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Abstract

Fingerprints are a non-invasive biometric that possess significant advantages. However, 
they are subject to surface erosion and damage; distortion upon scanning; and are 
vulnerable to fingerprint spoofing. The internal fingerprint exists as the undulations of 
the papillary junction -  an intermediary layer of skin -  and provides a solution to these 

disadvantages. Optical coherence tomography is used to capture the internal fingerprint.

A depth profile of the papillary junction throughout the OCT scans is first constructed 
using fuzzy c-means clustering and a fine-tuning procedure. This information is then 
used to define localised regions over which to average pixels for the resultant internal 
fingerprint.

When compared to a ground-truth internal fingerprint zone, the internal fingerprint zone 
detected automatically is within the measured bounds of human error. With a mean- 
squared-error of 21.3 and structural similarity of 96.4%, the internal fingerprint zone 
was successfully found and described. The extracted fingerprints exceed their surface 
counterparts with respect to orientation certainty and NFIQ scores (both of which are 
respected fingerprint quality assessment criteria).

Internal to surface fingerprint correspondence and internal fingerprint cross correspon­
dence were also measured. A larger scanned region is shown to be advantageous as 
internal fingerprints extracted from these scans have good surface correspondence (75% 
had at least one true match with a surface counterpart). It is also evidenced that inter­
nal fingerprints can constitute a fingerprint database. 96% of the internal fingerprints 
extracted had at least one corresponding match with another internal fingerprint. When 
compared to surface fingerprints cropped to match the internal fingerprints’ represen­
tative area and locality, the internal fingerprints outperformed these cropped surface 
counterparts.

The internal fingerprint is an attractive biometric solution. This research develops a 
novel approach to extracting the internal fingerprint and is an asset to the further 
development of technologies surrounding fingerprint extraction from OCT scans. No 
earlier work has extracted or tested the internal fingerprint to the degree that this 
research has.
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Chapter 1

Introduction

This research intends to show the existence and potential viable use of the internal 

fingerprint. The internal fingerprint is a biometric inheriting the same structural fea­

tures and high-performance of the surface fingerprint, while having fewer disadvantages. 

Correspondence between the surface and internal fingerprint will be shown. The pro­

cess of obtaining the internal fingerprint from optical coherence tomography (OCT) 

fingertip scans will be detailed and extensively tested. This involves signal processing 

and image enhancement and utilises fuzzy c-means clustering as a means of fingerprint 

zone-detection.

Various image and signal processing techniques are combined in a novel manner to yield 

an important contribution to the field of fingerprint acquisition -  an internal fingerprint 

that is of high-quality; is difficult to fake; and is resistant to damage and erosion.

The following section introduces optical coherence tomography.

1.1 Optical Coherence Tomography

OCT is a technology used for obtaining high-resolution three-dimensional images of 

light scattering media such as biological tissue. Specific to the context of this research, 

it is considered high-resolution as it is able to provide fingerprint detail that is much 

higher than conventional fingerprint scans (over 1300dpi versus 500dpi). OCT operates 

by sending a light beam into the imaged media and measuring the echo delay between

1
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Figure 1.1: The OCT system used (Thorlabs OCS1300SS). The laser source itself 
is not visible here. An external system is required for processing the data output from

the scanner.

the returned signal and a reference signal. OCT is able to provide a cross-sectional 

representation of the imaged media by scanning the light beam in a transverse direction. 

A  series of cross-sectional dimensionally-related slices provides the three-dimensional 

representation. The OCT system used in this research is a swept source OCT system 

from Thorlabs (OCS1300SS). The scanner is shown in Figure 1.1.

Each cross-sectional image consists of a series of A-lines. Each A-line corresponds to a 

column in a single OCT image. These images are known as B-scans. The resolution 

constraints will be discussed in Section 4 and are shown in Figure 1.2. An encompassing 

discussion on the context and structure of A-lines is given in Section 3.1.2.

Commercial applications of OCT vary widely. From art conservation and document 

security to medical diagnostics, OCT is applicable whenever light can penetrate the im­

aged media. Since OCT makes use of near-infra-red light, and light of this wavelength is 

known to be safe, it is well suited for medical imaging. In fact, the primary use of OCT is 

that of medical applications, because biological media are partially translucent and allow 

the light to penetrate. The drive behind consistent improvement of OCT technology is 

undoubtedly medicine. Although an advantage over other medical imaging technology 

is the relative hardware simplicity and lower cost of OCT, broad-use OCT technology 

remains relatively expensive. However, the use thereof is diversifying. Specific to this
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research, OCT can be used to image the human fingertip [1]. The following section 

contextualises OCT as biometric tool.

1.2 Optical Coherence Tomography as a Biometric Tool

Z
(3mm;

256/512
pixels)

Stratum Corneum

Epidermis

Papillary Junction

Dermis

X (10/15mm; 256/512 pixels)
Y (10/15mm; 

256/512 A-line scans)

(a)

Figure 1.2: An example of an OCT fingertip scan, showing a cross-sectional 
representation of fingertip scan. The resolution constraints are included. Z shows 
depth into the skin. The X -Y  plane corresponds to a 2D fingerprint. Each of these 
image slices are known as B-scans, and their columns are 1D signals known as A-lines.

The capability of OCT to image human skin provides a three-dimensional representation 

of the fingertip skin. Within this representation is contained information pertaining to 

the structural layout of the skin. On a coarse scale, individual skin layers are represented 

and visible. On a fine scale, the structural characteristics (such as ridges and valleys) 

are also visible. It is the presence and visibility of fingerprint ridges and valleys within 

the papillary junction that results in the strong potential of OCT as a biometric tool. 

Figure 1.2 provides an example of OCT slices and shows the visibility of skin layers and 

the structure of those layers.

1.3 Skin Layers and the Internal Fingerprint

The relationship between skin layers is paramount to this research. Since the primary 

goal of this research is to show the presence of an internal fingerprint that has a direct
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structural relationship with the surface fingerprint, this correlation must be theoretically 

sound. Owing to the process of skin formation, the papillary junction (within which the 

internal fingerprint is contained) and the stratum corneum (within which the surface 

fingerprint is contained) have identical topographical properties.

There is no commonly accepted theory to explain the formation of fingerprints. One 

widely accepted theory attributes the formation of fingerprints to the difference in skin 

layer growth rates: the growth rate of the epidermis differs from that of the dermis, 

resulting in a compression stress at the papillary junction and a folding toward the 

dermis. Another theory argues that the layout of the nervous system in the fingertip 

skin is the source of fingerprints, but is not as widely accepted [2].

An alternative theory is that the papillary junction grows with ridges and valleys to 

increase the surface area contact between the epidermis and the dermis. However, in all 

cases, the ridges and valleys form in the papillary junction and propagate to the surface, 

resulting in what is known as the surface fingerprint [3]. Thus, the papillary junction is 

the source of the surface fingerprint. It is this fact that is exploited in the extraction of 

the internal fingerprint.

The emergence of the internal fingerprint in a subsurface layer of skin has great potential 

as it is protected from the effects of distortion during the scanning process (OCT is 

touchless), resistant to damage, and resistant to spoofing (an intentionally malicious 

attempt to circumvent a fingerprint acquisition device). However, the use of OCT poses 

challenges. The limitations of this technology will now be outlined.

1.4 Limitations and Hardware Constraints

OCT was not designed for the express purpose of internal fingerprint acquisition. Cur­

rent general purpose OCT systems are cumbersome and expensive. However, the inten­

tion of this research is to provide a robust proof-of-concept internal fingerprint extraction 

technique as a precursor to the possible development of specialised OCT hardware.

The OCT scanner used is limited as follows:

1. The scanner is: large, immobile, and expensive.
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2. The scanner requires an external system for processing and uses proprietary soft­

ware.

3. The scan is performed from the top down and requires the scanned region to face 

upwards; which makes fingertip scanning awkward.

4. The scanned region is not easily visible during scanning. Although it is possible 

to use an infra-red calibration card, accurate scanning of the correct region is a 

challenge.

5. The scanned region is limited to 15mm x 15mm.

6. The scanning process takes approximately ten to fifteen seconds at a resolution 

of 512 x 512 pixels (the highest resolution used for this research). This is not a 

viable scanning time for the acquisition of a biometric. Furthermore, the scanned 

area must be kept as steady as possible during the scanning process -  this is not 

always possible for humans to accomplish.

7. Speckle noise is induced through the scanning process.

8. Although the papillary junction is relatively reflective when compared to the der­

mis and epidermis, the contrast is still limited and low.

Overcoming most of these challenges is outside the scope of this research. Instead, 

dealing with the problems related to signal and image processing is pursued. Specifically, 

the low contrast and noisy images output from the scanner are considered to originate 

from a ‘black box’ scenario. As long as the scanner used provides an OCT scan of a 

fingertip, an internal fingerprint can be extracted. This means that the solution is not 

hardware specific and provides motivation to build an OCT system specific to the task 

of internal fingerprint acquisition.

Therefore, the challenges this research overcomes are:

1. Reducing noise in OCT scan images.

2. Improving contrast of the papillary junction.

3. Accurately determining the region where the internal fingerprint can be found.

4. Extracting the internal fingerprint.
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The following section serves to provide context to the problems addressed in this re­

search.

1.5 Problem Context

Biometric identification has become paramount to security, digital privacy, and access 

control. The authenticity and efficacy of biometrics are constant concerns that need 

to be addressed by inventive biometric solutions. Improving on the established and 

widely accepted biometric of fingerprints is a means to this end. A number of biometric 

identification solutions exist and are certainly comparable to fingerprints. However, 

fingerprints are used extensively as they are relatively non-invasive (compared to an iris 

scan, for example) and perform well regarding universality, distinctiveness, and false 

rejection and acceptance rates [4].

Although these advantages present a strong case for fingerprints as a biometric identifier, 

the security and reliability of surface fingerprints is known to be lacking for the following 

reasons [4, 5]:

1. Owing to the elasticity of the skin and varying pressure during each acquisition 

process, surface fingerprints are subject to distortion.

2. Any surface skin damage affects fingerprint quality and thus reduces matching 

capability. For example, individuals employed in heavy duty industries are often 

without usable fingerprints.

3. Owing to the two-dimensional (2D) representation of topographical information in 

a surface fingerprint scan, fingerprint spoofing is an easy task and requires only a 

few inexpensive household items [6, 7].

The aim of this research is to overcome the shortcomings of the surface fingerprint. 

This is accomplished by showing the viability of the internal fingerprint through the 

development of an internal fingerprint extraction algorithm.
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1.6 Thesis Statement

Surface fingerprints rely on a 2D imaging of surface skin. The 2D representation gives rise 

to the potential for distortion, damage, and fingerprint spoofing. 3D surface fingerprint 

imaging with 2D unwrapping [8], and multi-spectral fingerprint imaging [9] are examples 

of solutions designed to compensate for these disadvantages. However, these still remain 

limited to the surface fingerprint. To circumvent fully surface fingerprint disadvantages, 

a new approach must be taken.

This research images the subsurface layers of the fingertip skin in a three-dimensional 

(3D) fashion. Between the epidermis and dermis is an intermediary layer of skin known 

as the papillary junction. This junction layer has the same structural characteristics 

as the skin surface (i.e., ridges and valleys). The emergence of this structure in the 

papillary junction results in the existence of the internal fingerprint. The imaging of 

subsurface skin layers is accomplished using OCT [10-15].

Lui and Chen [11] demonstrated the potential to capture the internal fingerprint using 

OCT. Bossen et al. [12] have provided a proof-of-concept extraction of the internal 

fingerprint from OCT scans, while da Costa et al. [13] strengthened this hypothesis 

while evaluated fingerprint deformation using OCT. Zam et al. [14] also showed how an 

internal fingerprint can be extracted and, in addition, showed that the capillary pattern 

yields yet another biometric and possible liveness-detector. Harms et al. [15] obtained 

greater resolution OCT scans and further exemplified the possibility of extracting an 

internal fingerprint.

However, the internal fingerprints obtained, in almost all cases, are low-quality and 

have never been shown to be a viable replacement for current surface fingerprints. This 

is largely because of the techniques used for extracting the internal fingerprint. Either 

OCT images are averaged over a pre-determined and manually chosen region, or a single 

slice is chosen that coincides with the internal fingerprint.

The gap this research endeavours to fill, is that of providing an approach to internal fin­

gerprint extraction sensitive to the data most pertinent to the internal fingerprint itself. 

The key issue confronted, is that of accurately determining the location of the papillary 

junction. The upper-edge of the papillary junction is rich in fingerprint structural infor­

mation as it undulates with the same topography as the surface skin. Its precise location
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is an asset that has been ignored, but will be used to extract the internal fingerprint 

from an OCT fingertip scan.

1.6.1 Primary Research-questions and Hypotheses

In order to accomplish the task of obtaining a high-quality internal fingerprint, the 

following research-questions are asked:

1. Does the internal fingerprint exist?

2. Can the internal fingerprint be extracted from an OCT fingertip scan?

3. Does the internal fingerprint correspond to the surface fingerprint?

4. Is the internal fingerprint of sufficient quality?

5. Can the location of the papillary junction be determined accurately?

6. Can the signal relating to the papillary junction be enhanced?

7. Does image enhancement improve papillary junction detection accuracy?

8. Can the papillary junction location be used to extract the internal fingerprint?

9. Can the internal fingerprint be enhanced?

Hypotheses corresponding to these questions are stated as follows:

1. The internal fingerprint is described by the undulations (i.e., ridges and valleys) of 

the papillary junction. This will be evaluated by extracting internal fingerprints 

as this undulating region.

2. The internal fingerprint can be extracted from an OCT fingertip scan because the 

reflectivity of the papillary junction is relatively higher than the layers of skin 

surrounding it. This will be tested by internal fingerprint extraction.

3. The internal fingerprint corresponds with the surface fingerprint because the to­

pography of the papillary junction propagates through the epidermis to the surface, 

resulting in the surface fingerprint. This will be tested by assessing the matching 

correspondence between the internal fingerprint and corresponding conventional 

counterparts.
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4. The internal fingerprint is of high-quality as it is not subject to the same damage 

and distortion as the surface fingerprint. It can be imaged effectively, using an 

OCT scanner. Internal fingerprints and corresponding surface counterparts will 

be both quantitatively and qualitatively compared to test this hypothesis.

5. The location of the papillary junction can be determined accurately because of 

the inherent physical structure of skin layers and, thus, the unique brightness and 

thickness of the papillary junction. This will be tested by comparing an automatic 

detection with a ground-truth estimate of the papillary junction location.

6. The papillary junction can be enhanced using existing techniques because they are 

suited to problems with similar characteristics. Enhancement procedures will be 

applied and the resultant papillary junctions will be qualitatively assessed.

7. Image enhancement improves papillary junction detection because the papillary 

junction edges are made distinguishable in this manner. Edge detection will be 

assessed by evaluation the papillary junction location on raw OCT image slices.

8. The papillary junction location can be used to extract an internal fingerprint be­

cause this information is directly related to the ridges and valleys present in the 

fingerprint. If the internal fingerprint can be extracted, this will hypothesis will 

be accepted.

9. The internal fingerprint can be enhanced because the noise type and distribution is 

well known and sufficient signal information is retained during extraction. Earlier 

research into which noise reduction technique is best will be done and the enhanced 

internal fingerprints’ performance will be tested.

Novel internal fingerprint zone-detection and extraction techniques are developed, in this 

research, to answer these questions and test these hypotheses. The internal fingerprint 

performance is tested using fingerprint quality assessment criteria. In addition, correla­

tion with the surface fingerprint and internal fingerprint cross correlation is quantified. 

The research design will now be outlined.
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1.6.2 Research Design

Similar to X-rays, ultrasound, and magnetic resonance imaging (MRI), OCT is a tomo­

graphic imaging technique: it results in a series of 2D image slices, known as B-scans. In 

the case of this research, each B-scan captures a cross-section of the fingertip skin and 

consists of a number of columns, known as A-lines (1D signals). The papillary junction 

is relatively reflective and results in a brighter region. This region usually manifests as 

intensity local maxima in the A-lines, but this is not guaranteed to be the case.

The location of the papillary junction is paramount to the process of internal finger­

print acquisition. This is because the papillary junction contains all the information, 

regarding the ridge and valley structure, that defines the internal fingerprint. It is the 

papillary junction upper-edge that describes the internal fingerprint topography. Thus, 

the undulations of the papillary junction upper-edge represent the internal fingerprint 

zone.

An approximate detection of the internal fingerprint zone is done per OCT volume using 

clustering. Speckle noise is inherent in OCT [16] and decreases the contrast and clarity 

of the papillary junction. Therefore, noise-reduction and contrast-enhancement are used 

to fine-tune the clustering results. This produces a set of 2D coordinates that describes 

the depth of the internal fingerprint zone throughout an OCT fingertip scan.

These coordinates are then used to extract the internal fingerprint. Localised en-face 

slice averaging is performed: each pixel in the internal fingerprint is the result of aver­

aging a dynamic number of pixels per A-line. ‘En-face’ means that the averaging occurs 

orthogonal to the fingerprint itself. The region, in each A-line, over which to average is 

determined using a windowed statistical evaluation of the internal fingerprint zone.

Testing this approach and the efficacy of the internal fingerprint is two-fold. First, the 

internal fingerprint itself is tested. The quality of the internal fingerprint is compared 

to that of the surface fingerprint using existing fingerprint quality assessment metrics. 

Furthermore, a fingerprint matching algorithm is applied to give an indication of the 

similarity and correlation between surface and internal fingerprints, as well as correlation 

between internal fingerprints from the same finger. Second, components of the techniques 

developed are tested using relevant quantitative assessment metrics alongside qualitative 

assessment.
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1.7 Thesis layout

This thesis will give insight into current relevant research; provide a detailed description 

of the approach developed; and give the results and conclusions drawn through compre­

hensive testing. It is structured as follows. Related literature can be found in Chapter 2. 

The methodology and implementation thereof are detailed in Chapter 3 and the experi­

mental set-up is outlined in Chapter 4. Results are discussed in Chapter 5. Conclusions 

drawn are given and future work is suggested, in Chapters 6 and 7, respectively.

To accomplish the task of internal fingerprint extraction from OCT fingertip scans, 

relevant literature was first reviewed and OCT contextualised therein. The following 

chapter details the associated literature.



Chapter 2

Related Work

Work related to the internal fingerprint is scarce as this is a new area of research. Thus, 

this chapter will serve to create a historical context for using OCT in biometrics and 

review literature directly associated with the task at hand. Current surface fingerprint 

sensor technology is outlined in Section 2.1 to highlight the need for an alternative. 

Following this, OCT is introduced to the reader as it was introduced to the world: 

through its use in diagnostics (Section 2.2). The first applications of OCT were in 

ophthalmology (the study concerned with diagnosis and treatment of ocular diseases). 

Work related to this field is reviewed in Section 2.2.1.

Owing to the low imaging penetration of OCT in most biological tissue, the next field 

in which OCT was used on a widespread basis is that of dermatology (the diagnosis and 

treatment of skin diseases and disorders). Without the advances of OCT technology 

by virtue of its demand and use in dermatology, imaging of the fingertip would not be 

possible. Relevant works in this area are outlined in Section 2.2.2.

After its history has been examined, OCT for imaging the human fingertip is reviewed. 

Literature associated with OCT in fingerprint biometrics is reviewed in Section 2.3. This 

provides direct context for the research undertaken in this thesis, and will be used to 

highlight the successes and shortcomings of the current work in fields relating to the 

internal fingerprint. Other closely related works include OCT for fingertip skin analysis, 

for fingertip skin deformation, and for document security. These will be reviewed in 

Section 2.4. Several foundational related publications from the authors will be discussed 

in Section 2.5. The following section is a review of current fingerprint technology.

12
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2.1 Current Fingerprint Technology

The two main sensor technologies used to obtain a surface fingerprint are optical and 

capacitive sensors. Optical sensors work by applying a light source (usually an LED) to a 

sample placed on a glass surface. The reflection is measured using either a charge-coupled 

device (CCD) or a complementary metal-oxide-semiconductor (CMOS) based optical 

imager. Optical sensors are sensitive to external light and, furthermore, fingerprint 

quality is affected by surface contamination (such as scratches or dirt).

Capacitive scanners use an array of small capacitative plates upon which the sample is 

placed. The measured output capacitance is dependent on the distance to the skin sur­

face. For this reason, ridges and valleys result in different measured capacitances. They 

are insensitive to light conditions and are not easily affected by surface contaminants. 

However, they are sensitive to very dry skin and fail when the skin is too wet.

Although there have been attempts to make these technologies more secure, optical and 

capacitative fingerprint sensors remain easy to spoof as they measure easily replicated 

quantities (differences in reflectance and capacitance). Moreover, the need for surface 

contact is unsatisfactory as it lends itself to fingerprint distortion and quality degradation 

from contaminants [4, 17, 18]. OCT has the advantage of being a touchless technology. 

Another advantage that OCT has over current fingerprint sensor technology is resolution. 

Modern commercial surface fingerprint scanners obtain a fingerprint of roughly 500 

pixels per inch (ppi), while the internal fingerprints captured in this research have 

a resolution of up to 1300 ppi.

Other sensor technologies include thermal sensors, pressure sensors, low radio frequency 

sensors, and ultrasonic scanners [17]. All of these have their advantages but have never 

become widely used as they have significant disadvantages. For instance, even though 

ultrasonic sensors are able to image a subsurface fingerprint, they are slow, require 

surface contact, and image at much lower resolutions than OCT. However, a technology 

that is becoming popular and successful is multi-spectral fingerprint imaging.

Rowe et al. [19] first introduced multi-spectral fingerprint imaging as a solution to extract 

the internal fingerprint as a 2D representation. Using different wavelengths of light, 

different lighting conditions, and different polarizations, an array of fingerprint images 

were obtained. By combining multiple images they were able to enhance fingerprints
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from an optical sensor [20]. When considering false rejection and acceptance rates, 

fingerprints obtained using multi-spectral imaging were shown to be of higher quality. 

An advantage of using multi-spectral imaging is the access to subsurface layers of skin. 

Information pertaining to subsurface layers was used for liveness-detection. By using 

surface penetrating light, the internal fingerprint was also imaged. A comparison of the 

internal and surface fingerprints was used for spoof-detection [21]. A major disadvantage 

of this approach to fingerprint acquisition is the 2D capture and representation: it does 

not make a cross-sectional analysis of subsurface skin [22]. Multi-spectral imaging is 

still limited regarding fingerprint quality, is complex, and is expensive [4].

OCT presents solutions to problems faced in fingerprint acquisition. It is touchless, 

provides relatively high resolution images, and images in 3D. Without the advent and 

rise of OCT in the field of medicine, the technology would not have existed and advanced 

to the point at which it has potential in biometrics. For this reason, the following section 

will serve to historically contextualise OCT.

2.2 OCT in Medicine

OCT is primarily used in biomedical applications. Huange et al. [1] introduced OCT as 

an emerging technology and highlighted its application in medicine. OCT is particularly 

useful in ophthalmology as ocular media is relatively opaque and allows light to penetrate 

more deeply. Owing to the non-invasive imaging afforded by OCT technology, it is 

extensively used by ophthalmologists as a tool in diagnosis and treatment.

2.2.1 Ophthalmology

Swanson et al. [23] demonstrated the practical use of OCT in ophthalmology. They 

developed an OCT scanning device capable of 14 ^m resolution in vivo scanning that 

took approximately 2.4 seconds per scan. At that stage, OCT was in its infancy and 

this technology was a break-through for diagnosis and monitoring of retinal diseases. 

High resolution imaging by OCT was important because the structure of the retina is 

on a micrometer scale. Existing imaging techniques could not image at this resolution. 

By coupling expert knowledge to OCT scans of the macula (an area near the centre of
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the retina), Puliafito et al. [24] were able to show the potential strength of OCT in this 

field.

Drexler et al. [25] presented a new ultra-high-resolution OCT technology for use in 

ophthalmology. Earlier resolutions were in the 10-15 ^m range, while their system could 

image at a resolution of 2-3 ^m . This improvement meant structures of finer scales 

could be imaged and ocular related diseases could be diagnosed and monitored more 

consistently and accurately. The exciting potential of OCT meant that advances were 

continuous. It is currently a standard tool used in ophthalmology. However, since 

OCT works with light, it cannot be used to diagnose diseases that interfere with the 

transmission of light (such as cataracts).

2.2.2 Dermatology

Another well-established field in which OCT use has become commonplace, is derma­

tology. The advances of OCT in this field have a direct bearing on the quality of OCT 

scans used for internal fingerprint acquisition. Most of dermatology is visual as the ma­

jority of skin ailments present themselves with characteristics on the surface of the skin. 

However, the investigation of cellular changes (such as the growth of tumours and sub­

surface skin alteration because of topical creams) typically required invasive biopsies. A 

non-invasive diagnostic was thus highly advantageous but other cross-sectional imaging 

technologies could not provide the required resolution [26]. OCT was able to provide a 

high-resolution cross-section of the skin.

During the establishment of OCT as a tool in dermatology, Welzel [26] conducted a 

review, highlighting O CT’s efficacy for diagnosis of skin-related diseases. A contribution 

of this review was the construction of a commercially available OCT scanner that could 

scan skin at a resolution of 10 - 15 ^m . Using the variables of relative layer thickness, 

intensity of signal, and light attenuation changes, a large number of skin properties could 

be deduced. The imaging of skin tumours was shown to be possible, but limited by the 

low penetration depth of OCT. The relative depth of the stratum corneum versus the 

papillary junction provided information on inflammatory diseases. Furthermore, OCT 

was able to provide valuable information pertaining to the effects of skin moisturisers 

(by measuring skin layer thickness) and the progress of skin treatments. OCT was also 

found to be non-invasive, safe, and without side-effects.
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Pierce et al. [27] published findings related to advances in OCT for dermatology. They 

designed and built a portable OCT system capable of capturing three types of OCT im­

ages: structural, polarization-sensitive, and flow-sensitive. Polarization-sensitive OCT 

images measure the phase change of reflected light owing to differences in refractive 

index. Flow-sensitive OCT images are captured by measuring the Doppler effect of 

returning light -  any associated flow alters the wavelength of reflected light. Both 

polarization- and flow-sensitive images were able to provide a useful contrast when com­

pared to conventional structural OCT images. A significant advance over other OCT 

systems was the low capture-time: all three image types were captured simultaneously 

within one second. Furthermore, a deeper imaging depth of 1.4 mm was obtained. The 

usefulness of these technological advances were shown. For instance, flow-sensitivity was 

used to show the reduction in blood flow to cancerous cells during treatment.

A later work by Gambichler et al. [28] demonstrated the success of OCT in dermatology 

by providing a comprehensive review of current technology. They argued that the in­

troduction of OCT in ophthalmology led to interest in its potential, eventually resulting 

in its widespread success as an industry standard for both ophthalmology and derma­

tology. Since OCT is able to provide structural and blood-flow information of the skin, 

it has become widely used for diagnosis and monitoring of skin diseases. Simultaneous 

diagnosis and monitoring of the following diseases was discussed and demonstrated: pso­

riasis (chronic inflammation), chronic dermatitis, lupus, various blistering, carcinomas 

and melanomas, lesions, and infections.

It is the need and presence of advances in technology that has resulted in the availability 

of OCT for broad use. OCT for fingertip scanning and internal fingerprint acquisition 

is historically contextualised by the advances in biomedical fields. Its subsequent use in 

the field of biometrics will now be discussed.

2.3 OCT in Biometrics

Matsumoto et al. [6] highlighted the worrying lack of security measures and liveness- 

detection in commercial fingerprint scanners. Their study intended to make known the 

simplicity of constructing a fake fingerprint that was able to fool a range of optical and ca­

pacitive fingerprint scanners. The process of making ‘gummy’ fingerprints from residual
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fingerprints (an imprint on a glass surface, for example) was outlined. Performance was 

tested using eleven commercially available fingerprint scanning devices. Although the 

fake fingerprints had lower acceptance rates than that of the real counterparts, they still 

performed well enough to repeatedly fool most devices. It was proposed that if various 

liveness measurements were conducted, fake fingerprints could be rejected. However, 

although liveness-detection has come a long way since that study (with research into 

wavelet based liveness-detection [9], for instance), the fundamental issue remains: the 

2D imaging and representation. The 3D, cross-sectional imaging capability of OCT has 

led to better liveness-detection propositions and solutions.

2.3.1 Liveness-Detection

Cheng and Larin [29] proposed an artificial fingerprint recognition system using OCT 

technology. They assume a fake fingerprint will always present purely homogeneous 

depth-resolved signal characteristics, whereas real fingertip skin is highly inhomogeneous 

but repetitive in a cross-sectional analysis. Real layers of skin differ in brightness but 

do so consistently over the entire fingerprint region. This difference in homogeneity was 

used as input for autocorrelation analysis. A-lines were analyzed for cross-correlation 

to identify the presence of fake fingerprints. An example of the analysis performed 

can be seen in Figure 2.1. A real finger exhibits a greater change in gradient in the 

autocorrelation analysis.

Autocorrelation yielded noticeably different results for fake and real fingerprints; but 

no attempt was made to recognise automatically this deviation. A disadvantage of 

this approach is the assumption that each skin layer will always be found at the same 

depth over an entire three-dimensional OCT scan. This assumption allowed for lateral 

averaging prior to signal analysis but certainly does not hold true for the case of touchless 

scanning. Although it is not directly evident, the use of lateral averaging (as well as the 

fingertip images presented in the work) strongly suggest the use of a surface on which the 

finger was placed during scanning. The result was uniformity in skin layering. However, 

the full capability of OCT as a touchless system was not used.

Nasiri-Avanaki et al. [30] used an en-face OCT system capable of dynamic focus to show 

its suitability to identifying additional layers on the skin. In their study, sellotape was 

applied on the fingertip skin prior to imaging. Although the presence of data useful to
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(a)

depth (um)
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Figure 2.1: Artificial fingerprint recognition using autocorrelation analysis.
(A) shows an OCT scan of a finger with an artificial fingerprint over it. (B) is the 
depth resolved one-dimensional signal. (C) is the result of autocorrelation analysis of 
the artificial fingerprint region, while (D) is the result of analysis of the real skin region. 

This figure was taken from Cheng and Larin [29].

liveness-detection was demonstrated, no liveness-detection scheme was developed. The 

potential of OCT for secure applications was made evident through earlier research such 

as this. However, the research presented in this thesis serves to demonstrate a robust 

means of extracting the internal fingerprint, the use of which may even circumvent the 

need for detecting fake fingerprints.

Another example of fake fingerprint detection can be seen in the work by Meissner et 

al. [31]. They argued that fake fingerprint detection on 2D surface scans is insufficient. 

Therefore, a manual approach to fake fingerprint detection was conducted on a large 

dataset of OCT fingertip scans, with a success rate of almost 100%. Fake fingerprint 

detection, in this manner, was two-fold: (1) qualitative identification of an additional 

layer and (2) identification of sweat glands. Cross-sectional OCT images revealed the 

presence of helix-shaped sweat glands between the stratum corneum and the papillary 

junction. These were not present in fake fingerprints. Automatic classification resulted
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in fake-fingerprint detection of 74%. No details on the automated process were given 

and improvements are clearly necessary. An additional finding, relevant to internal fin­

gerprint acquisition, was the obfuscation of the papillary junction owing to the presence 

of fingerprint fakes: the reflectivity of the papillary junction was made void by an extra 

layer of reflective material. This is relevant because under such circumstances the in­

ternal fingerprint cannot be extracted. However, if an additional layer is detected, the 

fingerprint need not be extracted.

OCT clearly has potential in the fields of liveness- and spoof-detection. OCT scans 

used for spoof-detection almost always contain information pertaining to the internal 

fingerprint. When compared to internal fingerprint acquisition, liveness-detection using 

OCT is a relatively simple task. The acquisition of a high-quality internal fingerprint is 

complex, but since its topography is not influenced by the presence of additional surface 

layers, it is a highly attractive solution to fingerprint-spoofing. For this reason, it is 

more relevant to focus on the internal fingerprint. Work related to internal fingerprint 

acquisition from OCT scans will now be detailed.

2.3.2 Extracting the Internal Fingerprint

Bossen et al. [12] provided one of the first examples of internal fingerprint extraction. 

They scanned 51 individuals’ right index fingers three times each. Fingers were placed 

on a glass plate during scanning. Although this allowed for more control of the scanned 

region, it did not make use of the touchless capability of the OCT system. A manually 

determined region, that roughly described the papillary junction, was extracted and 

X Y -plane (i.e., the same plane as the fingerprint) image slices were averaged, resulting 

in a poor-quality internal fingerprint. In fact, 36% of the scan data was used in the 

averaging process. Since it is the upper-edge of the papillary junction that contains rich 

fingerprint information, much of the contributing data was redundant and only served 

to reduce the internal fingerprint quality. This was recognised by the authors. However, 

notwithstanding this poor technique, identification against a fingerprint database showed 

the internal fingerprint to perform well: no false positives and only nine percent of 

the extracted fingerprints remained unmatched. The constructed database consisted of 

internal fingerprints only. Inconsistency of results was attributed to the small size of the 

imaged area. No testing was carried out to draw correspondence between the surface
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and internal fingerprints. The successful use of the internal fingerprint for identification 

indicates that it can replace, or work concurrently, with current surface fingerprints. 

However, since no comparison was made between surface and internal fingerprints, no 

conclusions could be drawn regarding the integration of OCT fingerprints into existing 

surface fingerprint databases.

Korohoda et al. [32] developed a technique for obtaining internal fingerprints. Their 

algorithm was sensitive to the papillary junction upper-edge. They analysed the differ­

ence between a (damaged) surface fingerprint and the corresponding internal fingerprint, 

drawing conclusions about surface to internal fingerprint correspondence and the supe­

riority of the internal fingerprint. The technique for detecting the stratum corneum and 

papillary junction upper-edge was carried out on B-scans and consisted of: (1) reducing 

noise using a median filter; (2) applying the Sobel [33] operator to detect edges; (3) 

detecting the pixels above some heuristically determined threshold; and (4) enhancing 

the detected stratum corneum and papillary junction depths (i.e., 2D signal) to repre­

sent the surface and internal fingerprints, respectively. Their technique was optimised 

for a single OCT fingertip scan. They used a glass slide during scanning to simplify in­

ternal fingerprint extraction, thus mitigating the essential touchless advantage of OCT. 

To detect the edge-processed pixels corresponding to the internal fingerprint, a search 

was commenced that started at a fixed region below the stratum corneum. This ap­

proach was not assured to be robust, although the authors did identify this fault. A 

disadvantage of this work is that the algorithm developed cannot be considered robust 

and successful as it was tested on one dataset only. Furthermore, noise-reduction was 

carried out on all the B-scans: an inefficient approach as this is a lengthy process.

Sousedik and Busch [34] contended with the issue of OCT scan quality regarding internal 

fingerprints. They developed a new algorithm for detecting skin layers. The stratum 

corneum and papillary junction were detected by identifying high-intensity sample points 

for each. Smooth surfaces were fitted to the data clusters using a back propagation 

neural network, trained to represent smooth surfaces as a function. Since a neural 

network’s performance is hindered by outliers, a training technique was used where 

anomalous data points were removed iteratively. There was no attempt to optimise the 

quality of the fingerprints. Instead, the focus was layer identification for the purpose of 

authenticity-detection. A large dataset was used to show the success of their approach.
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The following section details further advantages and technological advances that OCT 

affords fingerprint biometrics.

2.3.3 Extending fingerprint biometrics

Another advantage of internal fingerprints is the level of detail available. Fingerprint 

features are described in a hierarchical order with respect to detail: level one refers to 

the pattern of the fingerprint; level two refers to minutia points; and level three are 

finer details such as pores. Although level three features carry significant biometric 

information and can improve fingerprint matching significantly [35], surface fingerprint 

scans rarely possess level three details.

Liu and Buma [36] showed that OCT has the potential to provide level three fingerprint 

detail. By providing a biometric mapping of the sweat glands that exist between the 

papillary junction and the stratum corneum, they showed the presence of high-quality 

and high-contrast level three features. Furthermore, they also demonstrated the pres­

ence of the internal fingerprint in the papillary junction. Since the scans were touchless, 

a ‘digitally straightened’ version of the scanned volume was produced by normalizing 

the natural curvature of the skin. This was accomplished by fitting a third-degree poly­

nomial to the stratum corneum (for each B-scan) and adjusting the images accordingly. 

Further details of this process were not given. Following this preparation, the region 

containing the internal fingerprint was manually determined and X Y -plane image slices 

were averaged to produce the internal fingerprint. This is an inefficient technique that 

limits the quality of the internal fingerprint. Although it is not an aim of this thesis 

to make use of level three fingerprint features, their presence in, and ease of acquisition 

from, OCT fingertip scans further serves to warrant the use of this technology as a tool 

for fingerprint imaging.

OCT possesses another characteristic useful to high-security biometrics: Doppler OCT. 

In this manner blood flow can be imaged and recognised. Liu and Chen [11] used Doppler 

OCT for liveness-detection. The premise was simple: a live finger has blood flowing 

through the capillaries below the papillary junction, while a fake does not. Although 

they made no attempt at automatic liveness-detection with this information, revealing 

the potential of Doppler OCT for liveness-detection was pertinent. Furthermore, the 

correlation between the capillary structure and the papillary junction structure means
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the blood flow patterns detected are unique and can be used as a further level of biometric 

detail in the future.

Zam et al. [14] demonstrated the feasibility of correlation mapping OCT (cmOCT) 

for fingerprint biometrics. Correlation mapping involved determining the correlation 

between two neighbouring OCT slices. The time delay between slices and blood flow 

measurements allowed for the vascular network to be mapped. Using cmOCT, they 

demonstrated a new means of liveness-detection by overlaying the internal fingerprint, 

the sweat-gland pattern, and the vascular network. Two live human thumbs were imaged 

at two instances, three months apart. This tested consistent correlation over time. Scans 

were taken with and without blood flow occlusion. Liveness-detection was accomplished 

by a human observer and was not entirely successful. However, the potential of cmOCT 

for liveness-detection is evident. They did not attempt to optimise the quality of the 

internal fingerprint. Detail was not given regarding the extraction process.

2.3.4 En-face OCT

OCT can be utilised to image the internal fingerprint in 2D directly, instead of through 

extraction from a 3D OCT scan. Conventional OCT scanners provide image slices 

orthogonal to the fingerprint, with which a 3D reconstruction can be made, and a 2D 

internal fingerprint can be extracted. However, advances in OCT technology [37] have 

resulted in en-face 2D OCT. This means that scanning can occur along a plane that 

is parallel with the fingerprint itself. The main advantage is that a single image is 

obtained and no extraction is necessary. Harms et al. [15] make use of such technology 

and show its potential for fast internal fingerprint acquisition. Issues with this approach 

are: that the fingertip skin is not uniformly straight; the internal fingerprint is not 

found at a fixed depth; and detail is lost when using this technique as a single slice is 

inefficient at capturing the internal fingerprint. The dynamic focus approach developed 

by Nasiri-Avanaki et al. [30] attempted to compensate for these problems, but they were 

nevertheless unable to yield high-quality and high-contrast internal fingerprints.

Current techniques for extracting an internal fingerprint are limited by the approach 

taken and with respect to the quality of the extracted fingerprints. This is mainly owing 

to a lack of definition regarding the location of information pertinent to the fingerprint. 

Instead of settling for a manually determined region, the research outlined in this thesis



Chapter 2. Related Work 23

endeavours to locate the papillary junction accurately and improve the quality of the 

internal fingerprint.

OCT as a technology is useful to a range of medical and research areas. Some of these 

uses have bearing on either the presence of the internal fingerprint, or other fingerprint 

biometric characteristics. These will now be discussed.

2.4 Other related uses for OCT

Shiratsuki et al. [38] made use of OCT to evaluate the characteristics of skin tissue 

under fingerprints. This was one of the first instances where OCT was used in the 

context of fingerprints. Their work yielded a novel fingerprint sensor. The set-up used a 

LED transmitting at 660 nm through the fingertip (from the nail side). The transmitted 

light revealed the fingerprint pattern as seen from under the skin and was imaged using a 

conventional CCD. The influence of fingerprint obscuring wrinkles was shown to decrease 

significantly. The system was successful in the case of touchless scanning and scanning 

when the finger is depressed on a glass plate. Although no attempt was made to obtain 

the internal fingerprint (that which exists in the papillary junction layer), this research 

revealed OCT as a tool for skin structure analysis.

Chang et al. [22] not only showed O CT’s potential for spoof-detection, but also intro­

duced the concept of an ‘info chip’ . An info chip is a multi-layered device constructed 

from some form of media OCT is able to penetrate. The OCT scanner was used to image 

individual layers and, in this manner, extract information from each. They demonstrated 

its use with a four layer sample as well as a fingerprint dummy. OCT was able to image 

both the dummy and the real fingerprint. Since OCT is able to image on the micrometer 

scale, an information carrying chip can be made small. OCT is still too costly to be a 

solution for document and identity security in this manner.

Da Costa et al. [13] evaluated fingerprint deformation using OCT. They constructed 

fingerprint deformation metrics based upon minutiae orientation and ridge-frequency 

analysis. By varying and measuring pressure with which the scanned fingers were ap­

plied to a glass plate, they were able to draw conclusions on the differences in fingerprint 

deformation between surface and internal fingerprints. Although the results obtained 

were widely inconsistent and the tested fingers were few, the study indicated that the
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surface fingerprint is more subject to distortion and deformation than the internal fin­

gerprint. Although the internal fingerprint is shielded by the epidermis layer of skin 

and, therefore, is less affected by surface pressure applied, it is still subject to significant 

deformation.

The following section serves to present earlier research by the author of this thesis. These 

works served as foundational components of this research.

2.5 Foundation for this thesis

A review of state-of-the-art speckle reduction techniques for optical coherence tomog­

raphy fingertip scans [39] presented speckle noise as a problem specific to the domain 

of internal fingerprint extraction. Speckle noise is a product of OCT and arises when 

there are reflective elements of roughly the same size as the imaging wavelength. It 

is multiplicative and obscures the signal content. Six noise reduction techniques were 

evaluated. Three quantitative assessment criteria were used, namely the signal-to-noise 

ratio, the mean-squared-error, and the structural similarity. The optimized blockwise 

non-local means (OBNLM) algorithm was found to be the best technique for speckle 

noise reduction. The research presented in this thesis makes use of the OBNLM algo­

rithm.

The above-mentioned research was followed by an assessment of fingerprint enhance­

ment on the extracted internal fingerprint [40]. Heuristic techniques were used to locate 

the papillary junction in OCT image slices and various enhancement techniques were 

evaluated regarding their impact on the extracted internal fingerprint. The contrast 

improvements on the internal fingerprint, owing to the application of enhancement tech­

niques on constituent image slices, evidenced OBNLM followed by unsharp masking as 

the best candidates. Unsharp masking is a contrast enhancement procedure that in­

volves comparing an image to its blurred counterpart, and thus improving edge clarity. 

However, it was found that anomalies were introduced to the internal fingerprint. Thus, 

no enhancement procedures are applied prior to fingerprint extraction. Instead, regard­

ing the work presented in this thesis, the enhancement techniques explored are applied 

to the extracted internal fingerprint itself.
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A critical component of internal fingerprint extraction is the detection of the papillary 

junction. This is because the papillary junction contains the internal fingerprint. The 

concept of internal fingerprint zone detection was a topic of earlier research [41]. K - 

means clustering was presented as a means to detect the papillary junction and a fine- 

tuning technique was used to isolate the upper-edge of the papillary junction. This 

technique is the foundation on which Section 3.1 is built upon.

Akhoury and Darlow [42] used a similar technique for internal fingerprint zone-detection. 

The internal fingerprint was extracted by mapping the 3D surface describing the papil­

lary junction upper-edge to a 2D fingerprint. This is not the approach selected for this 

research as the testing database was not sufficiently large and the technique was too 

reliant on the performance of zone-detection. A detailed description of the technique is 

given in Section 3.2.

The reader is referred to the above-mentioned peer-reviewed publications for an encom­

passing description of the techniques reviewed therein. Furthermore, the techniques 

selected as a result thereof are expounded upon in Chapter 3. It is not the focus of 

this research to review all techniques for noise reduction or enhancement. This will be 

a future endeavour.

This chapter served to historically contextualise OCT by demonstrating its place in 

ophthalmology and dermatology. The natural divergence to fingerprint-based biomet­

rics was explained and various examples of its use were given. From simple internal 

fingerprint extraction to advanced level-three biometrics and liveness-detection, it is ev­

ident that OCT suits this domain. There is, however, a large gap in this field. This was 

somewhat addressed in the foundational works by the author, as outlined in this chapter. 

Fully automatic internal fingerprint zone identification and description, and fingerprint 

extraction have never been addressed in a single comprehensive work. The research 

presented here fills that gap. The following chapter explains how this is accomplished.
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Methodology

The questions this research intends to address are best answered through the practical 

application of a proof-of-concept internal fingerprint acquisition system. All the research- 

questions posed and hypotheses stated in Section 1.6.1 are either directly answered by 

the demonstrative extraction of internal fingerprints, or depend upon the success of the 

extraction process. The method developed for internal fingerprint extraction is thus 

paramount, and is described in this chapter.

A system overview flowchart is given in Figure 3.1. Internal fingerprint extraction can 

be abstracted into two distinct parts: (1) internal fingerprint zone-detection and (2) 

localised fingerprint extraction. The former of these processes answers the question: 

where is the internal fingerprint? Answering this question constitutes the majority of 

the technical innovation involved in this research. A combination of machine learning 

algorithms, 2D-interpolation, speckle noise-reduction, image enhancement, and edge- 

detection are key to internal fingerprint extraction.

This chapter is structured as follows. Internal fingerprint zone-detection is detailed in 

Section 3.1. Sections 3.1.1 through 3.1.4 describe the intricacies of this process. Localised 

internal fingerprint extraction is discussed in Section 3.2. Sections 3.2.1 and 3.2.2 explain 

the mapping process, and internal fingerprint enhancement, respectively.

26
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Figure 3.1: System overview flowchart. System components are expounded upon 
in later task-respective figures and algorithms, namely Algorithm 1 and Figure 3.3 for 
stratum corneum detection, the flowchart in Figure 3.2 for internal fingerprint zone- 

detection, and Algorithm 2 for fingerprint extraction.
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3.1 Internal Fingerprint Zone-Detection

Figure 1.2 demonstrates the structure of skin layers in a single B-scan. The reflectivity 

of the papillary junction is higher than that of the epidermis, resulting in an edge. The 

undulations of this edge, referred to as the papillary junction upper-edge in this 

research, encapsulate the internal fingerprint topographical information. In addition, 

the internal fingerprint zone is entirely defined by this edge. Owing to the contrast 

present between the papillary junction and the epidermis, an estimation of this region 

allows for the extraction of an acceptable internal fingerprint. Earlier research usually 

involved a manual estimation of this region [11-15]. However, that approach is inaccurate 

and diminishes contrast; is not robust against noisy signal; and is not automatic.

Internal fingerprint zone-detection is arguably the most critical aspect of the research 

undertaken here. The approach developed by Khutlang and Nelwamondo [43] used nov­

elty detection to locate the papillary junction upper-edge. Sousedik and Busch [34] used 

a neural network to fit a surface function to the papillary junction. These efforts did 

locate the papillary junction, but the detection of the internal fingerprint zone has never 

been accomplished to the degree of accuracy this research endeavours to achieve. More­

over, accurate knowledge of the location of the papillary junction upper-edge equates to 

accurate knowledge of the structure of the internal fingerprint. The performance of any 

internal fingerprint extraction depends upon this process. Certainty as to the location of 

the papillary junction upper-edge is directly related to the quality of knowledge regard­

ing the internal fingerprint topography, and an accurate description of this topography 

is an accurate description of the internal fingerprint.

Papillary junction upper-edge detection is challenging for the following reasons:

1. The contrast of OCT scans is low.

2. OCT induces speckle noise. The origin and description of this noise is given in 

Section 3.1.4. Owing to the signal dependency of this noise, it is difficult to remove 

and has a negative effect on the clarity of the signal.

3. An OCT fingertip scan may result in some B-scans having nearly no useful data, 

or inconsistent skin layering. This is demonstrated in Chapter 5.
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Figure 3.2: Internal fingerprint zone-detection flowchart. A detailed expla­
nation of feature extraction can be found in Section 3.1.2; post-processing of cluster 
results is outlined in Section 3.1.3; and fine-tuning is discussed in Section 3.1.4. Note: 
local maxima heights are the origin of the relative intensity feature, hence their identical

labelling.
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Overcoming these challenges is accomplished through the application of clustering and 

image enhancement algorithms. The manner in which these are combined results in 

a robust, consistent, and accurate internal fingerprint zone-detection algorithm. The 

performance thereof is shown in Chapter 5.

A flowchart is given in Figure 3.2 to provide an overview of internal fingerprint zone- 

detection. The stratum corneum is first detected and used to extract features prior to 

clustering. The cluster determined to represent the centre of the papillary junction (the 

mid-point of the intensity peak exhibited in A-lines) is processed and used to extract 

small image regions containing the papillary junction upper-edge only. A fine-tuning 

approach is followed where image enhancement operations are applied to each of these 

image regions and the contained edge is detected. The clustering procedure and cluster 

output post-processing are explained in Sections 3.1.2 and 3.1.3, respectively. Fine- 

tuning is discussed in Section 3.1.4.

3.1.1 Stratum Corneum Detection

The presence and visibility of skin layers are assumed in an OCT fingertip volume. 

Earlier research has relied upon this assumption [29, 38]. This is a vital assumption 

to make as it is the relative reflectivity of skin layers that gives rise to the internal 

fingerprint. Although the structural layering of fingertip skin is useful, the automatic 

identification of these layers is largely an unsolved problem. In the context of this 

research, the location of the stratum corneum throughout an OCT fingertip volume is 

used for feature extraction. Feature extraction is outlined in Section 3.1.2.

Liu and Buma [36] fitted a third-degree polynomial to the stratum corneum per B-scan 

in order to normalise these scans for internal fingerprint extraction. Algorithm 1 extends 

this principle by keeping track of the previous B-scan’s stratum corneum, and identifying 

and correcting for outliers. It works by detecting all column-wise intensity maxima in a 

B-scan and fitting a third degree polynomial to those (as per the shape of the fingertip). 

If an estimate exists from processing the previous B-scan (i.e., anything after the first 

B-scan), it is used in conjunction with the estimate from the fitted polynomial to find 

the closest column-wise (A-line) local maxima. Each A-line is smoothed (using a simple 

average blurring procedure) to minimise the impact of speckle noise. This smoothing is
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Input: O C T  .volum e
Parameters: poly-degree, sm ooth-window s i z e ,  in tensity-thresh , 
distance-threshold, ou tlier-w in d ow size  
Output: Stratum corneum coordinates 
b rig h test-B sca n  ^  brightest[OCT_volume] 
s tra tu m s-es tim a te-p rev iou s -B sca n  ^  zeros(length(B_scan)) 
stratum .c.coordinates ^  zeros(length(B_scan), length(Bs c a n ))  
for scanzi ^  0 to length(O CT-volum e) do 

B s c a n  ^  O C T  .volum e(scand)
in tensity-thresh  ^  in tensity-thresh/ (brightest-B  scan/m ean .2D (B  s c a n ))  
sam ples f o r  zpolyfit ^  zeros(length(B_scan)) 
for i ^  0 to length(B s c a n )  do 

A d in e ^  B sca n [i]
if m ax(A dine) >  in tensity -thresh  then 
| sam ples-for-poly fit[i] ^  indexof(max(A_line)) 

end 
end
stra tum szpoly ^  p o ly fit(sa m p les fo r -p o ly fit , poly-degree) 
for i ^  0 to length(B s c a n )  do 

A d in e ^  B sca n [i]
sm oothed-A dine ^  1Dsmooth( A dine, sm ooth-window s i z e )  
local-m axim a ^  extrema(smoothed-A d in e) 
es tim a te fr o m .p o ly  ^  stratum -c.poly[i]
es tim a tefrom zp rev iou s  ^  stra tu m s-es tim a te-p rev iou s-B sca n [i] 
com bined-estim ate ^  (estim ate. from .p o ly  +  es tim a tefrom .p rev iou s)/ 2  
distances do-poly ^  sqrt((local m a x im a  — es tim a te fro m zp o ly )2) 
distancesdozprevious ^  sqrt((local-m axim a — es tim a te fr o m .p rev io u s )2) 
distances-com bined ^  distances do-poly  +  distances do-previous  
closest-m axim adocation  ^  local_maxima(indexof(min(distances-com bined))) 
if abs(closest-m axim adocation — com bined-estim ate) <  distance-threshold  
then
| stratum -c.coordinates[scand, i] ^  closest-m axim adocation  

end 
else
| stratum -c.coordinates[scand, i] ^  estim a te, from -previou s  

end 
end
stratum .c.coordinates[scan-i, :] ^  fix_outliers(stratum_c_coordinates[scan_i, :], 
outlier .window s i z e )
stra tu m -c-estim a te .p rev iou s-B sca n  ^  stratum .c.coordinates[scan-i, :] 

end
Algorithm 1: St r a tu m  co rn eu m  d e te c tio n

not optimised, but that is not the focus of this work. It could, however, be explored as 

future research topic.

Sample points for polynomial fitting are determined by comparing intensity local maxima 

in A-lines to some threshold intensity. If the maximum of the considered intensity
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profile is above this threshold, its depth is considered as a sample point. These sample 

points are used to estimate a polynomial that describes the stratum corneum contour 

(PolyEstimate).

This approach makes the assumption that the stratum corneum is the brightest peak 

within an A-line intensity profile. Since this is not guaranteed to hold true in all cases, 

it is not relied upon. To compensate for this, the stratum corneum detected for the pre­

vious B-scan is also considered (PrevEstimate). PolyEstimate and PrevEstimate 

are combined to give the stratum corneum estimate (SCEstimate). The Euclidean 

pixel-distances from each local intensity maximum in each A-line to the SCEstimate is 

calculated. This gives an indication of ‘how far’ each local maximum is from the SCEs­

timate. If the closest local maximum is within a pre-defined distance, it is considered 

to describe the stratum corneum. If not, PrevEstimate defines the stratum corneum 

location for the respective A-line.

Outliers are detected in a windowed region using the interquartile range rule [44]. They 

are replaced by the median of the windowed region. Although this is not a perfect 

solution, it is robust enough to serve for feature extraction. Figure 3.3 provides an 

example of stratum corneum detection.

Figure 3.3: Stratum corneum detection. The blue dots are SCEstimate, the 
combination of PrevEstimate and PolyEstimate (i.e., the green curve). Green 
crosses are points detected as incorrect or outliers. The red dots are the corrected

outliers.
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The relative intensity of B-scans throughout an OCT volume is inconsistent. This is a 

problem inherent in OCT that can affect the performance of stratum corneum detection. 

It arises because the fingertip skin is contoured, and pixel intensity is depth-dependent in 

an OCT scan. The closer to the tip of the finger, the further the skin is from the scanner 

and the lower the average intensity of the corresponding B-scans. This could degrade 

the performance of stratum corneum detection. In order to accommodate varying pixel 

intensity, the threshold intensity is adjusted for every B-scan. Adjustment is performed 

by finding the B-scan with the brightest average intensity (of all pixels) and adjusting 

the threshold per B-scan according to its relative relationship with this quantity. The 

performance of this algorithm is evidenced in Section 5.2 in a qualitative fashion and as 

a contributing step to internal fingerprint zone-detection.

The detected stratum corneum location is used to define features for clustering. The 

clustering step is discussed in the following section.

3.1.2 Clustering

Pixel depth 
0

100 

200 

300 

400 

511

Figure 3.4: A-line context. The red line is an A-line. Figure 3.5 further exemplifies 
the A-line analysis undertaken. Image courtesy of Darlow et al. [41].

Clustering is an unsupervised machine learning technique used to segment data into a 

pre-defined number of clusters. Although often a seemingly intuitive process for human 

beings [45], cluster analysis is a complex and well researched task. There is no agreed- 

upon definition for the concept of a ‘cluster’ , although it can be defined with respect to
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Figure 3.5: A-line intensity profiles. (A) is an an example of an expected A-line 
profile, where relative peak heights correlate well with skin structure theory. (B) and 

(C) are examples of A-line profiles that do not adhere to skin structure theory.

data homogeneity and dissimilarity; data within a cluster is more similar to data within 

the same cluster than it is to data outside of said cluster [46].

Since clustering is able to segment data, it has been successfully applied to image seg­

mentation problems [47]. The segmentation ability of clustering is used in this research 

to identify a specific layer of skin, namely the papillary junction. Clustering algorithms 

require input data and related descriptive feature vectors. In the case of this research, in­

tensity local maxima and corresponding peak-characteristics are extracted from A-lines 

as data and features, respectively.
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Figure 3.4 exemplifies the A-lines analysed for data and feature extraction. Figure 3.5 

provides three A-line intensity profiles. These are examples of inputs used for data and 

feature extraction from the O CT volume. The exemplified region captures the stratum 

corneum (as the leftmost peak) and the papillary junction (as the second left-most peak). 

Figure 3.5(A) exemplifies the expected A-line profile based on the relative reflectivity 

of skin layers: the stratum corneum is the strongest peak, followed by the papillary 

junction. However, this expected profile structure (regarding relative peak strengths) 

is not always found. Figure 3.5(B) and (C) are A-line intensity profiles that do not 

fit this expectation. If the intensity profiles were always structured as per the known 

and assumed skin reflectivity, determining the locations of the stratum corneum and 

the papillary junction would be trivial. Owing to the inconsistency demonstrated here, 

cluster analysis is applied to the problem of internal fingerprint zone-detection.

Each A-line is smoothed prior to analysis. Figure 3.5 is demonstrative of the effect this 

has: the peaks become well defined, although less sharp. Each of these peaks, defined by 

their corresponding local maxima, may become a data point for cluster analysis. Since 

the papillary junction usually corresponds to a strong local maximum (i.e., it is relatively 

bright), a limited number (n) of local maxima are extracted as data points. Therefore, 

the top n strongest intensity local maxima are extracted as data for clustering.

For each of the data points extracted, features to describe these data points are also ex­

tracted. Descriptive features must be context sensitive and are chosen using domain 

knowledge, logic, and experimentation (refer to Figure 3.5 for accompanying visual 

explanations of the chosen features). For each data point, the following features are 

extracted:

1. Relative distance: the normalised absolute pixel-wise distance from the stratum 

corneum estimate (found using Algorithm 1) to the data point. The black arrows 

in Figure 3.5 are indicative of this distance, while the green dots are potential data 

points. This distance is normalised for every B-scan. Normalisation mitigates the 

need for the assumption that the distance between the stratum corneum and the 

papillary junction remains constant throughout an entire OCT fingertip volume. 

However, this distance is assumed to be relatively constant in a single B-scan. 

A statistical estimation is thus formed regarding the average distance over a B- 

scan. This is done by taking the median (since it is robust against outliers) of the
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distances between the two strongest local maxima in each A-line. The determined 

estimation is not only used to normalise this feature, but also to determine which 

cluster best describes the papillary junction location (as described in Section 3.1.3).

2. Relative intensity: the normalised intensity of the data point. The height of 

the green dots in Figure 3.5 exemplifies this feature. As identified in Section 3.1.1, 

the mean intensity of B-scans in an OCT volume cannot be assumed to be consis­

tent. The normalisation of this feature occurs to allow for intensity inconsistency. 

Normalisation occurs for every B-scan through the use of an estimation of stratum 

corneum intensity. The median of the strongest (brightest) peaks in all A-lines in 

a B-scan is the stratum corneum intensity estimate for that B-scan. This estima­

tion is used to normalise the intensities of all the data points extracted from the 

corresponding B-scan.

3. Peak width: twice the distance from the data point to the closest local min­

imum (considering those closer to the surface skin). The blue arrows in Figure 

3.5 demonstrate this feature. No normalisation is necessary as the arrangement 

of local extrema is not affected by the same inconsistencies that affect the rela­

tive distance and the relative intensity. Since the peak widths of the stratum 

corneum and the papillary junction differ, this feature distinguishes them.

4. Peak standard deviation: the signal deviation as measured over the region 

defined by the peak width. This feature is used to differentiate between data 

points defined by signal strength and data points caused by the presence of speckle 

noise alone. Since speckle noise is signal-dependent, the standard deviation is also 

dependent on the level of signal present. This feature is shown as the purple arrows 

in Figure 3.5. The leftmost six local maxima in Figure 3.5(C) are examples of data 

points induced by speckle noise.

5. Peak gradient: the gradient as measured at the pixel depth exactly half-way 

between the data point and the same local minimum considered for the peak 

width. The black ‘Xs’ in Figure 3.5 demonstrate where the gradient is measured. 

This feature is an estimation of the peak strength and is used to characterise peaks 

originating from strong signal presence.
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The depth-dependency intensity roll-off problem inherent in OCT scans of a curved sur­

face has the potential to affect the performance of clustering. A solution to this is to 

make use of a glass slide during the scanning process. Doing so would render the touch­

less capability of OCT superfluous and induce distortion in the papillary junction [13]. 

The normalisation of the relative distance and relative intensity features is exe­

cuted to accommodate the depth-dependency roll-off problem. The extraction of the 

internal fingerprint from the determined papillary junction upper-edge location must 

nevertheless take this roll-off into account. Section 3.2 details how this is accomplished.

The choice of clustering algorithm is complex and dependent on the problem space. Data 

type, cluster model, cluster overlap, and robustness with regard to outliers are factors 

affecting this choice [46]. Estivill-Castro [48] attempted to explain the large number of 

clustering algorithms by showing that a decisive idea of ‘cluster’ is not available.

Since the choice of clustering algorithms is not simple, initial testing was carried out on 

four possible choices, namely: the k-means [49], k-medoids [50], fuzzy c-means [51], and 

expectation maximization with Gaussian mixture models [52] clustering algorithms.

K -means clustering defines a cluster by the unweighted membership of its constituent 

elements. It works by partitioning data into k groups where each group’s cumulative 

distance with respect to its centre is minimized. Optimized implementations are avail­

able that make use of heuristic procedures to improve performance. Although k-means 

clustering is simple and robust, it is ineffective in identifying outliers.

K -medoids clustering works in a similar fashion to k-means clustering. The difference 

is that the centres of clusters are defined by objects within respective clusters. For 

each cluster, the object defining the centre is chosen as the object with minimized 

dissimilarity to all other objects in the cluster. Owing to these pairwise calculations, 

k-medoids clustering is computationally-expensive. It is, however, more robust against 

outliers.

Fuzzy c-means clustering defines cluster centres in the same manner as k-means cluster­

ing. It does not assume distinct clusters. Instead, each data point is given a degree of 

membership to all clusters. Thresholding procedures are used to determine to which (if 

any) cluster the data points belong. The major advantages of fuzzy c-means clustering 

are that it works well with overlapping datasets and is highly robust against outliers.



Chapter 3. Methodology 38

The expectation maximization with Gaussian mixture models clustering algorithm is 

a hierarchical cluster analysis that works by decomposing the input data set. It fol­

lows a ‘top down’ approach: all data starts in a single cluster and is recursively split 

down the hierarchy. It works by calculating a number of Gaussian mixture models 

prior to attempting to fit the data by estimation of the maximum likelihood of Gaus­

sian centres. Although frequently and successfully used in real-world applications, it is 

computationally-expensive.

The initial performance analysis of the above-mentioned four clustering algorithms is 

given in Section 5.1. Since it is possible for data to overlap and for outliers to be present, 

the fuzzy c-means clustering algorithm fits the data space well. The initial performance 

analysis supported this observation. Therefore, the fuzzy c-means clustering algorithm 

is applied to this research.

The task of thresholding fuzzy c-means clustering output is an unsolved problem and is 

potentially complex. In the context of this research, the membership threshold is set as 

a function of c (i.e., the number of clusters). Equation 3.1 is this function.

T  (c) —
c

threshold), (3.1)

where m >  1 is the multiplication factor, c is the number of clusters, and threshold is the 

static maximum membership value. The factor of 1 /c is used because the possiblity of 

membership is inversely proportional to the number of clusters. m allows for a deviation 

from k-means style clustering (where m =  1) and the static threshold value allows for a 

stricter classification of outliers, which is more suited to this task. If a data point does 

not have a membership of at least T  in any of the c clusters, it is an outlier. Therefore, 

higher values of m yield more outliers.

A high threshold value (i.e., high m) is used to ensure that any membership to the 

cluster describing the papillary junction is strong membership. However, there is still a 

need for processing cluster output. This is discussed in the following section.
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Figure 3.6: Cluster analysis output. Each marker/colour combination represents 
a different cluster (six, in this case). The larger green circles encircle outliers. The red 
line is the processed cluster output and the green line is the processed cluster output 25 
pixels toward the stratum corneum. It is the region between the red and green lines that 
is extracted for fine-tuning. Although there is a large number of local maxima shown 
here, it is only to evidence the ability of clustering to nevertheless assist in papillary

junction detection.

3.1.3 Processing Cluster Output

Figure 3.6 is an example of cluster analysis output. The first step in processing this 

output is to determine which cluster best describes the location of the papillary junction. 

The estimation of the average distance between the papillary junction and the stratum 

corneum (found when determining the relative distance feature) is used as a means 

to this end. A single B-scan’s data is analysed. The correct cluster (holding data that is 

closest to the papillary junction location estimate) is determined as it best describes the 

papillary junction location. The cluster centroid is not considered for this. Instead, only 

the error between clustered local maxima and the above-mentioned location estimate is 

used. Only one B-scan needs to be analysed because there is enough data in each B-scan 

to make this choice.

Whilst an ideal result after clustering would be a single data point per A-line, this is 

not ensured to be the case. Figure 3.7 and 3.8 provide a visual explanation of cluster 

result post-processing.

The following inconsistencies, along with corresponding solutions, may occur:
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• Problem: In a single A-line, several data points may be within the chosen cluster. 

Solution: If this is the case, these data points will usually be spatially close. The 

uppermost of these is used. If this proves to be incorrect, it will be filtered out.

• Problem: An A-line may contain no data points in the chosen cluster.

Solution: Missing data is interpolated using the technique developed by Gar­

cia [53], known as inpaintnan. Examples of interpolated points are the blue dots 

in Figure 3.7. An example of the interpolated output cluster results can be seen 

in Figure 3.8 (C). Owing to the curvature of the fingertip, interpolation may yield 

incorrect results toward the sides of the finger. This is exemplified as the yellow 

line in Figure 3.7(A). Figure 3.8(B) demonstrates the preparation process for in­

terpolation. The regions where roll-off may affect the interpolation result (i.e. the 

leftmost and rightmost regions in Figure 3.8’s en-face representations), the pap­

illary junction coordinates are set to the maximum depth of the B-scan (i.e. the 

length of an A-line). The effect thereof can be seen as the difference between the 

blue (with preparation) and yellow (without preparation) lines in Figure 3.7(A).

(a)
(B)

Figure 3.7: Cluster output post-processing: a single B-scan. (A) and the
denoted region of interest (B). The red crosses are the data points within the chosen 
cluster, represented as non-black pixels in Figure 3.8(A); the blue dots are interpolated 
points and the green line is the interpolated result, as shown in Figure 3.8(C); the blue 
line is the median filtered output -  a single row in Figure 3.8(D); and the yellow line 
shows interpolation results without correct preparation: interpolation of Figure 3.8(A)

instead of Figure 3.8(B).
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(a) (b )

(c) (D)

(e ) (f )

Figure 3.8: Cluster output post-processing. These images are en-face represen­
tations of the coordinates defining the location of the centre of the papillary junction. 
(A) shows all the data points within the chosen cluster, where black pixels represent 
A-lines containing no data points within the chosen cluster. (B) is preparation for in­
terpolation. (C) is interpolated cluster results. (D) is the median filtered result of (C). 

(E) and (F) are the regions of interest in (C) and (D), respectively.
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• Problem: Data points may be incorrectly determined to be a member of the 

chosen cluster. The deviations of the green line in Figure 3.7 are caused by this. 

Furthermore, the ‘hot pixels’ visible in Figure 3.8(C) and (E) are evidence of this 

problem.

Solution: Filter the interpolated data. A median filter is applied as it is robust 

against discontinuities in data. An example of this can be seen as the blue line in 

Figure 3.7, and Figure 3.8(D) and (F).

The coordinates obtained in the manner detailed in this section are the location of the 

centre of the papillary junction in an OCT volume. They will be referred to as P C . PC  

describes the topography of the papillary junction to a fair degree of accuracy. It can 

be seen as the lower (red) line in Figure 3.6 and Figure 3.8(F). Section 4.3 details the 

experiments designed to test the performance of clustering for internal fingerprint zone- 

detection, and Section 5.2 gives both quantitative and qualitative results to demonstrate 

its efficacy. However, it is the upper-edge of the papillary junction that best describes the 

topography of the internal fingerprint. This upper-edge is defined as the region between 

the post-processed clustering result and 25 pixels above (i.e., toward the surface), as is 

shown in Figure 3.6. Fine-tuning the processed clustering results to better describe the 

papillary junction upper-edge is discussed in the following section.

3.1.4 Fine-tuning

Figure 3.9: Fine-tuning flowchart.
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The objective of fine-tuning P C  is to determine the location of the upper-edge of the 

papillary junction, denoted as P . The procedures followed to find P C  have been ro­

bust against speckle noise and normalised for contrast inconsistencies. However, the 

coordinates obtained thus far describe the centre of the papillary junction only, and do 

not ascertain the maximum body of knowledge in relation to internal fingerprint ridge 

and valley topography. Therefore, the fine-tuning process outlined in Figure 3.9 and 

exemplified in Figure 3.10 is applied.

P C  is used to extract small image regions, containing the papillary junction upper-edge, 

from each B-scan. An example region can be seen in Figure 3.10(A). An ideal condition 

would be that P C  follows the upper-edge undulations exactly, resulting in straight-line 

edges in the extracted image regions. Figure 3.10 shows how this is certainly not the 

case. The fine-tuning process serves to adjust P C , accommodating fluctuations in the 

papillary junction upper-edge that were not detected by clustering. It is executed in the 

application of edge-detection on the extracted small image regions.

(A)

(B)

(C)

(D)

mm

(F)

(G)

(H)

(I)

■ ' •

Figure 3.10: Fine-tuning process. (A) is the extracted image region, exemplified 
as the region between the red and green lines in Figure 3.6. (B), (C), and (D) are the 
results of three stage speckle noise-reduction. (E) is the result of local normalisation. 
(F) is after the convolution of the edge-detecting Sobel kernel. (G) is the result of 
unsharp masking on (F). (H) is the thresholded version of (G). (I) is (H) processed for 
edge-detection: the red dots are the detected white pixels in (H) and the yellow line is 

the interpolated and outlier insensitive processed output.

Edge-detection on extracted image regions is hampered by the presence of speckle noise 

and the inherent low-contrast of OCT scans. Speckle noise is signal-dependent (mul­

tiplicative). It originates when there are reflective elements that are roughly the same
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size as the imaging wavelength (of the OCT scanner) [54]. The closest noise distribution 

describing speckle noise is the Rayleigh distribution [16, 54].

Speckle-reduction approaches have been developed [55-62]. A review of state-of-the- 

art speckle-reduction techniques was conducted by Darlow et al. [39]. The optimised 

blockwise non-local means (OBNLM) algorithm was found to be the best performing 

speckle-reduction technique when applied to OCT fingertip B-scans.

An adaptation of the non-local (NL)-means filter [63] for speckle-reduction in MRI was 

first proposed by Coupe et al. [64]. The noise model was adjusted to incorporate speckle 

noise. This reformulation resulted in a powerful speckle noise-reduction filter. Owing to 

how computationally expensive NL-means filtering is, a blockwise approach was devel­

oped as an optimisation (viz. OBNLM). The noise models and origins for speckle noise 

in MRI and OCT are similar and OBNLM can be applied in each case.

OBNLM speckle noise-reduction is applied to the edge regions in three stages because 

reapplying a lower level of speckle reduction retains better edges than attempting to 

remove all the noise at once. The effect thereof is demonstrated in Figure 3.10(B) to 

(D). A product of OBNLM speckle noise-reduction is improved contrast and greater 

homogeneity in regions with high signal presence. However, since the contrast of OCT 

images is inconsistent, the result of OBNLM application is also inconsistent. Local 

contrast-enhancement is applied to (1) improve and (2) normalise the contrast of these 

images. Local normalisation is an operation where pixel intensities are adjusted in a 

windowed fashion to increase the distinction between light and dark. A local approach 

is preferred as small-scale changes (such as the upper-edge of the papillary junction) 

are concentrated. Figure 3.10(D) and (E) are examples of OBNLM and local contrast- 

enhancement, respectively.

The Sobel operator [33] is applied to detect vertical gradient changes. Figure 3.10(F) 

is an example thereof. The Sobel operator is a well-known edge-detection tool used to 

emphasize edges in images. The vertical Sobel operator is convolved with the de-noised 

edge region images. It is defined as:

+1 +2 +1
0 0 0
-1 -2 -1
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To highlight the edges detected by the Sobel operator, unsharp masking is applied. 

Unsharp masking compares an image with its blurred counterpart to identify and amplify 

high-frequency regions. Applied at the correct scale, this enhances the regions detected 

by the Sobel operator. The result of this is thresholded. The unsharp masking and 

thresholding processes are exemplified in Figure 3.10(G) and (H), respectively.

The thresholded results are processed to identify the white pixels. The detected edges 

are shown as the red dots in Figure 3.10(1). The missing values are interpolated us­

ing inpaintnan and outliers are found and replaced using the Hampel filter [65]. The 

choices of Sobel edge-detection, inpaintnan, and the Hampel filtering are owing to their 

widespread use and reliability. It is not the focus of this research to exhaustively search 

for optimised counterparts, but instead provide a robust means of extracting an internal 

fingerprint. An instance of this can be seen as the inner (yellow) line in Figure 3.10.

The result of fine-tuning is used to adjust PC  into coordinates describing the papillary 

junction upper-edge (P ). Figure 3.11 shows the adjustment owing to fine-tuning.

Figure 3.11: Fine-tuning example. The blue line is a single row of PC and the
red line is a single row of P .

Earlier work by the authors served as initial experimentation to formulate the processes 

discussed in this chapter. In-depth experimentation to show the effectiveness of internal 

fingerprint zone-detection using k-means clustering and image enhancement is given in 

the work by Darlow et al. [41]. Akhoury and Darlow [42] demonstrated the use of internal 

fingerprint zone-detection in obtaining papillary junction upper-edge coordinates for 3D
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to 2D papillary junction coordinate fingerprint mapping. Darlow et al. [40] showed the 

success of a heuristic approach to internal fingerprint zone-detection.

The coordinates obtained using the technique described in this section (i.e., P ) are used 

for internal fingerprint extraction. This is discussed in the following section.

3.2 Internal Fingerprint Extraction

The authors have explored two possible approaches to internal fingerprint extraction, 

one of which, outlined and tested by Akhoury and Darlow [42], involved processing P  

directly into a 2D fingerprint representation. This was accomplished by executing the 

following procedures on P :

1. A smoothing filter (Gaussian low pass) was applied to P, thus correcting for out­

liers present.

2. A phase congruency [66] filter was used to detect ridge-valley gradients.

3. A sigmoid function was applied to saturate the detected gradients, amplifying the 

result of the phase congruency filter.

4. The result was filtered for anomalies by convolving it with a non-linear median 

filter.

The above-mentioned process is exemplified in Figure 3.12. This process is successful in 

detecting the ridge and valley structure present in P . It is also substantiation of the claim 

that the papillary junction upper-edge contains a significant level of internal fingerprint 

topographical information. Although the internal fingerprint can be extracted in this 

fashion, the approach relies on the accuracy of the detection of P . Thus, a different 

internal fingerprint extraction technique, that addresses the issue of robustness against 

anomalies in P, is developed in this research.

The fingerprint mapping technique shown in Figure 3.12 does not make use of the OCT 

scan data directly. Instead, it uses meta-data (i.e., the upper-edge of the papillary junc­

tion) extracted from the corresponding OCT scan. Any anomalies present in P  therefore
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(A) (B)

F i g u r e  3.12: 3D papillary junction upper-edge to 2D fingerprint representa­
tion mapping. This image is courtesy of Akhoury and Darlow [42]. (A) is an example 
of 3D coordinates obtained, P . (B) is an example of processing these coordinates to a

2D fingerprint representation.

affect the result of this fingerprint mapping. The internal fingerprint extraction tech­

nique developed for this research makes use of both P  and the original OCT volume for 

fingerprint extraction. OCT volume (3D) to internal fingerprint (2D) mapping is ex­

plained in Section 3.2.1 and the procedures followed for internal fingerprint enhancement 

are detailed in Section 3.2.2.

3.2.1 3D to 2D Mapping

Since P  describes the undulations of the internal fingerprint, a windowed statistical 

evaluation of P  can be assumed to describe the relative A-line-wise contributions to fin­

gerprint topography. That is, a 2D windowed mean and a 2D corrected windowed 

standard deviation, centred on the en-face 2D coordinate of a considered A-line, de­

scribe the region over which to perform dynamic (i.e., per the respective A-line) en-face 

pixel averaging for the resultant 2D internal fingerprint.

The 2D windowed mean is found by convolving P  with an averaging kernel (of size 

equal to window s iz e ).  The 2D corrected windowed standard deviation, denoted 

as ‘corrected’ because it is measured relative to the 2D windowed mean, is simply 

the standard deviation as measured in a window (of the same size used for the 2D 

windowed mean) surrounding the A-line being considered. Algorithm 2 details the 

internal fingerprint mapping process.
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Input: OCT ..volume, P
Parameters: window s iz e , start-offset, end-offset, mult 
Output: Internal-print
meand2D ^  convolve(P, kernel(windowsize))
std-dev-2D ^  std_dev_filter(P — mean-2D, kernel (window s iz e ))
foreach Adine in OCT-volume do

regionstart ^  meand2D[A_line] +  start-offset
region-end ^  mean-2D[Adine] +  std-devd2D[Adine] * mult +  end-offset 
Internal jprint[Adine] ^  average(OCTsolume[Adine][regionstart : region-end]) 

end
Algorithm 2: 3D t o  2D fin g e r pr in t  e x t r a c t io n

The 2D windowed mean and 2D corrected windowed standard deviation allow 

for a definition of localised start and end points specific to each A-line, denoted as 

regionstart and region-end in Algorithm 2, respectively. These points define the region 

that pixels are averaged in an A-line for a single resultant pixel in the internal fingerprint 

(viz. 3D to 2D conversion).

The start-offset adjusts the 2D windowed mean to yield regionstart. Furthermore, 

region-end is calculated by multiplying the 2D corrected windowed standard devi­

ation with the deviation-multiplier and adjusting it by the end-offset. start-offset 

and end-offset are robust parameters and were experimentally chosen to encapsulate 

the internal fingerprint undulations. Figure 3.13 exemplifies this localised region in two 

B-scans. The dependency of this region on P  allows for the descriptive topographical 

undulations of the papillary junction upper-edge to be captured. This technique is able 

to follow the papillary junction upper-edge with respect to:

1. Characteristic internal fingerprint undulations. These undulations are directly 

related to the topography of the internal fingerprint. This is exemplified in ROI 1 

in Figure 3.13 as the light (ridges) and dark (valleys) captured between the green 

and blue lines.

2. Differences in the papillary junction upper-edge relative size. The difference in the 

strength of undulation, and thus the difference in ridge and valley definition, is 

variable. For instance, the topographical variations are larger in ROI 1 than they 

are in ROI 2 in Figure 3.13.

Figure 3.13 complements Algorithm 2 by showing the regions involved in fingerprint 

extraction. These regions are calculated as 2D quantities, slices of which are shown in
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(A) (b)

Figure 3.13: B-scan fingerprint mapping region examples: (A) and (B) are B-
scans showing fingerprint mapping examples. RO I 1 and RO I 2 denote regions that 
show the effectiveness of the localised statistics used for internal fingerprint mapping in 
correctly capturing the internal fingerprint undulations. These regions are not samples 
of extracted regions, but simply highlight two regions where fingerprint undulation 
characteristics differ. The extraction occurs between the middle (green) line and the 
top (blue) line. The red lines correspond to the smoothed P : the 2D windowed 
mean. The green lines are the red lines offset by start_of f  set, denoted as regionstart 
in Algorithm 2. The blue lines are the red lines offset by the 2D corrected windowed 

standard deviation, denoted as region-end in Algorithm 2.

Figure 3.13. Owing to the 2D calculation of regionstart and region-end, the length of 

the region is dynamic per A-line. It depends on the standard deviation of the internal 

fingerprint zone of the surrounding 2D region, and thus is longer if the fingerprint zone 

undulates to a greater degree.

Owing to the fact that windowed statistics of P  are taken, for each A-line contributing 

to the internal fingerprint, this technique is robust against anomalies or deviations in 

P . Section 5.2 gives examples of possible errors in P . Moreover, the depth dependency 

intensity roll-off and fingertip curvature problems are partially dealt with by the depth 

independent relative regions described by P  and the localised 2D signal statistics used. 

The contribution of these problems are further limited by internal fingerprint enhance­

ment. This is discussed in the next section.
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3.2.2 Internal Fingerprint Enhancement

The internal fingerprint extraction technique discussed in the previous section is de­

signed to be robust against anomalies in P , and able to effectively describe the internal 

fingerprint undulations in a localised manner. However, the performance thereof is lim­

ited by the contrast of OCT. Additionally, owing to the fact that the internal fingerprint 

is dependent on the unprocessed OCT data, speckle noise is present.

(A) (b)

(c ) (d )

Figure 3.14: Internal fingerprint enhancement: (A) is an example internal fin­
gerprint extracted from an OCT volume using P, as per Section 3.2.1; (B) is after 
OBNLM speckle noise-reduction; (C) is after local contrast normalisation; and (D) is

after global intensity saturation.
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In order to maximise the visibility and contrast of ridges and valleys in the extracted 

fingerprint, image-enhancement procedures are applied in the following order:

1. OBNLM speckle noise-reduction. OBNLM was shown to be the best perform­

ing speckle-reduction technique regarding error reduction, structural similarity, 

and signal-to-noise ratio improvements [39]. OBNLM is used to smooth homoge­

neous areas in the internal fingerprint.

2. Local intensity normalisation. The same local normalisation technique is used 

in fine-tuning (Section 3.1.4). It is a localised contrast-enhancement procedure 

that stretches a windowed region’s pixel intensities to fit an appropriate range. 

Not only is local normalisation capable of further accentuating ridges and valleys, 

it neutralises the remaining effects of the intensity depth dependency roll-off and 

fingertip curvature problems.

3. Global intensity saturation. After local intensity normalisation, the finger­

print images have similar ridge-to-valley contrast throughout. To maximise this 

contrast, the intensity range is saturated (stretched) appropriately.

Figure 3.14 exemplifies the internal fingerprint enhancement procedure used in this re­

search. This chapter served to detail the process developed to extract 2D internal 

fingerprints from 3D OCT scans. By extracting and describing 1D local maxima as 

data points for fuzzy c-means clustering, the internal fingerprint zone (i.e., the papillary 

junction upper-edge) is detected. The internal fingerprint is extracted using a statisti­

cal evaluation of this location (meta-data) to describe a dynamic region in the 3D scan 

(data) over which to average 1D signals. Following this, the resultant internal fingerprint 

is enhanced.

The internal fingerprints obtained using the techniques detailed in this chapter, and the 

techniques themselves, are thoroughly tested in Chapter 5. The experimental set-up is 

discussed in the following chapter.



Chapter 4

Experimental Set-up

This chapter outlines the processes followed to obtain fingerprint data (both internal and 

surface) and describes the experiments developed to assess all aspects of this research. 

The following section explains data acquisition.

4.1 Data Acquisition

Reference mirror

Figure 4.1: OCT system: OCS1300SS, Thorlabs. SLS: swept laser source; BS: 
beam splitter; S: sample; PD: photodiode detector; DSP: digital signal processor.

52
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Fingertips were scanned using a swept source OCT system (OCS1300SS, Thorlabs). It 

has a central wavelength of 1325nm, a spectral bandwidth of 100nm, an axial scan rate 

of 16kHz, and a coherence length of 6mm. No glass slide was used for stabilisation 

as this negates the touchless capability of OCT. Instead, the scans were repeated until 

satisfactory instances were obtained. Figure 4.1 is a diagrammatic outline of the system.

X (10/15mm; 
256/512 
pixels)

Y (10/15mm;
256/512 

A-line scans)

Z
(3mm;

256/512
pixels)

Figure 4.2: Typical OCT fingertip scan, with resolution constraints.

A typical 3D OCT fingertip scan and corresponding resolution constraints is given in 

Figure 4.2. The OCT system used is limited to scanning an en-face (X , Y ) region of 

15mm x 15mm. For this research two region sizes were used: 10mm x 10mm and 

15mm x 15mm. For each of these region sizes, scans of two en-face resolutions were 

obtained: 256 x 256 p ixels  and 512 x 512 p ixe ls . The depth (Z ) and corresponding 

resolution is constrained to 3m m  and 512 p ix e ls , respectively. The data obtained is 

constrained according to one of the following:

1. Region size: X  =  Y  =  15mm; Z  =  3mm 

Resolution: X  =  Y  =  Z  =  512 pixels  

Dots per inch: 867

2. Region size: X  =  Y  =  15m m ; Z  =  3mm  

Resolution: X  =  Y  =  256 p ix e ls ; Z  =  512 pixels  

Dots per inch: 433
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3. Region size: X  =  Y  =  10mm; Z  =  3mm 

Resolution: X  =  Y  =  Z  =  512 pixels  

Dots per inch: 1300

4. Region size: X  =  Y  =  10mm; Z =  3mm 

Resolution: X  =  Y =  256 p ix e ls ; Z =  512 pixels  

Dots per inch: 650

The system was used to capture multiple instances of ten fingers, totalling fifty-five OCT 

volumes. None of the scanned fingers represented tissue types with damaged fingerprints, 

as that is outside the scope of this thesis and will be studied as future work. For each 

finger scanned, corresponding surface scans were also obtained using: the Integrated 

Biometrics Watson Mini (and the IBScanUltimate 1.6.10 software) and the SecuGen 

Hamster Plus (and the device software). Each surface fingerprint scan was repeated 

eight times, resulting in sixteen surface scans for each finger.

The OCT volumes were then processed to extract the internal fingerprints. The testing 

procedure designed to analyse the performance of the extracted internal fingerprints is 

detailed in Section 4.3. The approach for testing the system components is outlined in 

the next section.

Processing was carried out on a Windows 7 system, with an Intel i7-3770 running at 

3.40 G H z  and 8 G B  of random access memory.

4.2 System Component Assessment

Prior to any analysis on the extracted internal fingerprints, a thorough examination of 

the procedures undertaken to extract said fingerprints was performed.

Papillary junction upper- and lower- edge estimations were carried out on a single OCT 

volume. The upper-edge estimation is denoted G, while an estimation adjusted as the 

centre of the papillary junction is denoted as G C . GC is compared to PC  and G is 

compared to P  for quantitative assessment. The estimations were established using 

unprocessed B-scans and the GNU image manipulation program [67]. These were not 

carried out by an expert since they are designed to give an estimation of fingerprint
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zone-detection accuracy in the presence of speckle noise. Owing to the level of noise 

present, defining the exact upper- and lower- edges of the papillary junction is challeng­

ing. Thus, deviation in the ground-truth estimates, owing to human error, was quantified 

by comparing thirteen volunteers’ ground-truth estimations on five B-scans. This was 

then used as a human-error quantification for comparison against the automatic method 

developed herein.

Since clustering is an integral component of the proposed algorithm, initial experimen­

tation for cluster algorithm choice is essential. This is outlined in the following section.

4.2.1 Cluster algorithm choice initial experimentation

K -means, K -medoids, Expectation maximisation with Gaussian mixture models, and 

Fuzzy c-means are the clustering algorithms tested in this research.

The testing range is n =  2 . . .  20 with (c =  k) =  n +  2. The number of clusters is denoted 

as k for all the tested clustering algorithms, except for fuzzy c-means (in which case k 

=  c). It is set to be higher than the number of data points per A-line (n) as some data 

points can be outliers. It is the presence of speckle noise that causes atypical data.

For each n : (c =  k) combination, PC  is compared to GC and P  is compared to G. The 

mean squared error (MSE, Equation 4.1), modified Hausdorff distance metric [68, 69] 

(H, Equation 4.2), structural similarity [70, 71] (SSIM, Equation 4.4), and root-mean- 

squared-contrast [72] (RMS-C, Equation 4.5) are used to quantify these comparisons. 

In addition, the time taken to perform clustering is also measured.

MSE and H are error estimation metrics. MSE is the average of the squares of the devia­

tion between estimate and estimator. Error can occur because of real deviations between 

the ground-truth estimates, or because of an imperfect ground-truth estimation [73]. In 

this research, MSE is defined as:

(4.1)
i= 1

where e and a are the ground-truth (GC or G) and the measured quantity (PC  or P ), 

respectively; N  is the number of data points; and ei and ai are compared points.
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H measures the degree of dissimilarity between two datasets: it is the maximum of the 

shortest (pixel-wise) distance between any point in one dataset (GC  or G, for example) 

and any other point in another (PC  or P , for example). It is defined as:

H(E, A) =  max(h(E, A),h(E , A)) (4.2)

where

h(E, A) =  max min II e — a
e£E a£A

(4.3)

where e and a are data points in E  and A , respectively.

H and MSE are able to give a good indication of error between the ground-truth esti­

mation and the coordinates obtained. However, they are not normalised metrics: only 

certain ranges of MSE and H are useful for error discernment (this is shown in Section 

5.2). Another disadvantage of these error metrics is that they are not case-specific to 

this research. Owing to the fact that the structure and contrast of the fingerprint are 

important and measurable quantities, SSIM and RMS-C are also measured.

SSIM is designed to measure the structural similarity between two images, and was 

developed by making use of the assumptions employed by the human visual system. In 

this way, it attempts to detect structure and consequent similarity in a manner to which 

a human can relate. First developed by Wang and Bovik as a universal image quality 

index [70], and later refined as SSIM [71], it is a normalised (to percentage similarity) 

metric, and is defined as:

SSIM (e, a)
( 2 ^ q  +  Sti)(2gea +  St2)

(p.2 +  p?a +  S ti ) ( ° 2 +  &a +  St2),
(4.4)

where SSIM is calculated locally. e and a are the measured windows. p,e is the mean of 

e, and p.a is the mean of a. The variances of e and a are and o^, respectively, while 

oea is the covariance of e and a. St1 and Sta are stabilization variables.

RMS-C is an accepted means of measuring contrast between two images. Since the 

measured quantities are 2D, they can be regarded as images. RMS-C is the standard 

deviation of pixel intensities [72], defined as:
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1 X -1Y-1
RMS-C  (E)

^ X Y EE (Eij — mean(E))2, (4.5)
i=0 j= 0

where E  is the measured 2D quantity; X  and Y  are the dimensions; Eij are the i — th 

and j  — th elements; and mean(E) is the average of E .

The result of this testing is given in Section 5.1. Testing procedures for internal finger­

print zone-detection are given in the following section.

4.2.2 Internal fingerprint zone-detection

Testing of internal fingerprint zone-detection is conducted, in part, by using the same 

four quantitative metrics (MSE, H, SSIM, and RMS-C) to compare G to P .

The testing ranges for n and c are both 2 . . .  23. This limitation is imposed because 

high combinations of n and c are lengthy to process; an unsatisfactory consequence that 

would see high values of c and n never being used in real-world scenarios, regarding 

this application. Furthermore, high values of c and n may lead to overfitting and other 

degenerative clustering behaviour.

Time taken is also measured for: data and feature extraction, clustering, and fine- 

tuning. Data and feature extraction is dependent on n . Clustering is dependent on n 

and c. Fine-tuning is independent of both n and k.

Interpolation of the data in the chosen cluster yields P C . Percentage interpolated is 

measured over the entire n : c testing range.

Numerous qualitative results are also given to show the efficacy, robustness, and disad­

vantages of internal fingerprint zone-detection. Both the quantitative and qualitative 

analysis is detailed in Section 5.2. The experimental set-up regarding internal fingerprint 

extraction (as per Section 3.2.1) is given in the next section.

4.2.3 Internal fingerprint extraction and enhancement

There is no way of estimating a ground-truth scenario for the extraction procedure. 

Although minutiae points detected can be evaluated for correctness, this exhibits the
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performance of the minutiae extraction algorithm used, instead of the internal fingerprint 

itself. Therefore, testing the internal fingerprint involves testing for correspondence 

with surface counterparts and cross-correspondence, as per Section 4.3. This manner of 

testing shows both the viability of the internal fingerprint itself and performance of the 

internal fingerprint extraction algorithm, as these are not exclusive of each other.

The internal fingerprint extraction process is also tested in a qualitative manner. Re­

sults regarding the zone described by statistical evaluations of P  and the corresponding 

extracted internal fingerprints are given in Section 5.3.

The testing procedures for internal to surface and internal cross-correspondence are 

outlined in the following section.

4.3 Internal Fingerprint Assessment

Prior to comparison with their surface counterparts, the internal fingerprints are first 

resized to correspond with the restriction of high-quality surface fingerprints: 500ppi 

(197 x 197 pixels and 295 x 295 pixels for the 10mm x 10mm and 15mm x 15mm scans, 

respectively).

Table 4.1 gives the parameters used in extracting the internal fingerprints for this re­

search. The internal fingerprints extracted from the scanned OCT fingertip volumes can 

be subjectively divided into three categories. These are: 1 2 3

1. Category 1: Small scanned region (10mm x 10mm) of a bad fingerprint area 

(i.e., far from the fingerprint core).

2. Category 2: Small scanned region (10mm x 10mm) of a good fingerprint area 

(i.e., at or near the fingerprint core).

3. Category 3: Large scanned region (15mm x 15mm).

This manual division of scanned fingerprints serves to ensure that the results obtained 

are not biased owing to scanned region size and locality to the fingerprint core. The 

performance of a fingerprint is dependent on these factors, and this division allows for 

a more independent evaluation of the internal fingerprint itself.
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Component Parameter Value

Stratum corneum detection Polynomial degree 3

Fuzzy c-means thresholding m 2.2

Fuzzy c-means thresholding m ax ̂ threshold 0.9

Small image region extraction Height 28 pixels

Interpolation Smoothing window size 4

Interpolation Edge buffer 10

Fine-tuning OBNLM 1; search size 12

Fine-tuning OBNLM 1; patch size 2

Fine-tuning OBNLM 1; smoothing 2

Fine-tuning OBNLM 2,3; search size 6

Fine-tuning OBNLM 2,3; patch size 1

Fine-tuning OBNLM 2,3; smoothing 1

Fine-tuning LN; amplitude 3.13

Fine-tuning LN; radius 10

Fine-tuning LN; neighborhood smoothness 10.09

Fine-tuning LN; average smoothness 11.83

Fine-tuning Unsharp masking; radius 29.9

Fine-tuning Unsharp masking; amount 4.63

Fine-tuning Unsharp masking; threshold 9.8%

Extraction w in d ow size 10X10

Extraction start j o f  f  set 8 pixels  down

Extraction e n d -o ffs e t 3 pixels  down

Extraction deviation-m ultiplier 5

Fingerprint enhancement OBNLM; search size 15

Fingerprint enhancement OBNLM; patch size 1

Fingerprint enhancement OBNLM; smoothing 1

Fingerprint enhancement LN; amplitude 6

Fingerprint enhancement LN; radius 4

Fingerprint enhancement LN; neighborhood smoothness 10.53

Fingerprint enhancement LN; average smoothness 21.11

Fingerprint enhancement Contrast stretch, minimum 30

Fingerprint enhancement Contrast stretch, minimum 150

Table 4.1: Algorithm parameters. Local normalisation was carried out using 
GREYC’s Magic for Image Computing [74]. The significant figures are as per listed

therein.
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Fingerprint quality metrics are used to assess the quality of the internal fingerprints. 

Alonso-Fernandez et al. [75] compared fingerprint image-quality estimation methods 

to describe the effect of image-quality on fingerprint verification. Their study divided 

quality metrics into several groups. Amongst these, and useful to this research, are:

• The orientation certainty level (OCL) [76] that measures the energy concentration 

along the dominant ridge-valley orientation. It is calculated in a local, blockwise 

fashion. A lower OCL score corresponds to a better quality region. A global OCL 

score is calculated as the average of all the respective blockwise OCL scores.

• The NFIQ number [77, 78] that predicts a fingerprint’s positive or negative con­

tribution to an overall matching system. It uses a neural network to classify 

fingerprints according to eleven-dimensional feature vectors, computed as image 

characteristics. It is a well-known and trusted image-quality estimation technique. 

It ranges from one (best) to five (worst), with integer divisions.

There are many quality metrics for assessing fingerprints. The reader is referred to 

[75] for a fuller review of these. OCL and NFIQ were chosen because they are widely 

accepted, the fingerprints being assessed should not contain any intentional anomalies, 

and they, in combination, give a broad assessment of fingerprint quality.

Although these metrics are able to give a fairly accurate estimate of fingerprint image- 

quality, they are unable to give a full account of fingerprint performance. The internal 

fingerprints obtained in this research are, therefore, tested against their surface coun­

terparts using the NIST minutiae extraction (mindtct) and matching (bozarthS) soft­

ware [79].

The match score is calculated between each internal fingerprint and all of its surface 

counterparts, yielding sixteen match scores per internal fingerprint. In addition, the 

cross-correspondence between internal fingerprints of the same fingers is measured. A 

match score of forty is considered to represent a ‘true match’, according to NIST [78].

In order to exemplify objectively the quality and performance of the internal fingerprints, 

a reference point must be given. This reference point is the performance of conventional 

surface fingerprints when matched against surface fingerprints of the same fingers. How­

ever, there are a number of factors that affect fingerprint match performance, such as:
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surface fingerprint distortion upon scanning; the lack of ridge-valley clarity of some sur­

face fingerprints; and scan area size and locality. Eliminating most of these factors is 

outside the scope of this research. Nevertheless, ensuring that the surface fingerprints 

used to define a performance reference point encompass approximately the same region 

(with respect to area and locality) of their corresponding internal fingerprints is neces­

sary. In doing so, a bias that would otherwise misconstrue the performance of internal 

fingerprints is eliminated.

For each internal fingerprint three conventional surface counterparts were obtained. 

These were manually cropped to encompass regions similar to their internal counter­

parts. Since OCT is an emerging, yet to be established, tool for fingerprint acquisition, 

it cannot perform on a competitive level regarding imaged area size. A performance 

comparison is given in Section 5.4. Furthermore, a summary of fingerprint quality as­

sessment; the average match scores for surface correspondence; the maximum match 

scores for surface correspondence; and the cross-correspondence average and maximum 

scores are also given in Section 5.4.

This chapter served to outline the testing procedures followed to provide quantitative 

evidence that the internal fingerprint is a viable replacement for the surface fingerprint. 

Qualitative results are also paramount in showing the effectiveness of the internal finger­

print extraction algorithm, as well as the internal fingerprint itself. The results obtained, 

both quantitative and qualitative, are given in the following chapter.



Chapter 5

Results and Discussion

This chapter serves to exhibit the results obtained when quantitatively and qualitatively 

testing the algorithms, techniques, and approaches developed in Chapter 3. Section 5.1 

gives the analysis of the four clustering algorithms, and validates the use of fuzzy c-means 

clustering. Section 5.2 encapsulates the results of internal fingerprint zone-detection 

and proposes constraints on the clustering algorithms based on these results. Section

5.3 demonstrates the use of dynamic region extraction using both data (i.e., the OCT 

volume) and the coordinates of the papillary junction, and gives examples of extracted 

fingerprints. Section 5.4 serves to evaluate the performance of the internal fingerprints 

extracted using the techniques presented in this research.

5.1 Cluster Algorithms’ Analysis
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Figure 5.1: Initial clustering testing: MSE results.
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Figures 5.1 through 5.4 exhibit the performance results for the initial cluster algorithm 

experimentation. n =  (c =  k) — 2 was the constraint placed upon the ratio between the 

number of clusters and the number of data points per A-line. By setting the number of 

clusters to be higher for each n : (c =  k) ratio, outlying data points could be detected; 

each data point per A-line must fall within its own cluster, or be an outlier. This 

constraint is expounded upon in Section 5.2. These figures show only a region of interest 

because k-medoids performed very poorly, and showing all results is meaningless in 

assessing the performance of the better-performing clustering algorithms.

Fuzzy c-means outperformed all other clustering algorithms when (c =  n +  2) <  10. 

Although k-means performed better when (k =  n +  2) >  10, this region of testing is 

unsatisfactory with respect to time taken (see Figure 5.5). The results for k-medoids 

are not entirely visible in the regions of interest as it performed poorly. Expectation 

maximization did not converge when the number of clusters was set above five.

Fine-tuning improved all measured metrics in almost all cases. Thus, the fine-tuning 

procedure is able to improve the accuracy of internal fingerprint zone-detection.

Algorithm
MSE H

P C P Best P C P Best

k-means 32.1 ±  7.7 22.9 ±  7.4 19.1 254.4 ±  86.8 254.8 ±  85.8 162.3

fuzzy c-means 31.7 ±  5.9 23.1 ±  4.7 17.6 252.5 ±  58.2 233.2 ±  62.3 146.4

Table 5.1: Initial clustering testing results: MSE and H for k-means and fuzzy

2 4 6 8 10 12 14 16 18 20
n = (c = k) -  2

Figure 5.5: Initial clustering testing: timing results.

c-means.
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Table 5.1 is a summary of the MSE and H results over the entire tested region for 

the best performing clustering algorithms: k-means and fuzzy c-means. Fuzzy c-means 

produced better average and lowest MSE and H values. Furthermore, fuzzy c-means is 

more robust and stable in this application when compared to k-means, as exhibited by 

the lower standard deviations in all measured quantities. The best results were shown 

as this initial experimentation is designed to find suitable parameters for clustering, and 

those corresponding to the best results obtained are used.

Owing to these initial experiments, Fuzzy c-means was used in further experimentation. 

It performs well at lower values of n and c -  a region where time taken is low -  and is 

suited to outlier detection.

The following section details the results of internal fingerprint zone-detection.

5.2 Internal Fingerprint Zone-Detection

This section outlines the results obtained regarding the processes developed to detect 

the internal fingerprint zone: a critical component of internal fingerprint extraction.

An essential step in detecting the internal fingerprint zone is the detection of the stratum 

corneum. Figure 5.6 shows six instances of stratum corneum detection. There was no 

case where stratum corneum detection failed to the degree that the internal fingerprint 

zone could not be located, even when the signal content was low (Figure 5.6(C) and 

(D), for example). Consequently, the stratum corneum is adequately detected for use in 

internal fingerprint zone-detection.

The main component of internal fingerprint zone-detection is fuzzy c-means clustering. 

Data and features are extracted from A-lines. Along with Figure 3.5, which exhibits 

an expected A-line profile and two anomalous A-line profiles, Figure 5.7 presents four 

A-line examples that do not adhere to the expected relative intensity of the skin layers.

The deviations from the expected A-line profile are attributable to the presence of speckle 

noise, the curvature and intensity roll-off problems, biological inconsistencies in the skin, 

or a combination thereof. It is the presence of these inconsistencies, that necessitate an 

advanced technique for internal fingerprint zone-detection and extraction.
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(a)

(c)

(b)

(d)

(e) (f)

Figure 5.6: Stratum corneum detection examples: (A) and (B) show good de­
tection on B-scans with high signal content; (C) shows good detection on a B-scan 
with low signal content; (D) shows good detection when PolyEstimate deviates sig­
nificantly; (E) shows detection on a B-scan that holds no useful information; and (F) 
shows bad detection on a B-scan with low signal content. The blue dots are the closest 
A-line intensity local maxima to SCEstimate, the green line is PolyEstimate, the 

green crosses are detected outliers, and the red dots are corrected outliers.
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Figure 5.7: A-line examples: (A) is an A-line without a stratum corneum or pap­
illary junction (because of curvature roll-off); (B) is an A-line where the papillary 
junction local maximum is weak; (C) is an A-line where the second strongest peak is 
not the papillary junction; and (D) is an A-line where the stratum corneum is not the

strongest peak.

The algorithm developed for this research was tested by comparing automatically ob­

tained coordinates (P ) against ground-truth coordinates (G). G was estimated by a 

human observer. Thirteen volunteers were asked to estimate the location of the pap­

illary junction upper-edge on five B-scans to quantify the effect of human error. A 

comparison of all the volunteers’ estimates yielded a mean MSE of 15.6 ±  6.0, a mean 

H of 157.3 ±  22.0, and a mean RMS-C of 103.1 ±  0.4. SSIM was not calculated in this 

case as five B-scans did not suffice a meaningful SSIM result.

As was stated in Chapter 3, precursor works served to formulate the internal fingerprint 

zone-detection algorithm. The work by Darlow et al. [41] utilised k-means and a similar 

fine-tuning process to locate the internal fingerprint. Table 5.2 summarises the quanti­

tative metrics obtained using the old (k-means) and new (fuzzy c-means) methods.

The ranges tested in the earlier work were larger than those tested in this work because 

of the time taken to perform clustering when n and c are large. The same conclusion was
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Metric
Old k-means [41] N ew  fuzzy c-means

Human
Candidate
parameter

region
Best

Candidate
parameter

region
Best

MSE 38.4 ±  16.8 23.6 28.2 ±  11.3 21.3 15.6 ±  6.0
H 218.2 ±  53.6 142.5 234.5 ±  92.5 147.8 157.3 ±  22.0
SSIM 92.2 ±  3.3% 94.5% 95.8 ±  2.6% 96.4% -
RMS-C 98.4 ±  0.4 143.3 97.3 ±  0.4 145.5 103.1

Table 5.2: Quantitative results. Human results are included for comparison, as 
are results obtained in the work by Darlow et al. [41].

drawn in the earlier work. It is evident that the best results obtained in this work are an 

improvement on results obtained earlier. Although the average H was less satisfactory, 

the average MSE and SSIM were improved. RMS-C was lower, yet more stable, because 

some combinations of n and c lead to high contrast anomalies in P. Thus, stability in 

RMS-C is more important than high values thereof.

Figure 5.8 exemplifies clustering output for different combinations of n and c, while 

Figure 5.9 encapsulates the quantitative results for all the measured metrics. A minimum 

MSE of 21.3, a minimum H of 147.8, a maximum SSIM of 96.4%, and a mean RMS-C (in 

the candidate parameter region) of 97.3 ±  0.4, show that P  corresponds well with G. The 

performance of the internal fingerprint zone-detection algorithm is comparable to human 

attempts at the same task. That is, the best MSE result is within the standard deviation 

of the human MSE results, and the MSE results within the candidate parameter region 

overlap with the human MSE results, for instance.

There is a distinct, stable candidate parameter region regarding all measured metrics. 

This region is shown as Figure 5.9(E) and constitutes 59.9% of the measured ranges of 

c and n. The performance stability of internal fingerprint zone-detection is of a high 

standard: the region within which the results are satisfactory is largely encompassing 

of the tested parameter ranges, and is consistent over four different quality metrics. 

Furthermore, the hypothesis regarding c >  n procuring satisfactory results is validated 

herein.

Obtaining P C  requires the interpolation of missing data in the chosen cluster. Figure 

5.9(F) gives the percentage interpolated over the tested ranges of n and c, while Table

5.3 gives the average percentage interpolated for all the scanned fingertips (with n =  3
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(a) (b)

(c) (d)

Figure 5.8: Clustering output examples: different colour/marker combinations 
represent different clusters; large green circles encircle outliers; the bottom (red) lines 
exhibit P C; and the region between the lines is the region extracted for fine-tuning. 
(A) is when n and c are low. (B) is when n is low and c is high. (C) is when n and c 

are high. (D) is when when n is high and c is low.

and c =  6). Strong cluster-membership was imposed by setting m high (see Table 4.1) 

in Equation 3.1. Although this results in the need for more interpolation (45.4 % on 

average), it must not be interpreted as poor performance. Instead, it ensures robustness 

in the clustering step as there is more certainty regarding cluster-membership. Figure 

3.8 is an example of interpolation.

The final step in internal fingerprint zone-detection is fine-tuning. Figure 5.10 depicts 

two fine-tuning examples that differ in performance. As is apparent in this figure, the
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Figure 5.9: Quantitative results for internal fingerprint zone-detection.
These were measured over a range of c =  n =  2. . .  23. (A) are the MSE results. 
(B) are the H results. (C) are the SSIM results. (D) are the RMS-C results. (E) shows 
the determined candidate parameter region. (F) gives the percentage interpolated. The 
axes of (F) are swapped and reversed in order to make visible the interpolation results.

Area Resolution % interpolated

10mm x 10mm 
15mm x 15mm 
10mm x 10mm 
15mm x 15mm

256 x 256 pixels 
256 x 256 pixels 
512 x 512 pixels 
512 x 512 pixels

45.51 ±  12.74 
43.40 ±  11.04 
47.15 ±  7.44 
46.13 ±  4.24

Overall: 45.41 ±  9.55

Table 5.3: A  summary o f interpolation for P C .
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(a) (b)

(c) (d)

Figure 5.10: Adjustments owing to fine-tuning. The left column shows single B- 
scan images taken from different OCT fingertip volumes, and the right column exhibits 
the indicated regions of interest. The bottom (blue) lines are P C , while the top (red) 
lines are P . (A) and (B) show good detection; and (C) and (D) exhibit a case where 

detection fails -  the lower left regions.

6000 

4000 

2000 

0

20
15

10

n 5
0 0

>400

300

200

100

0

1qqqq

5000

q-

0 0

I
>2500 

2500 

2000 

1500 

1000

(a) (b)

Figure 5.11: Timing results. These were measured in seconds over a range of 
c =  n =  2 . . . 23. (A) shows the time taken to perform clustering, while (B) shows the 

time taken to perform the entire internal fingerprint zone-detection process.
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performance of and contribution by fine-tuning is significant. P  followed the papillary 

junction upper-edge consistently. Although there were some inconsistencies in P , these 

had a minor effect in the extraction process.

It must be noted that no aspect of the algorithms developed was optimized for running 

time. Therefore, the time taken to detect the internal fingerprint zone is unsatisfactory 

for a real-time system. The times taken for clustering and internal fingerprint zone- 

detection are given in Figure 5.11(A) and (B), respectively. The shortest time taken for 

clustering was 2.0 s and the corresponding time taken to extract features was 178.4 s. 

The shortest time taken to detect the internal fingerprint zone was 595.0 s. The time 

taken to perform fine-tuning is independent of n and c and was 327.7 s at best.

Owing to the following observations, a formulation of the optimal n : c ratio can be 

given:

1. Performance is stable when c >  n.

2. Higher values of c and n are unsatisfactory regarding the time taken to cluster, as 

per Figure 5.11(A).

3. There is a performance limited ‘tapering’ toward lower ratios of n : c, exemplified 

in Figure 5.9(E). This means that the variability of one parameter, with respect 

to the other, while still maintaining suitable performance, becomes lower toward 

the (0, 0) point.

The restrictions on n : c are that c >  n, both n and c must be as small as possible, 

and the ratio of n : c must be sufficiently buffered from the tapered region. Thus, 

3 <  n <  c <  12 is sufficient. For the extraction of internal fingerprints, as tested in 

Section 5.4, n =  3 and c =  6.

To answer the research-questions posed in Section 1.6: the signal relating to the papillary 

junction can be enhanced using OBNLM and contrast-enhancement, and the location 

of the papillary junction can be determined accurately.

The testing of the extraction and enhancement processes is discussed in the following 

section.
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5.3 Internal Fingerprint Extraction

(a)

(c) (d)

Figure 5.12: Internal fingerprint examples: (A) is from a 10mm x 10mm and 
256 x 256 en-face pixel scan; (B) is from a 15mm x 15mm and 256 x 256 en-face pixel 
scan; (C) is from a 10mm x 10mm and 512 x 512 en-face pixel scan; and (D) is from 
a 15mm x 15mm and 512 x 512 en-face pixel scan. The minutiae detected are visible 

as red circles (ridge-endings) and green squares (bifurcations).

Figure 5.12 displays four internal fingerprints extracted from OCT scans of varying 

resolutions and region sizes. Minutiae were successfully detected for each combination, 

although the combination of 256 x 256 (en-face resolution) and 15mm x 15mm exhibited 

some loss in contrast regarding ridge-to-valley clarity. This is visible in the upper-right 

corner of Figure 5.12(B) and is because the effective resolution of these scans are low 

(approximately 433ppi). The curvature roll-off problem is evident in Figure 5.12(B) and
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(D) as the dark regions on either side of the fingerprint. However, since these regions 

are consistently dark, fingerprint minutiae detection algorithms should not be hindered 

by them.

Figures 5.13 and 5.14 are examples of extractions from 10mm x 10mm and 15mm x 15mm 

scans, respectively. Figure 5.13(B) exhibits how the windowed statistical approach is 

robust against deviations, as evidenced by how the jitter of the dashed (yellow) line does 

not heavily affect the outcome of the extraction zone (between the two smooth blue and 

green lines).

Figure 5.14(B) demonstrates the efficacy of this approach even when signal content was 

limited. There is very little useful information in this B-scan (hence it is very dark), and 

even less relating to the papillary junction, yet it is detected sufficiently when present. 

Figure 5.13(A) and 5.14(A) exemplify the capture of the internal fingerprint undulations 

through the analytical description of the region that best emphasises ridges (bright) and 

valleys (dark).

The enhancement procedure is demonstrated in Figure 5.13(C) - (F) and Figure 5.14(C) 

- (F). The effect of OBNLM noise-reduction is evident in the smoothing of homogeneous 

zones and edge preservation. The two (local and global) contrast-enhancement proce­

dures worked in unison to provide a clear representation of internal fingerprint ridges 

and valleys. The minutiae detected are shown in Figures 5.13(F) and 5.14(F), as evi­

dence that the internal fingerprint is of sufficient quality for minutiae detection. The 

evaluations in this section demonstrated the high-quality of the internal fingerprint prior 

to comparison with surface counterparts or other internal fingerprints.

As per the research-questions posed in Section 1.6:

• The internal fingerprint exists and can be extracted from OCT fingertip scans 

using localised statistical evaluations of the papillary junction location.

• The extracted internal fingerprint can be successfully enhanced by applying noise- 

reduction and contrast-enhancement.

• The internal fingerprint is of sufficient quality and minutiae can be extracted.
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(a) (b)

(c)

(e)

(d)

(f)

Figure 5.13: Internal fingerprint extraction: 10mm x 10mm scan. The region 
over which pixel intensities are averaged to produce the internal fingerprint -  (C) -  
is between the green and blue lines, while the dashed (yellow) line is indicative of P . 
(A) and (B) show this for high and low signal B-scan images, respectively. (D) - (F) 
exhibit the enhancement procedure: (D) is after noise-reduction; and (E) and (F) are 
after local and global contrast-enhancement, respectively. Minutiae are also shown in 

(F). The brightness and contrast of (B) are adjusted for visualisation.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Internal fingerprint extraction: 15mm x 15mm scan. The region 
over which pixel intensities are averaged to produce the internal fingerprint -  (C) -  
is between the green and blue lines, while the dashed (yellow) line is indicative of P. 
(A) and (B) show this for high and low signal B-scan images, respectively. (D) - (F) 
exhibit the enhancement procedure: (D) is after noise-reduction; and (E) and (F) are 
after local and global contrast-enhancement, respectively. Minutiae are also shown in 

(F). The brightness and contrast of (B) are adjusted for visualisation.
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The following section details the performance of internal fingerprints with respect to 

fingerprint quality metrics, internal to surface fingerprint correspondence, and cross­

correspondence.

5.4 Internal Fingerprint Evaluation

Each of the fingerprints extracted from the fifty-five OCT scans were compared to sixteen 

conventional surface scans. The internal fingerprint was first evaluated by measuring 

contrast (using RMS-C), calculating orientation certainty (using OCL), and through 

fingerprint categorisation (using NFIQ). Figure 5.15 displays the NFIQ scores and Table

5.4 exhibits the average RMS-C and OCL scores.

The surface fingerprints were of higher contrast than the internal fingerprints: the av­

erage RMS-C of the surface fingerprints was 11.63 ±  0.54, while the average RMS-C 

of the category three fingerprints (i.e., the best-case) was 10.73 ±  0.56. The parame­

ters involved in the extraction of the internal fingerprints can be optimised in order to 

produce higher contrast results. However, that is not the focus of this research.

The OCL scores corresponded well with the predefined subjective internal fingerprint 

categorisation. In addition, both category two and category three internal fingerprints 

had superior average OCL scores compared to the surface fingerprints.

Owing to the dependency of NFIQ on the number of minutiae present in the fingerprint, 

the NFIQ scores are biased toward the surface fingerprint. Since the areas imaged with 

the OCT scanner were limited (particularly with regard to the category one and two 

internal fingerprints), the number of minutiae were limited too. However, 36% of the 

category three internal fingerprints had an NFIQ score of one, but only 29% of the 

surface fingerprints had an NFIQ score of one. The NFIQ scores calculated for the three 

internal fingerprint categories indicate that a larger scanned region (i.e., 15mm x 15mm 

for category three internal fingerprints, in this research) is superior.
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Figure 5.15: NFIQ scores. (A) are the NFIQ scores for category one internal
fingerprints. (B) are the NFIQ scores for category two internal fingerprints. (C) are 
the NFIQ scores for category three internal fingerprints. (D) are the NFIQ scores for 
all the surface fingerprints. The numbers inside the pie charts denote the NFIQ score.

Category RMS-C OCL
1 10.04 ±  0.35 0.2395 ±  0.0747
2 10.20 ±  0.30 0.1684 ±  0.0282

3 10.73 ±  0.56 0.1328 ±  0.0196
Surface 11.63 ±  0.54 0.1824 ±  0.0561

Table 5.4: Fingerprint quantitative assessment.
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Category
Surface score Cross score

Mean Max Mean Max
1 11.0 ±  3.3 18.0 ±  6.1 59.3 ±  35.3 112.3 ±  62.3
2 15.4 ±  4.9 24.9 ±  9.3 65.8 ±  34.8 128.6 ±  56.9
3 37.4 ±  11.5 61.6 ±  32.1 57.9 ±  48.8 152.0 ±  77.4
All 21.3 ±  17.3 34.4 ±  25.7 61.0 ±  39.3 129.3 ±  65.4

Table 5.5: Average fingerprint matching results for all internal fingerprint
categories.

Table 5.5, Table 5.6, and Figure 5.16 serve to describe the surface to internal fingerprint 

match scores, the internal fingerprint cross match scores, and performance according to 

percentage true match achieved. Table 5.5 lists both the average mean and maximum 

match scores. Since there is no decisive manner in which to perform a one-to-one fin­

gerprint verification, both the mean and the maximum match scores are valid. The 

true match criterion is indicated by the horizontal dashed lines in Figures 5.16(A) and 

(B). The performance according to true match percentages is given in Table 5.6.

Figure 5.16 exhibits the distribution (amongst the three predefined categories) of the 

fifty-five OCT scans. Figure 5.16(A) demonstrates how category one and two internal 

fingerprints exhibited low internal to surface fingerprint match scores and, thus, bad 

correspondence. Category three internal fingerprints exceeded this significantly: Table 

5.6 shows how 74% had at least one true match with a corresponding surface counterpart.

Category
% True match (to surface) % True match (cross)
Overall At least one Overall At least one

1 0% 0% 53% 100%
2 0% 6% 43% 89%
3 39% 74% 44% 100%
All 14% 27% 47% 96%

Surface 62% 100%

Table 5.6: Percentage true match results for: all internal fingerprint categories 
and conventional surface fingerprints. The ‘overall’ percentages were calculated as 
the percentage of true matches when considering all comparisons. The ‘at least one’ 
columns exhibit the percentage of extracted internal fingerprints that have at least one 

corresponding true match with their surface counterparts.
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Figure 5.16: Fingerprint match score results. (A) and (B) encapsulate the NIST 
match scores for internal to surface fingerprint correspondence and internal fingerprint 
cross-correspondence, respectively. The vertical divisions denote the three internal 
fingerprint categories, in ascending order from left to right. The vertical light to dark 
colours indicate the NFIQ scores. Within each colour division, the fingerprints are 
arranged in ascending order according to OCL. The horizontal line denotes a true 
match. The x-axes shows the arrangement of the fifty-five internal fingerprints, in 

ascending order according to: the subjective categories, NFIQ scores, and OCL.
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This indicates that the internal fingerprint performance is dependent on the size of the 

imaged region: a large imaged region (15mm x 15mm, in this case) has more minutiae 

and, therefore, a better chance of matching against a surface counterpart. With this 

observation, OCT fingertip scans should encompass as large an area as possible. If the 

scanned region is sufficiently large and the internal fingerprint is extracted using the 

algorithms detailed here, it can be augmented with surface fingerprint databases.

The internal fingerprint cross-correspondence match scores are disclosed in Table 5.5 and 

Figure 5.16(B). These scores are noteworthy as they verify that internal fingerprints are 

consistent over various scans and can constitute a fingerprint database. Furthermore, 

96% of all internal fingerprints had at least one corresponding true match (see Table 5.6). 

However, the conventional surface fingerprints performed better in this regard because 

100% had at least one true match with another surface fingerprint.

Although Table 5.6 shows that surface fingerprints outperformed the internal fingerprints 

when matched against other surface fingerprints, the surface fingerprints used in this 

case encompassed the entire fingerprint. To exemplify the performance of the internal 

fingerprints, a comparison was made to the performance of surface fingerprints that 

were of the same or similar region. Figure 5.17 manifests clearly this comparison as the 

cropped surface fingerprints exhibit similar match scores to the internal fingerprint. The 

majority of the internal fingerprints either performed as well as (within the measured 

standard deviation), or better than, their corresponding cropped surface fingerprints.

Notwithstanding the cropping procedure, there is still evidence of factors such as surface 

fingerprint distortion, which is relatively consistent amongst the surface fingerprints but 

lacking in the internal fingerprints, affecting internal fingerprints’ performance. Some of 

the category three internal fingerprints performed worse than their surface counterparts.

The internal fingerprints had an average match score higher than their corresponding 

cropped surface counterparts 64% of the time, and had better maximum match scores 

53% of the time. This indicates that the internal fingerprints perform either as well as, 

or better than, their corresponding cropped surface counterparts, assuming the imaged 

area is roughly the same.

The intention of cropping surface counterparts to represent the same area as the in­

ternal fingerprints, was to eliminate some bias caused by the difference in represented
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Figure 5.17: F in g e r p r in t  m a tc h  s c o re  re s u lts :  a  c o m p a r is o n  a g a in s t s u r fa c e  
c o u n te r p a r ts ’ p e r fo rm a n c e . (A) gives the internal fingerprint to conventional sur­
face fingerprint average match scores, and the average match scores for three surface 
fingerprints (that were cropped to match their corresponding internal fingerprints, and 
compared against the same set of conventional surface counterparts). (B) gives the 
maximum match scores for the same fingerprints. The arrangement of fingerprints is 
the same as in Figure 5.16. The standard deviations of the match scores of the three 

cropped surface counterparts are indicated by the error boxes.
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area between surface and internal fingerprints. Although a fingerprint acquisition de­

vice (whether OCT or conventional surface scanners) should image a sufficiently large 

area, the OCT device used in this research was not designed for fingerprint acquisition. 

Instead, a goal of this research is to provide a means of extracting the internal finger­

print and, in so doing, preempt and prompt the creation of an OCT specific fingerprint 

acquisition device.

There are, however, other less obvious sources of bias that may have influenced the 

comparisons between internal and surface fingerprints. Removing various forms of fin­

gerprint distortion; accounting for the influence of inconsistent details (such as wrinkles 

or scars that are only visible on the surface); and improving the scan area size for OCT 

fingertip scanning, are examples of possible avenues for future work.

Figure 5.18 provides internal fingerprint examples, their corresponding surface counter­

parts, and the regions of interest. Although their characteristics are relatively similar, 

the internal and surface fingerprints have different ridge-to-valley thickness and contrast 

characteristics. An advantage of internal fingerprints is demonstrated in this figure. 

There were no wrinkles or scars on the internal fingerprints, even when damage was 

present on their surface counterparts. Figure 5.18 also serves to show qualitatively the 

direct correspondence between surface and internal fingerprints.

There is, however, distortion present. This is recognised as the difference in shape and 

minutiae to minutiae distances when comparing the internal fingerprints to their surface 

counterparts. It arises via three sources: (1) ‘jitter’ owing to movement during the OCT 

scanning procedure; (2) surface fingerprint distortion owing to the touch-based surface 

scanners; and (3) the planar perspective (i.e, flat and en-face) fingerprint extraction 

process. These may have had an effect on the matching performance between extracted 

internal fingerprints and their conventional surface counterparts, as exhibited in the bias 

toward conventional surface true match performance (see Table 5.6).

Jitter must be mitigated through hardware design. Surface distortion correction is be­

yond the scope of this work. Distortion induced by the en-face averaging approach taken 

can be reduced by applying a 3D to 2D unwrapping [8] procedure. Compensating for 

these sources of distortion is hypothesised to improve matching performance and will be 

undertaken as a future work.



Chapter 5. Results and Discussion 84

Category

1

1

2

2

3

3
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Figure 5.18: Internal and surface fingerprint examples. The internal finger­
prints’ intensities are inverted to correspond with the surface fingerprint convention.
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Notwithstanding various sources of fingerprint distortion, the surface to internal finger­

print correspondence is acceptable when the imaged region is sufficiently large. Fur­

thermore, cross-correspondence between internal fingerprints lends support to the claim 

that the internal fingerprint can be used as a stand-alone biometric solution.

As per the research-questions posed in Section 1.6: the internal fingerprint corresponds 

to its surface counterpart, and is of sufficient quality with respect to OCL, NFIQ, surface 

correspondence, and cross-correspondence.

This chapter served to exhibit experimental results evidencing the performance of the 

internal fingerprint. The techniques developed for internal fingerprint zone-detection, 

internal fingerprint extraction, and internal fingerprint enhancement were tested and 

results were given. The strength of these techniques was shown in their accuracy and 

in the quantitative correlation between the internal fingerprints extracted and their 

conventional surface counterparts. The following section serves to draw conclusions 

based on the discoveries made in this research.



Chapter 6

Conclusion

Current surface fingerprint imaging-technology is only capable of providing a 2D rep­

resentation of the surface fingerprint. Furthermore, the surface fingerprint is: prone to 

damage and wear and tear; distorted upon touch-based scanning; and easy to spoof.

The internal fingerprint has the same advantages of the surface fingerprint -  universality, 

distinctiveness, and high-performance -  and is less vulnerable to damage, distortion, or 

spoofing. The research carried out and detailed in this thesis addressed the problem 

of extracting the internal fingerprint from an OCT fingertip scan. It was evidenced 

in earlier works that the internal fingerprint exists and can be extracted. However, 

the extraction processes demonstrated were often primitive and resulted in internal 

fingerprints of an insufficient quality.

It has been identified that the internal fingerprint resides in the characteristic undula­

tions of the upper-edge of the papillary junction. Denoted as the internal fingerprint 

zone, the accurate and consistent identification of this surface throughout OCT fingertip 

scans is paramount to internal fingerprint extraction.

Fuzzy c-means clustering was recognised as possessing features that are suitable to the 

task of internal fingerprint zone detection. This hypothesis was confirmed by a quanti­

tative performance comparison between four clustering algorithms. Thus, fuzzy c-means 

was used to detect reliably the centre of the papillary junction.
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In spite of the fact that the undulations of the centre of the papillary junction do 

characterise the internal fingerprint to a fair degree, the most pertinent internal finger­

print information is found in the upper-edge of the papillary junction. Consequently, 

a fine-tuning procedure was implemented that used speckle noise-reduction, contrast- 

enhancement, and edge-detection to complete the detection of the internal fingerprint- 

zone. Quantitative and qualitative assessment showed that fine-tuning successfully ad­

justed the location of the papillary junction centre to its upper-edge.

A ground-truth estimation of the internal fingerprint-zone was carried out on a single 

OCT fingertip scan. The number of data points extracted per A-line and the number 

of clusters were varied to determine the parameter sensitivity and performance of the 

algorithm. Error, structural similarity, and contrast were measured. Performance was 

shown to be within the ranges of the measured human error. The internal fingerprint- 

zone detection approach developed in this research is able to detect the papillary junction 

upper-edge consistently and accurately in touchless OCT fingertip scans.

The internal fingerprint-zone was used to define localised regions for internal fingerprint 

extraction. Simple statistics (mean and standard deviation) were evaluated in a win­

dowed fashion to determine which (Z ) pixels to average in each A-line for individual 

(X Y ) pixels in the extracted internal fingerprint (viz. 3D to 2D mapping).

The extracted internal fingerprint is subject to the same signal characteristics of the 

OCT scans themselves: speckle noise and low contrast. Thus, speckle noise-reduction, 

local contrast-enhancement, and global contrast-saturation were applied to the extracted 

internal fingerprints.

Fifty-five OCT fingertip scans were obtained: small and large areas imaged were com­

bined with low and high en-face resolutions. The result was three manually defined 

internal fingerprint categories: (1) small, badly positioned region; (2) small, well posi­

tioned region; and (3) large region. In addition, sixteen surface scans (using two different 

scanners) were obtained from each of the scanned fingers.

The contrast and orientation certainty was calculated, and a well-known fingerprint 

quality categorisation method was applied, for all internal fingerprints and their surface 

counterparts. Although the internal fingerprints had, on average, lower contrast than 

the surface counterparts, they yielded superior orientation certainty (regarding category
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two and three internal fingerprints). 37% of the internal fingerprints extracted from a 

large imaged area had an NFIQ score of one, whilst only 29% of conventional surface 

fingerprints yielded an NFIQ score of one. The two fingerprint quality assessment metrics 

measured, indicated the internal fingerprints’ superiority. Furthermore, a qualitative 

assessment evidenced the resistance of the internal fingerprint to surface damage, such 

as wrinkles.

The internal fingerprints were also tested for correspondence with their surface counter­

parts and cross-correspondence. The NIST minutiae extraction and matching algorithms 

were used as a means to this end. Albeit category one and two internal fingerprints 

performed poorly regarding surface correspondence, 75% of category three internal fin­

gerprints had a true match with a surface counterpart. Most (96%) of the internal 

fingerprints had at least one true match with another internal fingerprint. The inter­

nal fingerprint can constitute a fingerprint database, although this must confirmed with 

further research. The conventional surface fingerprints always had at least one true 

match with another fingerprint from the same finger. However, the conventional surface 

fingerprints usually represented a larger area and, thus, had more minutiae for matching.

To circumvent the bias owing to the difference in scan area size and locality, surface 

fingerprints were obtained and cropped to represent similar regions as each internal fin­

gerprint. Three cropped surface fingerprints (for each internal fingerprint) were matched 

against the same sets of surface fingerprints as the internal fingerprints, thus allowing 

for a performance comparison that is unbiased by fingerprint area size and locality. 

The majority of the internal fingerprints performed either as well as, or better than, 

their corresponding cropped surface counterparts. That said, the effects of other factors 

(such as fingerprint distortion and the presence of wrinkles and other anomalies) were 

nevertheless still present.

Deviations between the surface and internal fingerprints are present because of instability 

in the touchless scanning process; surface distortion owing to pressure during scanning; 

and the lack of a 3D to 2D unwrapping procedure.

The main system components -  internal fingerprint zone-detection and localised region 

internal fingerprint extraction, developed to answer the research questions -  can be used 

in numerous applications, such as skin layer detection and segmentation for medical
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diagnostics, surface fingerprint extraction from OCT fingertip volumes, or analysis of 

damaged fingerprints. The separability and versatility of the algorithms are noteworthy.

The internal fingerprint can be extracted from touchless OCT fingertip scans, regardless 

of the intensity depth-dependency roll-off and curvature problems inherent in OCT scans 

of a curved object.

The internal fingerprint is thus a creative and high-quality biometric solution that adopts 

the same advantages as the well-established surface fingerprint; is not subject to the same 

damage as the surface fingerprint; is persistent over numerous scan instances; and has 

the potential to be exceptionally spoof-resistant.

This thesis successfully answered all the research questions-posed in Section 1.6.1 by 

confirming the correctness of the hypothesis put forward.

The following chapter suggests avenues for future work and outlines some endeavours 

currently being undertaken.



Chapter 7

Future Work

The algorithms developed in this research were not optimised. The performance of the 

following stages of the algorithm can be improved:

• D ata and feature extraction . Smoothing can be performed in 3D, instead of 

individually for each A-line. A selection of A-lines can be used, instead of all 

A-lines.

• C lustering. The feature space can be diminished: the minimum set of necessary 

features can be extracted. Furthermore, a lower number of A-lines will improve 

the speed of clustering.

• Interpolation . An assessment of interpolation procedures must be carried out in 

order to select the best technique for this application.

• F ine-tuning. OBNLM is slow. There may be a speckle-reduction procedure that 

is faster and reduces noise more efficiently -  this must be investigated.

The intention of this research was to provide a proof-of-concept internal fingerprint 

extraction algorithm, not to provide a real-time variant thereof. There are aspects of 

the approach that can be optimised and parallelised. Therefore, a future work will 

entail modifying; exploring; and perfecting the algorithms developed through the use of 

parallel computing.

A vital alteration to the internal fingerprint extraction algorithm would be employing 

a 3D to 2D unwrapping procedure. This would compensate for any distortion induced
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through simple planar extraction and will be carried out in a future work. Futhermore, 

jitter distortion must be alleviated through hardware redesign.

An internal fingerprint database will be constructed and tested in a future work. This 

will serve to further exemplify OCT as a fingerprint imaging technology.

Although never explicitly tested in this work, OCT can be used for liveness-detection. 

Various spoofing techniques can be applied and tested. Furthermore, access to the 

internal fingerprint may be obscured by some of these spoofing techniques as light cannot 

penetrate all media. A future work will entail testing the capability of internal fingerprint 

extraction during a spoofing attack attempt.

The detection of the internal fingerprint zone can be utilised as an asset in other internal 

fingerprint extraction algorithms (aside from the two developed in this research), or as 

a tool for spoof-detection. These applications will be explored in a future work.

Since the algorithms developed in this research can extract successfully the internal 

fingerprint, fingertip specific OCT scanners can be developed. This must be undertaken 

as a future work.

Another useful characteristic of OCT fingertip scans is that both the internal and the 

surface fingerprints are present and accessible. Future work will entail extracting both 

of these and developing a strategy to combine them to maximise the quality of the 

extracted fingerprint.

An avenue for future work is that of developing new approaches to fingerprint extraction 

from OCT fingertip scans. This particular field of research is fairly new and unexplored. 

There may be approaches to fingerprint extraction that remain undiscovered. An effort 

currently being undertaken by the author and collaborators involves a multi-resolution 

technique for extracting both (internal and surface) fingerprints from an OCT fingertip 

scan and combining them according to local quality. This will be expounded upon in a 

future publication.
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