.25) below.

Thus the affine parameter as a function of redshift can be found by integrating (3.19)

dz

dv
= (1 + z)2Hobs ⇒ v(z) =

∫ z

0

dz∗

(1 + z∗)2Hobs(z∗)
. (3.20)
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Note that the v(z) relation is not in general observable. In FLRW and ΛLTB universe it follows

from the existence of the fundamental four velocity and the vanishing of the acceleration and

vorticity of (2.31). As opposed to the FLRW case where the acceleration vanishes by default

(because of homogeneity), it would no longer be an observable relation in spherically symmetric

universes with non-vanishing pressure. The v(z) relation is central to our formalism because

v(z) is monotonically increasing as long as Hobs(z) is everywhere positive (see Figure 3.1). This

is a major advantage of using y = v instead of y = D since the D(z) (see Figure 3.3) becomes

multivalued beyond a certain limiting redshift which introduces additional boundary conditions

when finding the solution numerically.

3.2.2 Redshift drift

In an expanding universe the redshift of an object does not remain constant over time. The

evolution of redshift with proper time along our galaxy worldline is known as the redshift drift.

It is possible to derive an expression for it in spherically symmetric observational coordinates

by considering a 1st order Taylor expansion of z(w0 + δw, v0 + δv) into

z(w0 + δw, v0 + δv) = z(w0, v0) +
∂z

∂w
|v=const.δw +

∂z

∂v
|w=const.δv. (3.21)

Taking the limit of infinitesimal δw then gives3

dz

dw
= ż|v=const. + z′|w=const.

dv

dw
. (3.22)

When ds2 6= 0 we can use the observational metric to evaluate dv
dw

as

− dτ2 = −Adw2 + 2dwdv = −dw2

(
A− dv

dw

)
, ⇒ dv

dw
=

1

2

(
A− 1

u2

)
, (3.23)

where we have used dτ
dw

= 1
u . Recognising that

ż|v=const. = u̇ and z′|w=const. =
dz

dv
= u2H‖

then gives

dz

dw
= u̇+

u2H‖

2

(
A− 1

u2

)
. (3.24)

This describes the change in redshift as a function of proper time along C. We will denote it

as δz
δw emphasising that it is not an on-the-lightcone observable. It is in principle completely

model independent and, as we show in §6.3, will be very valuable to the observational cosmology

programme (see also [68, 69, 70, 71, 72, 73]). There are a number of observational difficulties

3Note that δv → 0 as δw → 0
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involved in actually measuring it though. In a ΛCDM universe the redshift drifts by approx-

imately 10−8 per century at z ≈ 1 (see Figure 3.3). Obtaining redshift drift data therefore

requires the ability to measure redshifts to extreme precision. This is one of the design goals

of the E-ELT’s CODEX spectrograph [74] which faces a number of challenges [75]. Getting an

accurate observation of the redshift drift will inevitably involve averaging the redshift drift of

a large number of sources measured to fall within certain redshift bins (see the discussion in

6.3). The data will therefore have both vertical (i.e. uncertainty in δz
δw ) and horizontal (i.e.

uncertainty in z) error bars. This is an effect that we completely neglect in the simulations of

§6.3. Properly accounting for the uncertainty in redshift requires knowing the uncertainty in

the reported redshifts of the other observables. The possibility of incorporating uncertainty in

redshift is briefly discussed in § 7.

3.3 Expansion

3.3.1 The longitudinal and transverse expansion rates

The existence (and differentiability) of the fundamental four velocity can be used to define a

generalised Hubble relation in therms of the kinematic quantities of §2.2.2 as (see §4.6 of [25]

for example)

Hobs :=
1

3
Θ + σabe

aeb + eau̇a, (3.25)

Note that it does not necessarily refer to the same expansion rate as that in the Friedmann

equation. Spherically symmetric universes can expand in two different directions. This is

readily evident from the comoving form of the spherically symmetric metric (2.59), where the

two different scale factors make it clear that the Universe can expand differently in directions

longitudinal and transverse to our line of sight. Evaluating Θ = ∇aua with the metric (2.59)

gives

Θ =
∂tX

X
+ 2

∂tR

R
= H‖ + 2H⊥, (3.26)

which we might have expected since there are two dimensional surfaces (the screenspace) trans-

verse to each one dimensional line of sight. Direct evaluation of (3.25) using the metric (2.59)

shows that Hobs = H‖ in spherical symmetry. This is not surprising because we do, after all,

observe along the radial direction. Evaluating (3.25) with the observational metric (2.86) gives

H‖ = u̇+
u′

2u2
+
u′A+ uA′

2
=
u′

u2
, (3.27)

where the last step can be inferred directly from (3.20) or by using the MCE (4.15). The first

expression will mainly be useful to derive the form of H⊥ below. The derivative H‖,z required
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to compute the consistency relation (3.52) can therefore be written as

d

dz
H‖ =

dv

dz

d

dv
H‖ =

1

u2H‖

(
u′′

u2
− 2

(u′)2

u3

)
=

u′′

u2u′
− 2

u′

u3
. (3.28)

To derive an expression for H⊥ we note that, since Θ is a scalar, the RHS of (3.26) must hold

in any coordinate system. Computing Θ with the observational metric (2.86) gives

Θ = u̇+
uA′

2
+
u′A

2
+

u′

2u2
+

2uḊ

D
− D′

uD
+
uD′A

D
, (3.29)

from which the transverse expansion rate can be found as

H⊥ =
1

2

(
Θ−H‖

)
=

1

D

(
uḊ − D′

2u
+
uAD′

2

)
. (3.30)

Since H‖ = H⊥ in any FLRW geometry these expressions can be used to test for radial inho-

mogeneity down the PLC. In particular we can form the dimensionless quantity

T1 = 1− H⊥
H‖

,

= 1− u3

u′D

(
Ḋ − D′

2

(
1

u2
−A

))
. (3.31)

which should be zero in the absence of radial inhomogeneity. This expression will be used as a

consistency relation to test the Copernican principle in §6. There we will also use the numerical

solution to the field equations to reconstruct T1 on the inside of the PLC. Note that, in a real

lumpy universe described by FLRW + perturbations, the quantity T1 will only vanish in the

background. Thus, even if the CP holds, T1 will not turn out to be exactly zero. However, the

covariance of the reconstructed distribution T1 should lie within that predicted for a perturbed

FLRW universe. In spherical symmetry we are only interested in its covariance down the PLC

i.e. < T1(z), T1(z̃) > say. An estimate of the expected magnitude of this quantity is therefore

required. Unfortunately this is beyond the scope of the current research (however see the

discussion in §6.4).

Note that T1 is related to the matter shear σab. To see this, consider a spherical distribution of

matter located somewhere along the PLC0 within a redshift bin, ∆zi say. If the expansion in

the radial and transverse directions are not equal then this spherical distribution would become

deformed, becoming oblate if H⊥ > H‖ and prolate otherwise. Baryon acoustic oscillations

(BAO) [76] should place very tight constraints on the expected magnitude of < T1(z), T1(z̃) >

(see [77, 78]). However this will only be feasible when surveys become sensitive enough to

separate the radial and transverse BAO scales, something that is difficult to do in a model

independent way (however see [79]). Future surveys (e.g. intensity mapping surveys [80]) can in

principle map the growth of structure with redshift and separate the transverse from the radial

BAO scales. It should therefore be possible to constrain < T1(z), T1(z̃) > directly with projects

such as the SKA, for example.
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3.3.2 Cosmic chronometers

The cosmic chronometer approximation of passively evolving galaxies (PEGs) can be used to

measure H‖(z) [81]. First note that applying the chain rule the first of (3.20) and using (3.17)

gives

H‖(z) =
−1

(1 + z)

dz

dt
, (3.32)

Thus the longitudinal expansion rate follows directly from the knowledge of dz
dt

. PEGs are

galaxies that are not undergoing significant star formation. These are mainly red galaxies

whose light is dominated by old stellar populations, many of which have been identified [82, 83].

We will not go into the details (which are well documented in [84, 85, 86, 87]) but simply outline

the main idea. The essential feature of PEGs is that an observable feature of their spectra, called

the 4000Å break and denoted D4000, is very nearly a linear function of their age ta i.e.

D4000 = A(SFH,Z) · ta +B, (3.33)

where A(SFH,Z) is a factor that depends on the star formation history SFH and metallicity

Z. This factor can be calibrated using stellar population synthesis (SPS) models (see [88]

for example). Here B is another factor which is sensitive to a large number of statistical

and systematic uncertainties. The differential dating technique avoids the majority of these

uncertainties. This can be seen by using (3.33) to rewrite (3.32) as

H‖(z) = −A(SFH,Z)

1 + z

dz

dD4000
, (3.34)

in which the B factor cancels out. Thus, by calibrating A(SFH,Z) with SPS models, H‖(z)

can be found by binning together PEGs at different redshifts and computing dz
dD4000

. There are

obviously a number of assumptions involved which can effect the systematics. The most relevant

to the current discussion is the assumption that all PEGs formed at approximately the same

time. This assumption is required to compare galaxies at different redshifts. As pointed out in

[89], the assumption is not strictly valid in inhomogeneous models of the Universe because galaxy

formation time can depend on position in ΛLTB models. Note that the authors of [84, 85, 86, 87]

state quite explicitly that they analyse these data within the FLRW framework. Thus, in

principle, it is possible to get H‖(z) in this way because the relation (3.32) holds true in both

FLRW and ΛLTB models. For the time being we should make explicit an additional assumption

which is necessitated by the availability, or lack thereof, of current model independentH‖(z) data

viz. that galaxy formation starts, peaks and eventually falls off as predicted by the concordance

model. Unfortunately this is a bit circular since the concordance model is the one under scrutiny.

It might be possible to quantify the additional uncertainty introduced when this assumption
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is not valid by properly analysing perturbations in radially inhomogeneous universes. Linear

perturbations in LTB models are investigated in [90], for example.

The H‖(z) data used in this work were taken from [86] and [87] and are shown in Figure 3.3.

Given the above assumption on the formation time of galaxies, we have to keep in mind that

these data are inevitably biased towards models that were fairly homogeneous at early times

(i.e. in models where the bang time tB(r) is constant). Allowing for the possibility of a varying

formation time will increase the width of the error bars on the H‖(z) data. This would result

in a widening of the reconstructed contours in the simulations performed in § 6.2 and will not

alter the conclusions drawn from currently available data.

3.4 Distance

Distance, being the cornerstone of 20th century cosmology, is an essential astrophysical ob-

servable. Note that there are multiple notions of distance in cosmology some of which are not

directly observable. Currently the most reliable way to measure cosmological distances is by

treating supernovae of type Ia as standard candles [91]. This will probably remain true for some

time [92]. The essential thing to realise though is that it is not actually the distance that is

measured. The quantity that is measured is related to the flux passing through the surface of

a detector. We therefore have to relate the observed flux to distances in cosmology.

3.4.1 Flux, luminosity and distances

The Maxwell energy momentum tensor is defined as

T ab = −F acF b
c −

1

4
gabFcdF

cd. (3.35)

In the geometric optics approximation (3.8) it therefore takes the form

Tab = α2(g′)2kakb. (3.36)

An observer with four velocity ua finds the instantaneous flux F across a surface perpendicular

to ka to be

F = Tabu
aub = α2(g′)2(kau

a)2. (3.37)

However detectors do not measure F . In practice the output from a detector is a time varying

complex valued voltage for each frequency in the bandwidth it is sensitive to. Simplifying things

a bit, the weighted time averages of these voltages can be turned into an observed flux F which

can then be used to define the apparent (bolometric) magnitude m of the source as

m := −2.5 log10 F + const., (3.38)
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where the constant term on the right must be calibrated. This is usually done by insisting that

the distance modulus µ vanishes at 10pc, where µ is defined as

µ := m−M = −2.5 log10

F

F10
. (3.39)

Here F10 is the flux of a source observed at a distance of 10pc and M is its absolute magnitude.

It does not really matter which distance is used because they are all approximately equal to the

Hubble distance DH0 = c
H0

on scales below 10 Mpc. The Hubble constant is therefore the main

cosmological parameter involved in calibrating the absolute magnitude. Strictly speaking we

get a different µ(z) relation for each value of H0 which should therefore be marginalised over in

the analysis. This is an added level of detail that will not significantly alter our conclusions in

§6. Opting for simplicity, we will therefore neglect the marginalisation in the current work and

simply comment on how it could be expected to affect our results (see the discussion in §6.4).

Next we relate µ to cosmological distances.

Consider the cross sectional area dS of a congruence of null geodesics diverging from a source.

Then it can be established, for a source emitting isotropically, that

FdS =
L

4π

dΩ

(1 + z)2
. (3.40)

Here L is the total luminosity of the source

L =

∫
S

(1 + z)2FdS, (3.41)

where the integral is taken over the surface of a sphere surrounding the source. Referring to

figure 3.2, the source area distance rs is defined by the relation

dSo = r2
sdΩs, (3.42)

where dΩs is the solid angle at the source and dSo is the cross sectional area at the observer.

Since the choice of sphere to surround the source with is arbitrary, we could choose a sphere

with radius rs. However rs is not directly observable. To turn (3.40) into an observable relation

we further define the luminosity distance as

DL := (1 + z)rs, (3.43)

in which case the flux is related to DL via

F =
L

4πD2
L

. (3.44)

Note that the cosmological model is not involved in the definition of DL so that a model

independent observation of the luminosity distance can in principle be determined from flux
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Figure 3.2: A demonstration of the areas and angles at the observer and source. This figure is

inspired by Figure 7.1 of [25].

measurements. In practice the total luminosity of an arbitrary source is not usually known.

However, note from (3.44) that the luminosity distances of two objects, one at a redshift of z∗

and another at redshift z say, are related by

DL(z)

DL(z∗)
=

√
LF ∗

L∗F
, (3.45)

where L∗ is the luminosity and F ∗ the flux of the source located at z∗. The idea behind standard

candles is to identify and relate objects with known and effectively constant luminosities (more

accurately reproducible light curves). In this case, if we know DL(z∗) and z∗ say, the luminosity

distance of the source located at a redshift z can be determined by measuring the ratio of the

fluxes i.e.

DL(z) = DL(z∗)

√
F ∗

F
. (3.46)

The luminosity distance therefore relates to the distance modulus via

µ = 5 log10

DL

10pc
. (3.47)

Another common distance measure in cosmology, the area or angular diameter distance D, is

defined by considering a bundle of rays diverging from the observer to the emitter. The ray

bundle will subtend a solid angle dΩo with cross sectional area dSs at the source i.e.

dSs = D2dΩo. (3.48)

Given some prior knowledge about source, so that dSs can be estimated, we can deduce D

from the measured value of dΩo. The BAO defined a standard ruler which can be used, at
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least in perturbed FLRW models, to determine dSs and hence the angular diameter distance

D. When the size of an object (i.e. dSs) is difficult to estimate it is useful to relate the angular

diameter distance to the luminosity distance. This is possible as long as the number of photons

is conserved and they travel along unique geodesics in which case the two distances are related

by [93]

DL = (1 + z)2D. (3.49)

This result, known as the reciprocity or distance duality relation, will be used to convert µ(z)

into D(z) data. Next we derive another consistency relation which must hold in FLRW models

and can hence be used to test the CP.

As proposed in [78] it is possible to formulate a test of the CP that is in principle independent of

the matter content and particular theory of gravity employed. This can be done by investigating

the consistency between distances and the expansion rate. The two main geometric effects on

distance measurements are:

1. curvature bends null geodesics,

2. expansion changes radial distances.

In FLRW these two effects are coupled via the relation (assuming distance duality)

D =
1

uH0

√
−ΩK0

sin

(√
−ΩK0

∫ z

0

dz∗

H(z∗)

)
. (3.50)

This gives ΩK0 in terms of H(z) and D(z) as

ΩK0 =
[H (uD,z +D)]2 − 1

[H0uD]2
. (3.51)

Since ΩK0 is expected to be independent of z this expression can be derived to yield a quantity

that should be zero in FLRW models viz.

T2 = 1 +H2
[
u2(DD,zz −D2

,z)−D2
]

+ uHH,zD [uD,z +D] , (3.52)

where we use H = H‖ since it is the radial expansion that effects radial geodesics. Note

that although this quantity is in principle independent of the matter content and theory of

gravity employed, the quantity that we reconstruct is not. This is because we use one of the

field equations to constrain D(z) and its derivatives. Accurately correlating and reconstructing

derivatives of D(z) and H‖(z) in a non-parametric way is a very difficult task otherwise. Similar

ideas as those regarding the expected value of T1 in perturbed FLRW models (see the discussion

in §3.3) apply to T2 as well.
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3.4.2 Standard candles

A standard candle is any astrophysical object whose luminosity is reproducible because of some

characteristic shared by the entire class of such objects. Because of their characteristic light

curves and high absolute luminosity, supernovae of type Ia (SNe Ia) are currently considered as

the best standard candles for cosmology. Supernovae are amongst the best studied astrophysical

objects with a long history devoted to understanding the physical mechanisms by which they

occur (see for example [94, 95, 96, 97, 98, 99]). The focus of this section is on the assumptions

that go into using SNe Ia to measure cosmological distances (see [91] and references therein for

a detailed review).

All supernovae events are believed to be star explosions and are divided into two main classes

viz. type I and type II. Type II supernovae (SNeII) exhibit hydrogen lines in their spectra

and are typically fainter than type I supernovae (SNeI) which do not have hydrogen lines in

their spectra. SNeI are further subdivided into three categories labelled by a, b and c. As

well as the empirical relation between the peak and width of their luminosity curve, SNe Ia are

characterised by the existence of a silicon absorption line in their spectra. Neither SNeIb or

SNeIc exhibit silicon absorption lines, they are distinguished by the fact that SNeIb display a

helium line, whereas SNeIc do not. All but SNe Ia are thought to be core-collapse explosions,

the progenitors of which are massive stars. At the end of their lifetimes these stars start running

out of fuel at which point, since the fusion chain is only exothermic up to iron nuclei, all further

fusions are endothermic. These endothermic processes reduce the pressure generated from heat

radiation which is subsequently overcome by the gravitational attraction and the star’s core

collapses. Most of the time these events result in the formation of a neutron star or black

hole. Core-collapse supernovae can arise from progenitors with very different properties (e.g.

wide range in mass, chemical abundance etc.). They therefore exhibit a broad variation of

luminosities which makes it difficult to standardise their lightcurves.

SNe Ia on the other hand are thought to occur in binary systems when a carbon-oxygen white

dwarf (WD) accretes the mass of its companion star up to a certain mass threshold called the

Chandrasekhar mass MChan ≈ 1.4M� [100]. Unlike the massive stars above, the gravitational

attraction in WD stars is opposed by the Fermi pressure exerted by a degenerate electron

gas. They are much colder than stars still undergoing nuclear fusion. When the mass of the

WD reaches MChan the Fermi pressure is no longer able to balance the gravitational attraction.

This causes the overall temperature to increase to a value high enough to trigger carbon fusions,

initiating a fusion chain that can burn up all the material in the star within a short space of

time [101], typically thought to be of the order of seconds. Although there are a number of
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observational facts that support this paradigm, there is also some ambiguity about the path to

the initial state [102, 103, 104]. Since the Chandrasekhar mass has to be reached from below, the

WD has to gain mass by some mechanism. There are two obvious ways by which the WD can

gain mass from its companion in a binary system. Firstly, it could slowly be accreting the surface

elements, the most likely candidates being H and He, from a non-degenerate companion. In this

case the absence of H and He in SNe Ia spectra is difficult to explain. Another possibility, which

would explain the absence of H and He, is if the WD has another degenerate companion. The

loss of orbital angular momentum to gravitational radiation will eventually result in a merger.

However, while the expected merger rate from stellar population synthesis models is compatible

with the frequency at which SNe Ia are observed, this scenario does not naturally result in

an initial state with mass approximately fixed at MChan. Thus there remains considerable

uncertainty in the exact mechanism by which SNe Ia occur. However the fact of the matter

is that they exhibit highly reproducible light curves and therefore do make good standard

candles. Of course there are outliers but these are excluded from the analysis when the aim is

to determine cosmological distances.

Cosmological distances are determined from SNe Ia by fitting a model to the lightcurves obtained

from some instrument (see [105] for example). A lightcurve is a measure of intensity as a function

of time but it is often plotted as normalised flux vs. phase or as magnitude vs days of maximum

brightness. All are equivalent. Many different instruments are used to measure lightcurves in

different frequency bands. The most consistent band for SNe Ia is the B band, the U band for

example is sensitive to the lightcurve model. The union 2.1 compilation [4] uses the SALT2

technique [106] which fits three parameters for each SNe Ia viz. an overall normalisation to the

time dependent spectral energy distribution (SED) x0, the deviation from the average lightcurve

shape x1 and the deviation from the mean SNe Ia B − V colour c. The parameters x1, c and

the integrated B− band flux at maximum light mmax
B are then combined with the host mass in

a distance modulus model of the form

µB = mmax
B + αx1 − βc+ δP (mtrue

? < mthreshold
? )−MB, (3.53)

where MB is the absolute B−band magnitude of the SN Ia with x1 = 0, c = 0 and P (mtrue
? <

mthreshold
? ) = 0. The parameter α therefore characterises the brighter-slower (lightcurve width)

relationship and β the brighter-bluer (lightcurve color) relationship. The parameter δ is included

to account for the fact that SN Ia are known to correlate with the mass of the host galaxy even

after correcting for the lightcurve width and color [107] which could bias the cosmological

results [108]. The essential point to notice here is that, once the data fixes mmax
B , x1 and

P (mtrue
? < mthreshold

? ), the likelihood depends on the parameters α, β, δ and MB. These details



50 3. KINEMATICS AND OBSERVABLES IN SPHERICAL SYMMETRY

will play no further role in the remainder of the thesis. Our reasons for mentioning them is

simply to point out that there are multiple nuisance parameters, not excluding the absolute

magnitude, involved when fitting a cosmology with SNe Ia data. The authors of [109, 105, 4]

all advocate performing a blind analysis in which the nuisance parameters are inferred (and

marginalised over) simultaneously with the cosmology. Such an analysis would be most in line

with the bottom up approach we are pursuing in this work. However, note that an unbiased

treatment of the systematics would have to adopt a blind analysis for all the data sets used

i.e. simultaneously marginalising over the nuisance parameters involved in all data gathering

processes. Unfortunately such an analysis is beyond the scope of the current research. In §5.3

we simply indicate how the algorithm presented in §5.3.3 could be modified to perform such a

blind analysis.

The D(z) data used in this work are shown in Figure 3.3. These data points were obtained from

the µ(z) of the Union 2.1 supernovae data [4] by first using (3.47) to convert to DL(z) and then

(3.49) to get D(z). The fact that we do not explicitly marginalise over the nuisance parameters

inevitably biases the analysis towards ΛCDM models. However, since ΛCDM is contained within

ΛLTB, it is unlikely that the marginalisation will significantly affect the mean values obtained

in our simulations in § 6. It will, however, most probably widen the reconstructed contours in

all the figures. This does not alter the conclusions drawn from the simulations on real data (see

the discussion in § 6.2).

3.5 Density

The total energy density of the Universe is very difficult to measure in a model independent

way. The most direct way to do this, dubbed number counts by Ellis in 1971 [29], is to count

the number of objects observed out to a certain volume, V say. This gives the observed number

density nobs of sources within V which, given the masses (or mass to luminosity ratio) of the

sources, can then be converted into a density measurement. However, since the luminous matter

only accounts for a small portion of the total matter in the Universe, there are already a number

of assumptions involved in translating the observed number density nobs into a proper number

density, n say. Here we will attempt to highlight some of the difficulties involved in obtaining a

model independent measurement of the density from galaxy redshift surveys and then present an

alternative method to obtain the density in ΛLTB models. Note that it is in principle possible

to count any class of objects to obtain number count data. Our discussion will be limited to

galaxy number counts but it would also be possible to count galaxy clusters, for example. In this

case the galaxy cluster mass function (see [110] for example) provides an alternative to using
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the galaxy luminosity function discussed below. However, such an approach will share many of

the same difficulties and, as with galaxy number counts, also requires assuming a cosmological

model.

3.5.1 Number counts

Our discussion regarding relativistic number densities and the luminosity function will be some-

what superficial. The aim of this section is simply to point out where assumptions about the

cosmological model enter the analysis. Further details can be found in [111, 112, 113] with an

analysis devoted to number densities specifically in void LTB models presented in [114, 115].

We start by deriving an expression for the number density of sources in spherical symmetry.

Let dN denote the number of sources detected in a bundle of rays for a small affine parameter

displacement v to v + dv. If ka is the tangent vector to a past directed null geodesic, then this

corresponds to a distance dl = (kaua)dv. The cross sectional area of the bundle is given by

dS0 = D(w0, v)2dΩ so that the volume increment is just dV = dldS0 = (kaua)D(w0, v)2dvdΩ.

Denoting the number density of sources at an affine parameter distance v by n(v), the number

of sources detected in the volume increment dV is given by dN = n(v)dV . Assuming that the

true number density n(v) can be related to the observed number density nobs(v) by a function

f(v) such that n(v) = f(v)nobs(v), the number of sources included up to some distance v∗ is

given by

N(v∗) = dΩ

∫ v∗

0
f(v)nobs(v)(kaua)D(v)2dv. (3.54)

The assumption of isotropy gives the total number of sources over the whole sky up to a distance

v∗ as

N(v∗) = 4π

∫ v∗

0
f(v)nobs(v)(kaua)D(v)2dv. (3.55)

The v(z) relation (3.20) then allows us to write this in terms of the redshift as (here z∗ is the

value of z at v∗)

N(z∗) = 4π

∫ z∗

0

f(z)nobs(z)D(z)2

uH‖(z)
dz, (3.56)

where we have also used uak
a = 1 + z. Given number count data we can get n(z) by direct

differentiation

dN

dz
= 4π

f(z)nobs(z)D(z)2

(1 + z)H‖(z)
⇒ n(z) =

(1 + z)H‖(z)

4πD(z)2

dN

dz
. (3.57)

Since luminous matter only accounts for a small portion of the total matter in the Universe,

and because it is a biased tracer of the non-baryonic matter [116], a relation between the

luminous and dark matter in the Universe needs to be specified. This is compounded by the

fact that real detectors only detect sources above a certain flux cut. Deciding what fraction



52 3. KINEMATICS AND OBSERVABLES IN SPHERICAL SYMMETRY

of galaxies lie above this flux cut is very difficult to do in general and is usually where the

assumption of spatial homogeneity is invoked (see the discussion in [115]). In this sense the

function f(z), which relates n(z) = f(z)nobs(z), is called the selection function and n(z) is

the number density of galaxies out to a redshift of z. However, because the resolution of any

particular instrument is limited in practice, it is not possible to count this number directly, at

least not for galaxies. Instead what is actually measured is the luminosity (more accurately

the flux) behind a certain patch of sky and within a specific redshift bin. The link between

observation and theory is provided by the galaxy luminosity function (LF), often denoted by φ,

which expresses the number density of sources per unit of luminosity (see [117] for a review).

Furthermore, this approach yields number densities within each frequency band used for the

survey. These need to be combined in some way to obtain the total number density n(z). To

obtain the total matter density ρ(z) from n(z) requires a number of additional assumptions.

Probably the most direct way to do this is to estimate the total mass (of both visible and

dark matter) for each source in the survey. In a perturbed FLRW model the Press-Schechter

formalism [118] (or something similar, see [119] for example) provides a possible way to do this.

Ideally such an analysis should also incorporate the evolution of galaxy bias with redshift [120].

For inhomogeneous cosmologies it is often assumed that (see [114, 115] for example), on average,

all galaxies contain approximately the same amount of matter. This is not really a satisfactory

assumption within the bottom up approach that we are pursuing in this research.

Furthermore, it is practically impossible to determine the angular diameter distance to each

galaxy in the survey. The distance to the galaxy therefore has to be deduced from its redshift,

using SNe Ia as discussed above for example. Clearly there is some work to be done before we

can extract reliable and model independent ρ(z) data from galaxy redshift surveys. However,

since spherically symmetric models of the Universe have only two free functions, it is always

possible to deduce ρ(z) once these two functions have been fixed. In observational coordinates

there exists a relatively simple relation connecting ρ to D and H‖ which we will exploit later

on.

3.5.2 Density from D(z) and H‖(z)

One of the field equations resulting from the metric (2.80) in a universe containing dust can be

written as (see §4.1)

ρ = − 2D′′

κu2
1D

, (3.58)

with a prime denoting, as usual, differentiation with respect to v. This provides a clear way

to obtain the density from H‖(z) and D(z) measurements viz. use H‖(z) in the expression
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(3.20) to get v(z) and then, since v(z) is invertible, also u1 = 1 + z(v), D(v) and (by numerical

differentiation or otherwise) D′′(v). Once ρ(v) has been obtained the v(z) relation gives ρ(z).

This is remarkably simple only in principle, in practice it is very difficult to prescribe H‖(z)

and D(z) independently. To see this, apply the chain rule to D and use (3.20) to write the

derivatives as

D′ = u2H‖D,z, D′′ = 2u3H2
‖D,z + u4H‖H‖,zD,z + u4H2

‖D,zz. (3.59)

These expressions show that H‖(z) and D(z) cannot be specified independently in ΛLTB models.

In §5.3 we explain how to circumvent this by specifying a priors for ρ(z) and H‖(z) and then

inferring their posterior distributions from the available data. Once the posterior of ρ(z) is

known on the PLC0 it can in principle be used to work backwards to find n(z). This is a

possible application of the code that will be discussed further in §7. Note that the form of

(3.58) does not seem to prohibit specifying H‖(z) and ρ(z) independently, at least on the PLC0.

In §4.5.4 we will verify that this is indeed possible.

The relation (3.58) actually plays a major role in this formalism. A number of interesting

facts can be derived from it. In particular, note that observations of D(z), H‖(z) and ρ(z)

can’t constrain the value of Λ, no matter how precise they are. The absence of Λ from this

equation also illustrates that LTB models can fit D(z) data arbitrarily well by adjusting the

two functions ρ(z) and H‖(z) (which can be freely specified on any single PLC). As evidenced

by the remaining field equations (see §4.1), the value of Λ does however affect the evolution of

these function from one PLC to the next. Actually the evolution histories of LTB and ΛCDM

models with nearly identical D(z) and H‖(z) relations on the PLC0 are very different (see for

example [121]). We therefore briefly turn to an additional piece of information that will allow

us to also infer the value of Λ and hence the form of the cosmological metric on the inside of

the PLC.

3.6 Age of the Universe

The age of the Universe t0 along C follows from integrating the H⊥(R) relation (2.64) in ΛLTB

models. This value depends on the values of both free functions at the vertex as well as the

value of Λ. Together with D(z) and H‖(z) data, a model independent observation of t0 therefore

completely determines the ΛLTB model. While it is possible to put a lower bound on t0 by age

dating the oldest observed objects in the local vicinity of our galaxy, an upper bound is not as

forthcoming, at least for the time being. Three commonly employed methods to determine the

ages of stars are:
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• nucleochronology,

• cooling of white dwarf stars,

• main sequence turn-off ages from stellar evolution models.

We will not delve into the details, which can be found in [122, 123, 124, 125, 126] for example,

since, as we show in §6, redshift drift data are able to provide strong constraints on the value of

Λ. Doing so will also not be worth the effort because, as we will see, the current bound on the

minimum age of the Universe tmin does not place stringent constraints on the free functions of

the model. Simply put, once the age of a star has been determined, it places a lower bound on

the age of our galaxy, tgal say. In order to derive a minimum bound on the age of the Universe,

we also need to know how long after the big bang our galaxy formed. Galaxy formation is

expected to have begun between z = 20 and z = 5 which, in a ΛCDM model, corresponds

roughly to 0.1 - 2 Gyr respectively. A conservative (but not completely model independent)

estimate of the age of the Universe is therefore tmin ≥ tgal + 2 Gyr. We will use the bound

derived, using nucleochronology, in [127] viz. tmin = 15.2±2.7 Gyr. Since this is a lower bound

we only allow it to contribute to the likelihood when t0 < tmin, where t0 is found by integrating

the H⊥(R) relation. This is explained further when we discuss our likelihood model in §5.3.3.
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Figure 3.3: The observables as a function of redshift for corresponding to our ΛCDM reference

model defined by the parameters shown in Table 2.1. Also shown are the D(z) Union 2.1

supernovae data [4] and the H‖(z) cosmic chronometer data [87].



4

Numerical ΛLTB solution

The Einstein field equations can be formulated as a characteristic initial1 value problem in which

the characteristics are radial null geodesics. The original numerical scheme used to integrate

the field equations was developed, first for the case of a non-linear scalar wave [128], and then

applied to the Einstein equations in [129]. Based on the formalism introduced by Bondi, Sachs

and collaborators in the 1960’s [62, 63], the codes of [128, 129] were used to study gravitational

radiation. Since the Bondi-Sachs formalism uses a metric based on outgoing null geodesics it can,

with some modifications, be adapted for the cosmological problem. In particular it was shown

that the codes of [128] and [129] could be adapted for cosmology by changing the direction

of integration in the “time” coordinate, effectively considering incoming instead of outgoing

geodesics. These modifications were first implemented in [130]. Further developments followed

in [121] where it was realised that the radial coordinate used in [130] (i.e. the angular diameter

distance D) was not very well suited for going out to high redshifts. Because of the apparent

refocusing of the angular diameter distance, D(z) is not one-to-one over the whole domain of

the problem. To go beyond this point the formalism was adapted to use the null geodesic affine

parameter v instead. This led to the publication of the affine CIVP code which is described

in depth in [131]. The affine CIVP code uses a metric based on outgoing instead of incoming

null geodesics and simply reverses the direction of integration to get the past lightcone of the

observer. In this chapter we adapt the affine CIVP code into a numerical scheme (henceforth

referred to as the CIVP) more directly suitable for observational cosmology. We also test the

convergence of the code when the initial data is specified in a non-parametric way.

1For observational cosmology it is actually more appropriate to call it a final value problem because we start

with data at the final state and evolve backwards in “time”.
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4.1 Structure of the Equations

In their raw form the field equations (2.6) for the metric (2.86) in a dust universe are

1

2
AA′′ − 2

D̈

D
+
A′Ḋ

D
− D′Ȧ

D
+
AA′D′

D
=

1

4
κ
( ρ
u2

+ u2A2ρ
)
− ΛA, (4.1)

−1

2
A′′ − 2

Ḋ′

D
− D′A′

D
= −1

2
κu2Aρ+ Λ, (4.2)

−2
D′′

D
= κu2ρ, (4.3)

−2DḊ′ −DD′A′ − 2ḊD′ −A(D′)2 −ADD′′ + 1 =
1

2
κD2ρ+ ΛD2. (4.4)

This form of the equations is not very amenable to computation. Consider that our eventual

aim is to provide initial data for this system in terms of the astrophysical observables discussed

in §3. From our discussion at the end of §2.4 we should expect that fixing two functional degrees

of freedom and the value of Λ provides sufficient information to solve the above system. We

already know that H‖(z) provides the v(z) relation required to convert observations reported

as functions of z to functions of the coordinate v. Using v (as opposed to D) as the radial

coordinate simplifies the treatment of the boundary regions2 making H‖(z) a convenient choice

for one of the free functions. Since the pair [z,H‖(z)] uniquely defines v(z), and because this

relation is always invertible, we will henceforth omit the functional dependence on z and v which

are now completely interchangeable. As was shown in §3.5, ρ can in principle be obtained from

H‖ and D by using (4.3). However, as evidenced by (3.59), the strong interdependence between

D and H‖ makes it difficult to use D as the second free function. A more convenient choice

is to use ρ as the second free function. With this choice we view (4.3) as a differential for

D. The initial condition D′(0) = 1 then allows us to solve for D in a way that enforces its

interdependence with H‖ by construction. With this consideration in mind we therefore cast

(4.2)-(4.4) into a characteristic initial value problem of the form

D′′ = −1

2
κDρu2, (4.5)

Ḋ′ =
1

2D

[
1−DD′A′ − 2ḊD′ −A(D′)2 −ADD′′ − 1

2
κρD2 − ΛD2

]
, (4.6)

A′′ = κAu2ρ− 4
Ḋ′

D
− 2

A′D′

D
− 2Λ, (4.7)

IC’s D(0) = A′(0) = Ḋ(0) = 0, A(0) = D′(0) = 1, (4.8)

where (4.8) are the initial conditions (IC’s) which can be established from the central limit

conditions (2.81) and by using the expressions obtained for the limiting behaviour of the metric

components near C, in particular (2.82). To obtain the solution numerically it is more convenient

2Note that with the choice y = D there would be an additional boundary at the point where D,z = 0.
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to rewrite these equations as a system of first order equations. This is done by introducing new

variables S = D′, Q = Ḋ and Z = A′, in terms of which the above system can be written as

D′ = S, (4.9)

S′ = D′′ = −1

2
κDρu2, (4.10)

Q′ = Ḋ′ =
1

2D

[
1−DSZ − 2QS −AS2 +

1

2
κρD2(Au2 − 1)− ΛD2

]
, (4.11)

A′ = Z, (4.12)

Z ′ = A′′ = κρ+ 4
QS

D2
+ 2

AS2

D2
− 2

D2
, (4.13)

IC’s D(0) = Z(0) = Q(0) = 0, A(0) = S(0) = 1. (4.14)

These equations will be referred to as the hypersurface equations with the variables D, S,

Q, A and Z being the corresponding hypersurface variables. Note that all derivatives of the

hypersurface variables have been eliminated from the RHS. Once ρ, u and Λ are known they

can be solved, using standard ODE techniques, as a single system of equations. As shown below

the limiting behaviours of (4.11) and (4.13) are indeed regular despite the appearance of the

factors of D in the denominator.

The input data needs to be evolved to the next PLC to find the solution in the interior of the

PLC. This is achieved with the conservation equations ∇aT ab = 0. In observational coordinates

the MCE (2.27) and the ECE (2.26) for the ΛLTB model are given, respectively, by

u̇ =
1

2

((
1

u2
−A

)
u′ − Zu

)
, (4.15)

ρ̇ = ρ

(
− u
′

u3
− 2

Q

D
+
S

D

(
1

u2
−A

))
+

1

2
ρ′
(

1

u2
−A

)
. (4.16)

These will be referred to as the evolution equations. They are used to evolve u and ρ to the

next PLC where, along with the value of Λ, they can again be used to solve the hypersurface

equations. Note that the evolution and hypersurface equations are solved separately as two

systems of ordinary differential equations. This happens because the coordinate system is

aligned with the characteristics of the solution.

The numerical scheme used to solve these equations is discussed in §4.4. Before it can be

implemented though the regularity of the boundary regions first needs to be established.

4.2 Boundary regions

4.2.1 Inner boundary (v ≈ 0)

The presence of the factors of D in the denominators of (4.11), (4.13) and (4.16) require special

considerations close to the origin. The limiting behaviour as v → 0 can be dealt with by
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performing Taylor series approximations of the functions around v = 0. We start by writing

the expansions of u(w, v) and D(w, v) on any single PLC as

u(w, v) = u0(w) + u′0(w)v +
1

2
u′′0(w)v2 +O(v3),

D(w, v) = D0(w) +D′0(w)v +
1

2
D′′0(w)v2 +

1

6
D′′′0 (w)v3 +O(v4),

A(w, v) = A0(w) +A′0(w)v +
1

2
A′′0(w)v2 +

1

6
A′′′0 (w)v3 +O(v4),

where we show the coefficients up to third order since we will need the expansion for D′ up to

second order. The fact that u(w, v) = 1 + z(w, v) can be used to establish

u(v) = 1 + u′0v +
1

2
u′′0v

2 +O(v3),

u̇(v) = u̇′0v +
1

2
u̇′′0v

2 +O(v3), (4.17)

where it should be understood that the coefficients have an implicit dependence of w. Equation

(4.17) establishes the boundary condition u̇(w, 0) = 0. Next we note that, for ρ to be regular on

C, (4.5) implies limv→0D
′′ = 0 on C (i.e. for all w). Combining this with the fact that D′0 = 1

along C, gives

D(v) = v +
1

6
D′′′0 v

3 +O(v4),

D′(v) = S(v) = 1 +
D′′′0
2
v2 +O(v3),

Ḋ(v) = Q(v) =
Ḋ′′′0
6
v3 +O(v4).

This establishes that the limits

lim
v→0

Q

D
= 0,

lim
v→0

QS

D2
= 0,

are indeed regular. Furthermore, combining these expansions with the limiting behaviour of A

along C viz. (see (2.82))

A(w, v) = 1 +
1

2
A′′0(w)v2 +O(v3),

shows that

lim
v→0

AS2

D
=

1

v
,

lim
v→0

AS2

D2
=

1

v2
+
A′′0
2

+D′′′0 . (4.18)

The singular term in (4.11) is therefore exactly cancelled out and we have that

Q′(0) = 0. (4.19)
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This can be used to evaluate (4.11) at v = 0. Substituting the (4.18) into (4.13) also yields a

regular expression for Z ′(0) which, upon using the limiting behaviour implied by (4.5), yields

an identity. To find A′′(0) = Z ′(0) we go back to the form (4.7) and use the expansions just

derived to find

Z ′(0) =
κρ0

3
− 2Λ

3
. (4.20)

This expression is used to evaluate (4.13) at v = 0. Finally, putting it all together, we also have

that

lim
v→0

S

D

(
1

u2
−A

)
= −2u′0. (4.21)

Substituting this result into (4.16) gives

ρ̇0 = −3ρ0u
′
0, (4.22)

which can be used as boundary data for ρ̇. This allows us to avoid the problematic factors of

D in the denominators of (4.11), (4.13) and (4.16).

4.2.2 Characteristic cut-off

There is an additional subtlety that arises from the fact that our causal horizon evolves with

time. In particular the observable part of an expanding universe was smaller in the past. As

a result the maximum extent of v decreases as we move deeper into the PLC3. The maximum

extent of v on each PLC can be computed by considering a radial null geodesic emanating from

the maximum radial extent on the PLC0, vmax say, and intersecting C (see figure 4.1). This

geodesic, known as the characteristic cut-off line, represents the causal boundary of an observer

that can only observe up to v = vmax at t = t0 and will be denoted by W throughout. The

change in the coordinate v as we move from one PLC to the next can be found directly from

the form of the metric

ds2 = 0 = −Adw2 + 2dwdv, (4.23)

dw 6= 0 ⇒ ∆v =
1

2

∫ wf

wi

Adw, (4.24)

where ∆v is the change in v as we move from a PLC defined by wi = const. to one defined by

wf = wi + ∆w = const. The difficulty with performing the integral in (4.24) in practice is that

both w and v change along the path of integration. Moreover, since we do not know the value

of the coordinate v at the end of the path of integration, the integral cannot be performed.

Instead an iterative procedure is used to determine W. Denoting the maximum value of v on

3This is why we cannot treat v as a comoving coordinate.
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Figure 4.1: An illustration of the characteristic cut-off curve W. This geodesic emanates from

vmax and intersects C at the point x. Nothing beyond W can be causally connected to the

observer at the point q.

the PLC labelled by i as v∗i , we estimate the maximum value of v on the next PLC using

v∗i+1 = v∗i + ∆v = v∗i +
1

2
A(wi, v

∗
i )∆w, (4.25)

where we have used (4.23) to estimate ∆v as we go from one PLC to the next. We then update

the value of v∗i+1 iteratively according to

v∗i+1 = v∗i +
1

2
A(wi+1, v

∗
i+1)∆w. (4.26)

This is repeated on each PLC until the value of v∗ converges. Since the value of v∗i+1 does not

necessarily fall on a grid point, the value of A(wi+1, v
∗
i+1) is calculated by linearly interpolating

between the closest grid points on a specific wi grid line. The integration is then performed

only up to the closest spatial grid point which is less that v∗, anything beyond that is sim-

ply discarded. Next we compute the coordinate transformation which sends observational to

comoving coordinates.

4.3 Coordinate transformation

A schematic of the transformation that relates observational to comoving coordinates is illus-

trated in Figure 4.2. If t̂ = t(r) is the solution for t on the PLC0 then choosing R(t̂, r) = D(w0, v)
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Figure 4.2: An illustration of the intersection of the two coordinate systems. It is only possible

to reconstruct constant time surfaces that lie within the 2 sphere of intersection of the coordinate

systems.

ensures that θ and φ have the same meaning in both coordinate systems. Thus we only need

to consider the (w, v)↔ (t, r) transformation. The CIVP formalism solves for the background

cosmological metric (2.86) in terms of observational coordinates xa. We would like to compare

these solutions to solutions in comoving coordinates xã with metric (2.59). Accordingly, we

need to find both the metric components of (2.59) as functions of xa and then explicitly solve

for comoving coordinates in terms of xa. The metric components follow from the transformation

law

gãb̃ =
∂xc

∂xã
∂xd

∂xb̃
gcd. (4.27)

Clearly we need expressions for these partial derivatives purely in terms of the observational

metric and coordinates. Once the comoving metric components have been found in terms of

observational coordinates, the geodesic equations can be solved to explicitly find comoving in

terms of observational coordinates.

Gauge fixing the coordinate w to measure proper time along the central worldline makes the

partial derivatives involving time straightforward to find. Note that

uau
a = −1 ⇒ dt = −uadxa and ka

w
= δ0

a ⇒ dw = kadx
a. (4.28)

Interpreting dt = −uadxa as a coordinate transformation, we can use the form of ua in obser-

vational coordinates to find ∂t
∂w and ∂t

∂v . Using the observational form of the metric (2.86) to
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obtain ua from the expression (3.16) for ua gives

∂t

∂w
=
Au2 + 1

2u
,

∂t

∂v
= −u. (4.29)

Next we can use the tensor transformation law to establish that

ua =
∂xa

∂xã
uã =

∂xa

∂xã
δ ã

0 , ⇒ u1 w
=
∂v

∂t
.

Thus we can use the expression (3.16) for u1 in observational coordinates to find ∂v
∂t . Also

noting, from (3.17), that k0 = u, and interpreting dw = kadx
a as a coordinate transformation,

we have
∂w

∂t
= u and

∂v

∂t
=
Au2 − 1

2u
. (4.30)

The partial derivatives involving r require a little more effort. The transformation (4.27), as

well as its inverse, gives

d2X2 = g2d2(aḊ + bD′)2 = u2, (4.31)

bu− 1

2
auA− a

2u
= 0, (4.32)

cu+
1

2
duA− d

2u
= 0, (4.33)

ac+ bd = 1, (4.34)

where, for notational simplicity, we have abbreviated

a =
∂w

∂r
, b =

∂v

∂r
, c =

∂r

∂w
, d =

∂r

∂v
.

and the first equality in (4.31) follows from (2.58) and the multivariate chain rule applied to

∂rR(t(w, v), r(w, v)) i.e.

X = g(r)∂rR = g(r)

(
∂w

∂r
Ḋ +

∂v

∂r
D′
)
.

Since there are five unknowns (viz. a, b, c, d and g) in four equations some additional information

is required to solve this system. This is provided by the fact that the partial derivatives in these

transformations commute. No new information can be derived from applying this criterion to

a and b; it simply recovers the momentum conservation equation (4.15). Applied to c and d

however we get a partial differential equation (PDE) for d viz. c′ = ḋ. This casts (4.33) into

the following flux conservative form

ḋ = − ∂

∂v

(
d

2

(
A− 1

u2

))
. (4.35)

Given initial conditions for d this PDE can be solved alongside the CIVP. Initial conditions are

provided by fixing the gauge freedom in r. It is clearest to proceed with an FLRW analogy. To
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that end recall that in FLRW universes the comoving radial distance is simply r = uD
ac

, where

ac is a constant equal to the value of the scale factor on C. Thus, in FLRW, the transformation

is extremely simple, d is always given by

∂r

∂υ
= d =

u′D + uD′

ac
. (4.36)

Having fixed d we may use (4.31)-(4.34) to find the remaining unknowns viz. a, b, c and g. To

find the transformation in general we should see (4.36) as a normalisation on the PLC0. The

initial data for d then makes it possible to solve (4.35) and the remaining unknowns again follow

from (4.31)-(4.34). Partial derivatives w.r.t. either r or t can then be expressed as derivatives

w.r.t. w and v using straightforward tensor transformation laws.

One way to get t(w, v) and r(w, v) is to solve the following geodesic equations on each PLC

d2t

dv2
= −∂tX

X

(
dt

dv

)2

= −H‖
(

dt

dv

)2

, (4.37)

d2r

dv2
= −∂rX

X

(
dr

dv

)2

− 2H‖
dr

dv

dt

dv
, (4.38)

IC’s t(0) = t0,
dt

dv
(0) = −1, r(0) = 0,

dr

dv
(0) =

1

X
, (4.39)

where the initial conditions follow the expressions (3.17) for ka in comoving coordinates. These

solutions allow us to associate the corresponding (t, r) pair to any (w, v) grid point. Note

that the value of t0 is required to obtain the coordinate transformation since it sets the initial

conditions required to solve the system (4.37) and (4.38). The value of t0, and therefore the

value of w on the PLC0, does not explicitly enter the CIVP equations and is therefore not

required to obtain the ΛLTB solution in observational coordinates. Thus we mainly need the

value of t0 for algorithm verification purposes and to be able to use the age of the Universe as

a data point.

It is difficult to compare the transformed CIVP solution to known ΛLTB solutions in comoving

coordinates. This is because such solutions generally employ different gauges choices. In the

comoving formalism gauge freedom in the coordinate r is usually fixed on Σt0 whereas we fix

r = uD on the PLC0. This choice ensures that we obtain the coordinates of the FLRW metric

(2.35) when the universe is indeed homogeneous (see §2.3.1). It is therefore the most natural

gauge choice to use when comparing the results of the CIVP to FLRW models. Next we describe

the numerical procedure used to solve the CIVP and find the coordinate transformation.

4.4 Numerical Implementation

The numerical scheme described below is based on that developed in [131]. Besides change in

notation and the reversal from outgoing to incoming geodesics, there are two main differences
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between this scheme and the original viz.

• The hypersurface equations can be solved as a single system using Python’s built-in ode

solvers. This allows the solution on the PLC0 (i.e. the one that will be confronted with

data) to be found to greater accuracy using a high order scheme. Also, since the v(z)

relation has a horizontal asymptote (see Figure 3.1), derivatives in the CIVP equations

can become very large towards the far end of the radial domain. Finding the solution out

to high redshifts might therefore require adjusting the step size of the radial integrator.

This is handled automatically by Python’s built-in solvers.

• The derivatives u̇ and ρ̇ are evaluated at the inner boundary v = 0 using the boundary

conditions derived in §4.2 without the need to resort to the interpolation scheme described

in [131].

4.4.1 Initial data and radial integration

Since the hypersurface equations are solved using Python’s built-in ODE solvers there are a

number of high order multi-step (explicit and implicit) methods available. However it should

be kept in mind that using a higher order method than the one implemented for the evolution

equations will not necessarily yield more accurate results in the interior of the PLC. Asking for

higher order accuracy than that of the method used for the evolution equations can actually

result in the integrator reporting non-convergence. As a result the integration domain has been

split into two parts that are dealt with separately.

The first part consists of setting up the initial data and then finding the solution on the PLC0.

The solution on the PLC0 is the only part of the solution that can be confronted with obser-

vations. However, before we can do that, it is also required to write the input data to a grid

suitable for the numerical computation. This involves a number of interpolations and numerical

integrations that can introduce additional numerical error into the scheme. These will be con-

sidered first. Note that, when referring to functions defined on a grid, we will use a superscript

i to label the position on the temporal grid and a subscript j to label the position on the spatial

grid. A superscript zero therefore refers to the data on the PLC0. We denote the number of

spatial grid points by NJ , the number of temporal grid points by NI and the target error of

the numerical scheme by εp.

In practice data are reported as functions of redshift at a finite number of points. This data

has to be suitably smoothed before it can be used as input to the numerical integration scheme.

The procedure used to smooth the data is described in §5.2.1, here we will focus on how to

convert functions of the redshift to functions of the affine parameter. Thus it is assumed that
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initial data are given as smooth functions H‖(z), ρ(z) and the value of Λ. The v(z) relation

can then be obtained by interpolating the function

1

(1 + z)2H‖(z)
, (4.40)

and computing the cumulative integral (3.20) of the interpolated function. We will use cubic

spline interpolation throughout. The error introduced by this operation depends on the number

of redshift points used. We consistently choose enough evenly spaced redshift points, zp say,

so that the resulting error is at least two orders of magnitude below the target accuracy of the

integration scheme. Since the error in cubic spline interpolation roughly scales like O(h4), h

being the step size, and the target error is εp ∼ O(h2), this can usually be achieved by choosing

the same number of points as is used to set up the spatial grid used in the integration scheme.

The values vp = v(zp) will not in general be evenly spaced apart. To write ρ and u to a regular

spatial grid, vj say, we perform another interpolation of ρ(vp) and u(vp). This gives the initial

values ρj = ρ(vj) and uj = u(vj) which can then be used, along with Λ, as input to solve

the hypersurface equations. The procedure used to set up the initial data is summarised in

Procedure 1. The notation GPH‖ and GPρ refers to the Gaussian processes for H‖(z) and ρ(z)

respectively and will be clarified in §5.2.1. For the time being, this notation simply means that

we are able to generate random smooth realisations of H‖(z) and ρ(z). Similarly NΛ is just a

distribution from which to generate samples of Λ. The structures of Procedure 1 - Procedure

3 have been chosen to conform to their usage in Algorithm 1 by which time the notation will

have been completely clarified.

Next we use this initial data, combined with the initial conditions (4.8), to find the solution on

Procedure 1
Input: εp, GPH‖ , GPρ, NΛ

1 Set ∆v =
√
εp and find NJ using (4.50);

2 Choose NJ values of zp uniformly spaced in [0, zmax];

3 Sample H‖(zp) ∼ GPH‖ , ρ(zp) ∼ GPρ and Λ ∼ NΛ;

4 Interpolate (4.40), compute vp = v(zp) and set v∗ = max(vp);

5 Construct spatial grid vj consisting of NJ points uniformly spaced in [0, v∗];

6 Interpolate ρ(vp) and u(vp) and set ρ0
j = ρ(vj) and u0

j = u(vj);

Output: ρ0
j , u

0
j , Λ

the PLC0. The radial derivatives u′, ρ′, d′ and u′′, required to evaluate (4.15), (4.16), (4.35) and

(3.52) respectively, are found numerically using fourth order accurate centred finite difference
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stencils.4 The steps involved in finding the solution on any single PLC are summarised in

Procedure 2.

The solution on the PLC0 can then be interpolated to reconstruct the observables at any value

Procedure 2

Input: ρij , u
i
j , d

i
j , Λ

1 Solve (4.9)-(4.13) for Di
j , S

i
j , Q

i
j , A

i
j and Zij ;

if i = 0 then set d0
j with (4.36);

2 Find the coordinate transformation with (4.29)-(4.34);

3 Evaluate (uij)
′, (uij)

′′, (ρij)
′ and (dij)

′ numerically using finite difference derivatives;

4 Solve (4.37) and (4.38) for tij and rij respectively;

5 Evaluate (4.15), (4.16) and (4.35) for u̇ij , ρ̇
i
j and ḋij respectively;

Output: Di
j , S

i
j , Q

i
j , A

i
j , Z

i
j , u̇

i
j , ρ̇

i
j , ḋ

i
j , t

i
j , r

i
j

of z. As explained in §5.1.3, this allows us to confront the solution corresponding to the initial

samples of H‖(z), ρ(z) and Λ with data.

4.4.2 Temporal integration

The first step in finding the solution in the interior of the PLC is to construct the temporal grid.

In order to compute the coordinate transformation, and use the tmin data point, we need to

know the initial value of w viz. t0. After using H‖(0), ρ(0) and Λ to compute the dimensionless

density parameters in (2.61)-(2.63) at the vertex of the cone, the value of t0 can be found with

(2.67), which gives the current age of the universe along C. We then construct a regular temporal

grid wi by choosing NI equally spaced points between w0 = t0 and wNI−1 = t∗, where t∗ is the

minimum time we wish to integrate up to. Thus t∗ is the value of w on the final past lightcone

(PLCF) considered.

Once the grid has been set up, the initial data is evolved from one PNC to the next using an

explicit predictor-corrector method. The predictor step employs Euler’s method to approximate

an arbitrary function f on the next PLC as

f̃ i+1
j = f ij + ∆wḟ ij , (4.41)

where a tilde is used to denote predicted values. We can therefore use (4.15), (4.16) and (4.35)

to evaluate the temporal derivatives and predict ũi+1
j , ρ̃i+1

j and d̃i+1
j respectively. These values

are then used as input to Procedure 2 to get the corresponding predictions of the hypersurface

4One sided stencils are used at the edges of the computational domain.
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variables on the next PLC. We then compute the new maximum extent v∗ of the radial coor-

dinate lying within the characteristic cut-off W with the predicted value Ãi+1
j as described in

§4.2.2. Since v∗ does not necessarily fall on a grid point, we let jmax denote the largest index of

vj ≤ v∗ and discard the solution beyond jmax. The predicted hypersurface variables can then be

used to evaluate the temporal derivatives u̇i+1
j , ρ̇i+1

j and ḋi+1
j within the causal boundary of the

next PLC. Then, by combining Euler’s method (4.41) with the trapezoidal rule, the corrected

values of ui+1
j , ρi+1

j and di+1
j can be found using

f i+1
j = f ij +

∆w

2

(
ḟ ij + ḟ i+1

j

)
. (4.42)

These corrected values are again used as input to Procedure 2 to find the hypersurface variables

on time step i + 1. We then set i ← i + 1 and repeat the whole process until the domain of

calculation has been exhausted. This is summarised in Procedure 3.

Procedure 3

Input: D0
j , S

0
j , Q

0
j , A

0
j , Z

0
j , u̇

0
j , ρ̇

0
j , ḋ

0
j

1 Use Euler’s method (4.41) to predict the values of ũi+1
j , ρ̃i+1

j and d̃i+1
j ;

2 Use ũi+1
j , ρ̃i+1

j , d̃i+1
j and Λ as input to Procedure 2;

3 Find the characteristic cut-off as explained in §4.2.2;

4 Use u̇i+1
j , ρ̇i+1

j and ḋi+1
j from step 2 in (4.42) to find ui+1

j , ρi+1
j and di+1

j ;

5 Use ui+1
j , ρi+1

j , di+1
j and Λ as input to Procedure 2;

if i < (NI − 1) then set i← i+ 1 and go to 1;

Output: Solution

4.5 Diagnostics

The stability and convergence of the original code was investigated in detail in [131, 130, 121].

There it was shown that the code is stable against small errors on the input variables and second

order convergent in both space and time. The order of convergence was established by comparing

the numerical solution to a number of analytic solutions of the field equations viz. EdS, ΛCDM

and a specific class of LTB models. However, in our application the initial data is specified in a

non-parametric way. Since this introduces a number of additional interpolations and numerical

integrations, we need to test the convergence of the scheme with these modifications. The fact

that the solutions are not known analytically necessitates a three level convergence test. Such

a test checks that successive refinements of the grid results in the expected improvement in
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accuracy. Here we perform a three level convergence test for a number of samples drawn at

random from Gaussian process priors over simulated initial data. We give a brief description of

how data are simulated in §4.5.2. The process by which these data are smoothed is described

in §5.2.1. Here we simply assume that a method for drawing smooth function realisations is

available. The convergence and stability of the code will be confirmed for a large number of

random realisations of H‖(z), ρ(z) and Λ. We start with a discussion about the possible sources

of error in the integration scheme.

4.5.1 Stability and convergence

There are three sources of error involved in numerical solutions to initial value problems viz.

truncation error, round off error and error due to incorrectly specifying initial or boundary

data. Round off errors result from using floating point arithmetic. Truncation errors, on the

other hand, result from discretising the computational domain and using truncated Taylor series

expansions to evaluate derivatives. Errors from incorrect initial or boundary data can result in

a number of different ways (e.g. user error or numerical reflections in boundary value problems).

In our application these errors can result from errors introduced in setting up the initial data as

described in Procedure 1. Although these errors are expected to be small, they can be amplified

if the numerical scheme is not stable. A number of definitions are required before we can discuss

the convergence of the CIVP.

The convergence of initial value numerical integration schemes can be analysed in terms of

the well-posedness of the model as well as the consistency and stability of the finite difference

approximation [132].

Well-posedness: An initial value problem is said to be well-posed if there exists a unique

solution that is stable when subjected to small perturbations.

Consistency: A finite differencing representation is said to be consistent if the difference

between the analytic solution to a PDE and its finite difference representation can be shown, in

theory, to vanish as the grid is refined. Thus the truncation error of a consistent finite difference

representation vanishes as the step size tends to zero.

Stability: A numerical scheme is said to be stable if none of the possible sources of error grow

exponentially in the sequence of numerical calculations from one time step to the next.
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Convergence: A numerical scheme is said to be convergent if the finite difference solution

approaches the analytic solution of the PDE as the grid is refined.

The difference between consistency and convergence stem from the fact that the finite dif-

ference representation employed in a numerical integration scheme can be consistent even if the

integration scheme itself is not stable. Stability considerations are more subtle. In fact it is very

difficult to provide a general rule that ensures stability, especially for non-linear PDEs. For the

linear case we have the following result due to Lax (see §3 of [132] for example):

Lax’s equivalence theorem: Given a well-posed initial value problem and a consistent finite

difference approximation to it, stability is the necessary and sufficient condition for convergence.

There is no general analogue of this result for non-linear PDEs. Strictly speaking the stability

analysis of each such PDE should be performed using, for example, Fourier or von Neumann

analysis on a linearised version of the PDE. However, even then stability of the non-linear PDE

is not guaranteed. In practical applications, a useful guideline is the Courant-Friedrichs-Lewy

(CFL) condition. The CFL condition is the necessary (note not sufficient) condition for certain

explicit first order initial value problems to converge. The CFL puts an upper limit on the

maximum allowed time step ∆w in the numerical integration scheme for a given spatial step

∆v via ∣∣∣∣∆w∆v
smax

∣∣∣∣ ≤ 1, (4.43)

where smax is the maximum advection or wave speed in the problem, in our case the speed of light

smax = c = 1. Specific stability conditions for the CIVP were not derived explicitly. However,

stability and convergence can be tested for numerically and it was found in [131, 130, 121] that

the condition ∣∣∣∣∆w∆v

∣∣∣∣ ≤ 0.5, (4.44)

usually results in a stable, second order convergent scheme. Note that the CFL condition

imposes a limit on the computable domain inside the PLC. Since the number of grid points

decrease as we move deeper into the PLC, and at least two grid points are required to compute

numerical derivatives, there is always a tiny portion of the PLC that is beyond our reach

viz. the intersection of W with C. However, for the grid spacing used in this work (typically

∆v ≈ 1 Mpc), this region lies well within the expected averaging scale. As already mentioned

the stability and convergence of the original CIVP code was established by comparing the

numerical solution to a number of exact solutions. Our goal now is to verify that second order
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convergence is obtained for arbitrary initial data. First however, we will digress slightly to

explain the method by which we simulate these data.

4.5.2 Simulating “realistic” test data

Simulated data will be used to perform the three level convergence test below and to verify

the algorithm presented in §5.3.3. There are two main considerations behind the method we

describe here viz. realistic data are not distributed as a perfect Gaussian about the background

model and the uncertainty in cosmological data sets generally increases as a function of redshift.

To account for this, we simulate data for an arbitrary function F (z) according to the following

procedure:

1. Draw n redshift values in the relevant range from a uniform distribution zn ∼ U(0, zmax).

2. Assume that the relative error of the function F scales as a power law σF
F̄

= σF0(1 + z)α

where F̄ is its mean and σF0 its uncertainty at z = 0. We then draw N samples of F

using

F (zn) = F̄ (zn) (1 + σF0(1 + zn)αN (0, IN )) , (4.45)

where N (0, IN ) is uncorrelated Gaussian noise (i.e. IN is an N ×N identity matrix).

3. Sort the samples at each redshift and call the value at N/2 the mean, the value at 0.16N

the lower 1− σ value and use this to set the error bars on the data.

Note that the value of N controls the degree of Gaussianity in the data, as N is finite the

distribution of error is not perfectly Gaussian. We will use a value of N = 21 throughout.

This way of simulating the data is not supposed to be realistic, it is simply a way to impose

imperfections on the data. It is however more realistic than assuming we have data with

perfectly symmetric error bars with means centred exactly on the underlying model. It still

results in rather idealised data because we usually have fewer observations at high redshifts

making it unlikely that the redshift points of a realistic survey will be uniformly distributed in

the interval [0, zmax]. Note that, with this method, there are also no outliers.

For the test we perform below, we simulate 50 data points with zmax = 2, α = 0.5 and

δH‖0 = 10% and δρ0 = 25% around our reference ΛCDM model defined by the parameters in

Table 2.1. Note that such small errors on H‖0 and ρ0 are optimistic and have been chosen for

reasons explained in § 6.1. We then smooth these data using GPR as described in §5.2.1 and

draw function realisations of H‖(z) and ρ(z) from their posterior distributions. We additionally

set a Gaussian prior over the cosmological constant

Λ ∼ N
(
Λ̄, σΛ

)
, σΛ = 0.05Λ̄,



72 4. NUMERICAL ΛLTB SOLUTION

where Λ̄ is the value corresponding to the reference ΛCDM model of Table 2.1. The standard

deviation on Λ was chosen arbitrarily and is not realistic. In § 6.1 we choose a much larger value

(viz. σΛ = 0.05Λ̄) to ensure that we have an over-dispersed prior. Note that, even though the

background model is ΛCDM, the model reconstructed from random realisations of ρ(z), H‖(z)

and Λ is not necessarily a ΛCDM model. It will however satisfy all the constraints of a ΛLTB

model (see §4.5.4).

4.5.3 Three level self convergence test

Since the initial data is specified non-parametrically we do not have access to exact solutions.

To test the order of convergence without knowledge of the exact solution we successively refine

the grid in three steps. The CIVP is first solved using initial grid spacings of ∆w1 and ∆v1 in

time and space respectively. Denoting this solution by S1 we should expect, for a p-th order

scheme, to find that (note that the CFL condition implies ∆v > ∆w)

S1 − S = α∆vp1 , (4.46)

where S is the unknown exact solution and α ∼ O(1) is a real coefficient. The grid spacing is

then halved ∆w2 = ∆w1/2 and ∆v2 = ∆v1/2 to get the solution S2, for which we expect to

find

S2 − S ∝ (∆v2)p ∝
(

∆v1

2

)p
. (4.47)

Finally we generate a reference solution Sr by halving the grid spacings again. For this solution

we should have

Sr − S ∝ (∆vr)
p ∝

(
∆v2

2

)p
∝
(

∆v1

4

)p
. (4.48)

To test the overall convergence order of the scheme we then form the error ratio

R =
||S1 − Sr||2
||S2 − Sr||2

= 2p − 1 ⇒ p = log2 |R+ 1|, (4.49)

where || · ||2 denotes the standard Euclidean 2-norm and we compare the solutions on the

coarsest grid (i.e. at points separated by ∆v1). We can in principle perform this test on any

of the reconstructed functions on any earlier PLC. We have chosen to perform the convergence

test on T1 and T2 since these are the quantities that our proposed test of the CP relies on. The

test is performed on both the initial PLC and one approximately 3 Gyr in the past. This tests

both the spatial and the temporal order of convergence.

The target redshift values zp at which we reconstruct these functions consist of NJ values

uniformly spaced between z = 0 and z = 2, where NJ is the number of points chosen for the

reference solution Sr. For each set of initial data, H‖(z), ρ(z) and Λ, we perform the integration
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T1i T1f T2i T2f

p̄ 2.009 2.0018 2.01 1.60

σp 0.010 0.0056 0.13 0.26

Table 4.1: Mean p̄ convergence factors and their standard deviations σp. The subscripts i and

f denote initial and final PLC’s respectively.

with three different grid spacings corresponding to NJ,NJ/2 and NJ/4 grid points. Since

v(0) = 0 the spatial grid spacing on the finest grid is

∆v =
vmax
NJ − 1

. (4.50)

The number of time grid points NI should be chosen so that (4.44) is satisfied i.e.

∆w

∆v
≤ 0.5, ⇒ ∆w ≤ 0.5vmax

NJ − 1
. (4.51)

Erring on the side of caution we therefore choose

∆w =
vmax

3(NJ − 1)
⇒ NI = ceil

(
3(NJ − 1)(t0 − t∗)

vmax
+ 1

)
, (4.52)

where ceil(·) is the ceiling function which rounds up to the nearest integer. We repeat this

procedure 1000 times and compute the convergence factor p using (4.49). We report the average

convergence factor and its standard deviation in table 4.1. We see that the reconstructed value

of T1 ∝ ∆v2 on both the PLC0 and the PLCF. The degradation in the time convergence factor

of T2 could be a due to the large number of terms involved in its computation. However it is

second order on the PLC0 and, at the very worst, first order on the PLCF.

4.5.4 ΛLTB consistency relation

Without analytic solutions we cannot test the consistency of the CIVP since we can’t verify

that the numerical solution approaches the exact solution as the grid is refined5. However, there

is an alternative way to test the consistency and stability, and hence verify convergence, of the

CIVP. This is possible because we haven’t used one of the field equations (i.e. (4.1)) in solving

the CIVP. Since the solution can be found without using (4.1) there should be a way to relate

it to the others. However this relation is not immediately obvious (note the factors of D̈ and

Ȧ) so we will turn it into a consistency relation by writing it in the form

E =
1

2
AA′′D − 2D̈ +A′Ḋ −D′Ȧ+AA′D′ − 1

4
κρD

(
1

u2
+ u2A2

)
+ ΛAD. (4.53)

5Note that the solution from the new version of the CIVP always agrees, within the expected tolerance, with

that developed in [131].
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Figure 4.3: The upper bound on the consistency relation (4.53) for 1000 integrations of random

realisations of H‖(z), ρ(z) and Λ. Left) The the upper bound on |E| on the PLC0. Right) The

the upper bound on |E| the PLCF. The horizontal line is the expected error of the numerical

scheme viz εp.

Any instabilities and inconsistencies should then result in E 6= 0. Note that this constraint can

be violated if either, there are errors in the initial data or, the numerical scheme is not stable

and consistent.

Errors in the initial data could result in one of two ways. The first is unavoidable and results

from the interpolations and numerical integrations involved when converting functions of z into

functions of v. These errors are expected to be small however, if the numerical scheme is not

stable, they will grow exponentially and degrade the solution in the interior of the PLC. The

second relates to our discussion in §3.5. There we suggested that H‖(z) and ρ(z) can, to some

extent, be specified freely on the PLC0. If this is not the case we should find, already on the

PLC0, that E 6= 0. Of course in practice we should expect to find E ≈ O(δv2) for a second order

scheme. In Figure 4.3 we show the upper bound on |E| found for the 1000 random realisations

of H‖(z), ρ(z) and Λ of the above convergence test. Note that the maximum error sometimes

peaks slightly above εp towards the edges of the computational domain. This is most likely

because both D̈ and Ȧ are found numerically using finite differencing. Note that we are already

using one sided finite differences towards the inner v = 0 and outer v = v∗ radial boundaries of

the computational domain. However |E| is at least of the same order as εp on both the PLC0

and the PLCF. Since Ei ∼ O(εp) on the PLC0 the initial data must be valid. This verifies

that H‖(z) and ρ(z) can be specified independently on the PLC0, at least for the samples we

considered here. Also, since Ef ∼ O(εp), the numerical scheme seems to be stable. Of course

these results only hold for the 1000 realisations that were actually tested and within the domain

on which the problem was solved. Any numerical scheme will have a stability limit and the
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CIVP is no different. We found that trying to push the temporal integration too far into the

past can result in numerical instabilities. There is no clear limit on how far back into the past

we can go. However we found that the CIVP is always stable for an integration domain which

satisfies w0 − wNI−1 ≤ 5 Gyr. This is discussed further in §5.3.3. In §6 we will monitor the

consistency relation (4.53).



5

Statistical methodology

The aim of this chapter is to provide an overview of our statistical analysis. Since we work

exclusively in a Bayesian framework we start by developing notation and introducing some con-

cepts in Bayesian statistical modelling with particular emphasis on applications of the Gaussian

distribution. Bayesian modelling is a very flexible framework with diverse applications in a

variety of fields. The particular way in which it is utilised depends very strongly on the context.

As a result our interpretation of the definitions made below is inevitably biased to our intended

application and should not be taken as generic.

5.1 Bayesian statistics

5.1.1 Probability

The joint probability of a finite dimensional vector y = [y1, y2, · · · , yD] of dimension D is

denoted p(y). The set y can be partitioned into a number of disjoint subsets, each playing a

different part in the model. This simple operation is at the heart of Bayesian modelling. To

illustrate the general idea we partition y into two disjoint subsets yA and yB and write their

joint probability distribution as p(yA,yB). The marginal probability of yA is defined as

p(yA) :=

∫
p(yA,yB)dyB. (5.1)

The marginal probability expresses the joint probability of yA regardless of the possible val-

ues that yB can take. If the parameters are independent the act of marginalisation has no

effect. In that case the joint probability is simply the product of the marginals i.e. p(yA,yB) =

p(yA)p(yB). Another concept that plays an important role in Bayesian modelling is the condi-

tional probability. The joint probability distribution of yA conditioned on the values of yB is

76
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defined as

p(yA|yB) :=
p(yA,yB)

p(yB)
(5.2)

Whereas (5.1) allows us to describe the joint probability distribution of yA independently of

yB, (5.2) describes the joint probability of yA given the values (or distributions) of yB = YB.

If yA and yB are independent then these two operations are equivalent and the conditional and

marginal distributions will be identical. Note that we can combine the two definitions (5.1) and

(5.2) to rewrite the marginalised probability as

p(yA) =

∫
p(yA|yB)p(yB)dyB. (5.3)

Bayes’ theorem, which can be established from the fact that p(yA,yB) = p(yB,yA) and the

definition of conditional probability, states that

p(yA|yB) =
p(yB|yA)p(yA)

p(yB)
=

likelihood× prior

marginal likelihood
. (5.4)

In the Bayesian interpretation we identify p(yB|yA) as the likelihood, p(yA) as the prior, p(yB)

as the evidence or marginal likelihood and p(yA|yB) as the posterior probability. Note that the

sets yA and yB can be further partitioned to describe nested hierarchical models. This is, at

least in part, the power behind the Bayesian approach as it makes it possible to split a problem

into a number of simpler sub-problems. However, in practice integrals such as (5.3) can quickly

become analytically intractable, sometimes necessitating certain simplifying assumptions. Even

then the complexity of the resulting models might require approximate numerical techniques

to interpret. Markov-Chain-Monte-Carlo (MCMC) sampling algorithms are very powerful and

flexible tools that can be used in a wide variety of problems. Before we discuss MCMC however

it will be useful to review the most frequently employed simplifying assumption of them all i.e.

that of jointly Gaussian random variables.

5.1.2 The multivariate Gaussian distribution

Recall that a jointly Gaussian random vector y = [y1, y2, · · · , yn] has probability density given

by

p(y|ȳ,Σy) = (2π)−n/2|Σy|−1/2 exp

(
−1

2
(y − ȳ)TΣ−1

y (y − ȳ)

)
, (5.5)

where ȳ is its mean vector (of length n) and Σ its (symmetric, positive definite) covariance

matrix (of size n× n). This is abbreviated using the notation y ∼ N (ȳ,Σy). If we partition y

into two disjoint subsets as y = [yA,yB], then yA

yB

 ∼ N
 ȳA

ȳB

 ,
 ΣA C

CT ΣB

 , (5.6)
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where ΣA is the covariance matrix of yA, ΣB is the covariance matrix of yB and C expresses

the covariance between them. The marginal (5.1) and conditional (5.2) distributions are given

by

yA ∼ N (ȳA,ΣA), (5.7)

yA|yB ∼ N
(
ȳA + CΣ−1

B (yB − ȳB),ΣA − CΣ−1
B CT

)
. (5.8)

The product of two Gaussians gives another (un-normalized) Gaussian

N (x|a, A)N (x|b, B) = Z−1N (x|c, C), (5.9)

where c = C(A−1a +B−1b) and C = (A−1 +B−1)−1, (5.10)

and the normalization constant also looks like a Gaussian

Z−1 = (2π)D/2|A+B|−1/2 exp

(
−1

2
(a− b)T (A+B)−1(a− b)

)
. (5.11)

5.1.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods [133, 134] have become increasingly more sophis-

ticated since their introduction in [135, 136]. There exists many different MCMC algorithms,

some more suitable in certain applications than others. Our exposition will be limited to some

of the practical considerations involved when implementing MCMC samplers. We refer, in par-

ticular, to [133] and [137] for derivations of the theoretical results upon which these algorithms

are based.

At its core there are really only two essential ingredients in a Bayesian model. The first is a

model which allows us to evaluate the probability of a known quantity (frequently the observed

data D), conditioned on an unknown quantity (e.g. a vector of parameters θ) i.e. p(D|θ).

Such a model is called a likelihood model. When the data are fixed it allows us to assign a

likelihood L(θ) ∝ p(D|θ) to any sample of θ1 As an example, suppose we have measured data

Dy = [xi, yi,Σy] for a function which we believe can be described by a parametric model of the

form

yi = f(xi, θ) + ε where ε ∼ N (0,Σy) . (5.12)

1Of course this is a statistical tool and should not be taken too literally. In reality the data D are the true

stochastic variables. As a result there is always an intrinsic uncertainty involved in observing the data. The

parameters, on the other hand, are not really stochastic variables. The intrinsic uncertainty in the data does

however translate to uncertainties in the true values of the parameters. The likelihood should therefore always

be regarded as the likelihood of observing data D given parameters θ, even when it is written as a function of the

parameters. The notation and terminology used below should cause no confusion as it is simply a statistical tool

with which to propagate uncertainties in the data onto uncertainties about the true values of the parameters.



5.1. BAYESIAN STATISTICS 79

Here θ is a D dimensional vector of parameters, f(x, θ) is the underlying model (or mean

function) and ε is Gaussian noise. Since the data are fixed, the assumption that the yi are

jointly normally distributed (i.e. has mean f(xi, θ) and covariance matrix Σy) allows us to

assign a likelihood to a specific realisation of the parameters, θ = θ∗ say, using (5.5) i.e.

L(θ∗) ∝ exp

(
−1

2
(Y − f(X, θ∗))TΣ−1

y (Y − f(X, θ∗))

)
. (5.13)

Here we have introduced the notation Y = [y1, y2, · · · , yN ] and X = [x1, x2, · · · , xN ] ( i.e. Y

and X are numerical vectors formed by concatenating the observations yi and the corresponding

points in the domain xi respectively) where N is the number of data points. We will often work

with the negative of the log-likelihood called the potential function which, in the case of normally

distributed residual vectors ε, is also called the χ2. Note that, although the data are normally

distributed, the parameters are not necessarily normally distributed because the model y(x, θ)

can be highly non-linear. Actually, as is often the case, we will not even have direct access to

observations of the function itself but rather some means of deriving the observables from a

realisation of the function. In this case we call f a latent or hidden variable.

The second ingredient is a marginal distribution p(θ) for the unknowns θ. This we call the

prior. As the name suggests p(θ) expresses prior information about the parameters. Note that

the “absence” of a prior really expresses our initial belief that p(θ) is a uniform distribution

in the parameters (called a flat prior). Furthermore, if we are only interested in real valued

parameters (as we will be), then θ can take any value in RD. Since it is impossible to sample

the whole of RD in practice, some care should be taken when specifying “flat” priors.

These two ingredients allow us to infer p(θ|D) using Bayes’ theorem

p(θ|D) =
p(D|θ)p(θ)
p(D)

. (5.14)

The evidence p(D) is given by the marginal distribution

p(D) =

∫
p(D|θ)p(θ)dθ. (5.15)

When there are multiple models to compare to the data, p(D) can be used to perform Bayesian

model selection, a topic we will only briefly touch upon. However, for fixed D, the integral

(5.15) is simply a normalisation constant. We may therefore write

p(θ|D) ∝ L(θ)p(θ). (5.16)

This fact can often be used to circumvent computing the integral in (5.15) if our main goal is

simply to infer the overall shape, or sample from, the distribution p(θ|D). We now illustrate

how to do this using the Metropolis-Hastings (MH) sampler [135, 136].
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To implement the MH sampler we need a way to generate random realisations of θ. This is

achieved by specifying a proposal distribution denoted by q(·). The MH sampler is a proce-

dure which, given an initial sample θ(0) and corresponding likelihood L(θ(0)), iterates over the

following steps:

1. Propose θ∗ = q(θ|θ(k)), where an index appearing as a subscript in round braces labels

steps in the Markov chain.

2. Compute the acceptance probability

α(θ(k), θ
∗) = min

(
1,

f(θ∗)q(θ(k)|θ∗)
f(θ(k))q(θ∗|θ(k))

)
. (5.17)

3. Accept the proposed value of θ by setting θ(k+1) = θ∗ with probability α(θ(k), θ
∗). Other-

wise reject it by setting θ(k+1) = θ(k).

4. Set k ← k + 1 and repeat.

This remarkably simple algorithm will converge to the target distribution p(θ|D) as k →∞ as

long as the Markov chain is reversible. Note that the Markovian property of the chain

p(θ(k+1)|θ(k), θ(k−1), · · · , θ(0)) = p(θ(k+1)|θ(k)),

is ensured by choosing q = q(θ|θ(k)) in the proposal step. The form of the acceptance probability

ensures that the chain is reversible as it enforces the detailed balancing condition

f(θ∗)q(θ(k)|θ∗) = f(θ(k))q(θ
∗|θ(k)). (5.18)

Furthermore, when the proposal distribution is symmetric about the current state (i.e. q(θ∗|θ(k)) =

q(θ(k)|θ∗)), the acceptance probability simplifies to

α(θ(k), θ
∗) = min

(
1,

f(θ∗)

f(θ(k))

)
, (5.19)

and we refer to the sampling scheme as the Metropolis algorithm.

In theory this procedure will converge with probability one as k → ∞. This is obviously not

possible in practice and we have to decide when it is safe to terminate the chain. This is the

main consideration in designing MCMC algorithms and there is no definitive guideline that

applies generically to all algorithms. Convergence may be delayed if:

1. The chain is initialised in a region far away from the maximum and it ends up spending

a significant fraction of the total number of iterations in this region;
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2. There are islands of high probability separated by very low probability regions causing

the chain to get stuck in a local probability maximum for a significant fraction of the total

number of iterations.

The first of these can be addressed by allowing for a so called burn-in period in which we simply

discard the first portion of the chain. However there is no definitive guideline for deciding how

long the burn-in period should be. The second issue is more difficult to overcome. Naively we

may try making the variance of the proposal distribution large enough so that the proposed

samples can jump from island to island. In practice this does not always work because proposal

distributions with variance much larger than the target distribution will result in too few pro-

posals being accepted. Note that the opposite is also true, proposals that underestimate the

variance of the target will result in too many samples being accepted so that the chain will not

mix well. The acceptance rate of an MCMC algorithm is defined as the fraction of accepted

samples out of the total. Choosing an optimal acceptance rate (i.e. the one that leads to

quickest convergence) is not always straightforward [138]. For one dimensional algorithms the

optimal acceptance rate is around 44%. As the dimensionality of the algorithm increases the

optimal acceptance rate drops. It can be shown that, under certain idealised circumstances, the

optimal acceptance rate for an infinite number of parameters is about 23% [138]. However, even

when an algorithm has a good acceptance rate, convergence after a finite number of samples

is still not guaranteed. This is especially true when case 2 above applies. In such cases simple

MH MCMC samplers might not be appropriate and problem specific sampling algorithms have

to be considered. We will look at an alternative in §5.3.2. For now however will simply note

that the convergence of any specific MCMC algorithm can usually be diagnosed. One common

way to do this, and the one that we will employ, is to use the Gelman-Rubin diagnostic [139]

(see [140] for some criticisms of the Gelman-Rubin diagnostic).

The idea behind the Gelman-Rubin diagnostic is to initialise multiple MCMC chains with

overdispersed starting values (i.e. drawn from a distribution that overestimates the variance of

the posterior) and then to check that the variance computed for each chain separately (called the

within chain variance and denoted W ) is the same as the total variance computed by combining

all the chains (called the between chain variance and denoted B). Intuitively we should expect

to find W ≈ B if the MCMC has converged. This can be tested for formally by constructing

the potential scale reduction factor (PSRF) as follows.

Suppose we start M chains

θi(k) where k = 0, 1, · · · , T i = 1, 2, · · · ,M M ≥ 2, (5.20)
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where each θi(k) is a vector containing values of the parameters for the chain i at step k. We then

discard the first half of the samples and, for each scalar parameter θij(k), compute the means

θ̄ij =
1

n

T∑
k=T

2

θij(k), and θ̄j =
1

M

M∑
i=1

θ̄ij , (5.21)

so that θ̄ij is the mean of the j-th parameter for chain i and θ̄j is the mean of the j-th parameter

for all the chains. Note that n = T
2 since the first half of the chain has been discarded. We then

estimate W and B using

W =
1

M

M∑
i=1

1

n− 1

T∑
k=T

2

(
θij(k) − θ̄

i
j

)2
, (5.22)

B =
n

M − 1

M∑
i=1

(
θ̄ij − θ̄j

)2
. (5.23)

The PSRF, which is defined as

√
R =

√
n−1
n W + 1

nB

W
, (5.24)

should then be computed for each parameter. Note that, if overdispersed starting values were

used, B overestimates the variance of the chains and, while the chains have not converged, W

underestimates the variance of each chain. Thus the PSRF should therefore approach 1 from

above and it is considered safe to use the samples from k = T
2 onwards if

√
R ≈ 1 for each

parameter. In practice, since
√
R will never be exactly equal to 1, we terminate the chains

when
√
R is close enough to 1. In our implementation we have used the threshold

√
R < 1.1.

However, before we can even perform the Gelman-Rubin diagnostic, the MCMC has to be

initialised with reasonable starting values. To find such reasonable starting values we directly

supervise the MCMC during a number of trial runs. The length of each trial run will depend

on the application, in most cases T = 2500 samples turns out to be sufficient. Note that we

use Gaussian proposal distributions in all the applications so that q(x|y) ∼ N (y,Σq) where Σq

is the variance of the proposal distribution. It can become cumbersome to initialise Σq with

a reasonable value when we only have vague prior information at our disposal. In general,

the higher the dimensionality of the problem the more difficult it is to set Σq in a way that

leads to reasonable acceptance rates. Gaussian process regression (see §5.2.1 below) provides

a convenient way to do this when the target, denoted x (i.e. x is the quantity we want to

infer from the data), is a smooth function. Once Σq has been specified, we also need an initial

sample, x̂ say, which satisfies all the physical constraints of the model. When possible we will use

Python’s basin hopping optimisation algorithm [141] to set x̂ as the value of x which maximises

(minimises) the likelihood (potential) function. We then initialise a trial period with starting
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value x(0) ∼ q(x|x̂) and inspect the acceptance rate, αa say, after the initial T ' 2500 samples. If

the acceptance rate is αa < 0.2 or αa > 0.5 we adjust Σq and repeat the procedure until we find

0.2 < αa < 0.5. At this we can initialise multiple MCMC chains and perform the Gelman-Rubin

diagnostic to determine when it is safe to stop sampling. This is done by initialising 10 MCMC

chains and computing the PSRF (5.24) of each parameter of the chain after every T = 2500

samples. To ensure that the chains are initialised with overdispersed starting values, we draw

x(0) from a distribution which slightly overestimates the expected variance of the posterior,

using a variance of 2Σq say. Once a PSRF of
√
R < 1.1 is found for each parameter of the

chain, we discard the first half of the samples and continue sampling until we have at least 104

samples for each chain. The posterior distributions we report are therefore computed with at

least 105 samples. We will use this strategy to implement all our MCMC algorithms. We will

now illustrate this with an example, the aim of which is to highlight some of differences between

the observational and comoving formalisms.

Example 5.1.1. Fitting LTB to data:

Dropping the parameter Λ in the model outlined in §2.3.2 gives the LTB model [26]. Initial

data for the model can be specified in terms of H⊥0(r) and Ωm0(r). We follow the simple void

parametrisation used in [142] viz.

H⊥0(r) = Ho + (Hi −Ho)

(
1− tanh

(
r−r0
2∆r

)
1 + tanh

(
r0

2∆r

) ) , (5.25)

Ωm0(r) = Ωo + (Ωi − Ωo)

(
1− tanh

(
r−r0
2∆r

)
1 + tanh

(
r0

2∆r

) ) . (5.26)

The six parameters in the model, which must all be strictly positive, are:

Ωi - The value of Ωm0 at the origin.

Ωo - The value of Ωm0 asymptotically far away from the origin. For simplicity we demand

asymptotic flatness and set Ωo = 1 throughout.

Hi - The value of H⊥0 at the origin.

Ho - The value of H⊥0 asymptotically far away from the origin.

r0 - The width of the void.

∆r - The peakedness of the void.

Note that this is a subclass of the ΛLTB solution. Given values for the parameters above the

LTB solution is obtained as outlined in § A. Observables are found as a function of redshift by

solving (2.70) for the t(z) and r(z) relations. We will use the data discussed in §3 viz. Union

2.1 distance modulus µ(z) [4], cosmic chronometer expansion rate H‖(z) [87] and the minimum

bound tmin [127] on the current age of the universe. The µ(z) and H‖(z) data are shown in
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Figure 5.1: Observables for the parameteric LTB model.

Figure 5.1 and we use the value tmin = 15.2±2.7Gyr. The potential (or likelihood) is computed

as2

χ2 =
∑
y

χ2
y, (5.27)

where y labels the data set and we compute the χ2
y for each of µ(z) or H‖(z) using an equation

such as (5.13). Since the techniques described in §3.6 only places a lower bound on the current

age of the universe, it should only contribute to the likelihood when t0 ≤ tmin. To implement

this we use a one-sided version of (5.13) viz.

L(t0) = Π(t̄min − t0) exp

(
−(t0 − t̄min)2

2σ2
tmin

)
, (5.28)

where Π(t̄min−t0) is the step function (i.e. Π(t̄min−t0) = 1 if t0 ≤ t̄min and zero otherwise). The

MCMC is performed using the strategy described above with a standard multivariate Gaussian

as the proposal distribution for the parameters. We show the posterior distributions of D(z),

H‖(z), ρ(z) and µ(z) generated by the MCMC in figure 5.1. The blue shaded contours are

found by constructing the empirical distribution function at each point in the domain. Note

that the input functions H⊥0(r) and Ωm0(r), defined by (5.25) and (5.26) respectively, are not

directly observable i.e. this is a latent variable model. This is one of the main drawbacks of the

comoving formalism in which priors have to be specified on some constant time slice Σt and are

therefore necessarily not directly observable. In principle these priors could also be specified

non-parametrically. Such an approach has been undertaken for a ΛLTB model in [143]. While

2Samples in which any of the parameters turn out to be negative are rejected i.e. χ2 =∞.
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this approach has intuitive appeal, it requires fixing the priors from a priori knowledge and is

therefore not compatible with the bottom up approach to cosmology. As we will see in §6.2

the current lack of model independent density data also necessitates that we fix the prior over

ρ(z) in a rather ad-hoc and cumbersome manner. However, the algorithm we describe will be

straightforward to adapt when such data become available.

5.2 Gaussian processes

Gaussian processes have recently become quite popular as a means to perform non-parametric

regression on cosmological data sets (see for example [144, 145, 146]). In its most basic form

a Gaussian process (GP) is a collection of random variables, any finite subset of which have a

joint Gaussian distribution [147]. A GP can be completely characterised by specifying its mean

m(x) and covariance k(x, x̃) functions. The mean and covariance function of a real process f(x)

are defined by

m(x) = EN [f(x)], (5.29)

k(x, x̃) = EN [(f(x)−m(x))(f(x̃)−m(x̃))]. (5.30)

This is conveniently abbreviated using the notation f(x) ∼ GP(m(x), k(x, x̃)). Note that the

notation EN [·] is used to denote the expectation value with respect to a Gaussian distribution.

GP’s are employed in a wide variety of applications (see [148, 149, 150, 151, 152, 153, 154] for

example). Here we use them to perform non-parametric regression on discrete data sets of the

form

Dy = [zi, yi,Σy], i = [1, 2, · · · , n], (5.31)

where the zi are the values in the domain of the function at which we have data (i.e. the

redshift), the yi are the observed values of the function and Σy is the covariance matrix of the

data.

5.2.1 Gaussian process regression

The Gaussian process regression (GPR) problem aims to reconstruct the posterior distribution

of a function, f say, from a number of discrete observations as in (5.31). Under the assumption

of spherical symmetry, astrophysical observables are reported as functions of the redshift. Thus

we will only be concerned with one dimensional regression problems and we will consistently

use z to denote the variable in the domain of the function. As a simple illustration, suppose we

seek the underlying function f(z) in

y = f(z) + ε, where f(z) ∼ GP(m(z), k(z, z̃)) and ε ∼ N (0,Σy). (5.32)
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Denoting the points at which the function is to be reconstructed by zp, means that the finite

collection of random variables whose joint Gaussian distribution we want to infer from the data

is fp = f(zp). This is achieved by specifying the joint distribution between the observations

and the random variables fp. Suppose we select a finite subset of function values and partition

them as [Y, fp], where Y = [y1, y2, · · · , yn] is a numerical vector formed by concatenating all the

observations yi of the function. Under a GP prior, the joint distribution of the data and the fp

is a Gaussian distribution of the form Y

fp

 ∼ N
 m(X)

m(Xp)

 ,
 k(X,X) + Σy k(X,Xp)

k(Xp, X) k(Xp, Xp)

 , (5.33)

where X = [z1, z2, · · · , zn] is the vector formed by concatenating all the inputs and Xp is the

vector formed by concatenating all the points at which we wish to reconstruct the function

zp. For brevity we sometimes omit the arguments of the mean and covariance functions and

refer, respectively, to M = m(X) and K = k(X,X) as the vector and matrix formed by

evaluating the mean and covariance functions at the points X, and similarly Mp = m(Xp),Kp =

k(X,Xp),K
T
p = k(Xp, X) and Kpp = k(Xp, Xp).

The “trick” employed in GPR is to specify a sufficiently generous prior distribution and then

restrict the fp to be compatible with the observations by using (5.7) and (5.8) to form the

conditional distribution i.e.

fp | X,Y,Xp ∼ N
(
f̄p, cov(fp)

)
, where (5.34)

f̄p = Mp +KT
p K

−1
y (Y −M) , (5.35)

cov(fp) = Kpp −KT
p K

−1
y Kp. (5.36)

Here f̄p = EN [fp|X, y,Xp] is the posterior mean, cov(fp) the posterior covariance matrix and

Ky = K + Σy. Eqns (5.34) - (5.36) are the key predictive equations for GPR. This remarkably

simple procedure can accommodate a very large class of functions. The properties of these

functions are determined by the mean and covariance functions.

When performing GPR everything hinges on the form of the prior distribution and the quality

of the data. If we specify an incorrect prior from the outset then GPR will perform poorly

regardless of the quality of the data. Note that, as evidenced by equation (5.36), the form of

the prior mean function doesn’t enter into the computation of the posterior covariance matrix

at all. Its role is basically to zero the data. It can significantly alter the results in regions where

the data are sparse. In particular, in absence of a prior mean function (i.e. m(·) ≡ 0), it is not

recommended to try and predict values of the function beyond, or near, the edges of the data

set. This is because in such regions the contribution of the prior to the likelihood will dominate
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and therefore tend to bias the predictions towards zero. These “edge effects” are unavoidable

without using a mean function. Note that the prior will also dominate the likelihood in regions

where the data are sparse compared to the length scale of the posterior covariance function. It

is easiest to illustrate this with an example. One popular covariance function is the squared

exponential, which takes the form

k(z, z̃) = σ2
f exp

(
−(z − z̃)2

2l2

)
. (5.37)

This is an example of a stationary covariance function i.e. it only depends on the difference

z − z̃. Note that we do not explicitly indicate the functional dependence on the parameters

σf and l, which allow for more flexibility in the prior. Parameters that are required in the

specification of the prior (here σf and l) are called hyperparameters and we will denote them

collectively by θ. With the form (5.37), the roles of l and σf can be interpreted as follows:

• The parameter l is called the length scale. It sets a characteristic length which determines

the strength of correlation between function values for a given separation between two

points in their domain.

• The parameter σf is called the signal variance. It constrains the amount by which a

function can change for a given l and separation between points in the domain.

We now come back to the statement made above regarding the role of the mean function

when the data are sparse compared to the length scale of the posterior covariance function.

In light of (5.37), or in fact any stationary covariance function, we now see that input points

separated by distances >> l will convey negligible information about the covariance between

the values of the function at these points. An implication for cosmology is, for example, that

we could not meaningfully incorporate the angular diameter distance at decoupling D(zdec)

without specifying a prior mean function. However, when sufficient data are available, the form

of the mean function is not very important and it is often safe to assume a zero mean function.

The form of the covariance function however can be crucial, and so are the means by which we

adapt it to the data.

5.2.2 Marginalisation and the choice of covariance function

The hyperparameters are not arbitrary and must be learnt from the data. This is where Bayes’

theorem is employed. In the GPR context it takes the following form

p(f |Y,X) =
p(Y |f,X)p(f |X)

p(Y |X)
. (5.38)
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Here the likelihood p(Y |f,X) is given by

p(Y |f,X) = (2π)−
n
2 Σ
− 1

2
y exp

(
−

(Y − f)TΣ−1
y (Y − f)

2

)
. (5.39)

The prior is also a Gaussian and, with the understanding that there is an implicit dependence

on the choice of mean and covariance function, can be written as

p(f |X) = (2π)−
n
2K−

1
2 exp

(
−(f −M)TK−1(f −M)

2

)
. (5.40)

Thus the marginal likelihood associated with GPR is given by the integral

p(Y |X) =

∫
p(Y |f,X)p(f |X)df. (5.41)

Using (5.9)-(5.11), or simply noting that Y ∼ N (0,K + Σy), the marginal log-likelihood is

found to be

log(p(Y |X, θ)) = −1

2
Y TK−1

y y − 1

2
log |Ky| −

n

2
log(2π). (5.42)

Here we show the explicit dependence on θ because (5.42) can be used, either to infer the

values of θ that maximises the likelihood (i.e. the maximum a posteriori (MAP) estimate), or

to marginalise over the hyperparameters. For a truly Bayesian reconstruction of a function we

ideally want to marginalise over θ. This can have an especially significant effect on the shape

(and therefore the derivatives) of the reconstructed function. However, when the marginal

likelihood is strongly peaked, the marginalisation will not have a very significant effect. This is

more so for certain choices of covariance function than for others.

The covariance function encodes assumptions about the function we wish to infer from the

data. Valid covariance functions are necessarily positive semi-definite and symmetric. In our

application of GPR we further restrict to stationary and isotropic (i.e depends only on r = |z−z̃|)

covariance functions. This expresses our belief that proximity of the inputs should be the

dominant feature in determining the covariance between function values. Furthermore, as we

intend to use them as input to the numerical integration scheme, we want the reconstructed

functions to be smooth. Smoothness relates to the differentiability of the covariance function.

For example using the squared exponential covariance function (5.37) results in functions that

are truly smooth i.e. infinitely differentiable. However we found that this choice was particularly

sensitive to the marginalisation over θ and actually obtained better results using the Mattern

class of covariance functions with ν = 5/2 (see [147] for more on Mattern covariance functions)

k(x, x̃) =

(
1 +

√
5r

l
+

5r2

3l2

)
σ2
f exp

(
−
√

5r

l

)
. (5.43)

Gaussian processes described by this covariance function are continuous stochastic processes,

the sample paths of which are twice differentiable. This property, as well as ensuring a certain
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degree of smoothness for the samples drawn from (5.34), allows us to incorporate up to second

derivative observations into the smoothing process. Our reasons for choosing it are motivated

more by trial and error than theoretical considerations. Model selection could in principle be

used to determine optimal covariance functions for the data sets employed (see §5 of [147]).

5.2.3 Derivative observations and sampling

Sometimes, especially when smoothing multiple dependent data sets, it is necessary to incor-

porate certain physical constraints into the smoothing process. In general, this is not an easy

task when using non-parametric smoothing algorithms. The ability to incorporate derivative

observations during GPR allows at least some of these constraints to be enforced.

Recall that under the GP model the covariance between function values at two different points

in the domain is determined by the covariance function

cov(f(z), f(z̃) = k(z, z̃). (5.44)

Using the linearity of the differential operator, the covariance between a function and its deriva-

tive is given by

cov

(
f(z),

∂f(z̃)

∂z̃

)
=

∂

∂z̃
cov(f(z), f(z̃)) =

∂

∂z̃
k(z, z̃), (5.45)

cov

(
∂f(z)

∂z
,
∂f(z̃)

∂z̃

)
=

∂2

∂z∂z̃
cov(f(z), f(z̃)) =

∂2

∂z∂z̃
k(z, z̃). (5.46)

Thus, as long as the covariance function is sufficiently differentiable, the covariance between

a function and its derivatives, as well as the covariance between derivatives of the function,

can be specified up to arbitrary order. Suppose we are given a data set of a function and its

derivatives Dy = [yi,dyi, · · · , zi,dzi, · · · ,Σy,Σdy,Σydy · · · ] where the notation dny is used to

denote an observation of the nth derivative of the function at the input point dnz. In the GPR

context we can therefore specify the following prior over the observations
Y

dY

·

·

 ∼ N
0,


K(X,X) + Σy ∂zK(X,dX) + Σydy · ·

∂zK(dX,X) + ΣT
ydy ∂z∂zK(dX,dX) + Σdy · ·

· · · ·

· · · ·



 . (5.47)

If the data cross-covariance matrices (i.e. the off diagonal block Σ’s) are not available we simply

assume they are zero. Actually, in this work, we assume that the only relevant contributions in

the data covariance matrices are the diagonal terms. As such we assume that the error terms

ε in (5.32) are independent but, as we have shown above, this assumption is not necessary. It
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is useful to denote the full prior over the data using the notation Ky i.e. with the implicit

understanding that when there are derivative observations we really mean (5.47). With this

understanding the predictive formulas (5.34)-(5.36) remain unchanged.

Finally, note that the linearity of the differentiation operator can also be used to construct

posterior predictive distributions for the derivatives of a function. However there is an important

caveat to doing so. The textbook advice (see [147] for example) for drawing function realisations

(i.e. a sample of f(zp) from (5.34)) is to perform Cholesky decomposition on the posterior

covariance matrix (5.36) and then form

fp = f̄p + Lu, where u ∼ N (0, I) and LLT = cov(fp), (5.48)

and similarly for the derivatives of the function. However there are two important things to

take note of here:

• It is true that the posterior mean of the derivative of the function f̄ ′p is the same as

the quantity found by taking the derivative of f̄p numerically (to within the expected

accuracy of the numerical method of course). However, this is not the case for random

realisations of the function i.e. f ′p ∼ GP
(
f̄ ′p, cov(f ′p)

)
is not in general the same as the

quantity found by taking the derivative of a realisation fp ∼ GP
(
f̄p, cov(fp)

)
numerically,

even when the same random seed u is used. Thus, when it is important that the function

and it’s derivatives satisfy certain physical constraints, we cannot sample them from their

respective GPR posteriors separately. Instead the derivatives of a specific realisation fp

have to be found numerically.

• The Cholesky decomposition LLT = cov(fp) is unstable when performed numerically.

This is because cov(fp) can be very nearly singular, i.e. det | cov(fp)| ≈ 0. In [147] it is

recommended to add a small multiple of the identity matrix (called jitter) to cov(fp) to

cure this instability. Although this works and is nearly imperceptible in most applications,

it does not work when we wish to find derivatives numerically. Jitter effectively adds a

small independent and identically distributed component to cov(fp) and this shows up as

jagged lines in the numerical derivatives.

To draw samples from (5.34) we instead perform the eigendecomposition

cov(fp) = UΛUT = (UΛ
1
2 )(UΛ

1
2 )T ,

where U is the matrix of eigenvectors and Λ the diagonal matrix of eigenvalues. Although

the eigendecomposition is stable, it can result in eigenvalues which are smaller than machine
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tolerance. In practical applications these small eigenvalues therefore have to be set to zero.

This has a negligible effect on the resulting samples, which can be generated using

fp = f̄p + (UΛ
1
2 )u where u ∼ N (0, I). (5.49)

Direct substitution confirms that f̄p = EN [fp] and cov(fp) = EN
[
(fp − f̄p)(fp − f̄p)T

]
as re-

quired (the latter follows because EN [u] = 0). Note that the samples resulting from (5.49) can

be differentiated numerically.

Example 5.2.1. Smoothing H‖(z) data:

Here we perform GPR on the cosmic chronometer H‖(z) data of [87]. For illustration we show

the result with and without the marginalisation in figure 5.2. The optimised hyperparameters

are found using Python’s basin hopping optimiser [141] subject to the constraint θ > 0. For the

marginalisation the MCMC is implemented using the strategy outlined in §5.1.3. Interestingly,

the error contours are larger when using the optimised hyperparameters. The reason for this

is that, with the limited number of data points available for H‖(z), the marginal likelihood

does not contain much information. We found that the MCMC spends a significant amount

of time in regions of high l and σf . This results in functions that seem nearly linear in the

redshift range z ∈ [0, 2.0]. For this reason we have opted not to include the marginalisation

over the hyperparameters in our main application presented in §6. However, from a Bayesian

perspective, our conclusions would be more robust if the hyperparameters were marginalised

over. With this in mind we will now construct a Bayesian model which, among other things,

allows for this possibility in the future.

5.3 Inference in a non-parameteric ΛLTB universe

5.3.1 Bayesian model

In order to perform inference using the numerical ΛLTB solution discussed in §4 we need to

construct a Bayesian model which makes explicit the prior and the likelihood as well as the

parameters that enter the model. The scientific parameters that we wish to infer are H‖(zp),

ρ(zp) and Λ where, in accordance with the Gaussian process interpretation, we view the values

of the functions H‖ and ρ at each redshift zp as parameters. However, there are also nuisance

parameters (e.g. calibration parameters that enter the likelihood during the data gathering

process) and hyperparameters (i.e. those involved in the specification of the prior) that need to

be marginalised over. For simplicity we will not attempt a rigorous treatment of either of these

and simply indicate where they should be incorporated. We will use the following notation:
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Figure 5.2: The smoothed cosmic chronometer H‖(z) data. The figure on the left shows the

result of GPR when marginalising over the hyperparameters. On the right we show the result

using optimised hyperparameters. This example illustrates a subtlety of using GPR viz. when

the marginal posterior (5.42) does not contain much information (i.e. is not significantly peaked)

then the marginalisation does not always improve the reconstruction.

• Our hypothesis H is that the universe on large scales can be described by a ΛLTB model.

We can therefore identify the hypothesis with a system of partial differential equations

which act on the initial data, x say, to generate the observables yi i.e.

y = H(x) + ε, ε ∼ N (0,Σy) . (5.50)

Here x could be a latent variable as in example 5.1.1. However, the advantage of specifying

the model directly from observations on the PLC0 is that x could also be partially or fully

observed. In an ideal scenario we would have observations for all of H‖(z), ρ(z) and Λ.

Using GPR to smooth these data would give a very efficient and robust prior over x which

requires as little a priori assumptions as possible. In our case, as we only have “model

independent” H‖(z) data available, it will be partially observed. Note that this idea, in

particular models of the form (5.50), could be extended to more general models of the

universe.

• The ΛLTB solution can be found from initial samples of H‖(z), ρ(z) and Λ. Thus we form

the target vector x (i.e. the random vector whose joint probability distribution we want
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to infer from the data) as

x =


H‖ − H̄‖
ρ− ρ̄

Λ− Λ̄

 , (5.51)

where, as usual, barred quantities denote the mean. We will discuss prior specification in

more depth in §6.

• For purposes of illustration the full set of hyperparameters associated with the model is

denoted as θ. These will typically consist of the hyperparameters of the GP priors.

• Similarly we use ψ to denote the full set of nuisance parameters associated with the model.

• Let D denote all the astrophysical data at our disposal. In general D will consist of

multiple data sets and it is important that we have sufficient data to fully determine the

model. We refer to a specific data set by using a subscript of the function e.g. Dµ and

DH‖ refer to data sets for distance modulus and expansion rate respectively.

The goal is to infer the posterior of x under the hypothesis (5.50) with the given data i.e.

p(x|D,H). Here we explicitly indicate the dependence on our assumed hypothesis since, in

general, x (i.e. the initial data required to fix the model of the universe) will be different under

different hypotheses. In order not to over-determine the system it is important to identify a

minimal set of initial data that is sufficient for this purpose. That said, and since we only work

with one single hypothesis, we will henceforth omit the explicit dependence on H for notational

simplicity. We now use Bayes’ theorem to express p(x|D) as

p(x|D) =
p(D|x)p(x)∫
p(D|x)p(x)dx

. (5.52)

In general the prior p(x) will depend on a number of hyperparameters so that we have to

marginalise p(x|θ) to find p(x). Fortunately, for the modified random walk algorithm discussed

in §5.3.2 below, we only need to be able to sample from p(x) and won’t need to explicitly

compute p(x = X). The marginalisation could therefore be performed by sampling the GPR

marginal posterior as discussed in Example 5.2.1.

The likelihood, on the other hand, additionally depends on a number of nuisance parameters.

Thus we actually have access to L(x|ψ) = p(D|x, ψ) and we need to be able to compute the

marginal

L(x) =

∫
L(x|ψ)p(ψ)dψ. (5.53)

The importance of this was discussed in §3 where we pointed out that ideally the astrophysical

parameters should be inferred simultaneously with the cosmology. This will become more
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important for the robustness of our conclusions as the quality and availability of data improve.

With the direct sampling based approach that we propose here, the likelihood could be modified,

either by performing analytic marginalisation (as discussed in appendix C of [105] for example)

or by a direct Bayesian marginalisation. Since the number of points zp at which we wish

to reconstruct H‖ and ρ is arbitrary, the inference framework must be able to accommodate

arbitrarily high dimensional problems. This is next to impossible to do in general. However,

when the target consists of a finite number of smooth functions, and possibly a handful of

parameters, inference can be achieved with the following modified random walk algorithm.

5.3.2 MCMC for functional spaces

In this section we follow the presentation given in [137] to construct an efficient MCMC algorithm

for our problem. We will not attempt a detailed derivation of the theoretical results. The reader

can consult [137] for further details regarding the notation and terminology employed in this

section.

We use π(x) to refer to the measure on x while π0(x) is used to refer to the measure on the

prior over x. Choosing π0(x) to be the dominating reference Gaussian measure of the Markov

chain, Bayes’ theorem is expressed with the corresponding Radon-Nikodym derivative as

dπ

dπ0
(x) ∝ L(x), where L(x) = exp(−Φ(x)). (5.54)

Here L is the likelihood with corresponding real valued potential Φ. The preconditioned Crank-

Nicolson (pCN) proposal of [137] takes the form

y(k) =
√

(1− β2)x(k) + βδ, with δ ∼ µ0(x), (5.55)

where 0 ≤ β ≤ 1 is a constant that can be adjusted to control the acceptance rate and, as

before, we indicate the step in the chain by a subscript in braces. This proposal is a specific

discretization of a class of stochastic partial differential equations which are invariant for either

the reference or target measure (see [137] for the explicit construction of this proposal). Defining

the acceptance probability as

a(x, y) = min (1, exp (Φ(x)− Φ(y))) , (5.56)

ensures that the Gaussian reference measure is exactly preserved as the likelihood drops to zero

i.e. it does not reject the proposal in the case where Φ = 0 but rather accepts the move with

probability one. This method differs from the standard random walk method since the proposal

is not centred but rather autoregressive with order one (AR(1) type). Note that the proposal is

reversible with respect to π0 so that π is indeed the stationary distribution of a Markov chain
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with transition kernel defined by (5.56). Note that, although the theory required to justify

this statement is non-trivial, it is remarkably simple to implement this algorithm in practice.

The main differences between this and the MH sampler of §5.1.3 are that the proposal (5.55)

uses samples drawn from the prior and that the acceptance rate is modified to (5.56). We can

therefore use the same MCMC strategy as outlined in §5.1.3 using GPR to set Σq and x̂ as

(5.36) and (5.35) respectively. We now put everything together and present an algorithm that

can be used to infer the geometry of the universe directly from data.

5.3.3 The Copernicus algorithm

Let us again emphasise that spherically symmetric dust universes have two free functions. In

our algorithm we select ρ(z) and H‖(z) as the two free functions. Also setting the value of Λ

completely specifies the model and allows the solution to be found numerically as discussed in

§3. Since the entire solution is known on the grid and, using the v(z) relation, can be written

as a function z, we are able to assign a likelihood to the current sample of H‖(z), ρ(z) and Λ

by confronting this solution with the available data. Thus, given priors from which to sample

H‖(z), ρ(z) and Λ, we can use the above MCMC to perform inference. Prior specification is an

important aspect of the algorithm and should be kept as flexible as possible. Although we will

be using simple Gaussian priors in this work, the inference framework only requires that the

prior is absolutely differentiable with respect to an appropriately chosen Gaussian distribution

[137].

Next we need to specify the likelihood function L(x). In accordance with our model hypothesis

(5.50), we use a potential function Φ of the form

Φ(x) =
1

2
(y −H(x))TΣ−1

y (y −H(x)), L(x) = exp (−Φ(x)) , (5.57)

where y consists of the functions for which we have data. This is the form of a χ2 likelihood

without the degrees of freedom correction. This likelihood has been adopted for simplicity,

it is not a requirement of the algorithm. The only restriction on the allowed form of the

likelihood function is that it satisfies (5.54) i.e. it can be written as the Radon-Nikodym

derivative of the target measure π(x) with respect to the prior π0(x) where either π(x) or

π0(x) is absolutely continuous with respect to the dominating reference Gaussian measure. The

inference framework is therefore quite general and could be adapted to perform a blind analysis

in which the nuisance and hyperparameters are inferred simultaneously with the cosmology.

With the prior and likelihood specified, our final consideration is to make sure that all the

physical constraints are satisfied. This is achieved simply by rejecting a sample (equivalently
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setting Φ =∞) which violates any of the physical constraints. We explicitly check the following

constraints on the PLC0:

• Positive energy density ρ > 0;

• No shell crossings ∂rR 6= 0 (equivalently that ∂rR doesn’t change sign)3;

• The ΛLTB consistency relation (4.53).

The field equations ensure that these constraints remain satisfied if they hold on the PLC0.

They could however be violated in the interior if there are instabilities or convergence issues

in the numerical integration scheme. As was shown in §4 the CIVP is stable and second order

convergent for a large class of initial data and within the domain of integration investigated

there. However, since these tests were performed on a finite number of initial samples, we also

monitor the ΛLTB consistency relation while running the algorithm. In all our simulations we

found results on the PLC0 which look virtually identical to those shown in Figure 4.3. However,

we found that the stability limit of the integration scheme can sometimes be exceeded in the

interior of the PLC. This can happen when the initial samples of H‖, ρ and Λ yield a very

high value of t0 and we try to integrate very deep into the PLC, typically when the temporal

domain exceeds w0 − wNI−1 ≈ 7 Gyr. However it does not happen for every integration in

which the w0 − wNI−1 > 7 Gyr and seems to be correlated with the maximum value of the

radial coordinate v∗ on the PLC0. Samples with a lower value of v∗ on the PLC0 tend to exceed

the stability limits of the code more often. A possible explanation for this is that, for a fixed

redshift interval, lower values of v∗ on the PLC0 results in larger derivatives of the hypersurface

variables at the far end of the radial domain. This might necessitate adapting the step size of

the radial integrator. Samples which violate (4.53) in the interior of the PLC by more than

an order of magnitude are discarded (in the interior of the PLC only). This should be kept in

mind when interpreting the posterior distributions on the inside of the PLC. Note however that

this stability limit does not affect the posterior distributions of reconstructed quantities on the

PLC0.

With these considerations in mind the geometry of the universe can be reconstructed from

data as summarised in Algorithm 14. It should be understood that each accepted sample of

x corresponds to a full ΛLTB solution viz. H(x). This makes it possible to investigate any

aspect of the model within the domain in which the solution has been calculated. However,

3This does not exclude any potentially relevant scenarios that are not already excluded by the fluid assumption.
4The code implementing the Copernicus algorithm is available for download https://github.com/

landmanbester/Copernicus. Documentation and examples will be made available in due course.

https://github.com/landmanbester/Copernicus
https://github.com/landmanbester/Copernicus
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Algorithm 1

1 Set k = 0, choose x(k) and compute Φ(x(k));

2 Implement Procedure 1 to get δ ∼ π0(x) ;

3 if any(ρ < 0) then set x(k+1) = x(k) and go to 6;

else Propose x̃(k) =
√

1− β2x(k) + βδ and implement Procedure 2;

4 if ∂rR = 0 or Q > O(∆v2) then set x(k+1) = x(k) and go to 6;

else Compute a(x̃(k), x(k)) with (5.56) and sample u ∼ U(0, 1);

5 if u ≤ a(x̃(k), x(k)) then set x(k+1) = x̃(k) and implement Procedure 3;

else set x(k+1) = x(k) and go to 6;

6 Set k ← k + 1 and go to 2 ;

to be concise, we will summarise the results for each simulation in a series of four figures (see

Figures 6.1-6.4 for example). The first figure shows the posterior distribution of the observables

on the PLC0. The second shows the posterior distributions of the quantities T1 and T2 on the

PLC0 and on a PLC defined by w ≈ 10Gyr which we abbreviate as PLCF. We then show the

posterior distributions of the metric components X and R of (2.59) and of ρ and H⊥ on a

constant time slice defined by t ≈ 10Gyr (Σt∗). The final of the four figure series shows the

joint constraints on the parameters Ωm0 vs. ΩΛ0 and on t0 vs. Λ. Note that contours on the

reconstructed functions are found by constructing the empirical distribution function (EDF )

at each point in the domain. The black line in all these figures is the median (EDF = 0.5) of

the posterior distribution, the dark blue region is the 1-σ quantile (0.16 < EDF < 0.84) and

the light blue region is the 2-σ quantile (0.025 < EDF < 0.975). Contours on the parameters

are found using a kernel density estimate on the values of the parameters at the vertex q of the

PLC. We use a Gaussian kernel for the kernel density estimate and set the bandwidth using

Scott’s rule (see [155] for example). The dark and light blue regions again correspond to the 1-

and 2-σ contours.
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The metric from observations

In this section we employ the methodology developed thus far to reconstruct the geometry

of the universe directly from data. We then use the result to test the Copernican principle

(CP) by reconstructing the quantities T1 and T2 in the consistency relations (3.31) and (3.52)

respectively. We will use the solution to the CIVP to show the forms of T1 and T2 on the PLC0

and on the PLCF i.e. the PLC located at w ≈ 10 Gyr1. It is shown that current data, although

perfectly compatible with ΛCDM, are not sufficient to confirm or refute the validity of the CP.

This is followed by an investigation using forecast data from future surveys. Our goal is to

determine which data will best be able to constrain violations of the CP. We start this section

by testing the Copernicus algorithm on simulated data.

6.1 Simulations and verification

To test our numerical implementation of Algorithm 1 we simulate data around our reference

ΛCDM model defined in Table 2.1. The data are simulated according to the procedure described

in §4.5.2. In what follows the simulated data could fall into one of two different categories viz.

the data used to set priors and the data used to perform inference. These do not have to be

mutually exclusive. Any of the available data could be used for inference as long as the data

gathering process is model independent and we can correctly incorporate correlations between

data sets. For simplicity we will assume that the data are independent in all the applications

that follow. This would not be a satisfactory assumption if the data were precise enough to

place tight constraints on allowed violations (or lack thereof) of the CP. Robust tests of the CP

obviously have to account for correlations in the data.

In verifying that our algorithm performs as expected, we will be optimistic and assume that

1Note it is not exactly 10 Gyr because we use the solution at the w grid point closest to 10 Gyr.

98
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Figure 6.1: Observables on the PLC0 for simulated test data. Top Left: Posterior distribution

of µ(z) on the PLC0. Top Right: Posterior distribution of H(z) on the PLC0. Bottom Left:

The posterior distribution of ρ(z) on the PLC0. Bottom Right: The posterior distribution of

the redshift drift δz
δw .

we have model independent data available for D(z), H‖(z), ρ(z) and t0. We will be even more

optimistic in the way we choose the uncertainty on the simulated data points and prescribe

relatively small (compared to current data) error bars. We use exactly the same simulated

H‖(z) and ρ(z) data as was used for the convergence test of 4.5.3. The prior over H‖(z) and

ρ(z) is set using GPR with optimised hyperparameters2. The prior over Λ is Gaussian with

mean corresponding to the reference model of Table 2.1 and an uncertainty of 60%. The large

uncertainty on the prior over Λ ensures that we maintain an over-dispersed prior. Treating

H‖, ρ and Λ independently in the prior, we draw samples from π0(x) by sampling each of these

separately and constructing the vector x as in (5.51). The constraints ρ > 0 and Λ ≥ 0 are

enforced simply by rejecting negative samples during the MCMC.

We further simulate 500 data points for D(z) in the same interval i.e. z ∈ [0, 2] with relative

error governed by the power law σD
D = 0.05

√
1 + z i.e. 5% uncertainty at the origin. We also

assume that t0 can be measured with high precision and create a data point centred on the

background ΛCDM value with 1-σ error bars at 2%. Algorithm 1 is run using all these data for

2Note that, since data are available over the whole input domain, there is no need to specify prior mean

functions for either of these GPs.
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Figure 6.2: The quantities T1 and T2 from simulated test data plotted as functions of the

normalised affine parameter v
vmax

. The figures on the left (right) correspond to the PLC0

(PLCF).

inference and using a the MCMC strategy described in §5.1.3. We found that a value of β = 0.25

in the proposal (5.55) lead to typical acceptance rates of between 25-35%. For this simulation

the the PSRF (5.24) of the Gelman-Rubin diagnostic reaches a value of 1.1 after approximately

104 samples. For each of the 10 MCMC chains we therefore set a burn-in period of 5000 samples

and then draw an additional 104 samples for each chain. Each simulation therefore consists of

105 samples in total.

The results for simulated test data are summarised in Figures 6.1-6.4. As can clearly be seen

from the figures, the input model always falls within the 2-σ contours but are more often

confined to the 1-σ contours. Note that, in Figure 6.1, the contours for the observables D(z),

H‖(z) and ρ(z) all lie well within the error bars of the data but that there is still a surprising

amount of uncertainty in the redshift drift δz
δw (z). We will investigate the possibility of including

redshift drift data in 6.3. Figure 6.2 shows the posterior distributions of T1 and T2 on the PLC0

(left) and the PLCF (right). Note that there can still be a surprising amount of uncertainty in

these quantities (especially at high redshift) even with reasonably precise observations of D(z),

H‖(z), ρ(z) and t0. Since the maximum extent of the affine parameter vmax varies from sample

to sample, we plot T1 and T2 against the normalised quantity v
vmax

. In the reference model of
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Figure 6.3: Posterior distributions on a constant time slice Σt defined by t∗ = 10 Gyr for

simulated data. We plot X, R, ρ and H⊥ as functions of the normalised comoving radial

distance r
rmax

. Top Left: The metric function R. Bottom Left: The density on Σt plotted

in units of the critical density ρc today (see Table 2.1). Top Right: The metric function X.

Bottom Right: The transverse Hubble rate H⊥. Clearly the algorithm correctly recovers the

expected forms of these functions.

Table 2.1 a value of v
vmax

= 0.5 corresponds to z ≈ 0.4 (see Figure 3.1). Thus there seem to

be fairly tight constraints on T2 out to z ≈ 0.4. However these constraints are meaningless by

themselves. To draw meaningful conclusions from them we would need to know the expected

variance of T2 within the concordance model. This will be discussed further in §6.4. For a

comparison with the expected values of T1 and T2 in the best fit LTB model of Example 5.1.1

see Figure 2 in [156]. In 6.3 we will also investigate how data expected from future surveys can

further tighten these constraints.

We should note an important feature that will be prevalent in all the simulations that follow.

As can be seen from Figure 6.2 there is a tendency of both T1 and T2 towards negative values

at the far end of the radial domain. At this stage it is not completely clear why this happens.

An explanation that seems convincing is the presence of “edge effects” as discussed in §5.2.1.

Close inspection of Figure 6.1 shows that the most likely realisations of H‖(z) fall slightly below

the what is expected from the background model. If this tendency is due to edge effects then it
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Figure 6.4: Contour plot of Ωm0 and ΩΛ0 at the vertex for simulated test data. Also shown is

a countour plot of Λ and the age of the Universe t0.

would be difficult to avoid without specifying a prior mean function.

In Figure 6.3 we use the coordinate transformation to reconstruct X, R, ρ and H⊥ on Σt∗ .

Clearly the most probable profiles agree with what is expected from the background ΛCDM

model. Finally in Figure 6.4 we show the joint constraints on the parameters Ωm0 vs. ΩΛ0 and

t0 vs. Λ at the vertex of the PLC0. These again contain the background model but they also

illustrate an interesting feature of our formalism. The additional degree of freedom introduced

by dropping the CP significantly relaxes the constraints on these parameters. In particular, as

evidenced by the slanted Ωm0 vs. ΩΛ0 contours, models which have a non-negligible contribution

from curvature can also fit the data with high confidence. Since we used fairly optimistic error

bars on the simulated data sets, we must conclude that models with non-negligible curvature

would be hard to rule out by using only D(z), H‖(z), ρ(z) and t0 data. Our investigation in 6.3

aims to determine which data would be able to remove this ambiguity. However first we will

see what constraints can be derived from currently available data.

6.2 Status of the Copernican principle

To run the current data through the algorithm we first need to specify the prior π0(x). The

priors over H‖(z) and Λ are specified in the same way as for the test simulation above except
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that we allow for 100% uncertainty in Λ. Unfortunately the lack of density data means we

have to specify a fairly ad-hoc prior for ρ(z). We will create a Gaussian prior by using mock

density data. To do so we first need to specify a background mean function ρ̄(z). As an initial

guess we choose a ρ̄(z) corresponding to our reference ΛCDM model defined by the parameters

listed in Table 2.1. We choose 50 uniformly spaced redshift values between z = 0 and the

maximum redshift up to which we have H‖(z) data i.e. zmax = 1.965. For an overdispersed

prior the uncertainty around these data points should be chosen to overestimate that of the

final reconstructed function. We assume that the relative uncertainty vs. redshift relation is

governed by the power law
σρ
ρ

= σf (1 + z)α. (6.1)

Choosing values for σf and α would then allow us to perform GPR on the mock data and

draw smooth function realisations as usual. Substituting (6.1) and the form of the covariance

function (5.43) into the formula for the predictive posterior covariance (5.36), we find that

σf =
√

2σρ0 , (6.2)

where σρ0 is the desired uncertainty of the prior over ρ at the origin. An estimate of this error

can be found from

ρ(0) = −2D′′′(0)

κ
,

where we have substituted the limiting expressions of D and its derivatives derived in § 4.2 into

(4.5). An expression for D′′′, in terms of u, H‖ and D, as well as their derivatives w.r.t. z, can

be derived by applying the chain rule to the relation (3.59) for D′′ and using the expression

(3.20) for dz
dv

. Taking the limit as v → 0 gives

D′′′C =
[
H3
‖ (6D,z + 6D,zz +D,zzz) +H2

‖H‖,z (8D,z + 3D,zz) +D,z

(
H‖H

2
‖,z +H2

‖H‖,zz

)]
C
,

where the subscript C denotes the quantities evaluated on the central wordline of the observer.

To get estimates of the uncertainties in all the quantities on the RHS, we perform GPR on the

data for H‖(z) and D(z) separately. This allows us to reconstruct the posterior distributions of

the derivatives as explained in § 5.2.3. An estimate of the error on ρ(0) can then be found simply

by propagating the uncertainties in their posterior distributions at z = 0. Such a procedure will

overestimate the error on ρ(0) because it assumes that the given data sets for H‖(z) and D(z)

are independent. With the Union 2.1 data from [4] and the cosmic chronometer data from [86]

and [87] it yields a value of
σρ0
ρ0
≈ 0.4. This sets the initial guess of σρ0 and hence also σf

3.

3Note that this procedure yields a wildly inaccurate value of ρ0 (often very large and even negative). This is

because we have neglected the interdependence between H‖(z), D(z) and their derivatives. We therefore use the

value of ρ0 = ρ̄(0) i.e. the density of our reference ΛCDM model 2.1 at the vertex of the PLC0.
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Figure 6.5: Observables on the PLC0 for currently available data. Top Left: Posterior dis-

tribution of D(z). Top Right: Posterior distribution of H(z). Bottom Left: The posterior

distribution of ρ(z). Bottom Right: The posterior distribution of δz
δw .

We initially guess a value of α = 1 (i.e. the uncertainty in ρ(z) grows linearly with redshift).

The values of σf and α that maintain an overdispersed prior distribution are then determined

by direct supervision using an iterative procedure. The procedure requires also requires an

initial value for the length scale parameter l. For this we use the same value as the optimised

value from the test simulation above. We then perform a trial run of the algorithm with ten

chains of 2500 samples each. Afterwards we compare samples from the prior over ρ(z) to the

posterior and adjust the parameters until we find an acceptance rate of between 25-35% while

also maintaining an overdispersed prior4. After each trial period we update the prior mean

function by computing the median of the posterior samples. This procedure is repeated until

the mean and contours of the reconstructed ρ(z) function converge to within a tolerance of

about 10%. We confirmed that initialising the procedure with a different prior mean function

(i.e. that of the LTB model discussed in Example 5.1.1) does not significantly alter the result,

it only alters the number of iterations required during the trial period.

This procedure might appear obscure and ad-hoc. However we found our results to be quite

robust against the specified prior. Slightly altering the values of σf , α and l can affect the

4We found that the values σf = 0.4 and α = 0.8 maintain an overdispersed prior when using β = 0.35 in the

proposal (5.55).
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Figure 6.6: The quantities T1 and T2 for currently available data plotted as functions of the

normalised affine parameter v
vmax

. The figures on the left (right) correspond to the PLC0

(PLCF).

overall acceptance rate of the MCMC but it does significantly change the final distributions

of quantities T1 and T2. It should be noted however that this supervised process is very time

consuming. It would also not be very convincing if it yielded a negative result i.e. found T1

and T2 significantly different from zero. More robust priors will be required to ultimately test

the Copernican principle. Possible alternatives are to use sieve priors as discussed in [137]

or to introduce additional noise variance hyperparameters which should then be inferred and

marginalised over as discussed in 5.3. However, given the quality of current data, it is unlikely

that such priors would alter our conclusions. Note that this procedure could be avoided if

density data were available. Whether we use such data for inference or only to set the prior

over ρ(z) will depend on the intended application.

The data used for inference are Union 2.1 [4] µ(z) data, the cosmic chronometer H‖(z) data

[86, 87] and the value of tmin derived from nucleochronology in [127]. Since nucleochronology

only places a lower limit on the age of the Universe we only allow this data point to contribute

to the likelihood when t0 ≤ tmin (i.e. using (5.28)). The results are summarised in Figures

6.5 - 6.8. Note that the tight constraints on H‖(z) at low redshift are artificial and result from

not marginalising over the choice of H0 employed when calibrating the supernovae absolute
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Figure 6.7: Posterior distributions on a constant time slice at t∗ = 10Gyr (Σt∗) for current data.

These are plotted as functions of the normalised comoving radial coordinate r. Top Left: The

metric function R. Bottom Left: The density on Σt∗ plotted in units of the critical density ρc of

our reference ΛCDM model (see Table 2.1). Top Right: The metric function X. Bottom Right:

The tranverse expansion rate H⊥ on Σt∗ .

magnitude. Figure 6.6 shows that current data are perfectly compatible with ΛCDM but that

large variations in the quantities T1 and T2 are allowed. In fact we found that, without an upper

limit on t0, the maximum value of Λ in the simulation is basically unconstrained. This can lead

to values of ΩK0 < −1 which in turn can lead to numerical instabilities when computing t0 using

the elliptic function (2.67). We therefore also placed a hard lower limit on the dimensionless

curvature parameter by rejecting samples with ΩK0 < −1. Even with this restriction we still

found that Λ was not very well bounded from above. To obtain the contour plots shown in

Figure 6.8 we also implemented the prior Λ < 0.23 Gpc−2. Note that this is more than twice

the value expected for a ΛCDM model defined by the parameters shown in Table 2.1. A similar

restriction was enforced to obtain the countours shown in Figure 6.11. This restriction should

be kept in mind when interpreting the constraints on the parameters shown in these two figures.

These figures clearly indicate the inability of current data to confirm or refute the validity of

the CP. Moreover, the space of allowed cosmological models is vast, with current data being

perfectly compatible with ΩΛ0 = 0 models. We also see that Ωm0 . 0.6 at 2 − σ confidence
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Figure 6.8: Contour plots of ΩΛ0 vs. Ωm0 (left) and Λ vs. t0 (right) at the vertex of the PLC0

for currently available data.

level. Thus there is a large class of models with non-negligible curvature which fit the data

with high confidence. In particular void LTB models do not seem to be ruled out (see §6.4

for further qualification of this statement). Our results from simulated data in the previous

section suggest that an accurate determination of both t0 and ρ0 could in principle rule out

these models5. However, there we assumed that we also had an upper limit on the age of the

Universe, something which is more difficult to obtain in practice.

6.3 Forecasts

In this section we investigate, in a fairly idealised way, which data would best be able to

disentangle homogeneous models from models which allow for large scale radial inhomogeneities.

Note that all systematics and possible correlations in the data have been neglected. We show

the results of two simulations. The aim of the first simulation was to determine whether D(z),

H‖(z) and tmin data with the accuracy expected from future surveys could in principle be used

to test the CP. These are the observables for which we can hope to generate reasonably model

independent data from upcoming future surveys. Out of these three observables the value of

tmin probably requires the most a priori assumptions about the Universe. In particular, since

5This is part of the reason for choosing such optimistic error bars on the simulated data.
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Figure 6.9: Observables on the PLC0 for forecast data. Top Left: Posterior distribution of

D(z). Top Right: Posterior distribution of H(z). Bottom Left: The posterior distribution of

ρ(z). Bottom Right: The posterior distribution of δz
δw . Note that the simulated data points for

D(z) and H‖(z) have been appended to the data that are currently available.

an estimate of the time interval between the Big Bang and the beginning of structure formation

is required, we need to make certain assumptions about the nature of the early Universe. This

is not really in line with the bottom up approach we are pursuing. In the second simulation we

therefore used redshift drift δz
δw data instead of the tmin data point. As we will see such data

have the potential to significantly constrain violations of the CP.

In both simulations we have used the forecast data given in [80] to get an estimate of the

expected precision in D(z) and H‖(z) data from upcoming surveys. We use approximately

the same redshift values and relative uncertainty as shown in Figure 8 of [80]. We use twelve

simulated data points for each H‖(z) and D(z) which correspond, approximately, to a σH
H of

between 0.01 (at z = 0.4) and 0.02 (at z = 2.4) and a σD
D of between 0.02 (at z = 0.4) and

0.06 (at z = 2.4). We treat these as independent data points which we centre on our reference

ΛCDM model defined by the parameters listed in Table 2.1. We used these data in combination

with the Union 2.1 [4] and cosmic chronometer [87] data (the combined data sets are plotted in

Figure 6.9). For a value of tmin we have assumed a 1−σ lower bound on the age of the universe

at 10% and centred tmin on the t0 value of our reference ΛCDM model. This is already quite
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Figure 6.10: The quantities T1 and T2 for forecast data plotted as functions of the normalised

affine parameter v
vmax

. The figures on the left (right) correspond to the PLC0 (PLCF).

optimistic. However, since HI surveys such as the SKA promise to observe the universe right up

to the dark ages, it is at least conceivable. We use the same likelihood function as in §6.2 and

set the prior over ρ(z) in exactly the same way. The results, summarised in Figures 6.9 - 6.11,

are not very encouraging. Although the reconstructed functions on the PLC0 show significant

improvement, neither the reconstructed distributions of T1 and T2, nor the joint constraints on

Ωm0 vs. ΩΛ0 are significantly improved. We still found that without an upper bound on t0

the maximum value of Λ is, not surprisingly, effectively unconstrained. Thus we still had to

enforce the priors ΩK0 > −1 and Λ < 0.23 Gpc−2. Clearly, if we are going to test the CP using

these data, we have to also find a way to place an upper bound on t0. However, our results on

simulated test data in §6.1 seem to indicate that even a very precise observation of t0 will still

allow models with non-negligible curvature to fit the data with high confidence. The reason for

this is that an observation of t0 is only able to constrain the values of ρ and H‖, and hence

ΩK0, at the vertex of the cone. The best fit constant curvature models (i.e. FLRW) seem to

prefer ΩK0 ≈ 0. This is not the case for ΛLTB models which have an extra functional degree

of freedom which allows them to simultaneously fit all the data with ΩK0 significantly different

from zero. To constrain this extra degree of freedom using estimates of the age of the Universe

we would need to know the age of the Universe as a function of the redshift i.e. t(z) data.
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Figure 6.11: Contour plots of ΩΛ0 vs. Ωm0 (left) and Λ vs. t0 (right) at the vertex of the PLC0

for forecast data.

This possibility will be investigated in future research. However, at the moment it is not clear

whether t(z) data could be obtained in a model independent way. Redshift drift data on the

other hand are in principle completely model independent.

In the second simulation we used the 12 redshift drift data points shown in Figure 6.12. It is

difficult to give a concrete answer for how accurately future surveys will be able to measure the

redshift drift. The accuracy with which this quantity can be measured depends not only on

the instrument but also on the objects being observed. Because of their rich spectra, quasars

(QSO’s) in the Lyα forest currently seem to be some of the best candidates for the job (see

[157] for a discussion). These QSO’s are incredibly bright and can therefore be observed out

to high redshifts (typically between 2 < z < 5). As a result their peculiar motions do not

significantly contaminate the redshift determination. However, at δz
δw ≈ 10−8 per century, we

still need extremely accurate determinations of the redshift to measure this quantity in practice.

Our chances for detecting it obviously increase as more time elapses. Current estimates [157]

with the expected sensitivity from the ELT’s CODEX spectrograph [74] seem to suggest that it

would take between 20-30 years to measure the redshift drift to within the 10% level, albeit in

relatively wide redshift bins. Here we will stick to our highly idealised experiment and ignore

the error in the redshift measurement (i.e. we assume the redshift bins are very narrow). We

have therefore assumed that each of our 12 data points have a fixed uncertainty of 0.01 Gyr−1



6.3. FORECASTS 111

Figure 6.12: Observables on the PLC0 for forecast data including redshift drift. Top Left:

Posterior distribution of D(z). Top Right: Posterior distribution of H(z). Bottom Left: The

posterior distribution of ρ(z). Bottom Right: The posterior distribution of δz
δw . Note that the

simulated data points for D(z) and H‖(z) have been appended to the data that are currently

available. The simulated redshift drift data points are at the same redshift values as those for

D(z) and H‖(z).

which translates to approximately 20% relative error at z = 1. The redshift values are the same

as those for the forecast D(z) and H‖(z) data. Note that, although it is unlikely that we will

obtain such accurate observations of the redshift drift at z ≤ 2, data at higher redshifts will be

more constraining. This we deduce from Figure 6.1 which shows that the uncertainty rapidly

grows with redshift. More careful considerations are required though because incorporating

these high redshift data will require that we specify mean functions for H‖(z) and ρ(z) during

GPR.

With these considerations in mind, we now summarise the results shown in Figures 6.12 - 6.14. It

is interesting to note that the reconstructed distributions of D(z) and H‖(z) are not significantly

affected. The reconstructed distribution of ρ(z) shows significant improvement, especially at

high redshifts. This is dwarfed by the resulting improvement in the distributions of T1 and T2

shown in Figure 6.13. The quantity T1 in particular shows significant improvements on both

the PLC0 and the PLCF. Perhaps the most surprising are the remarkable constraints on the
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Figure 6.13: The quantities T1 and T2 for forecast data including redshift drift plotted as

functions of the normalised affine parameter v
vmax

. The figures on the left (right) correspond to

the PLC0 (PLCF).

values of Λ and t0 shown in Figure 6.14. The value of Λ is constrained to within approximately

15% at the 2 − σ level. We also see that redshift drift data places stronger constraints on

t0 from below than from above. A model independent upper bound on t0 will therefore still

provide valuable constraints. Finally, note that the constraints on the density parameter Ωm0

have remained about the same. Low redshift density data are therefore still required to further

constrain models with non-negligible curvature. Note that, as with the simulated test data in

§6.1, we did not have to enforce the priors ΩK0 > −1 or Λ < 0.23.

6.4 Discussion

Certain valuable deductions can be made from the highly idealised experiment performed above.

First among these is that accurate observations of H‖(z) and D(z) only place strong constraints

on the curvature in models of the Universe in which the curvature is assumed to be constant.

As we have shown for ΛLTB models in particular, the curvature is not strongly constrained by

these data in models with additional functional degrees of freedom. Moreover, while t0 data

can be used to constrain the value of Λ, these constraints are degenerate with the values of ρ

and H‖ at the vertex of the PLC0. As illustrated by our test simulation (see Figure 6.4), a
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Figure 6.14: Contour plot of ΩΛ0 vs. Ωm0 (left) and Λ vs. t0 (right) at the vertex of the PLC0

for forecast data including redhift drift.

fairly accurate estimate of the density at low redshifts would be required to further constrain

the curvature in ΛLTB models. We highlighted some of the difficulties involved in obtaining

such data directly from galaxy number counts in §3.5. The Compton scattering of CMB pho-

tons by hot intra-cluster gas (known as the Sunyaev-Zel’dovich effect [158]) provides another

promising probe of radial inhomogeneity down the PLC0. The kinematic contribution to this

effect, thought to be caused by the peculiar motion of galaxy clusters relative to the CMB and

known as the kinematic Sunyaev-Zel’dovich (kSZ) effect [159], can be mimicked in a universe

where the observer is situated near the centre of a Gpc scale under/over-density (see [160, 161]

for example). This effectively happens because of the systematic red/blue-shifts of photons

resulting from the change in gravitational potential as they traverse the inhomogeneity. Thus

the observed magnitude of the kSZ effect places constraints on the relative over/under-density

of the inhomogeneity and can therefore constrain the uncertainty in ρ at the vertex of the

PLC0. This possibility will be investigated in future research. The kSZ effect does not, how-

ever, constrain the mean value of the density. Another difficulty with using the kSZ in this

way is highlighted by the result proved on §A viz. in spherical symmetry the assumption that

dust and radiation are comoving necessarily presupposes that the Universe is FLRW. Thus to

incorporate kSZ data in a meaningful way requires a thorough understanding of the dynamics in
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multi-fluid models. The dust + radiation case in spherical symmetry was investigated numeri-

cally in [162]. These authors illustrate that dust and radiation can’t be assumed to be comoving

without inadvertently fine tuning the radiation profile to be homogeneous. The implication is

that it is not possible to separate out the kinematic and gravitational contributions to the kSZ

effect in radially inhomogeneous models of the Universe. This makes it difficult to rule out

LTB void models by combining only kSZ data with with the data that are already available.

It is therefore very exciting to see attempts to analyse the CMB (see [163] for example) and

the BAO (see [79] for example) in a model independent way. Such data would be invaluable

to the observational cosmology programme. Indeed there are some who claim that CMB and

kSZ data have already confirmed the CP (see [164, 165] for example). However, in light of the

current uncertainty regarding the dynamics of radiation in inhomogeneous, multi-fluid models,

we believe this claim to be premature.

The possibility of incorporating redshift drift data into the algorithm seems very promising.

However, D(z), H‖(z) and δz
δw data by themselves do not seem to rule out models with non-zero

curvature. It should be kept in mind that the contour plot of Ωm0 vs. ΩΛ0 shown in Figure

6.14 only shows the constraints on these parameters at the vertex of the PLC0. The variation

of the curvature parameter with redshift is related to the quantity T2 which is only strongly

constrained at v
vmax

≤ 0.5, or roughly z ≤ 0.4 in our reference ΛCDM model defined by the

parameters shown in Table 2.1. On the other hand, the quantity T1 which measures the rela-

tive difference between the transverse and longitudinal expansion rates and so is related to the

matter shear, is well constrained on the PLC0 over the whole domain of the problem (i.e. up

to a maximum redshift of about zmax = 2.4). Besides our discussion in §3.3 and §3.4, we have

given little to no indication of what the expected values of these quantities are in perturbed

FLRW models of the Universe. This is a question that we cannot currently provide concrete

answers to (however see [77] who suggests a limit of |T2| ≤ 10−5). We can however suggest a

possible way to do this.

There are a wealth of cosmological data (e.g. CMB [15], BAO [18], weak lensing [19], redshift-

space distortions [20] or galaxy clusters [21]) which, because of their inherent dependence on

FLRW perturbation theory, we could not incorporate into the algorithm. These data place

strong constraints on some of the non-background parameters of the concordance model of

cosmology, in particular the curvature perturbation Pζ(k0) and the matter perturbations am-

plitude σ8 (see for example §13 of [25]). In order to constrain the allowed variations in T1

and T2, expressions for their correlation functions should be derived in terms of the standard

perturbation parameters. The constraints on these parameters can then be used, by directly
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sampling their posteriors for example, to get an estimate of the expected variation in T1 and

T2. Such an analysis is essential to test the CP within the framework presented in this thesis.

We should also remark on the possibility of incorporating physically motivated priors into the

algorithm. An example is placing a hard prior on the length scale parameter l during GPR.

Since the algorithm is only meant to test for large scale inhomogeneities, variations in the func-

tions H‖(z) and ρ(z) below a certain scale can and should be excluded from the outset. This

is part of the reason for not marginalising over the hyperparameters during GPR. Note that

GPR is completely ignorant of the physical laws which govern the underlying process. There

are therefore certain physical considerations which could be brought to bear to further con-

strain the class of allowable cosmological models. However, since a priori assumptions about

the nature of the Universe, especially the early Universe, are exactly the kind of assumptions

we are trying to avoid, this is an aspect that will require careful consideration during possible

future applications of the algorithm.
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Concluding remarks

The primary goal of this thesis was to develop a general and extendible framework which can,

in the spirit of the observational cosmology programme [3], be used to infer the geometry of

the universe from data. This would provide the most direct and model independent test of

the cosmological principle. However, there are a number of difficulties which currently prevent

us from implementing this approach in complete generality i.e without making any symmetry

assumptions about the space-time. We have therefore restricted the analysis to the class of

spherically symmetric models which may include a cosmological constant viz. the ΛLTB model.

Note that, if we also relaxed the assumption of isotropy, there would be multiple ways, in ad-

dition to violations of the CP, in which T1 and T2 could deviate from zero. While it is possible

that the CP could be violated and that there are contributions to Λ from incorrect averaging

procedures, these effects should, in accordance with Occam’s razor, be tested for separately. If

neither effect can adequately account for observations separately then we may consider testing

them in tandem. Thus, since ΛLTB is the simplest generalisation of ΛCDM upon abandoning

the Copernican principle, the framework we have presented is the logical starting point from

which to test the assumption of homogeneity on large scales.

Our results in §6.2 illustrate that current data are not able to confirm or refute the validity

of the CP. This we expected from the outset and therefore tried to provide some additional

insight into which data would be required to ultimately test the CP. In §6.3 we performed a

series of idealised experiments that provide at least partial answers to this question. In §6.4

we established that it would be very difficult to verify the CP using only D(z), H‖(z) and t0

data. The main difficulty here stems from the fact that an observation of t0 only constrains the

combination of Λ, H‖ and ρ at the vertex of the PLC0. We hinted that an estimate of the age

of the Universe as a function of redshift t(z) would be required to constrain the extra functional

degree of freedom present in ΛLTB models. However, as discussed in §3.6, methods which use
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the ages of astrophysical objects to derive bounds on the age of the Universe presuppose that

we know the time that elapsed between the Big Bang and the beginning of structure formation.

We therefore investigated the possibility of using redshift drift data instead.

Redshift drift data are slightly at odds with the spirit of the original observational cosmology

programme. The reason for this is that, to obtain redshift drift data, we need to know derivatives

transverse to the PLC0. The only way to measure these derivatives in practice is to compare the

redshift on two different PLC’s. Thus redshift drift is not really an on-the-lightcone observable.

However, at a separation of only 20 - 30 years, these PLC’s are, for all effective purposes, an

infinitesimal distance apart. Although redshift drift data show great promise, there are consid-

erable difficulties involved in obtaining such data in practice. In particular, since these data will

have to be reported in redshift bins, there will be non-negligible uncertainty in the value of the

redshift (see the discussion in §3.2). Such horizontal error bars could be incorporated simply by

introducing an additional sampling layer in which we sample z = z(zobs) before sampling H‖(z)

and ρ(z) (an idea that we already exploit to deal with uncertainties in the v(z) relation). This

could also be used to investigate the effects of redshift remapping in ΛLTB models.

Because of the highly idealised nature of our investigation, the results shown in §6.3 should

be considered as a best case scenario. The constraints would be significantly degraded if we

accounted for all the possible sources of uncertainty (e.g. systematic in the data or uncertainties

in the reported redshifts). Thus it is likely that we will have to supplement the D, H‖ and δz
δw

data with additional data to ultimately test the CP. As discussed in §6.4, low redshift density

data and an upper bound on the age of the Universe could be very valuable to the observational

cosmology programme. Establishing the required precision in these data is however non-trivial.

It should be kept in mind that the formalism we have presented still relies on a number of

assumptions. The most fundamental underlying assumption is the theory of gravity employed

viz. GR. If GR is violated on cosmological scales, the tests we have presented will have little

meaning for the CP as it could result in T1 and T2 being different from zero even when the CP

holds1 Moreover, cosmological tests of gravity theories are necessarily degenerate with both the

symmetry assumptions of the cosmological model and the assumptions underlying astrophysical

data generating processes. We are of the opinion that GR is the most robust and well tested

assumption in this formalism, albeit on much smaller scales than we are interested in. Finding

statistically significant deviations of T1 and T2 from zero would most probably indicate a break-

down of either the symmetry or astrophysical assumptions. Even though we have advocated

1We should note that the quantity T2 is in principle independent of GR. However, since we use the field

equations to reconstruct D(z) from samples of H‖(z) and ρ(z), the T2 test we present does depend on the validity

of GR.
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this formalism as a means to test the former, it inevitably also tests the underlying astrophys-

ical assumptions. This degeneracy can, to some extent, be broken by carefully constructing

consistency relations which test different aspects of the model under scrutiny. The quantities

T1 and T2, for example, test different aspects of the ΛCDM model. Whereas T1 6= 0 when

deformations of the fluid are allowed (i.e. σab 6= 0), T2 6= 0 when the spatial curvature is not

constant. Although these effects are not completely unrelated, our astrophysical assumptions

will affect them differently. An example of this is provided by the fact that redshift drift data

strongly constrains T1 but are not able to place tight constraints on T2 at high redshifts. In

such a scenario, because of the degeneracy between symmetry and astrophysical assumptions,

we would need high confidence in the redshift drift data to conclude that the Universe is indeed

homogeneous on large scales. Establishing the same result using a different, independent data

set, t(z) say, would make the conclusion more robust.2 In light of the current uncertainties

regarding the nature of the cosmological constant, we should strive to scrutinize the ΛCDM

model by testing as many consistency relations, with as many independent data sets, as possi-

ble. However, since ΛCDM is the simplest model compatible with current data, it remains the

preferred model with which to describe the background dynamics of the Universe.

Shifting the focus away from testing the CP, the above ideas could also be exploited to test

the compatibility between certain astrophysical assumptions and the concordance model. To

see this, suppose we ran the algorithm with all the cosmological data we currently have at our

disposal, including those that rely on FLRW perturbation theory. In this case finding a value

of either T1 or T2 different from zero would indicate an incompatibility between some of the

data. Such an incompatibility would not manifest in an analysis which presupposes a ΛCDM

model. Finding that the distributions of T1 and T2 are compatible with zero, however, suggests

that the data, and therefore the astrophysical assumptions, are compatible with each other and

the concordance model. The time scales involved in obtaining model independent data such as,

for example, redshift drift, might necessitate relying on these sorts of tests, sometimes referred

to as null tests, for some time to come. Note that the distributions of T1 and T2 are not our

only guiding factors. As we hinted at in §3.5, it should be possible to work backwards from the

2Of course it is incredibly difficult, if not impossible, to prove the CP by showing that the quantities T1 and

T2 (or any other consistency relations for that matter) are close enough to zero. The difficulty lies in determining

how close to zero they should be for the CP to be valid. The best we can do is to derive expressions for T1 and

T2 in terms of the perturbed FLRW metric up to a specific order and then use data to estimate the maximum

allowed deviation of T1 and T2 at that order. If the contours of T1 and T2 that we reconstruct using the formalism

developed in this thesis are consistent with those allowed in a perturbed FLRW model, then we still have only

shown that the CP is not violated within the regime in which the perturbed form of the FLRW metric, at the

specified order, provides an adequate description of the real Universe.
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reconstructed distribution of ρ(z) to find the number density of galaxies n(z). We may then

test our assumptions (e.g. the mass to luminosity ratio of galaxies or the shape of the selection

function) by comparing n(z) to the observed number density nobs(z). Such an analysis can

provide valuable insights into the current model dependence of certain cosmological data sets.



Appendix A

Spherically symmetric models

In this appendix we present some details regarding spherically symmetric models of the Uni-

verse. We will start by establishing that when CDM and radiation are comoving in a spherically

symmetric universe then it must have maximally symmetric spatial sections (this result is also

established numerically in [162]). This highlights a potential difficulty with incorporating radi-

ation into the observational formalism. We will then outline the procedure used to rewrite the

the EFE’s in the form shown in §2.3.2. Finally we will describe the transformations required

to rewrite the integral (2.65) in terms of the Carlson elliptic integral (2.66). Finally we will the

parametric solution used in 5.1.1 to fit the the LTB model to data.

A.1 Comoving dust and radiation

The energy content of the universe is assumed to consist of two perfect fluids, one with pressure

(radiation) and one without (dust). Assuming that dust moves with 4-velocity ua, we may

describe these fluids with energy momentum tensors (EMT’s) of the form

T abD = ρDu
aub, (A.1)

T abR = ρRû
aûb + Phab, (A.2)

where the subscripts D and R label dust and radiation components respectively and ûa is the

4-velocity of radiation with respect to dust. Denoting the boost factor by γ = (1− vava)−
1
2 we

can relate ûa to ua via

ûa = γ(ua + va); ûaû
a = −1; vava > 0; vau

a = 0, (A.3)

where va the peculiar bulk velocity of the radiation fluid. To respect local energy/momentum

conservation the total EMT T ab = T abR + T abD must satisfy

∇aT ab = 0. (A.4)
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However since the fluids don’t interact in any way other than gravitationally, the EMT’s of both

fluids must also satisfy the conservation equations separately. Introducing standard spherical

coordinates xa = [t, r, θ, φ] the metric for a spatially spherically symmetric space-time can be

written as

ds2 = −N(t, r)2dt2 +X(t, r)2dr2 +R(t, r)2dΩ2. (A.5)

For simplicity we analyse the problem in the frame of dust. We have verified that, with a little

more effort, the result can also be established in the frame of radiation. Note that, since the

EMT inherits the symmetries of the spacetime, we know that the peculiar velocity will only have

components in the radial direction i.e va = [0, v, 0, 0]. This can be confirmed by substituting

the general form of va into the total MCE (2.27) as defined in §2.2. Substituting (A.5) into the

MCE for dust we find that

ρD
N ′

N
= 0, ⇒ N = N(t), (A.6)

since we assume ρD 6= 0. Choosing t to measure proper time we may set N(t) = 1 in the frame

of dust. The G0
1 = κT 0

1 component of the field equations (note including Λ) with the metric

(A.5) gives

2
Ṙ′

N2R
− 2

N ′Ṙ

N3R
− 2

ẊR′

N2RX
=

4

3
γ2κNρRv, (A.7)

2
Ṙ′

R
− 2

ẊR′

RX
=

4

3
γ2κρRv, (A.8)

where we have used the fact that N = 1 to obtain the last equation. Supposing that the fluids

are comoving (i.e. v = 0), we obtain the usual LTB first integral i.e.

Ẋ

X
=
Ṙ′

R′
, ⇒ X(t, r) = g(r)R′(t, r), (A.9)

with g(r) a function of integration (note g(r) 6= 0 otherwise the coordinate system is not well

defined). Under the assumption that the fluids are comoving, the MCE for radiation reads

1

3
ρ′R +

4

3
ρRN

3N ′ = 0. (A.10)

However since N ′ = 0 it must that that ρ′R = 0. This is rather peculiar, setting v = 0 forces

the radiation profile to be homogeneous. Computing the ECE of radiation we find

1

3

ρ̇R
N
− 16

3
ρRN

2Ṅ − 4

3
N3

(
ρ̇R + ρR

(
Ẋ

X
+ 2

Ṙ

R

))
= 0. (A.11)

Taking the derivative of (A.11) with respect to r, we find, using N ′ = 0 and commuting the

partial derivatives, that (
Ẋ

X
+ 2

Ṙ

R

)′
= 0 ⇒ Ẋ

X
+ 2

Ṙ

R
= C(t) (A.12)
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for some function C(t). This equation integrates to

X(t, r)R2(t, r) = F (r) exp

(∫
C(t)dt

)
(A.13)

for some function F (r). However we have from the field equations that X(t, r) = g(r)R′(t, r)

so that equation (A.13) can be written as

R′(t, r)R2(t, r) = F̃ (r) exp

(∫ t

t0

C(t)dt

)
⇒ 1

3
R3(t, r) =

[
exp

(∫
C(t)dt

)][∫
F̃ (r)dr

]
(A.14)

where F̃ (r) = F (r)/g(r). Thus R(t, r) is a separable function of t and r. If this is the case then

eq. (A.9) also implies that X(t, r) is a separable function of t and r. When the metric can be

written as

ds2 = −dt2 +X(t, r)2dr2 +R(t, r)2dΩ2, (A.15)

it is easy to show that separability of the metric functions implies FLRW. To see this, assume

that the scale factors are separable i.e. X(t, r) ≡ ξ(t)x(r) and R(t, r) ≡ a(t)α(r). Then by eq.

(A.9) we have that

X(t, r) = g(r)R′(t, r) ⇒ X(t, r) = g(r)α′(r)a(t). (A.16)

Substituting (A.16) into (A.15) we have

ds2 = −dt2 + a(t)2
(
g(r)2α′(r)2dr2 + α(r)2dΩ2

)
. (A.17)

Next introduce a new radial coordinate such that (note we have not yet used the gauge freedom

in r)

dr̃ = α′(r)dr, ⇒ r̃ = α(r) when α(0) = 0. (A.18)

Dropping tildes we find that

ds2 = −dt2 + a(t)2
(
g(r)dr2 + r2dΩ2

)
, (A.19)

which has maximal spatial symmetries and is completely equivalent to the FLRW form of the

metric. We have established that a spherically symmetric universe containing only dust and

radiation is necessarily FLRW when the fluids are comoving. This is an interesting result

which crucially depends on the assumption that the fluids do not interact. Although it might

at first appear surprising, it is actually quite intuitive. Since we have forced the radiation

to be comoving with dust, we have forced the radiation to undergo geodesic motion. This

is only possible if pressure gradients vanish1. Since we only use the conservation equations

1Note this idea generalises to more asymmetrical spacetimes.
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and one of the off diagonal EFE’s (i.e. G0
1 = κT 0

1) the result holds regardless of whether we

include a cosmological constant or not. The fact that one additional derivative of the ECE

(A.11) combined with the MCE (A.10) establishes the result, seems to suggest that it is the

local conservation of energy and momentum which enforces the symmetries. This will be a

dynamical effect which takes some time. It would be interesting to investigate if, or on which

scale, this effect is significant at the time of decoupling.

The above description in terms of two non-interacting fluids is probably not a very realistic.

However, it does suggest caution on our part. In the real Universe we have to account for a

number of other particle species, the most abundant of which are baryons. Now baryons and

radiation do in fact interact and will therefore not satisfy the conservation equations separately.

However, the above argument actually generalises to any two non-interacting fluids, as long as

one of them has vanishing pressure. Since we routinely describe the dynamics of the background

Universe under this approximation, we have to be aware of the fact that our idealisation might

have subtle consequences.

A.2 Single spherically symmetric fluid

Here we outline the procedure used to rewrite the field equations in terms of the function M(t, r)

(2.56) in §2.3.2. Substituting the metric (A.5) into the field equations gives the following system

of equations

2
R′′

RX2
− 2

ṘẊ

N2RX
− 2

R′X ′

RX3
− 1

R2
−

(
Ṙ

NR

)2

+

(
R′

RX

)2

+ Λ = −κρ (A.20)

2
Ṙ′

N2R
− 2

N ′Ṙ

N3R
− 2

ẊR′

N2XR
= 0 (A.21)

−2
R̈

N2R
+ 2

ṘṄ

RN3
+ 2

R′N ′

X2RN
− 1

R2
−

(
Ṙ

NR

)2

+

(
R′

RX

)2

+ Λ = wκρ (A.22)

ṘṄ

RN3
− R̈

RN2
+

R′N ′

X2RN
− R′X ′

RX3
+

R′′

RX2
− ṘẊ

N2RX
− N ′X ′

NX3
+

N ′′

NX2

− Ẍ

N2X
+

ṄẊ

N3X
+ Λ = wκρ (A.23)

We now manipulate these equations as follows:

1. Multiply (A.20) by R2R′, (A.21) by R2Ṙ and replace the 2RR
′ṘẊ

N2X
term on the LHS of

(A.20) using the resulting expression to find

κR2R′ρ = M ′ (A.24)
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with M = M(t, r) defined by

M(t, r) = −RR
′2

X2
+R+

RṘ2

N2
− 1

3
ΛR3. (A.25)

2. Next multiply (A.22) by R2Ṙ, (A.21) by N2R2R′

X2 and replace the 2RR
′ṘN ′

X2N
on the RHS

of (A.22) using the resulting expression. Comparing to Ṁ(t, r) shows that (A.22) can be

written as

− κR2Ṙwρ = Ṁ. (A.26)

These are the same as (2.54) and (2.55). Note that this procedure can be generalised in the case

of two fluids (not necessarily comoving) to write the field equations in terms of Ṁ and M ′ with

M defined exactly as in (A.25). However, even in the case of a single fluid analytic solutions are

not easy to find. The difficulty stems from the fact that the function M still depends on both

t and r. The form of these equations might still be suitable to solve with a relatively simple

numerical scheme, something we plan to investigate in future research.

Specialising to the case of dust we get the ΛLTB solution discussed in §2.3.2. In this case,

starting from

t(R̃)− tB(r∗) =
1

H⊥0

∫ R̃

0

dR

R

√
Ωm

(
R0
R

)3
+ ΩK

(
R0
R

)2
+ ΩΛ

, (A.27)

we can expand R into the denominator and pul out a factor of R0 giving

t(R̃)− tB(r∗) =
1

H⊥0

∫ R̃

0

dR

R0

√
Ωm

(
R0
R

)
+ ΩK + ΩΛ

(
R
R0

)2
. (A.28)

Changing variables a = R
R0
, ⇒ da = dR

R0
this can be written as

t(ã)− tB(r∗) =
1

H⊥0

∫ ã= R̃
R0

0

√
ada√

Ωm + ΩKa+ ΩΛa3
, (A.29)

where we have expanded a factor of
√
a into the denominator. The integrand is an elliptic

function that can be recast into one of Carlson’s symmetric forms viz.

RJ(x, y, z, p) =
3

2

∫ ∞
0

dt

(t+ p)
√
t+ x

√
t+ y

√
t+ z

. (A.30)

Here x, y and z are the (possibly complex) roots of a cubic polynomial in t. They must have

positive real parts, only one of which can be zero at any given time. The transformations that

recast (A.29) into this form are, firstly

b =
1

a
⇒ da = −db

b2
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which gives

t(ã)− tB(r∗) =
1

H⊥0

∫ ∞
1
ã

db

b
√

Ωmb3 + ΩKb2 + ΩΛ

. (A.31)

Next shifting c = b − 1
a = b − R0

R , and pulling out a factor of
√

Ωm (thus we do not consider

vacuum solutions), results in

t(
R0

R
)− tB(r∗) =

1√
ΩmH⊥0

∫ ∞
0

dc

(c+ R0
R )
√

(c+ R0
R )3 + ΩK

Ωm
(c+ R0

R )2 + ΩΛ
Ωm

. (A.32)

At any fixed value of r the quantity inside the square root sign is a cubic polynomial which can

be written in terms of the elliptic function RJ as

t(
R0

R
)− tB(r∗) =

1

H⊥0(r∗)

2RJ(−x1,−x2,−x3,
R0(r∗)
R(r∗) )

3
√

Ωm(r∗)
, (A.33)

where the xi are the roots of2.(
x+

R0(r∗)

R(r∗)

)3

+
ΩK

Ωm

(
x+

R0(r∗)

R(r∗)

)2

+
ΩΛ

Ωm
= 0. (A.34)

After fixing the gauge for R0, equation (A.33) allows us to get t(R) at any value of r. This

relation can be numerically inverted to get R(t, r) to arbitrary precision. Once that is given we

can also find H⊥(t, r) and hence also Ṙ(t, r). For the full solution we therefore also need to find

R′(t, r), in which case the field equations would allow us to compute all required higher order

derivatives of R (such as we might need in computing the geodesic equations for example). The

procedure to find R′(t, r) is described in [61]. We will not need the details since we only use this

form of the ΛLTB procedure to find t0. We do however employ the parametric LTB solution in

Example 5.1.1 so we will briefly outline how to find it.

To find the LTB solution we go back to the Friedmann-like equation of the form (2.60) i.e.

H2
⊥ =

(
Ṙ

R

)2

=
M

R3
+

E

R2
, (A.35)

where M = M(r) follows the fact that w = 0 in (A.26). The function E(r) (where g(r) =

1√
1+E(r)

with g(r) as in (A.9)) is related to curvature and determines the kind of evolution of

R(t, r). We distinguish between the three types of evolution:

• if E(r) < 0 ⇒ elliptic evolution

• if E(r) = 0 ⇒ parabolic evolution

• if E(r) > 0 ⇒ hyperbolic evolution

2We will refrain from writing down the lengthy expressions for the roots, they were found using Sympy,

Python’s symbolic math package
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Here we will demonstrate the solution for the hyperbolic case since that is the case relavan to

Example 5.1.1. First we write (A.35) in terms of the integral

t(R)− tB(r) =

∫ R

0

dR̃√
M/R̃+ E

, (A.36)

where it should be understood that we integrate along worldlines of constant r and the function

of integration tB(r) can again be identified as the bang time function. Introducing an additional

parameter, η = η(t, r) say, we try the trial solution R(η) = C(r)(cosh(η) − 1) for arbitrary

positive definite function C(r) and find the solution

H⊥0 (t− tB) =
Ωm0

2Ω
3
2
K0

(sinh(η)− η), R =
Ωm0

2ΩK0
(cosh(η)− 1), (A.37)

where Ωm0, ΩK0 and H⊥0 depend only on r and are defined as in §2.3.2. This allows us to

specify initial data for the model as described in Example 5.1.1.
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