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Abstract

In radio interferometry, observed visibilities are intrinsically sampled at some interval in 
time and frequency. Modern interferometers are capable of producing data at very high 
time and frequency resolution; practical limits on storage and computation costs require 
that some form of data compression be imposed. The traditional form of compression is 
simple averaging of the visibilities over coarser time and frequency bins. This has an un­
desired side effect: the resulting averaged visibilities “decorrelate”, and do so differently 
depending on the baseline length and averaging interval. This translates into a non-trivial 
signature in the image domain known as “smearing”, which manifests itself as an attenu­
ation in amplitude towards off-centre sources. With the increasing fields of view and/or 
longer baselines employed in modern and future instruments, the trade-off between data 
rate and smearing becomes increasingly unfavourable. Averaging also results in baseline 
length and a position-dependent point spread function (PSF). In this work, we invest­
igate alternative approaches to low-loss data compression. We show that averaging of 
the visibility data can be understood as a form of convolution by a boxcar-like window 
function, and that by employing alternative baseline-dependent window functions a more 
optimal interferometer smearing response may be induced. Specifically, we can improve 
amplitude response over a chosen field of interest and attenuate sources outside the field 
of interest. The main cost of this technique is a reduction in nominal sensitivity; we 
investigate the smearing vs. sensitivity trade-off and show that in certain regimes a 
favourable compromise can be achieved. We show the application of this technique to 
simulated data from the Jansky Very Large Array and the European Very Long Baseline 
Interferometry Network. Furthermore, we show that the position-dependent PSF shape 
induced by averaging can be approximated using linear algebraic properties to effect­
ively reduce the computational complexity for evaluating the PSF at each sky position. 
We conclude by implementing a position-dependent PSF deconvolution in an imaging 
and deconvolution framework. Using the Low-Frequency Array radio interferometer, we 

show that deconvolution with position-dependent PSFs results in higher image fidelity 
compared to a simple CLEAN algorithm and its derivatives.
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Chapter 1

General Introduction

We all do optimisation. In our daily life, we seek to optimise our work time, our storage 

space, or the way we have to go to get us somewhere, etc. We all seek a better solution to 

problems that mark our existence. Generally, the optimisation is therefore intended to 

find the best solution: this is what the present work is all about. The research presented 

in this thesis focuses on the compression of measurements made by an assembly of radio 

antennas, connected in networks of observing elements, referred to as a radio interfer­

ometer. Radio interferometry is the science of studying such networks. Understanding 

the challenges related to signal compression in radio interferometry, where the signal is 

dominated by uncorrelated Gaussian noise from each station (radio antenna), requires 

that we understand some concepts. First, how the signal from each station is measured. 

Second, how the signal from different stations are correlated. Third, the resulting data 

structure, and its size and dimension.

Accordingly, one purpose of this introduction is to explain these concepts as simply as 

possible, with the aid of mathematically measurable quantities wherever a quantification 

is possible. I shall explain the necessity of compressing radio interferometric data, and the 

obstacles in handling volumes of data. I shall describe, as well, the data volume for some 

of the current radio interferometers and show how this volume will grow significantly for 

the future generation of radio interferometers, which will be used to image wide fields of 

view (FoVs) at high spectral and temporal resolution.

1



Chapter 1. General Introduction 2

1.1 A  brief history of radio astronomy

Although astronomy is one of the oldest sciences, the study of astronomical observations 

at radio frequencies started with the accidental discovery of radio waves emanating from 

the Milky Way [Akhmanw and Khokblov, 1959]. A radio wave is a type of electromag­

netic radiation with frequencies in the ranges of 103 Hz to 3 x 1011 Hz [Brown, 1984]. 

In late 1936 Karl Jansky, who was working on long-distance radio communication, de­

signed a rotating antenna receiver at a frequency of 20.5 MHz and discovered a signal 

(radio wave) coming from the centre of the Milky Way [Akhmanw and Khokblov, 1959]. 

After his discovery, it was only at the end of the Second World War that radio astro­

nomy began as a consequence of the development of radar and the cheap availability of 

radar equipment [Arnold, 2014, Hey and Hey, 1973]. The promising results from these 

instruments provided answers to a number of old questions regarding the Milky Way 

structure. To observe the structure clearly, scientists began to build antenna receivers 

with a larger collecting area, capable of detecting radio waves at longer wavelengths. 

Besides the structure of the Milky Way, radio astronomy has played a significant role in 

our understanding of stars' formation, interaction between different celestial objects and 

the various epochs in the evolution of the universe [Koopmans et al., 2015].

By now, very big radio telescopes have been built, such as the 305-meter diameter Arecibo 

radio telescope [Goldsmith, 1996] and the 500-meter diameter FAST 1 radio telescope 

currently under construction in China [Nan, 2006, Nan et al., 2011]. These big telescopes 

have had their own limitations. Firstly, because of their size, it is impractical to build 

bigger dishes. Secondly, they are incapable of achieving high angular resolution.

The collecting area of the antenna dish is proportional to the amount of signal that can 

be detected; the larger the surface area, the weaker the detectable radio signal. The 

dish diameter thus drives the attainable flux sensitivity. Besides flux measurement, it 

is also useful to obtain a higher resolution map of astronomical objects. Because of the 

limitations of single-dish observation, techniques such as radio interferometry become 

imperative. A radio interferometer is formed by pairwise-correlating signals from a num­

ber of individual radio telescopes (either in real time, or off-line, using some sort of signal 

recording scheme). The separation of the antennas ultimately determines the maximum 

achievable resolution. At the same time, maintaining a coherent interferometer over array 1

1 Five-Hundred-Meter Aperture Spherical Telescope



Chapter 1. General Introduction 3

sizes in excess of tens of kilometers becomes increasingly challenging. The latter problem 

lies in the domain of techniques such as Very Long Baseline Interferometry (VLBI) [Felli 

and Spencer, 1989, 2012, Takahashi, 2000, Walker, 1999]. The aim of a radio interfero­

meter is to detect astronomical radio sources and provide estimates of their properties, 

which include the source position, flux density among others. Radio interferometers such 

as the Jansky Very Large Array (JVLA) [Napier et al., 1983, Thompson et al., 1980] and 

the Low-Frequency Array (LOFAR) [van Haarlem et al., 2013a] use these techniques.

1.2 Limits of single-dish radio observations

For a single antenna with effective collecting area Ep, and system temperature Tsys, the 

minimum detectable flux A S , is directly proportional to Tsys/Ep, as:

A S  =  2kBTsys , (1.1)
SpV  A v  A t

where kB is the Boltzmann constant [Johnson, 1927, 1928], At stands for the integration 

time and A v for the bandwidth. From the above equation, it can be seen that the ratio 

Tsys/Ep is of critical importance for any single antenna: the larger the collecting area Ep, 

the fainter A S . Also, the larger the bandwidth and/or the longer the integration time, 

A S decreases; we will come back to this later throughout this dissertation.

Coming now to the angular resolution 0, attainable by a single-dish telescope with dia­

meter D, receiving a radio signal at a wavelength A, we have the scaling:

0 ~  A/D . (1.2)

For example, the large single-dish radio telescope of diameter 500 meters under construc­

tion in China will achieve a resolution of only ~  2.9 arcmin at L-band, i.e. 1 GHz to 2 

GHz [Nan et al., 2011]. The resolution and sensitivity limitation of single dishes pushed 

scientists to find novel techniques, hence the nascence of interferometry and aperture 

synthesis.
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1.3 Interferometry and aperture synthesis

The concept of aperture synthesis developed by Martin Ryle [Ryle and Hewish, 1960] 

consists of synthesising a larger radio telescope from a set of smaller antennae. To arrive 

at this, the following procedure is applied:

(a) Correlate the voltages from two telescopes for a given length of time i.e. integration 

time. This gives one sampled point or data for one timeslot.

(b) For an interferometer array of na antennas, the number of samples for the given in­

tegration time will be na(na —1)/2, which is the instantaneous number of correlations 

during the integration time.

(c) Use the Earth's rotation to measure more samples with different orientations. The ro­

tation of the Earth plays an important role in measuring data for different timeslots.

The most efficient way to fill a synthesised aperture is to use many small antenna tele­

scopes and measure samples at shorter integration times over long periods, while making 

use of the Earth’s rotation and frequency coverage and array layout (Figure 1.1 demon­

strates this aspect).

The angular resolution achievable by the synthesised telescope is approximately A /B max, 

where B max is the longest baseline distance (a baseline is the distance between a pair of 

antennas). We note here that for compact interferometers observing at longer wavelengths, 

the constraint of not achieving better angular resolution (e.g. on the order of milli- 

arcsecs) remains unchanged. This important aspect is worth noting from Table 1.1. In 

other words, any observation at long wavelength (low frequency) requires an interfero­

meter of long baselines to achieve an acceptable angular resolution. A typical example 

is the LOFAR radio interferometer where the baselines are spread across a region of 400 

km in diameter, observing at longer wavelengths in the range 1.2 meter—30 meter [Rot- 

tgering, 2003, Rottgering et al., 2006].

1.4 Methods of measurement of radio interferometric data

An interferometer array measures the quantity V (u ,v ,w ), known as the visibility func­

tion. Here, the coordinates u, v and w are vector components in units of wavelength,
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East East-West baseline [km]

F igure 1.1: Antennas’ position and the synthesised apertures. (Top left): With an 
array of five antennas and 10 correlations are produced at each integration time. In 
this case the array is pointing at the zenith. Each line of the synthesised aperture is 
the track drawn by the array baselines during the Earth’s rotation. The sequence from 
the inner to the outer tracks are from short to long baselines. (Top right): Three hours 
synthesised aperture. (Bottom left): Six hours synthesised aperture. (Bottom right):

Twelve hours synthesised aperture.

B max 100 MHz
observed frequency, v 
1.4 GHz 10 GHz 100 GHz

100 m 6188 442 62 6
8 km 77 6 0.8 0.08
36 km 17 1.22 0.17 0.017
1000 km 0.61 0.044 0.0061 0.00061

Table  1.1: Maximum angular resolution (in arcsec) achievable by various baselines
lengths vs. frequency.

describing the distance between antennas p and q, called the baseline. The w axis is 

oriented towards the phase centre of the observed field, while u points East and v North. 

Given a sky distribution I 0(l,m ), where l,m  are the direction cosines, the nominal ob­

served visibility is given by the van Cittert-Zernike theorem [Thompson, 1999, Thompson
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et al., 2001] as:

V nom(u ,v )=  Io (l; m) e-2ni^(u’v’w)dldm, (1.3)
1 l

lm

where 0(u, v, w) =  u l+ vm + w(n — 1), and n =  \/l — l2 — m2 (the n — 1 term comes about 

when fringe stopping is in effect, i.e. when the correlator introduces a compensating delay 

to ensure 0 =  0 at the centre of the field, otherwise the term is simply n).

Given a pair of antennas p and q forming a baseline upq =  (upq,vpq,wpq), and taking 

into account the primary beam patterns Ep(l, m) and Eq(l, m) that define the directional 

sensitivity of the antennas as presented in Eq. (1.1) , this becomes:

Vpq(u, v)
Ep^oEqH

lm
V l — l2 — m2

:e-2ni^( r a ) dldm, (1.4)

where H represents the complex transpose. The first term being integrated is the apparent 

sky seen by baseline pq
H

Ipq =  ,  p ° q 0 , (1.5)
V l — l2 —m 2

which in general can be variable in time and frequency. For simplicity, let us assume 

that both the sky and the primary beam are constant, and that the primary beam is the 

same for all stations. All baselines will then see the same apparent sky throughout the 

measurement process. Let us designate this by I , the apparent sky. Assuming a small 

FoV (n ^  1) and/or a co-planar array (w =  0), the above equation becomes a simple 

2-D Fourier transform:

V ( u , v ) =  I  e-2ni(ul+vm)dldm, (1.6)
lm

or in functional form,

V =  F { I }  and I  =  F -1 {V }. (1.7)

Here F  is the Fourier transform and F -1 its inverse.

We will refer to V as the ideal visibility distribution; as opposed to the measured distri­

bution, which is corrupted by averaging in the correlator, as we will explore in Chapter 3.

The effect of the primary beam can alternatively be expressed in terms of a convolution



Chapter 1. General Introduction 7

with its Fourier transform, the aperture illumination function A p (u, v). In functional 

form:

Vp q  =  A p  0V pnq0 m  OA H , (1.8)

where A p =  F {E p }.

Eq. (1.6) can be also presented in the radio interferometric measurement equation form­

alism (RIME). For details on the RIME formalism see Hamaker et al. [1996], Smirnov 

[2011a,b]. The RIME describes in a compact and robust way all the effects (direction- 

dependent and direction-independent [Smirnov, 2011b]) that may occur when an interfer­

ometric measurement is in process. The 2-D Fourier transform full sky RIME, according 

to Smirnov [2011a,b], is given by:

Vpq Gp E pI  E h  e-2ni(ul+vm)dldm G hG q .
lm

(1.9)

The formalism groups all the direction-independent effects of an antenna p into the 

matrix Gp, and all its direction-dependent effects into the matrix E p. Note that the 

primary beam pattern, Ep, is part of the direction-dependent effects.

1.5 Structure of radio interferometric data

I present a schematic description of how an interferometer array’s overall data are mapped 

into a correlation matrix. Note that this mapping is an abstraction of how the correlation 

is saved into computer memory. I shall come back to this in Chapter 4. In level L1 of 

Figure 1.2, the vertical axis represents the data for baselines, and the horizontal axis 

are sub-bands (spectral windows). Each sub-band on its own is a sub-dataset projected 

in level L2, where the vertical axis is the number of integration times (timeslots) and 

the horizontal axis is the number of channels. Each cross-section (level L3) of times 

and channels is the visibility presented in Eq. (1.9) . In general, Eq. (1.9) represents a 

complex scalar or 2 x 2 complex visibility. In terms of data storage, we restrict ourselves 

to 32 bits (complex data) per polarisation. If Npoj is the number polarisation then we 

have 32 x Npo bits per visibility. However, an interferometer of na(na — 1)/2 baselines, 

Nsub sub-bands per baseline observing during a total time of Tobs, with integration time
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L l

L2

L3

Band axis

Baseline
axis

F igure 1.2: Interferometric data structure. A baseline is a set of sub-bands, each 
sub-band on it own is a set of data for timeslots and channels. The data shape for a 

baseline results in (Nsub, Nt, Nv, Npol).

At, and total bandwidth of Bw, having A v of channel width, will record in memory

data size =  na(n“— — x Nsub x x Bw x Npo x 32 bits, (1.10)
2 LA t Av

where, Tobs and At are in seconds, Bw and A v are measured in Hz. One can rewrite 

Eq. (1.10) as:

data size =  na n̂<1— — x Nsub x Nt x Nv x Npo x 32 bits, (1.11)

where Nt =  Tobs/A t  and Nv =  Bw/A v  are the number of timeslots and channels respect­

ively. Observing for long periods and over large bandwidths leads to storage issues for 

a big interferometer array, as well as substantial computational load for sub-processing. 

This is because {Tobs,B w} a  {N t, Nv} if At and A v must remain sufficiently small. 

Table 1.2 is obtained from Eq. (1.11) and shows clearly that any increase in the number 

of antennas, sub-bands, timeslots and channels results in increasing the data size and 

this poses significant computational challenges for processing. The case of 1000 antennas 

is close to what is expected from the Square Kilometre Array (SKA) [Krichbaum et al., 

1999, Wright, 2002]. With these observing parameters, approximately 5709 TB data have 

to be recorded, which is already above the capacity of any modern hard disk [Cloudsim,
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na Nsub Tobs [hour] At[s] Bw[MHz] Av[Hz] ~  Memory [Gb]
7 5 16 20 102 106 0.4
27 3 4 5 102 125000 60
64 5 4 10 102 106 22
1000 3 4 0.5 102 11000 5846240

Table  1.2: Interferometers observing parameters vs. data size

2015]. Since the number of baselines and sub-bands will remain constant for individual 

interferometers, the only possible way to reduce the data size is by increasing integra­

tion time and channel widths. Unfortunately, longer integration time and wider channel 

widths pose several challenges, as we will see in the section below.

1.6 Problem statement

A radio interferometer measures complex quantities called visibilities, which, following 

the van Cittert-Zernike relation [Thompson, 1999, Thompson et al., 2001], correspond to 

Fourier modes of the sky brightness distribution, corrupted by various instrumental and 

atmospheric effects. One particular effect, known as time and bandwidth decorrelation 

or its equivalent in the image plane referred to as smearing, occurs when the visibilities 

are averaged over a time and frequency bin of non-zero extent [Bridle and Schwab, 

1999, 1989]. This unavoidably happens in the correlator (since the correlator output is, 

by definition, an average measurement over some interval), and also if data are further 

averaged in post-correlation for the purposes of compression and to reduce computational 

cost.

The effect of smearing is mainly a decrease in the amplitude of off-axis sources. This is 

easy to understand: the visibility contribution of a point source of flux S located in the 

direction given by the unit vector a  is given by:

2ni
V =  S exp {  —  u ■ (a  -  cto) }  , (1.12)

where u  is the baseline vector, and a 0 is the phase centre (or fringe stopping centre) of 

the observation. The complex phase term above rotates as a function of frequency (due to 

the inverse scaling with A) and time (due to the fact that u  changes over time, at least in 

an Earth or orbit-based interferometer). Taking a vector average over a time/frequency



Chapter 1. General Introduction 10

bin then results in a net loss of amplitude. The effect increases with baseline length and 

distance from the phase centre. Besides reducing apparent source flux, smearing also 

distorts the PSF, since different baselines (and thus different Fourier modes) are attenu­

ated differently. The issue of time-frequency averaging has been addressed in the past by 

among others Thompson et al. [2008], where a Gaussian taper has been used to eliminate 

smearing at the edges of the FoV. However, the problem of eliminating smearing to about 

5% or less within the FoV while compressing the data to an acceptable level has not been 

satisfactorily addressed before. On the other hand, smearing can be seen to be a useful 

side effect, since anything outside the desired FoV by definition is unwanted signal. The 

primary beam pattern of any real antenna features sidelobes and backlobes that extend 

across the entire sky, albeit at a relatively faint level. The faintness makes sidelobes use­

less for imaging any but the brightest sources. However, the sum total signal from all the 

sources in the primary beam sidelobes, modulated by their PSF sidelobes, contributes 

an unwanted global background called the far sidelobe confusion noise (FSCN). In very 

deep observations this may in principle become a bottleneck [Smirnov, O. M. and Frank, 

B. and Theron, I. P. and Heywood, I., 2012]. In other cases, individual extremely bright 

radio sources such as Cygnus A [Baars and Hartsuijker, 1972, Wilson et al., 2006] or 

Cassiopeia A [Baars and Hartsuijker, 1972] can contribute confusing signals from even 

the most distant sidelobes; the LOFAR telescope [van Haarlem et al., 2013b] has to deal 

with these so-called “A-team” sources on a routine basis. By suppressing distant off-axis 

sources, smearing somewhat alleviates both the FSCN and A-team problems.

Figures 1.3 and 1.4 are produced by simulating a series of high time-frequency resolu­

tion observations using MeqTrees [Noordam and Smirnov, 2010] and applying averaging. 

Figure 1.3 shows the attenuation of a 1 Jy source as a function of distance from the 

phase centre, for a set of different time and frequency intervals, while Figure 1.4 shows 

the distortion of the PSF for a source at four different sky locations (0°, 1°, 2°, 3°), for 

100 s integration time and 5 MHz channel width. The simulations correspond to JVLA 

in the C configuration (0.035 km and 3.4 km for the minimum and maximum antenna 

separation respectively), with an observing frequency of 1.4 GHz. At this frequency, the 

first null of the primary beam is at r ~  36', and the half-power point is at ~  16', thus 

we can consider the “conventional” FoV (i.e. the half-power beam width) to be about 

0.5° across. Note that the sensitivity of the upgraded JVLA, as well as improvements in 

calibration techniques [Perley, R ., 2013], allow imaging to be done in the first primary
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beam sidelobe as well (and in fact it may be necessary for deep pointings, if only to 

deconvolve and subtract sidelobe sources), so we could also consider an “extended” FoV 

out to the second null of the primary beam at r «  1.25°. Whatever definition of the FoV 

we adopt:

Figure 1.3 shows that to keep amplitude losses across the FoV to within some acceptable 

threshold, say 1%, the averaging interval cannot exceed some critical size, say 10 s and 1 

MHz. Conversely, if we were to adopt an aggressive averaging strategy for the purposes 

of data compression, say 100 s and 5 MHz, the curves indicate that we would suffer 

substantial amplitude loss towards the edge of the FoV. Also, the PSF would change 

its shape significantly and differently at each sky position (Figure 1.4) . Any imaging 

framework such as the CASA imager [Clark, 1980] and its derivatives [Cornwell, 2008, 

Offringa et al., 2014] will suffer substantially from this PSF distorted shape when trying 

to remove the PSF from the source during deconvolution.

The curves corresponding to acceptably low values of smearing across the FoV (i.e. up 

to 25 s and up to 1.25 MHz) have a very gentle slope, with very little suppression of 

sources outside the FoV.

1.7 Motivations and contributions

With the growth of interferometric arrays in the number of elements, the number of 

frequency channels and long observations etc, where computation (and thus data size) 

becomes one of the main cost drivers, it is in principle desirable to average the data down 

as much as possible, without compromising the science goals. There are natural limits 

to this: firstly, we still need to sample the uv-plane critically; secondly, we need to retain 

sufficient spectral resolution; thirdly, we do not want to average (at least pre-calibration) 

beyond the natural variation of the calibration parameters, and fourthly, we want to 

keep smearing at acceptable levels in order not to lose too much signal. In this work, 

we concentrate specifically on the decorrelation/smearing problem. Typical observation 

cases are:

(a) In a compact interferometer, where the maximum usable FoV corresponds to the 

primary beam of the antennas. In most cases (but surveys especially) we want the
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Distance from the phase centre [deg]

Distance from the phase centre [deg]

F igure 1.3: Effects of time and frequency averaging: the apparent intensity of a 1 
Jy source, as seen by JVLA-C at 1.4 GHz, as a function of distance from the phase 
centre. (Top) Frequency interval fixed at 125 kHz, and time interval varies; (bottom) 

time interval fixed at 1 s, and frequency interval varies.
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F igure 1.4: PSF at four sky locations, result of 100 s integration and 5 MHz bandwidth 
averaging. (Top left) PSF at the phase centre. (Top right) PSF at 1°. (Bottom left) 

PSF at 2°. (Bottom right) PSF at 3°.
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effective FoV to reach this limit. This imposes an upper limit on the size of a 

time/frequency bin: it must be small enough to keep amplitude loss acceptably low 

across the entire primary beam FoV.

(b) For deep imaging it is useful to suppress bright sources in the primary beam sidelobes 

outside the FoV. Even with smearing of sources far from the phase centre, bright 

sources can contribute significant flux and PSF sidelobe artefacts to the image.

(c) In VLBI, where decorrelation is more severe, the effective FoV is determined by the 

smallest time/frequency bin size that a correlator can support and is normally much 

smaller than the primary beam [Keimpema et al., 2015a]. Modern VLBI correlators 

overcome this by employing a technique where the signal is correlated relative to 

multiple phase centres simultaneously, thus effectively “tiling” the primary beam by 

multiple FoVs. This has a computational cost that scales linearly with the number 

of phase centres.

When considering a short sequence of visibilities measured on one baseline, we can con­

sider averaging as a convolution of the true visibility by a boxcar function corresponding 

to the uv-extent of the averaging bin, followed by sampling at the centre of each bin, as 

illustrated in Figure 1.5. Convolution in the visibility plane corresponds to multiplication 

of the image by an image-plane response function that is the Fourier transform of the 

convolution kernel, i.e. the window function; the Fourier transform of a boxcar is a “sinc- 

type taper”. If we consider the entire uv-plane, averaging is only a “ pseudo-convolution ”, 

since the different uv-bins (and thus their boxcars) will have different sizes and shapes 

determined by baseline length and orientation. Still, we can qualitatively view smearing 

as some kind of cumulative effect of an ensemble of image-plane tapers corresponding to 

all the different boxcars. We should note that this “smearing taper” is not the only taper­

ing effect at work in interferometric imaging. Firstly, antennas have a non-zero physical 

extent: a measured visibility is already convolved by the aperture illumination functions 

of each pair of antennas (refer to Eq. (1.8)). The resulting image-plane taper is exactly 

what the primary beam is. Secondly, most imaging software employs convolutional grid- 

ding followed by the fast Fourier transform (FFT), which produces an additional taper 

that suppresses aliasing of sources from outside the imaged region.

If weighted averaging instead of simple averaging (whether in the correlator, or in post­

processing) should be employed, this would correspond to a “pseudo-convolution” of the
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F igure 1.5: The graph shows the equivalent between averaging and convolution. The 
black grid presents 15 visibility measurements to average in three blocks. In the top 
level, each block is averaging. At the bottom level, each block is convolved with a 
boxcar window, the result is then sampled by a sampling function at the centre of each 

block: this process is equivalent to averaging.

uv-plane by some ensemble of window functions, different from boxcars, which would 

obviously yield different image-plane tapers and thus result in a different smearing re­

sponse.

Throughout this work we use the term field of interest (FoI), which we differentiate from 

the FoV. In traditional interferometer usage, the FoV is related to the angular scale 

of the primary beam [Leisawitz et al., 2002, Morgan et al., 2011], whereas the FoI is 

a parameter of the scientific observation case, which may be related to the size of the 

primary beam, but this is not necessary. Thus, the FoI will be an adjustable parameter 

in the window functions we present.

Signal restoration is one of the applications of filter theory. Restoration needs to be per­

formed when the signal has been distorted before being captured. Decorrelation/smearing 

is an example of signal distortion, hence filter theory becomes relevant (we refer the reader 

to the book of Smith et al. [1997] for an overview of filter theory). Filter theory suggests 

that a window function can be tuned to achieve some desired tapering response. An 

optimal taper would be one that was maximal across the desired FoI (Regime 1 in
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Figure 1.6) , and minimal outside it (Regime 2 and Regime 3 in Figure 1.6) . In this 

work:

(a) We apply filter theory to derive a set of baseline-dependent window functions (BD- 

WFs) that approximate this more optimal smearing behaviour. The trade-off is an 

increase in thermal noise, since minimum noise can only be achieved with unweighted 

averaging. We show that this effect can be partially mitigated through the use of 

overlapping BDWFs. Offringa et al. [2012] have investigated a similar approach in 

the context of suppressing signals towards specific off-axis sources.

(b) We combine BDWFs with baseline-dependent averaging (BDA). The ability of BD­

WFs to shape the FoI is somewhat limited by the fact that shorter baselines sweep 

out a smaller bins in uv-space and over these small bins, BDWFs become similar 

to simple averaging. So, if BDA is employed to BDWFs, short baselines would be 

averaged over larger uv-bins, thus increasing the effectiveness of BDWFs.

(c) We note that the use of BDWFs results in a different position-dependent PSF than 

simple averaging. In others words, the smearing response of BDWFs results in a 

different smeared PSF shape. A fast scheme to approximate these different PSFs 

at all sky locations is proposed and implemented in DDFacet [Tasse et al., b , in 

preparation]: imaging software under development.

Regime 1

Regime 2
Regime 3

F igure 1.6: Optimal taper. In the image plane, this represents the ideal image plane
tapering function.

In the era of the SKA and its pathfinders, where dealing with huge volumes of data is 

one of the main challenges, use of BDWFs potentially offers additional leverage in optim­

ising radio observations. Decreased smearing across the FoI allows for more aggressive 

data averaging, thus reducing storage and computation costs. The trade-off is a loss of 

sensitivity, which pushes up observational time requirements. However, the decrease in 

smearing and noise from A-team sources could, conceivably, make up for some of the 

nominal sensitivity loss. In the VLBI case, use of BDWFs potentially offers an increase
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in effective FoI at a given correlator dump rate, or equivalently, the ability to tile the 

primary beam with fewer phase centres, allowing for smaller correlators.

1.8 Thesis layout

This research work proposes a technique based on filter theory to compress radio in­

terferometric data while keeping amplitude loss and distortion down to an acceptable 

level. This poses challenges to traditional compression approaches due to the Gaussian 

nature of the radio interferometric noise, which makes the data difficult to compress. 

We propose the use of BDWFs and overlapping BDWFs as suitable uv-space filters to 

deal with various aspects of data compression. Similarly to averaging, the use of BD- 

WFs also distorts the PSF shape for sources out of the phase centre. Currently, there 

is no imaging algorithm that handles the PSF shape distortion at each sky location 

during deconvolution, since it is computationally expensive to do so. Hence, we have 

proposed a mathematical framework to approximate these PSFs at different locations in 

the sky. The approximation results in cheaper computation. Finally, we implement the 

position-dependent PSFs in an imaging framework. This thesis is organised as follows:

Chapter 2 starts with a brief review on sampling and aliasing in signal processing. 

Mapping between terms used in signal processing and aperture synthesis is proposed. 

A description for choosing a suitable window function for data compression and FoI 

shaping follows, and I conclude by choosing window functions used in the rest of the 

thesis.

In Chapter 3, I describe in detail the effect of averaging in the uv-space as well as in the 

image plane. This includes the mathematical relation between averaging and convolution 

and the analytical and empirical noise penalty for averaging. I then present BDWFs 

and overlapping BDWFs, including various figures of merit for some of these BDWFs, 

particularly the case of sinc and Bessel. I also discuss the performance of BDWFs applied 

to JVLA and compare the results to simple averaging. I end the chapter by showing the 

case of BDWFs for wide FoI imaging and data compression in VLBI.

Chapter 4 covers the applicability of BDA in radio interferometry, thereby describing the 

mathematics involved and the data size. I combine both BDA and BDWFs in spatial
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filtering and discuss some results. I conclude by presenting some calibration challenges 

related to BDA.

Chapter 5 deals directly with the PSF in radio interferometry. I propose a mathematical 

framework that accurately approximates the PSF of off-axis sources, resulting in cheaper 

computation. This is followed by the implementation of position-dependent PSF into 

DDFacet. I present the results and discuss the computational cost compared to brute- 

force computation of the PSF.

In Chapter 6 I summarise the present work, draw conclusions and present future work.



Chapter 2

Digital Signal Processing: sampling, 

aliasing and window Functions

A physical signal is a continuous time sequence of real or complex numbers, and an 

observed signal is a discrete time sequence of real or complex numbers. These two 

definitions are fundamental to this chapter. Sampling consists of selecting points of the 

physical signal to observe so that one may estimate this physical signal from the observed 

signal [Saloma, 1993]. In other words, we want to infer a continuously varying function 

(physical signal) from a discrete time-varying function that is measured (observed sig­

nal). A physical signal is measured within a discrete time range, which is equivalent to 

sampling and truncation over a boxcar window [Vetterli et al., 2002]. Some questions 

that we will be answering in this chapter are on the best way for obtaining the observed 

signal and the best methods to study the physical signal from this observed signal. The 

chapter begins by presenting some sources of imaging artefacts. After this we look at 

sampling and properties of the FFT upon which signal analysis is based. I review window 

functions (finite impulse response filters) and establish the best window functions that 

would minimise artefacts and conserve useful information in radio interferometric data.

2.1 Imaging artefacts

Sampling during signal processing and naive calibration lead to loss of information and 

distortion of signals. Imaging artefacts manifest themselves in various ways, which can

19
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be categorised as:

Ghost sources: These artefacts are very faint in nature and occur in response to the 

incompleteness of the calibration sky model used during self-calibration [Cornwell and 

Fomalont, 1989]. Ghost artefacts were initially discovered by Bos [1985] in a calibrated 

610 MHz Westerbork observation. Their study was further extended by Grobler et al. 

[2014a], Nunhokee [2015] who showed that the ghost sources were formed in a peculiar 

pattern. This pattern is highly dependent on the linear geometry of the Westerbork 

Synthesis Radio Telescope [Hogbom and Brouw, 1974]. Further work by Grobler et al. 

[2014b] extends this to a 2-D interferometer layout.

Distant source sidelobes: These artefacts are generated by the sidelobes of bright objects 

extending inside the interferometer target field. These objects are sometimes found 

within the interferometer array FoV. A common example is the bright radio galaxy 

Cygnus A [Bach et al., 2002]. To overcome this problem with LOFAR observations, 

a catalogue of bright sources (A-team  sources) that can contaminate observations has 

been established. The A-team sources are often subtracted iteratively from observations 

before analysis. This method has shown good results, but involves computation that 

scales as the number of A-team sources.

Sampling and the fast Fourier transform: These artefacts are of crucial importance in 

any field applying signal processing. The artefacts are due to the discontinuity, improper 

sampling and finite space representation. Physical signals are continuous and extend 

infinitely, while observed signals are digitised and band-limited. In signal processing, 

the discrete or the FFT is often applied to reconstruct the signal. In order to compute 

the FFT, signals are discretised and interpolated onto a regular grid, both in the time 

and frequency domains. The process of interpolation is often referred to as gridding. 

Gridding of the sampled signal consists of multiplying the signal with a convolution 

kernel, and since in practice the convolution kernel has finite support (is band-limited), 

it may lead to aliasing effects after applying the FFT to the gridded signal.

The FFT allows us to use mathematical operations such as convolution, which is compu­

tationally efficient when we analyse large data-sets. The FFT can be seen as a method 

for transforming a signal from the Fourier space to the real space with fewer computa­

tional resources compared to the discrete Fourier transform. For example, a data-set of 

dimension N  will require N 2 complex multiplications and N (N  — 1) additions to compute
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its discrete Fourier transform, i.e. an arithmetic complexity of O (N 2), while the FFT 

will have a complexity of O (N log2 N ) [Duhamel and Vetterli, 1990]. In this chapter we 

discuss the requirements imposed on sampling by the need to avoid sampling artefacts 

or aliasing.

2.2 Sampling and the fast Fourier transform

Below we discuss the requirements for sampling as described in Shannon et al. [1967]. 

Suppose that dr (x) is the physical signal and ds(x) its sampled form. According to Shan­

non et al. [1967], the sampled signal is expressed as:

ds(x) =  s(x)dr (x), (2.1)

where s(x) =  fc=loo ^(x — kAx), is an infinite series of Delta functions also known

as a Dirac Comb at a regular spacing A x and k is the number of discrete points on 

the sampling grid. This definition states that sampling is equivalent to multiplying the 

physical signal by the sampling function s(x), as shown in Figure 2.1. Each discrete 

point on the sampling grid is:

ds,k =  dr (kAx). (2.2)

If one combines Eq. (2.1) and (2.2) , the sampled signal becomes the sum of each discrete 

point on the sample grid multiplied by a Dirac delta function.

ds(x) =  ^  5(x — x k)dr(xk), x k =  kAx. (2.3)
k = — <X>

Eq. (2.3) is depicted graphically at the bottom centre of Figure 2.1. Since we are in­

terested in the Fourier and the time-domain signal, the Fourier transform is applied to 

Eq. (2.1) . According to the convolution theorem, the Fourier transform of the product 

of two functions yields the convolution of their respective Fourier transform. This is 

written as:

F{ds}(y) =  ( F { s }  q F {d r } )  (y) (2.4)
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F igure 2.1: A Gaussian physical signal (top left) and its sampled form (bottom 
centre). The physical signal is multiplied by the Dirac Comb function (top right) and 

this results in the sampled signal (bottom centre).
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where F  denotes the Fourier transform and q is the convolution operation. The Fourier 

transform of a Dirac Comb of regular spacing A x is a Dirac Comb of regular spacing Ay

F { s }  =  Ay ^  %  — kAy), (2.5)
k=-<X>

where Ay =  2 n /A x  is the sampling rate. Combining Eq. (2.5) and Eq. (2.4) , we obtain 

the following:

F { ds } (y) =  ( A y ^  d(y — kAy ^  ◦  ( F {d r} ( y))
k=-<x>

=  Ay ^  F {d r }(y  — kAy). (2.6)
k=-<X>

See Appendix A for the detailed proof of Eq. (2.5) and Eq. (2.6) .
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For completeness, the spectrum from the point k =  0 in Eq. (2.6) can be separated:

F  {d s }(y ) =  A y F  {dr }(y ) +  Ay ^  F  {dr }(y  — kAy)
k=-<^,k=0

— F  {dr }(y ) +  ^  F  {dr }(y  — kAy). (2.7)
k=-<^,k=0

It is shown in Eq. (2.7) that:

(a) The Fourier transform of the sampled signal duplicates the Fourier transform of the 

physical signal at each point in the Fourier transform of the Dirac Comb. This is 

illustrated in Figure 2.2.

(b) Sampling and the Fourier transform conserve the physical signal F  dr (y) at the 

point k =  0 and replicate it at all points k =  0 with regular spacing Ay.

(c) The copies for which k =  0 i.e. ^  +=1^ k=0 F { d r } (y — kAy) are aliased spectra.

In addition, it should be noted that any reconstruction of dr from ds requires the sup­

pression of the aliased spectra i.e. all copies of F { d r } for which k =  0 [Diakopoulos and 

Stephenson, 2005].

A method to suppress these aliased copies consists of multiplying F  ds by a boxcar 

window function, given that a boxcar window function is unity in the passband (area in 

which k =  0) and zero in the stopband (area in which k =  0).

Note that a complete reconstruction of dr requires the absence of overlapping copies of 

the aliased spectra with the Fourier transform of the physical signal i.e. F { d r } for which 

k =  0. Otherwise, dr cannot be uniquely reconstructed. According to Diakopoulos and 

Stephenson [2005] the following conditions must hold for a unique recovery:

(a) The sampled signal must be band-limited in order to avoid that F  dr (y) at point 

k =  0 extends infinitely and overlaps with its aliasing copies.

(b) The sampling frequency Ay, must be greater than twice the highest frequency f s 

contained in the signal (Ay >  2 fs). The quantity 2 fs is the minimum sampling fre­

quency or the Nyquist rate required to avoid aliasing (see Figure 2.3) . This condition 

makes Ay of critical importance to avoid aliasing [Shannon et al., 1967].
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F igure 2.2: (Top left): The Fourier transform of the physical signal. (Top right): The 
Fourier transform of the Dirac Comb. (Bottom centre): The Fourier transform of the 
sampled signal. The plot shows that the Fourier transform of the sampled signal is a 
superposition of the Fourier transform of the physical signal at each point in the Dirac

Comb.

Suppose that these conditions (a+b) are satisfied, and that n [k] is a boxcar window 

function, given by:
( 1, k =  0

n [k](y) =  (2.8)
0, otherwise.

Let us now introduce the observed signal do; multiplying Eq. (2.7) by n [k] we have:

F {  do} (y) =  n [k](y )F {  ds} (y). (2.9)

Applying the inverse Fourier transform to Eq. (2.9) and making use of the convolution 

theorem leads to:

do(x) =  [ f -1 { n [k]} o ds) (x). (2.10)

So far, since we have assumed that conditions (a+b) are satisfied (i.e. no overlapping 

aliasing spectrum with F { d r } (y) exists at the point k =  0), one can still write Eq. (2.9)
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as follows:

F {  do} (y) =  n [k](y )F {  ds} (y)

— n |k|(y ) (F {d r } (y )  +  £  F {d r } (y  -  kA y))
k=-^,k=0

— n [k](y )F {d r }(y ). (2.11)

We note from this substitution that the term n |k|( y ) ^  +=— ̂  k=0 F { d r }(y  — kAy) is 

washed out because of the assumption that at k =  0 no overlapping spectrum exists (i.e. 

n |k|(») E + f -^ ,k =0 F {  dr } (y — kAy) =  0). Likewise, after applying the Fourier transform 

to Eq. (2.11) , we have the following convolution:

do(x) — (V -1 { n |k|} o dr)  (x). (2.12)

Now one can see that Eq. (2.9) is approximately equal to Eq. (2.11) at k =  0:

n |k|(y )F {d s }(y ) -  n |k|(y )F {d r }(y ), (2.13)

which leads to

ds — dr (2.14)

after simplifications.

So far, Eq. (2.14) demonstrates that the physical signal can be reconstructed from the 

sampled signal if conditions (a+b) are satisfied. However, ideal sampling cannot be 

applicable in practical problems. This is due to the convolution of the physical signal 

with a low pass taper in Eq. (2.12) . The low pass taper employed in Eq. (2.12) is a “ sinc- 

like” window function F -1 { n |k|}, and thus cannot be represented with finite support.

2.3 B D W Fs’ relationship to digital signal processing

This work is a specific application of signal conditioning using digital signal processing 

(DSP). It is useful to relate this work to DSP concepts and terminology. Ideally, all spatial 

modes, up to the resolution of the longest baseline, are sampled in a 2-D continuous sky
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FT of the sampling function

Frequency

Overlapping aliasing spectra

Frequency

F igure 2.3: Sampling and aliasing: the signal is sampled at a frequency less than the 
minimum sampling rate. (Left): Dirac Com with spacing below the minimum sampling 
rate. (Right): Fourier transform of the sampled signal showing that the aliasing spectra 

are overlapping with the physical signal.

FT of the sampled signal

Frequency

Boxcar window

- 2  0 2
Frequency

- 4 4

Reconstructed signal

Frequency

F igure 2.4: Ideal sampling showing that a multiplication of the Fourier transform of 
the sampled signal (top left) with a boxcar window (top right) suppresses all aliasing 
spectra and leaves only the Fourier transform of the physical signal (bottom centre).
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image I  (refer to Eq. (1.5) ). This requires Nyquist sampling of the visibility domain 

out to the longest baseline spatial modes. This is rarely possible because of the unfilled 

holes in the uv-coverage during an observation, the lower spatial frequency cut-off due to 

physical element limitations, and sampling bias in the low spatial frequency region of the 

visibility plane compared to higher spatial frequencies due to baseline distribution. For a 

fixed time length, a long baseline will cover a longer track in visibility space compared to 

a shorter baseline, which results in the lower spatial modes being oversampled compared 

to higher spatial modes. On shorter baselines, the window functions act as filters with a 

larger noise equivalent bandwidth compared to longer baselines. This necessitates the use 

of BDWFs to optimise the image-plane response (IPR), which is the aggregate spectral 

response of the combined individual baseline filters.

A matched filter maximises the signal-to-noise ratio of a desired signal in the presence 

of noise. In the case of synthesis imaging, the desired signal is within a defined FoI in 

the sky. This is the passband region (i.e. R egim e 1 in Figure 1.6) of the IPR and 

any signal outside this FoI is in the stopband (i.e. R egim e 3 in Figure 1.6) , which 

we would like to suppress. The choice of BDWF can depend on the requirement to 

limit the transition width (i.e. R egim e 2 in Figure 1.6) between the passband and 

stopband or limit the passband ripple, or minimise the sidelobe level or some other filter 

optimisation metric. An approximate matched filter will be an array, sky field, and 

observation dependent filter. The choice of window or filter size is a compromise that 

uses the largest possible window size that does not introduce significant smearing. The 

window size cannot easily be defined analytically, given that it depends on the FoI we 

want to achieve, the interferometer array layout, the observation frequency, and baselines’ 

length and direction.

In signal processing, a finite impulse response window function is a mathematical function 

with limited support, i.e. zero outside some interval. Conventionally, a time series is 

convolved with a window to produce some desired response in the frequency domain. 

Applying this to our problem can lead to some confusion in terminology. Table 2.1 

provides a mapping between the terms commonly used in signal processing, and their 

conceptual equivalent in aperture synthesis. Confusion in terminology can arise from 

the number of different signal domains used in this work. The visibility of a baseline 

is sampled constantly in the correlator time domain, but is irregularly sampled in the
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Signal processing A p ertu re  synthesis
Frequency (freq) domain Image plane
Time domain Fourier plane or uv-plane
Spectral response

or freq response IPR
Time response Fourier plane response
Cut-off time interval

or time passband uv-averaging bin
Cut-off freq interval

or freq passband, or main lobe FoI
Time stopband Outside of the uv-bin
Freq stopband Outside of the FoI
Octave Doubling in size
Band-limited

(applied to visibilities) restricted FoI

T able  2.1: Mapping of terminology between DSP and aperture synthesis.

2-D visibility domain (for simplicity we are only analysing the uv-plane of the 3-D uvw- 

space). The imaging domain is the 2-D Fourier pair of the visibility space. In synthesis 

imaging we are making the assumption that the sky is a constant signal, but a time 

varied signal is measured because of the array rotation (due to the Earth’ rotation) 

with respect to the observed field. This application is not a linear time-invariant system, 

which leads to complexity in the analysis of the signal conditioning. The window function 

filters are linear but are dependent on baseline length, which varies with time. It is not 

sufficient simply to analyse the filter impulse response. Instead, for our analysis we will 

use the aggregate IPR. This work does not attempt to find the optimal matched filter; 

we leave this to a future work. All the window functions presented are finite impulse 

response filters followed by decimation. That is, they are window-function-weighted, 

moving averages of the measured visibilities. In the simple case of non-overlapping 

windows the decimation rate is equal to the size of the window filter. The overlapping 

window filters presented in Section 3.2.1 can be seen as a type of poly-phase filter. We 

do not explore the use of infinite impulse response filters in this work, but this is a clear 

path for further study.

Broadly speaking we want the Fourier spectrum (i.e. IPR) of the visibility domain filter to 

approximate a boxcar window. Standard DSP filter terminology uses the “peak sidelobe 

level”, the “main lobe width” and the “sidelobes roll-off” to describe the performance of 

window functions. In terms of the “ideal” IPR (see Figure 1.6) , these correspond to the 

following desirable traits we want to achieve:
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• Maximally conserve the signal within the FoI (R egim e 1 in the figure), and make 

the transition region (R egim e 2 in the figure) as sharp as possible: both of these 

correspond to a larger main lobe width.

• Attenuate sources outside the FoI (R egim e 3 in the figure): this corresponds to a 

lower peak sidelobe level and higher sidelobe roll-off.

Below we provide a review of some common 1-D window functions employed in DSP.

2.3.1 Boxcar window

The boxcar window for a cut-off time interval of [—ta, ta] is defined as:

n (t/to ) =
1 — to <  t <  to

0 otherwise.
(2.15)

Figure 2.5 shows a plot of n ( t /t o) and its IPR. The thick grey and thin curves correspond 

to cut-off time intervals of [—to,to] and [—to/2, to/2] respectively. Note that when the 

cut-off time interval is larger, the main lobe width becomes narrower and the first sidelobe 

remains at the same level, while the other sidelobes are lower.

Boxcar window IPR to boxcar window

Time

Figure 2.5: Boxcar and its IPR.

The other window functions given below are all multiplied with a boxcar to ensure a 

cut-off interval of [—to,to], unless underwise mentioned.
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2.3.2 Gaussian window

A Gaussian window function centred at zero with a standard deviation of ai is given by:

G ( t )= n ( t /t o  )e-bt2, (2.16)

where b =  (2a2) -1 . The Fourier transform of the Gaussian term is given by F { G }  =  

\pne-cl2, where c =  n2/b, i.e. it is also Gaussian with a standard deviation of a2 =  

(2nai)-1 .

Figure 2.6 shows a plot of G(t) and its IPR. The window function is truncated at [—to, to], 

with b =  3 for the thin curve and b =  5 for the thick grey curve. Its response is 

characterised by extremely low sidelobes, but a narrow main lobe.

Gaussian window IPR of Gaussian window

F igure 2.6: Gaussian and its IPR.

2.3.3 Butterworth window

A Butterworth window function is flat in the time passband, rolls off towards zero in 

the time stopband and is characterised by two independent parameters, the cut-off time 

[—to,to] and the order p. The two parameters control the FoI and sidelobes attenuation. 

The Butterworth window function is given by:

BW (t) =  n ( t / t o ) ( i  +  (t /to )2p)
- i

(2.17)
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Figure 2.7 shows Butterworth window functions for the same cut-off interval [—to, to], 

with orders of p=1 and p=3. Note that increasing the order p conserves the main lobe 

width, and dramatically lowers distant sidelobes, at the cost of pushing up the near-in 

sidelobes.

Butterworth window IPR of Butterworth window

F igure 2.7: Butterworth and its IPR.

2.3.4 Prolate spheroidal window

This window function is given by a prolate spheroidal wave function of sequence zero 

(n =  0) characterized by two independent parameters, the cut-off time [—to,to] and the 

order a  [Delsarte et al., 1985, Walter and Soleski, 2006]. The two parameters control 

the FoI and sidelobes attenuation. The prolate spheroidal wave function PSo is the 

eigenfunction and solution of the integral:

ta _ a

PSo(e)Sma | (t_ — =  An=o,«,ta PSo(t), (2.18)
— ta

where Ara=0;Q,;ta is the corresponding eigenvalue. Figure 2.8 shows prolate spheroidal 

window functions for the same cut-off interval [—to,to], with orders of a  =  2n3 and a  =  

5n3. Note that increasing the order a  increases the main lobe width, and dramatically 

lowers the sidelobes.
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IPR of prolate window

Figure 2.8: Prolate window (of order zeros) and its IPR. 

2.3.5 Sinc window

The sinc window function is defined as:

sinc(t) =  n tt /to^ y  • (2.19)

Figure 2.9 shows sinc(t) for a fixed value of b, and cut-off intervals given by [—to, to] and 

[—to/2 , to/2]. Note that the IPR of a sinc window function is almost perfectly flat in the 

main lobe (more so for larger intervals). The sidelobe response is relatively poor, but 

better for larger intervals.

IPR of sinc window

Figure 2.9: Sinc and its IPR.
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2 .3 .6  B esse l J0 w in d o w

This window function is given by a Bessel function of the first kind of order zero [Watson, 

1995]. Using a power series expansion yields:

Jo(t) =  n (t/to )
fc=0

(—1)k (t /2 )2k
(k!)2

(2.20)

Figure 2.10 shows Jo(t) and its IPR, with Jo(t) truncated at time intervals [—to,to] and 

[—to/2 , to/2]. The performance of Jo is somewhat worse than the sinc within the main 

lobe, and somewhat better in the sidelobes.

2 .3 .7  S in c -H a m m in g  a n d  Jo-H a m m in g  w in d o w s

The Hamming, Han or Blackman filter is sometime multiplied by a Jo or sinc to increase 

the passband and increase the stopband attenuation. The latter is defined as follows:

Y X =  Y  (t )X  (t), (2.21)

where X (t) is the Hamming (Hm), Han (Hn) or Blackman (B) window functions, well 

known in signal processing literature [Nuttall and Carter, 1982, Podder et al., 2014] and 

Y  is a Jo(t) or sinc(t) window function. Figure 2.11 and 2.12 show the sincHm and the 

window functions and their IPRs. Compared to the sinc(t) and Jo(t), they show 

lower peak sidelobe level and higher sidelobes roll-off.
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IPR of sinc11”1 window

F igure 2.11: sinc-Hamming and its IPR.

F igure 2.12: Bessel-Hamming and it IPR.

2.3.8 Overlapping windows and examples

This approach involves using the above windows within the resampling interval and allow 

their sidelobes to run into the neighborhood bands or adjacent resampling intervals. It 

implies that there could be more than one weighting function in a single resampling 

interval (e.g. see Figure 3.4) . Also, Figure 2.5 to Figure 2.12 show that the longer 

the windows the better their IPRs. The main idea for this method is to lower the 

effect of truncation over smaller resampling intervals. This technique is used in several 

FFT convolution processors; overlapping multiple FFT windows together to average 

out the noise is a most obvious technique to smoothing the signal spectrum and to 

reduce the noise variance. One other application of overlapping window functions in 

signal processing is the weighted overlap add (WOLA) [Crochiere, 1980], that is used
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particularly in audio compression to minimise blocking effects or audible discontinuities 

[Malvar and Staelin, 1989].

2.3.9 Relative performance

Table 2.2 summarises the performance of the different window functions. This table 

shows that the IPR of the sinc, the Bessel and all their derivatives with Hamming, Han 

and Blackman window functions have a larger main lobe, low peak sidelobe level and high 

sidelobe roll-off compared to others. Hence, they provide the most optimal IPRs. Note 

that Y X requires two succesive visibility weightings, which may results in amplifying the 

thermal noise compared to the sinc or Bessel. This makes the sinc and the Bessel more 

suitable for this work. For this reason, we have chosen to use the sinc and the Bessel 

window functions to serve as the basis of BDWFs developed in the rest of this thesis. 

We use the following definitions to construct a 2-D sinc and Bessel from 1-D:

sinc(u, v) =  sinc(au)sinc(av) (2.22)

Jo(u, v) =  Jo(ar), r =  / u 2 +  v2, (2.23)

where the FoI is adjustable by the parameter a  (in radians).

2.4 Conclusion

We have shown the origin of artefacts in signal processing and in radio interferometric 

measurements. Issues related to sampling and the FFT are discussed. We have seen that 

many of the artefacts are due to improper sampling that results from aliasing spectra 

overlapping with the physical signal. We also note the impossibility of an ideal sampling 

in practical problems because of finite space representation. Finally, we have reviewed 

some window functions and established the criteria to conserved signal within a FoI and 

suppression of an unwanted signal outside the FoI. We have chosen the sinc and the 

Bessel as the optimal windows for the design of BDWFs that we will be presenting in 

the next chapter.
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WFs ~MLW 
(at -3dB)

PSL
(dB)

SLR
(dB/oct)

n (t) t e  |ta| 1.406 
t e  |ta/2| 2.812

-6.663
-6.671

-12.089
-11.065

sinc(t) t e  |ta| 12.304 
t e  |ta/2| 12.304

-10.889
-13.241

-12.661
-11.447

Jo(t) t e  |ta| 9.140 
t e  |ta/2| 9.140

-14.553
-13.614

-12.011
-11.794

G(t) b=3 2.109 
b=5 2.812

-21.535
-30.211

-9.589
-9.091

BW (t) p=1 2.109 
p=3 4.218

-13.718
-10.145

-12.581
-27.330

PSo(t) a  =  2n3 3.515 
a  =  5n3 4.218

-45.302
-73.597

-7.424
-6.375

JHmt) t e |ta| 9.140 
t e  |ta/2| 9.140

-35.724
-22.670

-11.948
-19.527

sincHm(t) t e  |ta| 12.656 
t e  |ta/2| 12.656

-27.581
-13.469

-13.817
-14.324

Table  2.2: Comparative performance of different window functions. WFs: window 
functions, MLW: main lobe width, PSL: peak sidelobe level, SLR: sidelobes roll-off. dB: 

decibel (ten times the logarithm to base ten of the window function response.)
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Use of Correlator Window 

Functions to Improve the Response 

Across the Field of Interest and for 

Data Compression

In Chapter 2 we presented a review on sampling and the Nyquist sampling conditions 

required to avoid aliasing. We studied some window functions used in DSP for restoration 

of a signal that has been distorted during sampling, and for the suppression of aliasing 

spectra. In this chapter, we deal with the problem of radio interferometric visibility 

averaging. We introduce the applicability aspects of window functions to interferometric 

visibilities, what we refer to as BDWFs, which involves two novel approaches: (i) a length 

scale BDWFs for interferometric data compression and FoI shaping; and (ii) a length scale 

overlapping BDWFs for data compression, and FoI shaping, and far field suppression. 

The proposed new compression schemes have been applied to simulated data from various 

radio interferometers such as MeerKAT (Karoo Array Telescope, precursor of the South 

African SKA) [Booth et al., 2009, Booth and Jonas, 2012], JVLA, NenuFAR [Tasse et al.,

This chapter draws extensively on: M. T. Atemkeng, O. M. Smirnov, C. Tasse, G. Foster and J. 
Jonas, Using baseline-dependent window functions for data compression and field-of-interest shaping in 
radio interferometry. MNRAS, volume 462, page 2542, 2016. It is acknowledged that some of the text in 
this chapter will therefore “match” that of the article. The reference in this footnote serves as a general 
reference for all such text.
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a, Zarka et al., 2015] and the VLBI. In this chapter we present the results for the JVLA 

and VLBI.

3.1 Background and problem statement

Aperture synthesis tries to combine several elements of small telescopes in such a way 

that the combination will result in an effective synthesised instrument having larger 

aperture and higher resolution. Using the van Zittert-Cernike theorem and the rotation 

of the Earth, the synthesised instrument measures visibilities. The rest of this thesis 

deals with visibilities both as functions (i.e. entire distributions on the uv-plane), and 

single visibilities, i.e. values of those functions at a specific uv-point. To avoid confusion 

between functions in functional notation and their values, we will use V or V(u, v) to 

denote functions, and V  to denote individual visibilities. Likewise, I ( l ,m )  denotes a 

function on the Im-plane i.e. an image with l and m the angular distance from the phase 

centre. The symbol 5 always denotes the Kronecker delta-function.

Whether considering polarisation or not, V can be taken to represent either scalar (com­

plex) visibilities, or 2x2  complex visibility matrices as per the RIME formalism [Smirnov, 

2011b]. Note, however, that the distinction between V as a complex scalar or a 2 x 2 

complex matrix becomes important when we want to deal with each polarisation para­

meter separately, which is not the case in this work. Likewise, I  can be treated as a 

scalar (total intensity) image, or a 2 x 2 brightness matrix distribution. The derivations 

below are valid in either case.

We shall use the symbols u =  (u, v) or u =  (u, v, w) to represent baseline coordinates in 

units of wavelength, and um for units of metres, with u =  um/A =  umv/c.

3.1.1 Imaging, averaging and convolution

The rotation of the Earth causes the baseline to rotate in time, which we can denote 

by umq =  umq(t). The baseline in units of wavelength can be treated as a function of 

frequency and time (from this point onwards we shall assume that the sky is constant 

across the range of frequencies being observed):

(t,v) =  um?(t)v /c (3.1)
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This, in turn, allows us to rewrite the visibility in Eq. (1.8) as a per-baseline function of 

t, v :

Vpq (t, v) =  J J I  e-2ni(upq (t>v )m)d1dm. (3.2)
lm

Synthesis imaging recovers the so-called “dirty image”: the inverse Fourier transform of 

the measured visibility distribution VM sampled by a number of baselines pq at discrete 

time/frequency points. Inverting the Fourier transform produces the dirty image:

I D =  F -1 {W  ■ VM}, (3.3)

where W  is the (weighted) sampling function over the uv-plane -  a “bed-of-nails” function 

that is non-zero at points where we are sampling a visibility, and zero elsewhere. In the 

ideal case where VM =  V (the ideal visibility measurement, without any corruption 

effects, i.e. F -1 {V } =  I ), the dirty image can also be expressed as a convolution of the 

apparent sky by the point spread function P :

I D =  P o I . (3.4)

The dirty image I D may be significantly different from the apparent sky I  especially if 

the point spread function P  =  F -1 {W } has high sidelobe due to the coverage W  being 

sparse. For this reason and throughout this chapter, we suppose an ideal sampling for 

the uv-distribution function, i.e. we assume a P  that results in less imaging artefacts. 

Also, in this chapter, we do not treat the effect of averaging on the point spread function, 

leaving this to Chapter 5.

Designating each baseline as pq, and each time/frequency point as tk, vl, we can represent 

W  by a sum of “single-nail” functions Wpqkl:

W  =  Wpqfcl (3.5)
pqkl

— ^   ̂^pqkl^pqkl, (3.6)
pqkl

where 5pgki is a delta-function shifted to the uv-point being sampled:

^pqfcl(u) =  S(U -  Upq(tfc, Vl)) (3.7)
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and Wpqkl is the associated weight (refer to Briggs [1995], Yatawatta [2014] for an ex­

tensive discussion on several weighting schemes used in radio interferometric data). The 

Fourier transform being linear, we can rewrite Eq. (3.3) as:

I D =  WpqkiFH {VpMki}, (3.8)
pqkl

where

VpMkl =  p̂qkl VM (tk ,Vl) (3.9)

i.e. the visibility distribution corresponding to the single visibility sample pqkl. We can 

further rewrite Eq. (3.3) again as:

I D =  WpqfciF-1 {VpMfci}, (3.10)
pqkl

which shows that the dirty image I D can be seen as a weighted sum of images corres­

ponding to the individual visibility samples pqkl (each such image essentially being a 

single fringe pattern).

In the ideal case, we would be measuring instantaneous visibility samples, and (assuming 

no other instrumental corruptions), we would have VM =  V , with

V>M (tfc ,Vl) =  V (Upq (tfc ,Vl)), (3.11)

and consequently,

VpMfcl =  £pqfcl V, (3.12)

resulting in what we will call the ideal dirty image I DI:

I DI =  ^  WpqfclPpqkl o I , Ppqkl =  F -1 {£pqfcl}. (3.13)
pqkl

That is, in the ideal case, each term in the weighted sum is equal to the apparent sky I  

convolved with a PSF representing a single visibility sample, Ppqkl.

However, an actual interferometer is necessarily non-ideal, in that it can only measure the 

average visibility over some time-frequency bin given by the time and frequency sampling
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intervals At, A v , which we will call the sampling bin: 

>[AtAv]Bfcz
At At A v Av

tk -  T tk +  T X v  2 vi +  ^ “ _ (3.14)

This measurement can be represented by an integration:

V M =  1V pqkl"pqkl =  A tA v  / /  V(upq(t,v ))d vd t (3.15)

B[At Av] 
kl

Inverting the relation of Eq. (3.1) , we can change variables to express this as an integra­

tion over the corresponding bin Bpqk in uv-space:

Vpqki =  A tA v  / /  Vpq (u, v)
Buv]
pqkl

d(t ,v )
d(u,v)

dudv, (3.16)

where Bpqk is the corresponding bin in uv-space. Note that the sampling bins in tv-space 

are perfectly rectangular and do not depend on baseline (assuming baseline-independent 

averaging), while the sampling bins in uv-space are bounded by sections of elliptical arcs, 

and do depend on baseline (hence the extra pq index). Figure 3.1 illustrates these two 

aspects.

Assuming a bin small enough that the fringe rate du/dt is approximately constant over 

the bin, we then have:

(3.17)VMu ~ J J  V (u)du.
B[uv]Bpqkl

Now, let us introduce a normalised boxcar window function, n [tv]

n M ( t , v ) =  f AAV, |t|< A t/2 , |v |<  A v/2  
0, otherwise,

using which we may re-write Eq. (3.15) as:

VPqki =  ^  Vpq(t, v )n [tv](t -  tfc, v -  vi)dtdv,

(3.18)

(3.19)
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which can also be expressed as a convolution in tv-space:

VMki =  [Vpq ° n [tv]j(tfc,vi). (3.20)

Eq. (3.16) can also be rewritten as

Vpqkl =  J J  Vpq (upq( t  v ))npqk]i (upq(t, v) -  upq(tk, ^0) ^ ^  (3.21)

which is a convolution in uv-space:

p̂qfci =  [Vpq ° ^ qk !](upq(tk, vi) ) , (3.22)

where npq^ is a normalised boxcar-like window function that corresponds to bin 

in uv-space and also includes the determinant term of Eq. (3.16) , i.e.

1 I d(t,v) I u c  B[uv]Aupq I s(«,v) I, upq Bpqki (3 23)
0, otherwise.

Eq. (3.20) and (3.22) make it explicit that each averaged visibility is drawn from a 

convolution of the underlying visibilities with a boxcar-like window function.

Note what Eq. (3.22) does and does not say. It does say that each individual averaged 

visibility corresponds to convolving the true visibilities by some window function. How­

ever, this window function is different for each baseline pq and time/frequency sample 

tk, vi (which is emphasised by the subscripts to n [uv] in the equations above). Averaging 

is thus not a “true” convolution, since the convolution kernel changes at every point in the 

uv-plane. We shall call this process a pseudo-convolution, and the kernel being convolved 

with ( < ; ! )  an example of a BDWF. In subsequent sections we will explore alternative 

BDWFs.

In actual fact, a correlator (or an averaging operation in post-processing) deals with 

averages of discrete and noisy samples, rather than a continuous integration. Ignoring 

the complexities of correlator implementation, let us cast this process in terms of a simple 

averaging operation. That is, assume we have a set of high-res or sampled visibilities on 

a high-resolution time/frequency grid tj, v j:

n pqki (upq( t v ) )

Vp(qSj  =  Vpq vj ) +  N  [̂ psq)jj] (3.24)
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where Vpq is given by Eq. (3.2) , and N  represents the visibility noise term, which is a 

complex scalar or complex 2x2  matrix with the real and imaginary parts being independ­

ently drawn from a zero-mean normal distribution with the indicated r.m.s. [Wrobel and 

Walker, 1999]. The noise term is not correlated across samples. The low-res or averaged 

or resampled visibilities are then a discrete sum:

*  =  n  £  • (3*25)
jj^Bki

where Bki is the set of sample indices i j  corresponding to the resampling bin, i.e.

Bfci =  { i j  : t*vj e  B t f Av]}, (3.26)

and n =  nt x nv is the number of samples in the bin. Using the BDWF definitions above, 

this becomes a conventional discrete convolution (assuming a regular tv-grid):

VpMki =  £  Vp(qsj n [tv](tj -  tk,vj -  vi). (3.27)
i,j= -^

In uv-space, this becomes a discrete convolution on an irregular grid:

=  £  V S ,n K i ( u «  -  uki). (3.28)
i,j= -^

The u j  grid being schematically illustrated by Figure 3.1 (left) shows a snapshot uv- 

coverage for a single integration time interval. We note here that for shorter baselines 

the uv-tracks are closer to the centre of rotation, while for longer baselines the tracks are 

further away from the rotation centre. Each dot mark represents a uv-bin. It is clearly 

visible on this figure that the space between two successive uv-bins on long baselines is 

wider compared to the one on short baselines.

3.1.2 Effect of averaging on the image

As currently implemented in radio interferometric correlators, to reduce the effects of 

averaging the visibilities, the synthesis time and the frequency range must be broken up 

into a number of finite small averaging intervals. For each time and frequency interval, 

correlation is then treated as a distinct visibility, each with its own uv-bin. For example,
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F igure 3.1: Schematic of uv-coverage for regularly spaced time-frequency samples, 
left: uv-space, right: tv-space. Baselines with a longer East-West component sweep 

out longer tracks between successive integrations.

if the synthesis time i s Tobs and t lie frequency range is Bw, then (Tobs/At) x (Bw/Av) will 

be the number of time-frequency correlations on each baseline. Under this for current 

correlators, {At, A v } ^  {0 ,0 }  shows that averaging becomes equivalent to sampling 

while on the other hand {Tobs,B w} oc {Tobs/At, Bw/A v} leads to a large data set and 

therefore storage issues. The Fourier phase component 2n0(u, v, w) is a function of 

frequency and time, with increasing variation over the averaging interval for sources far 

from the phase centre. The average of a complex quantity with a varying phase then 

effectively “washes out” amplitude, the effect being especially severe for wide FoIs [for 

an extensive discussion, see Bregman, 2012, Bridle and Schwab, 1999, 1989, Thompson 

et al., 2008]. In the uv-plane, this effect is often referred to as time and bandwidth 

decorrelation, and smearing in the image-plane.

The discussion above provides an alternative way to look at decorrelation/smearing. 

With averaging in effect, the relationship between the measured and the ideal visibility 

changes to (contrast this to Eq. (3.12) ):

vpq« =  S p M V o  npqS). (3.29)

Combining this with Eq. (3.10) , and using the Fourier convolution theorem, we can see 

that the dirty image is formed as:

I D =  ^  WpqklPpqkl ◦  ( I  • Tpqkl), (3.30)
pqkl
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with the apparent sky I  now tapered by the baseline-dependent window response function 

Tpqki, the latter being the inverse Fourier transform of the BDWF:

T „u  =  F  - ‘ { C k , } .  (3-31)

In other words, the dirty image yielded by averaged visibilities (compare this to the 

ideal dirty image given by Eq. (3.13) ) is a weighted average of per-visibility dirty images 

corresponding to a per-visibility tapered sky. The Fourier transform of a “boxcar-like” 

function is a “sinc-like” function, schematically illustrated in one dimension by Figure 3.2 

(right). Time and bandwidth smearing represents the average effect of all these individual 

tapers or IPRs. Shorter baselines correspond to smaller boxcars and wider IPRs, longer 

baselines to larger boxcars and narrower IPRs and are thus more prone to smearing.

boxcar
Region 1

Region 2

Region 3

Time

Sinc

Figure 3.2: Left: Boxcar response. In the uv-plane, this represents the window 
function corresponding to simple averaging of visibilities. In the image-plane, this 
represents the ideal IPR function. Right: Sinc response. In the image-plane, this 
represents the window response function corresponding to a boxcar window function in 

the uv-plane. In the uv-plane, this represents the ideal window function.

3.1.3 The case for alternative BDWFs

The window response function induced by simple averaging (Figure 3.2, right) is far 

from ideal: it either suppresses too much within the FoI, or too little outside the FoI, or 

both. The optimal IPR would be boxcar-like, as in Figure 3.2 (left). The BDWF that 

would produce such a response is sinc-like, as in Figure 3.2 (right). The problem with 

a sinc is that it has infinite support; applying it over finite-sized bins necessarily means 

a truncated BDWF that results in a sub-optimal IPR. The problem of optimal filtering
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has been well studied in signal processing (usually assuming a true convolution rather 

than the pseudo-convolution we deal with here), and we shall apply these lessons below.

The derivations above make it clear that using a different BDWF in place of the con­

ventional boxcar-like n [uvl could in principle yield a more optimal IPR. The obvious 

disadvantage is a loss in sensitivity. Each visibility sample is subject to an independent 

Gaussian noise term in the real and imaginary part; the noise of the average of a set 

of samples is minimised when the average is naturally weighted (or unweighted, if the 

noise is constant across visibilities). Thus, any deviation from a boxcar window function 

must necessarily increase the noise in the visibilities. Below we will study this effect 

both theoretically and via simulations, to establish whether this trade-off is sensible, and 

under which conditions.

3.2 Applying window functions to visibilities

While visibilities are (usually) regularly sampled in tv-space, in uvm-space this is not 

so. In frequency, the sampling positions go as ~  A-1 , while in time, baselines with 

a longer East-West component sweep out longer tracks between successive integrations 

(Figure 3.1) . Applying a window function with a constant integration window in tv-space 

corresponds to different-sized windows in uv-space. In the case of simple averaging, this 

results in the boxcar-like window n [uv] of Eq. (3.22) having a baseline-dependent scale. 

The scale of the IPR being inversely proportional to the scale of the window function, 

this results in more decorrelation (i.e. a narrower FoI) on longer baselines.

By defining our alternative window functions in uv-space (in units of wavelength), we can 

attempt to “even out” the decorrelation response across baselines. For a given BDWF 

X (u , v), we have the following recipe for computing resampled visibilities (compare to 

Eq. (3.28) ):

^  VpqijX  (upqij — upqkl)
v M _  i,j^Bkl 
Vpqkl

X  (upqij upqkl)
(3.32)

i,j€Bfci

where upqkl is the midpoint of the resampling bin Bkl in uv-space. The main lobe 

of the window function then has the same scale across the entire uv-plane, while the 

resampling bins have different uv-sizes. Conversely, in tv-space the bins are regular,
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F igure 3.3: Cross-sections through two different BDWFs (top left: sinc, bottom left: 
Bessel) defined in uv-space, plotted along the time axis and their IPR (top right: IPR 
for sinc, bottom right: IPR for Bessel). This shows that the effective window function is 
a scaling and truncation of the underlying window function, with the shortest baselines 

reducing to a boxcar-like window function.

while the main lobe of the effective window function scales inversely with the baseline 

fringe rate. Furthermore, the window function is truncated at the edge of each bin; on the 

shortest baselines this truncation is extreme to the point of approaching the boxcar-like 

n M  (Figure 3.3) .

The downside of this simple approach is twofold. Firstly, while all the window functions 

above nominally exhibit far lower sidelobes than the boxcar (i.e. more suppression for 

out-of-FoI sources), they no longer perform that well under truncation, with extremely 

truncated window functions at the shorter baselines becoming boxcar-like. Secondly, 

taking a weighted sum in Eq. (3.32) increases the noise in comparison to simple averaging.
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3.2.1 Overlapping BDWFs

A more sophisticated approach involves overlapping BDWFs. Simple averaging implicitly 

assumes that the resampling bins in Eq. (3.32) do not overlap for adjacent kl, since 

they represent adjacent averaging intervals. There is, however, no reason (apart from 

computational load) why we cannot take the sum in Eq. (3.32) over larger bins. Let us 

define the window bin for overlap factors of a, ft as:

B[a0\
kl {u  : tivj e  B[aAt,f3Av \ 

kl , (3.33)

i.e. as the set of sample indices corresponding to a bin of size aA t x ftAv in tv-space. Let 

us then compute the sums in Eq. (3.32) over the window bin. This becomes distinct from 

the resampling bin: while the latter represents the spacing of the resampled visibilities, 

the former represents the size of the window over which the convolution is computed. 

Only for a  _  ft _  1 do the two bins become the same.

In the overlapping regime, the baseline-dependent weight for a single visibility is not 

defined by a unique BDWF, but by the strength of the correlation between the overall 

overlapping BDWFs with the visibility. BDWFs in the overlapping regime are schemat­

ically illustrated in Figure 3.4. For simple averaging overlapping offers no benefit, since 

it only broadens n [uv] and therefore increases smearing, but for a well-behaved BDWF, 

enlarging the window bin (while maintaining the same window function scale) means less 

truncation -  thus lower sidelobes -  and decreased noise, as more sampled visibilities are 

taken into account. On longer baselines, the IPR of a well-behaved overlapping BDWF 

means less smearing in the FoI and excellent out-of-FoI suppression (see Figure 3.5) . On 

the shorter baselines, a well-behaved BDWF is equivalent to a boxcar and therefore en­

larges the window size by overlapping results in decreasing the noise (see Section 3.2.2) .

To distinguish overlapping BDWFs from non-overlapping ones, in the rest of this chapter 

we will designate the window functions employed as W F-axft. For example, sinc-3x2, 

Jq-1 x 1 (i.e. no overlap), etc. If resampling is only done in one direction (only time or 

only frequency), we will indicate this as e.g. J0- 3 x - .

As mentioned above, the computational load for overlapping window functions will in­

crease linearly as the factors a  and ft increase. For a given resampling bin B ^  the
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Time

Figure 3.4: Overlapping BDWFs representing adjacent resampling bins (right res­
ampling bin, centre resampling bin and left resampling bin). This corresponds to overlap

factor a =  3 in time.

computational complexity would scale as O(aftntnv) compared to O (ntnv), which is the 

complexity for applying a non-overlapping window function to visibilities within the res­

ampling bin B[AtAv]. In this notation, the resampling bin for a non-overlapping window 

functions consists of nt x nv samples, which is the number of multiplications between 

the baseline-dependent weights and the visibilities.

Below we provide an alternative way to look at the overlaping BDWFs applied to visib­

ilities. Let us reconsider that X  is a BDWF with its appropriate resampling bin B ^ ^ ]. 

Now, suppose that A lftt and A lftv are the overlap time-frequency sampling intervals 

associated with At and A v on their left-hand side. Similarly, A rgtt and A rgtv are the 

overlap time-frequency sampling intervals associated with At and A v on their right-hand 

side. The overlapping BDWFs sampling intervals are then given by:

A olpt =  A lftt U At U A rgtt (3.34)

A olpv =  A lftv U A v U A lftv. (3.35)

The overlap sampling bin is now defined as:

>[Aolp t,Aolpv\Bkl
A olpt A olp t

tk — , tk +2 2
A olpv

vi i vi +
A olpv

B“  U b!a ‘ Av| u Bkgt,

2 2
(3.36)

(3.37)
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BDWF: IPRs

Distance from the phase centre [deg]

Figure 3.5: Overlapping BDWF. (Left) Blue curve: left-hand overlap function, green 
curve: right-hand overlap function, red curve: non-overlap function. (Right) The IPRs 

of an overllaping (blue) and non-overlapping (red) BDFW.

where B® and Bkgt are the set of time-frequency samples in the overlap regimes, and 

B ^  is the resampling bin for a non-overlapping BDWFs defined in Eq. (3.14) . Fig­

ure 3.5 (left) displays the time direction overlap regimes (i.e. B f  and B̂ gl̂ ). We note 

that the window bin defined in Eq. (3.33) for overlap factors of a, ft is equivalent to

B[af\
kl {j  : tjvj e  B[AolPt,AolPv \ 

kl } (3.38)

or in more detail we can write:

B[af\
kl =  { i j  : tivj e  Bfct }  U { i j  : ttivj e  U { i j  : tivj e  Bkf }

=  S1 U Bkl U S2,

(3.39)

(3.40)

where S1 =  { i j  : tjvj e  B ^ } and S2 =  { i j  : tjvj e  B̂ gl } are the number of time- 

frequency samples in the left-hand and right-hand overlap regimes respectively. The 

resampled visibilities for overlapping BDWFs (compare to Eq. (3.32)) are as follows:

^  VpqijX  (upqij upqkl)
V M =  
Vpqkl

i , M f ]

'y { X (u pqij upqkl)
(3.41)
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One may still decompose Eq. (3.41) as:

^  VpqijX  (upqij — upqkl) +  ^  VpqijX  (uPqij — upqkl) +  ^  VpqijX  (uPqij — upqkl)
V M =
Vpqkl

ijeSi i,j€Bfc i,j£S2

y  x (upqij upqkl) +  y  x (upqij upqkl) +  y  X  (upqij upqkl)
i,j£Si j B kl i,j&S2

(3.42)

Figure 3.5 shows an overlapping BDWF X (upqij — upqkl) with i j  e  S1 (or tivi e  B^), 

X (upqij — upqkl) with i j  e  Bkl (or t iv  e B ^ ^ )  and X (upqij — upqkl) with i j  e  S2 

(or tivj e  B[gt). We note that Eq. (3.42) becomes equivalent to the non-overlapping 

resampled visibilities in Eq. (3.32) when S1 =  S2 =  0. This is due to the sum over an 

empty set 0:

VpqijX  (upqij upqkl) =  0,
i,j&S!

VpqijX  (upqij — upqkl) =  °.
i,j£S2

(3.43)

3 .2 .2  N o ise  p e n a lty  es tim a tes : a n a ly tic

Let us now work out analytically the noise penalty associated with replacing an un­

weighted average by a weighted sum. For simplicity, let us assume that the noise term 

has constant r.m.s. 7s across all baselines and samples. If the resampling bin consists of 

navg =  nt x nv samples, and since the noise is not correlated between samples, the noise 

on the averaged visibilities in Eq. (3.25) will be given by:

7 2
m n £ 7s

avg i=1 
27

navg

1
(3.44)

(3.45)

Note that the noise is uncorrelated across averaged visibilities. We can therefore use the 

the imaging equation (i.e. Eq. (3.10) ) to derive the following expression for the variance 

of the noise term in each pixel of the dirty image:

2 =  (^pqkl Wpqkl7m)
7piX =  (Epqkl Wpqkl)2 ,

(3.46)
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which for natural image weighting (W  ~  7m , i.e. W  =  1 in this case) is simply

7 1 7^
piX ^  NnT~

(3.47)
avg

where N  is the total number of visibilities used for the synthesis.

To simplify further notation, let us replace pqkl by a single index p, enumerating all the 

low-res visibilities V̂ M, with p =  1 . . .  N . If we now employ Eq. (3.32) to compute the 

low-res visibilities using some BDWF X (u , v), the noise term becomes different for each 

visibility p:
27X p

Xy X 2(u pqij upqkl)

[ Xy X (u pqij upqkl)~\

_2
2 7s , (3.48)

where both sums are taken over the window bin, i, j  e  Bkl. Let us define the visibility 

noise penalty associated with BDWF X  and visibility p as the relative increase in noise 

over the unweighted average, i.e.

7Xp   \ /navg X ‘2(uvoij upqkl)
7m X  (upqij upqkl)

Note that in the case of overlapping BDWFs, the window bin in Eq. (3.48) is larger than 

the resampling bin, and contains nX samples, with nX _  a^navg, where a  and ^ are 

the overlap factors. For a  _  ^ =  1, it is easy to see that EXp >  1, and only reaches 1 

when X  =  1. In other words, non-overlapping BDWFs always result in a visibility noise 

penalty above 1, while overlapping BDWFs can actually reduce noise in the resampled 

visibilities.

While paradoxical at first glance, this reduction in noise does not result in a net gain 

in image sensitivity. The reason for this is that with overlap in effect, the noise terms 

become correlated across resampled visibilities kl (within the same baseline pq), with 

each high-res visibility sample contributing to multiple resampled visibilities, and the 

image noise term no longer follows Eq. (3.46) .

If the resampled visibilities correspond to a single-channel snapshot, or if the BDWFs 

are non-overlapping, then the noise across visibilities remains uncorrelated, and we can
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compute the image noise penalty associated with imaging weights W  and BDWF X  as

^X

2
7pix,X
7pix

n ( E ,  W frg )
7s ( E ,  W, )2
( E ,  w ,2~X ,) 

( E ,  w , ) 2 .

In the case of natural weighting (W , _  7 , : ) this reduces to:

^nat
^X

N
v  - -1 ’,  X ,

(3.50)

(3.51)

(3.52)

(3.53)

Alternatively one can formally express the noise penalty in a compact and robust matrix 

formalism as shown below. If we assume a non-polarised sky, a single channel timeslot 

visibility measured by a baseline pq is the complex Stokes value:

V V . _  W  • - V ■■Vpqj _  WpqiJ Vpqi3, (3.54)

where Vpqij is an individual visibility (or a value sampled at i j  of the ideal sky distribu­

tion Fourier component Vpqij _  5pqij V) and Wpqij accounts for weighting. Assuming a 

resampling square interval of size nt x nv , we can package into a single matrix, V p d  of 

size nt x nv the sampled visibilities,

V sVpq11 Vpq1nv
V s

pq,d (3.55)
V s 

pqnt 1
V s
rpqntnvJ

where the index d indicates the dth resampling bin. More intuitively, d will run from 

1 ••• NtNv, where Nt and Nv are the number of timeslots and channels of the low- 

res measurement respectively. This gives a total high-res timeslots of ntNt and nvNv 

channels.

On the other hand, the boxcar-like window function values for the sampled visibilities are 

grouped in the matrix, npqV^ of size nt x nv. We recall from the previous section that 

kl e  B kl and the entries of are the ( i j )th value of the boxcar-like corresponding
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to the ( i j )th visibility point. This can be summarised explicitly as below:

n [uv]n pqkl,d

11

n pqkl

1nv

n pqkl

nt 1

npqkl

nt nv
n [uv]
n pqkl_

(3.56)

We can write the average value in terms of series of linear transformations

v M _  e T rn [uv] v s êVpqkl e  Ln pqkl,dV pq,d\ e, (3.57)

where e  is the column vector whose entries are all unity and T the transpose matrix 

operator.

Following a similar analogy, the total number of visibilities of the high-res measurement 

is packaged into a block-diagonal matrix V ,  of size N  x [nt x nv] x N  as follows:

V  pq, 1 . . .  0 . . .  0

V s
V , 0 . . .  V s

pq, N2
0

0 0 V s
V pq,N

(3.58)

where N  is the total number of visibilities for the low-res measurement with N  =  

NpqNtNv , Npq is the number of baselines, excluding autocorrelations (p _  1 ■ ■ ■ na and 

q _  p + 1  ■ ■ ■ na, with na the number of antennas).

Similarly, d are regrouped into a block-diagonal matrix n|Tv] of size N  x [nt xn v] x N . 

Therefore, we can write

V M _  e lftn}rv]V , ergh, (3.59)

where e lft and ergh are block-diagonal matrices with elements e T and e  respectively. 

Also, note that the low-res visibilities, V M, is a diagonal matrix of size N  x N  with 

entries VpMkl accordingly. The order of the multiplications is not important, since the 

matrices are diagonals and hence multiplication is commutative. Let us now spend some
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time decomposing Eq. (3.59) :

V s
V , W  , V  , (3.60)

The block diagonal matrix W ,  of size N x  [nt x n v] x N  is constructed from Wpqij following 

a similar analogy as in Eq. (3.58) ; the same applies to V , ,  which is constructed from all

the Vpqij.

If the number of pixels in the sky model is Npix x Npix and assuming that F is a block 

diagonal Fourier transform operator of size N  x [Npix x Npix] x N , where all its entries 

are elements of size Npix x Npix, we have:

VM _  eiftn jT ] V , e rgh 

_  eiftn j7v]W , V , e rgh

_  (eiftn j r ] W ,e rghX F I  +  6sky).

The error due to the noise then follows:

Eerr _  (elftn Jr]W , e ^ )  esky

_  Ae sky,

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

where A  _  e lftn , iv]W ,e rgh. Let us assume that the vector esky can take a finite set of 

directions, specifically the directions represented by e1, . . . ,e N pix with ||esky|| _  1, then 

let us look at the average of the squared error norm,

1 N
||Eerr|| _  7pix _  N  5 - / |Aei |2 (3.66)

N i=1 
1 N

_  iiai i 2 , (3.67)
N i=1

where ai stands for the ith column of A  and ||.||2 is the Euclidean norm. The previous 

Eq. (3.67) can be written as:

7pix
2 1

N
A 2 ,F , (3.68)
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where, | A | F is the Frobenius norm of A  given by:

(3.69)

(3.70)

In this notation, Tr is the trace of the matrix.

N N
A A

. i=1 j=1 

/T r (A t  A'

F

3.2.3 Noise penalty estimates: empirical

In this section we employ simulations to empirically verify noise estimates computed 

using the derivation above. We generate a “high-res” JVLA-C measurement set (MS) 

corresponding to a 400 s synthesis with 1 s integration, with 30 MHz of bandwidth centred 

on 1.4 GHz, divided into 360 channels of 83.4 kHz each. The MS is filled with simulated 

thermal noise with cts _  1 Jy. We then generate a “low-resolution” MS using 100 s 

integration, with a single frequency channel of 10 MHz. This MS receives the resampled 

visibilities. The size of the resampling bin is thus 100 s by 10 MHz, or 100 x 120 in terms 

of the number of high-res samples.

We then resample the high-res visibilities using a number of BDWFs, and store the results 

in the low-res MS:

• Standard averaging to 100 s and 10 MHz (using the middle 120 channels). This 

gives us the baseline noise estimate.

• Sinc and Bessel windows using the same bin, without an overlap, tuned to a FoI 

of 2°.

• The same windows with overlap factors of 4 x 3.

We then image the low-res MS and take the r.m.s. pixel noise across the image as an 

estimator of apix, divide it by the baseline estimate produced with simple averaging, and 

compare the resulting noise penalty with that predicted by Eq. (3.53) . Note that this 

estimator is not perfect, since image noise is correlated across pixels. Nonetheless, we 

obtain results that are broadly consistent with analytical predictions (Table 3.1) .
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B D W F r  analytic r  sim
sinc-1x1 1.247 1.22
sinc-4x3 1.242 1.20
Bessel-1 x1 1.178 1.16
Bessel-4 x 3 1.109 1.12

Table 3.1: A comparison of image noise penalties associated with different BDWFs, 
computed analytically vs. simulations.

Figure 3.6 shows the predicted visibility noise penalty for the same BDWF, as a function 

of an East-West baseline component, which determines the baseline rotation speed. Each 

dot mark represents the noise penalty induced by a single baseline. Note that the noise 

penalty rises sharply towards longer East-West baselines. Note also that the penalty 

is well below 1 on shorter baselines, when overlapping is in effect. As mentioned in 

Section 3.2.1, this is because the BDWF becomes boxcar averaging (i.e. unweighted 

averaging or simple averaging) and can only decrease the noise when overlap is occurring. 

This is simple to understand analytically as follows: the noise term has constant r.m.s. 

7S across all baselines (including samples) and the resampling bin consists of nt x nv 

samples. Since the noise is not correlated between samples, the noise on the averaged 

(unweighted averaging) visibilities in Eq. (3.25) is given by:

72
m

7S
ntnv

(3.71)

On the shorter baselines, the BDWF X  =  1 (i.e. unweighted averaging) and overlapping 

means enlarging the averaged resampling bin by a factor of a^ with a  >  1 and/or ^ >  1. 

The noise on the averaged visibilities becomes:

2
7Xp

7S
a@ntnp

which gives us a noise penalty of

r Xp
Txn
7m V 0 3

< 1.
1

(3.72)

(3.73)

Note that as a^ >  1, it implies that >  1.
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Figure 3.6: Noise penalty w.r.t. simple averaging as a function of baseline length for 
two different BDWFs (sinc and Bessel), with and without overlap. JVLA-C, 1.4 GHz, 

sampling intervals of 100 s and 10 MHz.

3.3 Simulations and results

In this section we use BDWFs to resample simulated visibility data, and study the effect 

on smearing and source suppression. Apart from a few examples documented separately, 

the basis interferometer configuration employed in the simulations corresponds to JVLA- 

C observing at 1.4 GHz. Similar to Section 3.2.3, we create a “high-res” measurement 

set corresponding to a 400 s synthesis at 1 s integration, with 30 MHz total bandwidth 

centred on 1.4 GHz, divided into 360 channels of 83.4 kHz each. The MS is populated by 

noise-free simulated visibilities corresponding to a single point source at a given distance 

from the phase centre. We then generate “low-res” MSs to receive the resampled visibil­

ities, resample the latter using a range of BDWFs, convert the visibilities to dirty images 

(using natural weighting unless otherwise stated), and measure the peak source flux in 

each image. Since each dirty image corresponds to a single source, the peak flux gives 

us the degree of smearing or the smearing factor (i.e. the degree of amplitude decrease 

towards off-axis sources) associated with a given BDWF and sampling interval.

For the first set of simulations, the “low-res” MSs corresponds to a 100 s and 10 MHz 

synthesis. We employ three sampling rates, 25 s x 2.5 MHz, 50 s x 5 MHz and 100 s x 

10 MHz (thus four timeslots and four channels, two timeslots and two channels, and a 

single-channel snapshot).

A typical performance comparison for the JVLA-C configuration at 1.4 GHz is given 

by Figure 3.7. This figure illustrates some of the principal achievements of the present



Chapter 3. Visibilities Filtering Using Correlator Window Functions 59

Q)
E
in

0 2 3 61 4 5

avg 25sx2.5M H z 
avg 50sx5.0M H z 
avg 100s xlO.OMHz

— sin c -lx l-1  deg 100s xlO.OMHz, B = 1 .0 4 , i?= 6 .5  
s inc-lx l-2deg  100s xlO.OMHz, 8 = 1 .2 2 , i?= 6 .5  
s inc-lx l-4deg  100s xlO.OMHz, 3 = 2 .6 8 , i?= 6 .1  

sinc-4x3-ldeg 100sxlO.OMHz, 3 = 0 .5 7 , F = 78.2 
sinc-4x3-2deg 100sxlO.OMHz, 3 = 1 .2 0 , F = 77.0 
sinc-4x3-4deg 100sxlO.OMHz, 3 = 2 .7 5 , F = 5 8 .7

* Besse 1-4x3-ldeg  100sxlO.OMHz, 3 = 0 .5 2 , F = 78.6
•  Besse 1-4x3-2deg 100sxlO.OMHz, 3 = 1 .1 2 , i?= 7 6 .7

■ Besse 1-4x3-4deg 100sxlO.OMHz, 3 = 2 .4 5 , F = 71.1

Distance from phase centre, degrees

Figure 3.7: JVLA-C 1.4 GHz. Smearing as a function of distance from phase centre, 
for conventional averaging with 25 s x 2.5 MHz, 50 s x 5 MHz and 100 s x 10 MHz 
bins, and for several BDWFs with 100 s x 10 MHz bins. The noise penalty S and the 

far-source suppression factor F  are given relative to 25 s x 2.5 MHz averaging.

work, so it warrants detailed explanation. The horizontal axis represents the distance 

from phase centre, while the vertical axis represents the degree of smearing. Unity 

corresponds to no smearing; this is the case at the phase centre, thus all curves start 

at unity. The three thick gray curves correspond to simple averaging into 25 s x 2.5 

MHz, 50 s x 5 MHz and 100 s x 10 MHz. We can (rather arbitrarily) define a series 

of “acceptable” smearing levels by specifying a FoI radius, and the maximum extent of 

smearing over that FoI. For the FoI radius, we may pick , for example, the half-power 

point of the primary beam, the main lobe of the primary beam, or the extent of the first 

sidelobe of the primary beam. For JVLA’s 25-metre dishes at this frequency, these radii 

correspond to ~  0.25°, 0.5°, and 1°, respectively; they are indicated by thin vertical lines 

in the figure. The thin horizontal line indicates our chosen smearing threshold of 0.95. 

Figure 3.8 is the results of Figure 3.7, where all the curves are normalised with respect 

to the 25 s x 2.5 MHz averaging curve.

For regular averaging, the three chosen bin sizes happen to correspond to chosen ac­

ceptable levels of smearing over the three chosen FoI values. The other curves show the 

performance of a few different BDWFs, all at 100 s x 10 MHz sampling. Three types of 

BDWFs are shown, indicated by line style and colour:
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sinc-1x1 i.e. a non-overlapping sinc window (solid line, red) 

sinc-4x3 i.e. an overlapping sinc window (dashed line, blue)

Bessel-4 x 3 i.e. an overlapping Bessel window (dotted line, green)

These are tuned to three different FoI settings, as indicated by the plot symbol: 1° (star), 

2° (circle), 4° (square).

The plot is meant to show performance of BDWFs at 100 s x 10 MHz versus a “baseline 

case” of 25 s x 2.5 MHz averaging, the latter being an acceptable averaging setting for 

this particular frequency and telescope geometry. The legend next to the plot therefore 

indicates S, the noise penalty associated with that particular BDWF, and F , the far 

source suppression factor. Both values are calculated w.r.t. the baseline case. Note the 

following salient features:

• All overlapping BDWFs provide outstanding far source suppression in this regime, 

with F  in the 60 ~  80 range. The non-overlapping sinc (solid red lines) only 

achieves F  ~  6, which is similar to regular averaging at the same rate.

• Noise performance is excellent for the 1° BDWFs. There is a small noise penalty 

at 2°, and a larger (over a factor of 2) noise penalty at 4°. This can be easily 

understood by considering the shape of BDFWs as a function of FoI: smaller FoIs 

correspond to broader windows that become more “boxcar-like” over the sampling 

interval, and vice versa. This means that, in this particular configuration, BDWFs 

cannot achieve a FoI of 4° at 10 s x 100 MHz without a substantial sacrifice in 

sensitivity. We shall return to this issue below.

• If the desired FoI size is r ~  0.5 — 1°, overlapping BDWFs (sinc-4x3-2deg and 

Bessel- 4x3-2deg) provide excellent performance at 100 s x 10 MHz. Compared to 

averaging at 25 s x 2.5 MHz, they achieve a factor of 16 data compression with 

minimal loss of sensitivity, with excellent tapering behaviour: the smearing per­

formance across the FoI is equivalent to (or better) than that of simple averaging, 

and out-of-FoI source suppression is almost two orders of magnitude higher.

Figure 3.8 presents the same results in an alternative way. Here, the recovered flux is 

shown relative to the baseline case of 25 s x 2.5 MHz averaging. This clearly illustrates 

the excellent performance of overlapping BDWFs tuned to 2° FoI.
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Figure 3.8: JVLA-C 1.4 GHz. Results of Figure 3.7 normalised to the 25 s x 2.5
MHz averaging curve.

3.3.1 Noise penalties and overlapping BDWFs

Values of 3  <  1 above may be paradoxical at first, since one cannot theoretically exceed 

the noise performance of the unweighted average. This, however, is an artefact of the 

short simulation. Overlapping BDWFs are essentially averaging in “bonus signal” from 

regions of overlap extending outside the nominal time and frequency coverage. In this 

case, at 100 s x 10 MHz sampling, a BDWF with 4 x 3 overlap is actually adding up 

signal over a 400 s x 30 MHz bin, i.e. a bin that is a factor of 12 larger (though of 

course the bonus sensitivity thus gained is much less than the theoretically available 

\/l2, since the weights over the overlap regions correspond to the “wings” of the window 

function, and are thus small). This can easily result in lower per-visibility noise than 

that achieved by regular averaging over 100 s x 10 MHz, and correspondingly higher 

snapshot sensitivity.

In the more realistic case of a long, multiple-channel synthesis (what we will call a full 

synthesis), the effects of bonus sensitivity disappear. While the noise on individual 

visibilities remains nominally lower in a full synthesis thanks to the overlap, it becomes 

correlated across neighbouring uv-bins, so there is no net gain in image-plane sensitivity. 

Strictly speaking, at the “edge” of the synthesis, overlapping BDWFs are still pulling in
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Figure 3.9: JVLA-C 1.4 GHz, long wideband synthesis. Smearing as a function of 
distance from phase centre, for conventional averaging with 100 s x 10 MHz bins, and 
for overlapping BDWFs with 100 s x 10 MHz bins. The noise penalty S is given relative

to 100 s x 10 MHz averaging.

some bonus signal from overlap regions extending beyond the synthesis coverage, but 

since the area of this overlap is negligible compared to the coverage of the full synthesis, 

so is the effect of the bonus signal.

In other words, simulating a snapshot observation results in underestimated noise pen­

alties, compared to the real-life case of a full synthesis. We should expect the noise 

penalties to go up (and eventually exceed unity) as we increase the synthesis time and 

number of channels. Figure 3.9 presents the results of such a simulation. This shows a a 

1800 s x 200 MHz synthesis, sampled at the same rates as above. The results should be 

compared to and contrasted with those of Figure 3.7. Note that the tapering response 

of BDWFs is nearly identical, while the noise penalties are indeed higher. With 4 x 3 

overlap and 100 s x 10 MHz sampling, the total signal accessed by overlapping BDWFs 

corresponds to 2100 s x 220 MHz, which gives a theoretical maximum of a factor of 

~  1.13 in bonus sensitivity. In other words, the values of S in Figure 3.9 are still un­

derestimated, but by 13% at most (which explains S <  1 for the 1° case). From this 

we may safely extrapolate that the noise penalty of BDWFs matched to 1 — 2° FoIs will 

remain reasonable even for a much longer and wider band synthesis.
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3.3.2 FoIs and sampling rates

For BDWFs, a given FoI tuning represents a characteristic scale in the uv-plane, which 

is inversely proportional to the FoI parameter. On the other hand, the uv-bin sampled 

by any given visibility is proportional to the integration time, fractional bandwidth, and 

baseline length. Since the window function is truncated at the edge of the averaging bin 

(which can be larger than the sampling bin by a factor of several, if overlapping BDWFs 

are employed), there is, for any given baseline, some kind of optimal range of uv-bin 

sizes over which BDWFs tuned to a particular FoI setting are “efficient”. Over smaller 

bins, BDWFs become equivalent to a boxcar averaging, over larger bins, BDWFs penalise 

too much sensitivity as they downweight more samples. Since this optimal bin size is 

proportional to baseline length, the overall optimum is dependent on the distribution of 

baselines in the array.

Furthermore, the sampling rate needs to be “balanced” in time and frequency for BDWFs 

to achieve efficient tapering response. If the uv-bins are elongated, the window function 

becomes truncated (i.e. more boxcar-like) across the bin, which reduces its ability to 

induce the desired taper. Since the orientation of the bins changes as the baseline rotates, 

the cumulative effect is an average degradation of the tapering response, in the sense that 

it becomes closer to that of boxcar averaging. In this sense, the optimal uv-bin shape is 

square-like. This occurs when the fractional bandwidth is equal to the arc section swept 

out by the baseline over one bin. For a polar observation (circular uv-tracks), we can 

express this as

A v /v  =  2 n(B x/B )(A t/24h), (3.74)

where B is the baseline length, and Bx is its East-West component. Rewriting this in 

terms of more convenient units, we obtain:

A vMHz vMHz Bx, (3.75)
Ats 14000 B v 7

leading to a simple rule-of-thumb: at 1.4 GHz, an East-West baseline sweeps out a 

square-like bin when the integration time in seconds is 10 times the channel width in 

MHz (hence the use of bin sizes such as 100 s x 10 MHz in the analysis here).

The interaction between uv-bin size and tapering response is illustrated in Figure 3.10. 

Here we compare the performance of two BDWFs tuned to a 4° FoI -  a non-overlapping
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Figure 3.10: JVLA-C 1.4 GHz. Smearing as a function of distance from the phase 
centre, for conventional averaging with 25 s x 2.5 MHz, 50 s x 5 MHz and 100 s x 10 
MHz bins, and for several BDWFs with 100 s x 10 MHz bins. The noise penalty S and 

the far-source suppression factor F  are given relative to 25 s x 2.5 MHz averaging.
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Figure 3.11: JVLA-C 14 GHz. Smearing as a function of distance from the phase 
centre, for conventional averaging with 2.5 s x 2.5 MHz, 5 s x 5 MHz and 10 s x 10 
MHz bins, and for several BDWFs with 10 s x 10 MHz bins. The noise penalty S and 

the far-source suppression factor F are given relative to 2.5 s x 2.5 MHz averaging.
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sinc-1x1 filter (solid red lines) and an overlapping sinc-4x3 filter (dashed blue lines) -  

over three sampling bin sizes: 25 s x 2.5 MHz, 50 s x 5 MHz and 100 s x 10 MHz. 

For reference, the performance of boxcar averaging over the same bin sizes is indicated 

by the thick grey lines. Note how at the smaller bin size, the non-overlapping sinc is 

practically equivalent to a boxcar in terms of tapering response; at the larger bin size, 

it begins to shape the FoI. Introducing an overlap improves the response considerably. 

An overlapping filter at 25 s x 2.5 MHz achieves almost the same tapering response as 

a non-overlapping one at 100 s x 10 MHz (which is not surprising, if one considers that 

the effective averaging bin size in the former case is 100 s x 7.5 MHz). However, for all 

filters, at 100 s x 10 MHz the noise penalty goes up quite sharply.

This illustrates that 50 s x 5 MHz is an appropriate BDWF sampling rate for achieving 

a 4° FoI (for JVLA-C configuration at 1.4 Ghz), providing a reasonable trade-off between 

tapering response and noise penalty. At higher sampling rates, the tapering response is 

degraded, while at lower sampling rates, the noise penalty increases. In comparison (as 

we saw in the previous section), for FoIs of 1 — 2°, BDWFs achieve a good trade-off at 

100 s x 10 MHz sampling.

It is interesting to consider how optimal BDWF sampling changes as a function of array 

size. Figure 3.11 shows a simulation for JVLA-C at 14 GHz. (Since our results are 

completely determined by uv-plane geometry in wavelengths, this is equivalent to JVLA- 

C scaled up by a factor of 10 at an observing frequency of 1.4 GHz). From Eq. (3.75) , 

we can see that square-like uv-bins correspond to sampling rate combinations such as 10 

s x 10 MHz. The simulation presented here is for a 1800 s x 200 MHz synthesis, i.e. is 

closer to the full synthesis rather than a snapshot case. Comparing Figures 3.11 and 3.9, 

we find nearly identical BDWF performance (in terms of tapering response and noise 

penalty) at 14 GHz and 1.4 GHz, with only the optimal sampling rate being different.

3.3.3 BDWFs for wide-field VLBI

In the VLBI regime, it is usually a combination of smearing and data rates, rather than 

the primary beam, that effectively limits the FoI. For example, the current European 

VLBI Network (EVN) correlator [Keimpema et al., 2015a] operated by the Joint Institute 

for VLBI ERIC is capable of producing data at dump rates down to 10 ms, with 16 MHz of 

total bandwidth split into up into 8192 channels. The maximum available FoI of an EVN
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experiment is restricted by the smallest primary beam, which is usually that of the 100 m 

Effelsberg telescope -  about 10' in diameter at L-band. The EVN calculator1 shows that 

a dump rate of 0.125 s and 1024 channels (16 kHz) is required to keep smearing to within 

10% across this FoI. Due to the large computational and storage requirements, such data 

rates have only been employed in one-off experiments. For routine use, techniques such 

as multiple-phase centre correlation are more common. Typically, data are averaged into 

more modest sampling rates of 2 s and 32 channels. This restricts the effective (L-band) 

FoI to about 20'', and thus limits the scientific usefulness of archival data to narrow-FoI 

experiments.

In this section we investigate whether the use of BDWFs can enable true wide-field VLBI. 

We simulate a 1.6 GHz EVN observation correlated to the JVLA in C configuration. 

The simulation employs seven EVN stations (Effelsberg, Hartebeesthoek, Jodrell Bank, 

Noto, Onsala, Torun, Westerbork, Shanghai), with a maximum baseline of 10161 km 

when the JVLA stations are included. Figure 3.12 compares the smearing response of 

simple averaging to that of two overlapping Bessel BDWFs, employing 0.5 s and 25 

kHz sampling. At these data rates, it becomes almost practical to have a full-FoI EVN 

archive.

For comparison, we also show the performance of BDWFs for a hypothetical fast-transient 

archive application. In order to localise potential fast radio bursts, we would need to 

retain the native time resolution of 10 ms, with averaging only done in frequency, and 

that limited by the need to retain some spectra resolution for de-dispersion. In this 

regime, BDWFs are less efficient since the uv-bins are elongated. Figure 3.12 shows that 

this translates into less source suppression outside the FoI, but does not affect the ability 

to retain the FoI with 120 kHz bandwidth averaging using the Bessel BDWFs.

3.4 Conclusion

The goal of this work was to demonstrate the application of BDWFs to radio interfer­

ometry. We have demonstrated that BDWFs offer a number of interesting advantages 

over conventional averaging. The first of these is data compression, i.e. visibilities can be 

sampled at a lower rate, while retaining a large FoI. Compression by a factor of 16 with

1h ttp ://w w w .ev lb i.org /cg i-b in /E V N calc

http://www.evlbi.org/cgi-bin/EVNcalc
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Figure 3.12: VLBI simulation (10161 km maximum baseline) at 1.6 GHz. Smearing 
as a function of distance from phase centre, for conventional averaging at 0.5 s x 25 
kHz, 10 ms x 120 kHz and 10 ms x 250 kHz averaging, and overlapping Bessel BDWFs.
The horizontal line corresponds to 10% smearing losses. The ratio Q shows the increase 

in data volume over conventional 2 s x 0.5 MHz averaging.

relatively little loss of sensitivity has been demonstrated. The second potential benefit 

of BDWFs is the increased suppression of unwanted signal from out-of-FoI sources. This 

reduces the overall level of far sidelobe confusion noise and lessens the impact of A-team 

sources in sidelobes. Thirdly, BDWFs can have an interesting impact in the VLBI case, 

as they allow the full primary beam FoI to be imaged using a single VLBI data-set. This 

opens the door to wide-field VLBI, which has previously been impractical.

As we saw above, the ability of BDWFs to shape the FoI is somewhat limited by the 

fact that shorter baselines sweep out smaller bins in uv-space, with window functions 

over them becoming boxcar-like. If BDA is employed, shorter baselines are averaged over 

larger uv-bins, thus increasing the effect of BDWFs. The next chapter will be devoted to 

combining BDWFs with BDA. Finally, we should note that the use of BDWFs results in 

a different position-dependent PSF than regular averaging. In other words, the smearing 

response of BDWFs results in a different smeared PSF shape. Chapter 5 will focus 

on methods of deriving this PSF shape, with a view to incorporating this into current 

imaging algorithms.



Chapter 4

Baseline-dependent Averaging and 

BDWFs Applied Across Equal 

uv-Distance for Data Compression

In the previous chapter, we looked at the various ways in which averaging larger visibility 

bins can result in an acceptable level of smearing (i.e. 5% or less decrease in source amp­

litude within the observation FoI). We showed, theoretically, that decorrelation/smearing 

increases on longer baselines compared to the shorter ones, and that decorrelation can 

even be avoided if the correlator performs the averaging procedure over shorter bins, 

which however results in high data rates. We made predictions pertaining to an equal 

uv-distance averaging across all baselines. In particular, averaging within sufficiently 

large bins for shorter baselines, while on the other hand, the longer baselines are aver­

aged within shorter bins. Intuitively, this corresponds to the bins on all the baselines 

being averaged across an equal uv-distance. The question therefore arises whether such 

averaging technique (averaging over equal uv-distance on all baselines) will not only de­

crease smearing within the observation FoI, but importantly, also result in reducing the 

data size. Indeed, one expects that averaging for sufficiently large bin intervals on the

This chapter draws extensively on: M. T. Atemkeng, O. M. Smirnov, C. Tasse, G. Foster and 
J. Jonas, Baseline-dependent averaging and baseline-dependent window functions for equal uv-distance 
data compression and field-of-interest shaping in radio interferometry. Monthly Notices of the Royal 
Astronomical Society (MNRAS), in preparation. It is acknowledged that some of the text in this chapter 
will therefore “match” that of the article. The reference in this footnote serves as a general reference for 
all such text.
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shorter baselines would be favourable for data compression, while averaging smaller in­

tervals in uv-distance on the longer baselines will result in decreasing decorrelation. The 

second question pertains to calibration issues for BDA given that calibration is a complex 

visibilities correction process. The key point for the calibration properties of BDA will 

be to monitor the correlator differently at each averaging interval on different baselines. 

This implies that the calibration parameters will change differently with baselines and 

each of the frequency and/or time intervals.

In this chapter, it is shown that BDA results in decreasing smearing over the selected FoI, 

and applying BDA to BDWFs results in a subtantial decrease in smearing with less than 

1% smearing over the FoI, and excellent source suppression out of the FoI. To obtain the 

results, we describe the mathematics behind BDA and the compression factor on each 

baseline. We identify the implementation criteria and describe three different algorithms 

for the implementation of BDA correlators. We implement BDA via simulations using 

the JVLA telescope and discuss the results.

4.1 Background and problem statement

The effect of time and bandwidth averaging is more severe on longer baselines than on 

shorter baselines. This is easy to understand as follows: the visibility from a baseline pq 

of a point source with brightness S is given by:

Vpq =  S exp { 10}, 0 =  2nupq ■ l, (4.1)

where 0 is the phase of the source, upq =  (u ,v ,w ) the baseline vector in unit of 

wavelength and l =  ( l ,m,n — 1) the source location in the sky. This implies that the 

larger the norm ||upq||, i.e. the baseline length, the larger the phase and thus much more 

severe attenuation of the source brightness S occurs. Sources far away from the pointing 

direction have larger radii | l| , thus a larger phase as well, i.e. the fringes of sources far 

from the pointing direction rotate rapidly in the uv domain.

In the rest of this chapter, we primarily refer to each baseline's East-West component. 

During time-frequency integration, the East-West component rotates, while the South- 

North does not. For the same length of time, two equal length baselines with different
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orientations will sweep unequal uv-distances. This results in different degrees of decor­

relation. In this sense, the East-West component determines the baseline rotation speed. 

This is illustrated in Figure 4.1.

v

u

Figure 4.1: Two equal lengths baselines A and B with different orientation. Baseline 
A is an East-West baseline (the South-North component is zero) and B has non zero 
South-North and East-West components. The distances swept by these baselines East- 
West are different during the same time integration: baseline A rotates more rapidly

than B.

Figure 4.2 is a simulated observation at 1.4 GHz of the JVLA in C configuration showing 

the amplitude of a source as seen by three baselines (longest, medium length and shortest 

baselines). In this figure, the amplitude of the source is plotted against the source 

distance from the phase centre. The top panel shows the effect of bandwidth averaging, 

while the bottom panel shows the effect of time averaging.

Figure 4.3 shows the amplitude loss as a function of East-West baseline length. We 

simulate the source at 30 arcmin away from phase centre and observe the amplitude loss 

with JVLA C. In this figure, the dot grey line shows the length of the shortest East-West 

baseline. In the top panel, the source is simulated then averaged using 100 s integration 

and 125 kHz channel width, while in the bottom panel the source is simulated then 

averaged using 1 s integration and 10 MHz channel width.

It is observed from Figure 4.2 and 4.3 that decorrelation/smearing is severe on longer 

baselines compared to shorter baselines. In addition, Figure 4.2 shows that smearing is 

also a function of source position in the sky.

Most of the data measured by any compact interferometer array comes from the shorter 

baselines. A good illustration is presented in Figure 4.4, which is a four-hour synthesis
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Distance from the phase centre [deg]

Distance from the phase centre [deg]

Figure 4.2: Amplitude loss: the apparent intensity of a 1 Jy source, as seen by 
JVLA-C at 1.4 GHz, as a function of distance from the phase centre. (Top): Time and 
frequency integrations fixed at 100 s and 125 kHz respectively; (Bottom): Time and 

frequency integrations fixed at 1 s and 10 MHz respectively.

uv-coverage of the MeerKAT observing at 1.4 GHz. The coverage shows that the data 

points are more populated in the inner core (red) than in the outer areas (blue). The 

data in the inner core are from the short baselines, while those in the outer core are from 

the long baselines. If more samples should be averaged in the inner core and very little at 

the outer, decorrelation would be avoided on the longer baselines and data compression 

would be carried out on the shorter baselines. This method, often referred to as BDA, was 

first proposed by Cotton [1999, 1989] as an approach for dealing with wide field imaging 

with little to no bandwidth and time averaging effects. The next section describes the 

mathematical details of BDA.
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Figure 4.3: Amplitude loss: the apparent intensity of a 1 Jy source, as seen by 
JVLA-C at 1.4 GHz, as a function of East-West baseline components. (Top): Time 
and frequency integrations fixed at 100 s and 125 kHz respectively; (Bottom) Time and 

frequency integrations fixed at 1 s and 10 MHz respectively.

4.1.1 Baseline-dependent Averaging

As explained in Chapter 3, an interferometer measures the average visibility over a 

rectangular time-frequency bin given by the time and frequency sampling intervals A t 

and A v respectively; what is called the resampling bin (see Chapter 3, Eq. 3.14)

[AtAv]
Bkl

where k and l are the indexes for the bin at the centre of At and A v respectively. 

The resampling bin ] is a 2-D rectangular set, containing the time and frequency

values for all bins measured during the sampling intervals At and A v (or a set of time and

At A t A v A v
tk -  ~2 tk +  T X

Vl 2 vi +  ~2 (4.2)
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Figure 4.4: MeerKAT uv-coverage at 1.4 GHz, four hours’ observation showing clearly 
that the data are most condensed at the centre core (red). The data at the centre core 
are from the shorter baselines, while the data at the outer (blue) are from the longer

baselines.

frequency bins that are part of the uv-track draw by a baseline during the integrations 

A t  and Av).

Note that for simple averaging the sampling intervals remain constant across all baselines 

while in BDA the sampling intervals are functions of baseline length and direction. This 

makes the sampling intervals vary across baselines. Let us denote by A pqt and A pqv the 

sampling intervals in time and frequency for the baseline pq. The resampling bin for the 

case of BDA is then given by:

D[APq t, Apq v] _
Dkl _

Figure 4.5 shows a typical resampling bin for BDA and for simple averaging.

If we denote by D the function defining the distances between the centre time/frequency 

bin and an off-centre time/frequency bin, then we have:

D . B[Apqt,Apqv] ^  {R , R }

A pqt A pqt
tk — ,tk + vl A pqv v +  A pqv -> vi +2 2 (4.3)

t ,v  ^  D(t -  tk,v), D(t ,v  -  vi)
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v A v a

Resampling bin Resampling bin

u u
Figure 4.5: Applying BDA or simple averaging is equivalent to convolving the res­
ampling bin by a boxcar windowing function. An East-West interferometer array, the 
BDA (right panel) corresponds to an equal convolution kernel and resampling bin across

all baselines.

where (t, v) _  (tk, vl) and R  is the set of real numbers. The distances D(t — tk, v) and 

D(t, v — vl) are defined as:

D(t — tk,v) _  \\upq(t — tk,v)|| (4.4)

D(t, v — vi) _  \\upq(t, v — vi) || . (4.5)

The set Bpq corresponding to the bin indices of the resampling bin for baseline pq is given 

as:

Bpq
kl t v a B[Apqt,Apqv t  Bki (4.6)

Let us now denote by D im  B ^ } the number of bin indices or samples in the resampling 

bin for the baseline pq. Suppose that D[Apqt] and D[ A p q are the distances swept by the 

baseline pq for given baseline-dependent sampling intervals Apqt and A pqv . We define 

these distances as follows:

and

D[Apqt] _  ^ 2  D(ti — tk , v ),
iRB kq

(4.7)

D [Apq V1 D(t,vj — vi) .
ij€Bpqkl

(4.8)
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The decorrelation is then defined by the product of decorrelation in time and decorrela­

tion in frequency, i.e. by:

D[Apqt,Apqv] _  D[Apqt] x D[Apqv]. (4.9)

The following constraints must be satisfied for averaging across equal uv-distance, i.e. 

for all East-West baselines a^ _  pq with \\uap \| _  ||upq ||:

D[a «^t,Aa/3v] _  D[Apqt,Apqv] (4.10)

D im  B
[Aq,̂  t,Ac
ki ' " ' }  _  D im {Bk‘A' ] . (4.11)

The condition in Eq. (4.10) is strictly equivalent to D[Aq̂ t] _  D[Apqt] and D[Aq̂ v] _  

D [Apq v].

The constraints in Eq. (4.10) and (4.11) for BDA show that more samples are averaged 

on the shorter baselines than on the longer baselines. For example, if p _  1, q _  2 are 

the indexes for the longest baseline; p _  2, q _  3 the indexes for the medium length 

baseline and p _  3, q _  4 the indexes for the shortest baseline, we have:

D[Al2t,Al2v] _  d [A23t,A23v] 

_  D [A34t,A34v]

Dim{ BkA12t,Al2v]} <  Dim { BkA23t,A23v]} 

<  Dim { BkA34t,A34v]}.

(4.12)

The averaged intervals are functions of baselines' length and direction, with longer 

baselines having shorter integration times and narrower channels, while shorter baselines 

are averaged over longer integration times and wider channels.

In Section 3.1.1 we defined the averaged or resampled visibilities for a baseline pq as the 

discrete sum:
v m _  m  v (s)pqki n pqtj’

pq ij^Bpq
(4.13)

where D im  Bkq} _  npq is the number of samples that has been averaged. It was then 

shown in Section 3.1.2 that visibility averaging can be treated as a convolution with a
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baseline-dependent boxcar window npqk at the centre of the resampling bin interval

vpMki _  « p , k i ( V o n H ) , (4.14)

and this results in Eq. (4.15) , when imaging the per-baseline visibilities:

I D _  '^2 WpqkiPpqki o ( I  ■ Tpqki), (4.15)
pqki

with the apparent sky I  tapered by the inverse Fourier transform of the baseline- 

dependent boxcar 7pqki:

Tpqki _  F -1 {n.p'k!,}. (4.16)

Now let us determine what Eq. (4.15) becomes for the case of BDA. For BDA, the uv- 

space boxcar windows, npq^, are approximately equal across all baselines and therefore 

do not depend any more on baseline length and direction. In other words, for any baseline

a^ _  pq,
n M
n a^ki

n M
n pqki. (4.17)

Eq. (4.17) is valid and correct only for the case of BDA. One fact to keep in mind is that 

while the size of all boxcar windows is equally fixed in uv-space, they are however sampled 

differently. For each baseline the East-West component rotates as a function of time, 

while the South-North does not. For the same length of time, two equal length baselines 

with different orientations will sweep unequal uv-distance and therefore result in lower 

spatial modes being oversampled compared to higher spatial modes (see Figure 4.6) , this 

may result in a different IPR.

Figure 4.6: In uv-space the boxcar windows are sampled differently for a fixed length 
of uv-distance across baselines. (Left) sampling function for the boxcar window of 
the longest baseline. (Right) sampling function for the boxcar window of the shortest

baseline.
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However, if the pre-averaged visibilities are sampled at significantly high time and spec­

tral resolution, then we can assume that all these boxcars at different baselines are 

sampled equally. Considering this assumption, we can write:

7pqki ~  7«^ki. (4.18)

This shows that the time and bandwidth decorrelation represents the effect of a single 

taper in the image. With this condition, Eq. (4.15) becomes:

I D ~  ^  WpqkiPpqki o I  ■ 7, (4.19)
pqki

where T ~  7pqki ~  7^^ki is the smearing response, constant on all baselines: that is, the 

effect of a single taper on the image.

4.1.2 Compression factor

The compression factor is defined as the ratio between the pre-averaged data (high-res 

data) size and the averaged data (low-res data) size. In terms of the number of visibility 

points, the data size of the high-res MS is given by:

data size hires —a(—a -  1) x —sub x —tnires x —vnires x —,hires pol,2
(4.20)

where —a is the number of antennas of the interferometer array, —sub the number of sub­

bands, Npol is the number of polarisations, Nthires and Nhires are the number of timeslots 

and channels of the high-res MS respectively. In the case of simple averaging, the data 

size of the averaged MS is given by:

n (n _  1) Nhires Nhires
Data size avg _  —̂ —  ----- ) x Nsub x —- x —v x Npol, (4.21)

2 —t —v p

where —t represents the number time bins and —v the channels averaged on each baseline. 

Note that this formulation applies for equal compression across all baselines, therefore
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the compression factor is defined by:

Data size hires
Compression factor avg _  —-------------------

Data size avg

_  —t x —v

(4.22)

(4.23)

The space savings, which are defined as the reduction in size relative to the high-res data 

size, follow as:

space savings avg 1 ­

1

Data size avg
Data size hires 

1
—t x —v

(4.24)

(4.25)

Following the analogy for BDA resampling bins, the number of samples in the resampling 

bin for a baseline pq is defined as Dim{Bkfpqt,Apqv]} _  —pqx pq, where —pq and —pq are 

the baseline pq number of time and frequency samples respectively. The interferometer 

array data size in terms of number of visibility points for BDA then follows:

Data size
hires hires

—' x —  x —p
—t x —

bda _  z_> —sub x D im B p?1 x —po1{ kpqki ki }
— hires — hires

'y ' —sub x ^pq x ^pq x —pol.
pq — —v

The interferometer array compression factor for BDA is then given by:

—- ( —a -  1) / 1
-1

Compression factor bda _
2 Epq

—tpq x —pq

(4.26)

(4.27)

(4.28)

and the space savings by

space savings bda 1 —a(—a -  1) 
2

-1

x ^  —pq x —pq.pq t
(4.29)

In the rest of this chapter, we refer to the compression factor as C F  _  xt x yv, where 

xt is the compression factor in time and yv is the compression factor in frequency. The 

notation C F  _  xt x 1 implies the data are compressed only in time by a factor of xt, 

while C F  _  1 x yv implies that data are compressed only in frequency by a factor of 

yv. For BDA, the shorter baselines are compressed by much more than C F  and the 

longer baselines by much less. This corresponds to C F  for all the baselines with simple
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averaging.

4.2 Implementation details

In practice, most existing software implementations assume that the correlation matrix is 

a time and frequency regular grid. Averaging entries in this correlation matrix over long 

times for short baselines and short times for long baselines results in an irregular grid. 

A better idea is to map this irregular grid onto a correlation matrix (i.e. regular grid) 

by either flagging out the supplementary points, or duplicating the averaged values onto 

these supplementary points. We will explain these processes in detail in the following 

sections.

4.2.1 Flagging

Most of the radio interferometric data reduction software has a flagging capability, 

through which bad data can be flagged and ignored. For BDA, we exploit this cap­

ability to force interferometric data reduction software to ignore some entries of the 

regularly gridded plane (e.g. the correlation matrix). In the flagging procedure, one has 

to make sure that the resampling bin contains an odd number of data points in time as 

well as in frequency:

Dim{BkA“ t̂,A“ v̂]} _  (2kt +  1)(2kv +  1), where kt and kv are integers. (4.30)

Here, 2kt +  1 is the number of visibilities to average in time and 2kv +  1 the number 

of visibilities to average in frequency. This condition must be verified on all baselines 

otherwise the average baseline vector may not coincide with the mid time and frequency 

vector and this will lead to a phase shift. If this condition is satisfied, the average value 

is assigned to the mid point of the resampling bin interval, i.e. at the +  1 and 

kvh +  1 visibility point. The other entries of the resampling bin are flagged. This flag 

will cause missing samples to be ignored during post-processing. Suppose that the data 

in Figure 4.7 represents 15 time-bins, for three different baselines (the longest, medium 

length and shortest baselines). Each bin is a 1 s integration sample and 15 s bins are 

averaged on the shortest baseline, 5 s on the medium length baseline and 3 s on the
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longest baseline. The coloured pointers indicate the averaged bins and the black arrows 

are flagged points. Most of the flagging occurs on the shortest baseline.

Shortest baseline

-̂---- __ ^

n ■
4 4 4 4 4 4 4 4 4 4 4 4

average
4 4 4

Medium length 
baseline

M____ ____A-—

■ ■
4 4 4 4 4 4 4

average
4 4 4 4 4

average
4 4 4

average

Longest baseline

A AAA A A I * I * * * * M
average average average average average

Figure 4.7: BDA with flagging: the bins are averaged and the average value is assigned 
at the centre of the resampling bin interval, while a flagging value is assigned to others

points.

4.2.2 Duplication

This method consists of duplicating the average value at all entries of the resampling 

bins. While this process is easier to implement than the flagging method, it may not 

serve the purpose of data compression and/or quick computation for post-processing. 

It is easier to implement in the sense that one may not care or always verify that the 

number of visibility points in the resampling bin is an odd number. Furthermore, the 

data size of the resulting MS remains the same as the pre-averaged MS, since all values 

are duplicated along the pre-averaged MS. This method may be used in practice for cases 

where one does not want to estimate the averaged uv-coordinates from the pre-averaged 

MS. Similarly to the example in Figure 4.7, Figure 4.8 represents the duplicate method. 

Pointers with the same colour indicate the duplicate averaged values throughout the 

resampling bin intervals.
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average

Medium length 
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Longest baseline
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Figure 4.8: BDA with duplication: the bins are averaged and the average value is 
assigned at all points of the resampling bin interval.

4.2.3 Semi-duplication and flagging

This method consists of combining the flagging and the duplicate methods in order to 

benefit from their full advantages. In so doing, we seek both data compression and quick 

computation, while on the other hand the implementation is easier to handle. The idea 

is to duplicate the averaged bin along two central entries of the resampling bin if the 

total number of entries within this resampling bin is even, otherwise the averaged bin is 

assigned only to the central bin of the resampling bin. Any other entry is then flagged, 

as shown in Figure 4.9.

4.3 Simulations and results

Having explored the mathematics and difficulties behind the implementation of BDA, 

we now turn to the simulation aspects. We consider our tests on a sky model of 1 

Jy point source at various sky positions, with no noise or other corruptions included. 

We evaluate the efficiency of a BDA correlator using two different procedures. Firstly, 

we simulate the source at a fixed sky position, apply BDA and measure the averaging 

effects separately on each baseline. Secondly, we simulate the point source at various 

angular distances from the phase centre and apply BDA and BDWFs across an equal
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Figure 4.9: BDA with semi-duplication and flagging: the bins are averaged and the 
average value is duplicated only at the two central points of the resampling bin interval

and the other bins are flagged.

uv-distance, thereby evaluating the interferometer array cumulative decorrelation effects 

on all baselines. Following the same procedure used in Section 3.3, we measure the source 

peak amplitude in each image after averaging. Since each dirty image corresponds to a 

single source, the peak gives us the degree of smearing associated with a given averaging 

method and compression factor.

4.3.1 Source amplitude vs. East-West baseline length

We simulate two high-res MSs each with a source at 30 arcmin from the phase centre 

of the observation. Furthermore, we generate two low-res MSs to receive the resampled 

visibilities. We present the amplitude loss as a function of East-West baseline length. 

The results of BDA and simple averaging are compared in Figure 4.10.

• The first MS consists of 10 frequency channels of 125 kHz width, and 2800 timeslots 

of 1 s integration time. In this test (top panel of Figure 4.10) , the compression 

factor is fixed to C F  =  100 x 1 for both BDA and simple averaging.
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• The second MS consists of 10 timeslots of 1 s integration, and 2400 frequency 

channels of 125 kHz. The compression factor is fixed to C F  =  1 x 80 both for BDA 

and simple averaging (bottom panel of Figure 4.10) .

It is clearly noticeable in Figure 4.10 that on shorter baselines, the smearing rates of 

BDA and simple averaging are equivalent. The physical interpretation for this is that, 

at these compression factors, visibilities do not suffer from decorrelation on the shorter 

baselines. On the other hand, BDA reduces smearing on the longer baselines compared 

to simple averaging. This is because fewer samples are averaged on the longer baselines 

when applying BDA, causing a decrease in decorrelation.
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Figure 4.10: Amplitude loss: the apparent intensity of a 1 Jy source, as seen by JVLA- 
C at 1.4 GHz, as a function of East-West baseline components. (Top) Compression 
carried out only in time with compression factor fixed to 100; (Bottom) Compression 

is carried out only in frequency with compression factor fixed to 80.
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4.3.2 Source amplitude vs. distance from the phase centre

In this section, we simulate a high-res MS corresponding to a 2800 s synthesis at 1 

s integration, with 300 MHz total bandwidth centred at 1.4 GHz, divided into 2400 

channels of 125 kHz each. The sky model is a single 1 Jy point source at a given distance 

from the phase centre. We then generate four MSs to receive the resampled visibilities:

(a) We prepare three MSs to receive the resampled visibilities for 25 s x 2.5 MHz, 50 

s x 5 MHz and 100 s x 10 MHz yielding three compression factors of C F =25x20, 

C F =50x40 and C F =100x80 respectively.

(b) A fourth MS is prepared to receive the sampled visibilities for BDA. This MS is a copy 

of the high-res MS where one of the BDA implementation methods described in Sec­

tion 4.2 is applied. Three compression factors are adopted for the BDA: C F =25x20, 

C F =50x40 and C F =100x80. It is important to note that, in the case of overlap­

ping BDWFs, all the bins1 reserved for the overlapping filters are flagged at the end 

of the resampled procedure, i.e. before the resampled visibilities are imaged.

(c) The synthesis time for these MSs is 2000 s with 200 MHz total bandwidth. It is 

quite remarkable that the synthesis time and the total bandwidth are less than the 

high-res MS. As stated in Section 3.2.1, for overlapping BDWFs a number of time 

and frequency samples must be allowed at the observation starting time and/or 

frequency and the observation ending time and/or frequency. These overlapping 

samples correspond here to 800 s and 100 MHz in time and frequency respectively.

As was discussed in Section 3.2, resampling with BDWFs also results in a different image- 

plane response. For example, with a sinc-1x1, longer baselines correspond to a sinc-like 

window function and boxcar taper in the image-plane. For shorter baselines, a sinc-1x1 

corresponds to a boxcar and a sinc-like taper in the image-plane, and therefore increased 

smearing. Applying BDA to BDWFs may lead to a more optimal response, given that the 

short baselines and the long baselines are processed with similar visibility plane sinc-like 

filters. This implies an equal image-plane boxcar taper for each of the baselines.

To distinguish the case of BDA applied to overlapping BDWFs from non-overlapping 

ones, we will designate the overlapping BDWFs as bda-W F-ax^, i.e. for each baseline

1These bins are the samples at the starting time-frequency and ending time-frequency of the duplic­
ated high-res MS prepared for resampling using overlapping BDWFs
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pq the resampling bin is now of size a A pqt x f A pqv , where a  and f  are the overlap 

factors.

Figures 4.11, 4.12 and 4.13 depict the performance of simple averaging with resampling 

bin sizes of 25 s x 2.5 MHz, 50 s x 5 MHz and 100 s x 10 MHz compared to BDA:

(a) For C F =25x20 (Figure 4.11) ; two types of BDA are applied to BDWFs:

bda-sin c-4x4  i.e. an overlapping sinc window 

bda-bessel-4x4  i.e. an overlapping Bessel window

(b) For C F =50x40 and C F =100x80 (Figures 4.12 and 4.13) ; two types of BDA are 

applied to BDWFs:

b d a-sin c-2 x 2 i.e. an overlapping sinc window 

bda-bessel-2x2  i.e. an overlapping Bessel window

These BDAs applied to BDWFs are turned to two different FoI settings, as indicated by 

the plots legend: 2 deg and 4 deg.

Based on the above discussion, we can now interpret some of our main results. These 

results can be alternatively appreciated by regarding the performance of BDA applied 

to BDWFs:

It is shown in Figure 4.11 that BDA with C F =25x20 provides good results in flux 

recovery, i.e. for 5% smearing this gives us a field with radius 1.4°, while simple averaging 

with C F =25x20 can only recover a field with radius 0.9°. We can also note that at this 

compression factor, BDA achieved a similar far field suppression performance compared 

to simple averaging.

Figures 4.12 and 4.13 show the resampling with compression factors of C F =50x40 and 

C F =100x80 respectively. All the BDAs provide better source recovery compared to 

simple averaging, and source suppression is similar to regular averaging at the same rate. 

Note how the far field pattern behaviour of BDAs at these regimes are closer to a sinc-like 

pattern. This is easily understood by looking at the IPR for BDA (refer to Section 4.18) : 

the boxcar windows are similar for all baselines, larger compression factors correspond 

to larger boxcars that become more “sinc-like” in the image-plane.
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Figure 4.11: Amplitude loss: the apparent intensity of a 1 Jy source as seen by JVLA- 
C at 1.4 GHz as a function of distance from phase centre, for simple averaging with 25 
s x 2.5 MHz bins, and for BDA, and BDA applied to BDWFs. The compression factor 

is fixed to CF  =  25 x 20 for all the resampling methods.

All the BDAs applied to overlapping BDWFs provide excellent performance at these com­

pression factors compared to regular averaging or BDA: the smearing performance across 

the FoI is less than 1%, and out-of-FoI suppression is almost two orders of magnitude 

higher than simple averaging or BDA. Note the tapering behaviour for BDA applied 

to overlapping BDWFs at the different compression factors. As the compression factor 

increases, the response of BDA applied to overlapping BDWFs becomes flat: this clearly 

illustrates their excellent performance. The reason for this is that the sinc-like window 

function is applied across an equal uv-distance to all baselines. For larger compression 

factors the sinc-like window function becomes more proximate to the “sinc” , which results 

in a more optimal “boxcar-like” in the image domain.

4.4 Conclusion

For a fixed time length, a long baseline will cover a longer track in visibility space 

compared to a shorter baseline, which results in lower spatial modes being oversampled 

compared to higher spatial modes. This necessitates the use of BDA to optimize the
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Figure 4.12: Amplitude loss: the apparent intensity of a 1 Jy source as seen by 
JVLA-C at 1.4 GHz as a function of distance from phase centre, for simple averaging 
with 50 s x 5 MHz bins, and for BDA, and BDA applied to BDWFs. The compression 

factor is fixed to CF =  50 x 40 for all the resampling methods.

Figure 4.13: Amplitude loss: the apparent intensity of a 1 Jy source as seen by JVLA- 
C at 1.4 GHz as a function of distance from phase centre, for simple averaging with 100 
s x 10 MHz bins, and for BDA, and BDA applied to BDWFs. The compression factor 

is fixed to CF =  100 x 80 for all the resampling methods.



Chapter 4. Baseline Dependent Averaging 88

image-plane response for each baseline. The use of BDA and BDWFs for equal uv-space 

averaging has been investigated analytically and via simulations.

We have established that BDA by itself can only achieve data compression but not FoI 

shaping: BDA does decrease smearing over the FoI, while on the other hand, sources out- 

of-FoI are not suppressed compared to simple averaging. We have found that combining 

BDA with BDWFs results in excellent tapering behaviour, which can decrease smearing 

to about 1% or less over a selected FoI, with out-of-FoI source suppression almost two 

orders of magnitude higher than simple averaging, while the data are compressed at the 

same rate.

We should note that BDA also distorts the PSF, which reacts differently compared to 

simple averaging. The next chapter will be devoted to deriving this PSF at different sky 

positions for the case of BDA, simple averaging and BDWFs to integrate them into an 

existing deconvolution imaging algorithm.



Chapter 5

Fast Algorithms for Approximating 

the Offset PSF Response and 

Implementation in DDFacet

In Chapter 3 and 4 we showed that averaging distorts images of astronomical sources, 

in particular off-axis sources. It was shown in Section 1.6 that averaging also distorts 

the PSF differently at each sky position. In interferometric imaging, deconvolution is 

used to remove the PSF from the dirty image. To account for a position-dependent 

PSF, deconvolution algorithms would need to evaluate the PSF at each minor loop 

iteration in order to remove it from the dirty image in a correct manner. With a simple 

CLEAN algorithm [Clark, 1980] and its derivatives [Cornwell, 1983, Steer et al., 1984], 

deconvolution is regarded as an iterative approach, where the brightest pixel value is 

found step by step and subtracted from the image until the loop reaches a given threshold. 

During each step, the brightest pixel value is convolved by the PSF of the instrument 

before the result of the convolution is subtracted from the image. Note that in contrast 

to a simple CLEAN algorithm, which uses the same PSF to deconvolve all the sources, 

deconvolution with position-dependent PSFs must evaluate the distorted PSF at each 

successive pixel's position in oder to subtract accurately. This makes deconvolution

This chapter draws extensively on: M. T. Atemkeng, O. M. Smirnov, C. Tasse, G. Foster and J. 
Jonas, Towards a position dependent deconvolution scheme for radio interferometric imaging. Astronomy 
& Astrophysics (A&A), in preparation. It is acknowledged that some of the text in this chapter will 
therefore “match” that of the article. The reference in this footnote serves as a general reference for all 
such text.
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with position-dependent PSFs a complex task to handle compared to a simple CLEAN 

algorithm, given that it is computationally expensive to account for the distorted PSF 

at each iteration. The brute-force computational effort or complexity to evaluate the 

position-dependent PSF during the CLEAN iterations scales as O(Npix log2 Npix), where 

N ix  is the number of pixels or cells in the image (we refer the reader to Section 5.4 for 

an extensive discussion).

In this chapter, we use the phase gradient and the PSF of the instrument to establish 

a mathematical framework that approximates the position-dependent PSFs across the 

image. The proposed mathematical framework has lower computational complexity com­

pared to the brute-force approach. We develop a position-dependent PSF deconvolution 

scheme for DDFacet [Tasse et al., b , in preparation]. This is a novel and unique approach 

in radio interferometric imaging to account for the PSF variation in a deconvolution al­

gorithm. To begin with the approximation, we describe the position-dependent nature 

of the PSF and estimate the computational costs of a brute-force approach to computing 

it.

5.1 Motivation for position-dependent PSFs

The PSF is the response of an interferometer array towards a point source of unit flux; 

it is the Fourier transform of the uv sampling function. Radio interferometric arrays do 

not measure the true sky directly, but the true sky convolved with the array PSF. The 

PSF can be treated as the transfer function between the true sky and the observed dirty 

image. In many cases, the uv-coverage may be poorly sampled because of observational 

constraints, which lead to regions in uv-space where there are no measurements. For wide 

field arrays (refer to Section 5.2) the PSF can also vary substantially due to direction- 

dependent instrument effects across the sky even though each bin is sampled at high 

temporal and spectral resolution; this is ignored in this study.

Since the effect of the PSF is inherently present in the observed data, it needs to be 

removed in order for scientific analysis to be carried out. A good deconvolution algorithm 

must subtract the PSF sidelobes from the measured sky (i.e. dirty image) accurately, 

otherwise this will result in imaging artefacts. Therefore, any reconstruction of the true
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sky from the dirty image must accurately remove the sidelobes for the near and the far 

field sources.

In this chapter, we adopt the following terminology: PSF is the PSF at the field centre 

of the observation and pseudo-PSF is the PSF as seen by an off-axis source.

Below, a mathematical model to understand the pseudo-PSFs is proposed. The math­

ematical formulations are well documented in radio interferometry literature [W oody, 

2001a,b] but it is useful to present them for subsequent use. I start the formulation from 

the visibilities of the entire sky and then restrict this to the visibilities of a single point 

source.

Let us reconsider the van Cittert-Zernike theorem [Thompson, 1999, Thompson et al., 

2001] for a two-element interferometer p and q in response to a source with spectral 

brightness distribution I  as a function of the pointing direction l. The visibility function 

Vpq is given by:

Vpq(u ,v) =  I ( l ) e - 2niupqldQ, (5.1)

where l =  (l, m, n) is the vector that represents the position in the sky, and dQ is the 

solid angle. Recall from Section 3.1.1 that upq =  upq(t, v) =  (upq, vpq, wpq) is the baseline 

vector in wavelength. Parameterising Eq. (5.1) in terms of sky coordinates results in:

Vpq(U, V) =  I ( l ) e -2ni(upq(t,v)l+vpq(t,v)m+wpq(t,v)n)dl, (5.2)

where n =  \/l — l2 — m2 — 1 (refer to [Burke and Graham-Smith, 2010] for an extensive 

discussion for deriving Eq. (5.2)).

However, in reality an interferometer is non-ideal, in the sense that a measurement is 

the averaged visibility over some time-frequency bins denoted by the time and frequency 

sampling intervals At, A v , known as the sampling bin

R[AtAv]
Dkl

where k and l represent the indices of the centre time and frequency bins respectively.

At At A v Av
tk 2 tk +  T X

v  — ~2

1 ^+S1 (5.3)
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The averaged measurement can be represented by an integration:

vPqk =  A tA v  / 1 Vpq(u ( t ,v))dvdt- (5.4)
[AtAv]Bkl

Eq. (5.4) is an essential step to derive the pseudo-PSF. If we assume that the baseline 

pq tracks a single point source located at position l =  (l,m ,n ) with radius ||l|| from the 

phase centre and the source brightness is 1 Jy at position l =  (l, m, n) then Eq. (5.2) 

simplifies to

Vpq(u, v) e-2 ni(upq (t,v)l+Vpq (t,v)m+Wpq (t,v)n) (5.5)

Eq. (5.4) can thus be rewritten as an average of all the exponentials over the resampling 

bin BkAtAv]

V M =  1 
Vpqkl A tA v

e-2 ni(upq (t,v)l+Vpq (t,v)m+Wpq (t,v)n) dvdt (5.6)

B[AtAv]
kl

Eq. (5.6) reveals the following:

(a) If the source is at position l =  0, m =  0 (phase centre of the observation) then the 

inverse Fourier transform of Eq. (5.6) is equivalent to the inverse Fourier transform 

of the sampling function, i.e. the PSF at the phase centre as seen by the baseline pq.

(b) For sources at positions (l,m ) =  (0, 0), the inverse Fourier transform of Eq. (5.6) 

gives a brute-force computation of the pseudo-PSF for the baseline pq.

(c) The inverse Fourier transform of the sum of VpMki over all baselines is referred to 

as brute-force computation for the pseudo-PSF of a source at (l, m) as seen by the 

array. The brute-force computation results in the exact pseudo-PSF, but the pro­

cess is computationally costly. For example, with the FFT, O(NpqNtNv log2 Npix) 

is the complexity to evaluate a unique pseudo-PSF where Npix stands for the num­

ber of pixels or cells in the image; Npq is the number of baselines; Nt and Nv 

are the number of time samples and frequency channels respectively. Assuming 

that Nsrc is the number of sources in the image that defines the number of pseudo- 

PSFs to evaluate, the total complexity for evaluating the brute-force pseudo-PSFs 

is O (N srcNpqNtNv log2 Npix) and can even reach O(N^ix log2 Npix) in the worst case
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where each pixel in the image is a source, i.e. Nsrc 

visibility samples NpqNtNv ~  Npix.

Np2ix and the total number of

Figure 1.4 shows the inverse Fourier transform of the sum of VMki over all baselines for 

a source at the phase centre and at 1°, 2°, 3° away from the phase centre. The data 

as observed by the JVLA in C-configuration was simulated with 1 s integration time for 

a period of 1 hour, with 100 kHz frequency channels for a total bandwidth of 10 MHz; 

further resampled to 100 s integration time and 5 MHz channel width. Note the smearing 

nature and the position-dependent smearing behaviour of the pseudo-PSFs.

In the next section, I present two algorithms that generate the pseudo-PSFs with a 

complexity of O (NsrcNPqNfNV6 log2 Npix) and O ( N „ N N  log2 Npix) + O  (y ), which can 

give much better scaling than O (NsrcNpqNtNv log2 Npix), assuming NtreNVe ^  NtNv and 

Y <  Npq NtNv log2 Npix.

5.2 Fast derivation of pseudo-PSFs

I now proceed with a step-by-step algorithm to approximate the pseudo-PSF. To begin 

with, the fringe induced by the w-term is denoted by G

G(t, v) = e -2niwpq(tv)n. (5.7)

We consider the w-term for both coplanar (wpq =  0) and non-coplanar (wpq =  0) arrays, 

and for small FoIs (V 1 — l2 — m2 «  1) or wide FoIs 1 — l2 — m2 ^  1).

Using Eq. (5.7) , we can rewrite Eq. (5.6) as

Vp
M

pqkl
1

A tA v
G(t, v)e

B[AtAv]
Bkl

2ni(upq (t,v)l+Vpq (t,v)m) dtdv (5.8)

Similar to Section 3.1.2, if n  is a normalised boxcar window function given by:

AtAv, |t|< A t /2, |v|< A v /2 

0, otherwise,
n (t ,v ) =



Chapter 5. PSF approximation 94

and W  is a weighted sampling function, then Eq. (5.8) can be reformulated as a 2-D 

Fourier transform

VPMki =  W (t — tfc, v — vi)n(t — tfc, v — vi)G(t, v)e-2ni(upq(t’v)l+vpq(t>v)m)dtdv. (5.10)

Using the convolution theorem Eq. (5.10) results in

Vpqkl =  Gtv 0 (W t-tk,v-v^j 0 n̂ t-tfc,v-v^  (5.11)

=  Gtv ◦  5t-tk,v-vlWtv ◦  5t-tk,v-vln t,v , (5.12)

where o and denote the convolution operator and the Fourier transform respectively. 

The Dirac delta function 5 comes from,

W (t — tk, v — vi ) =  W t-tk ,v-vl (5.13)

=  5t-tk,v-vl o Wt,v (5.14)

and

n (t  — tk, v — v i ) = n t - t k ,v-vl (5.15)

=  5t-tk,v-vl o n t>v. (5.16)

Hence, using the convolution theorem we have W t-tk,v-vl =  St-tk,v-vl W t,v and IIt-tk,v-vl =  

St-tk,v-vln t,v . Let us denote the phase gradient St-tk,v-vl =  e- 2ni(upq(tk,Vl)l+Vpq(tk,vl)m)

by R tk,vl.

Likewise, Eq. (5.12) can be written as a convolution in uv-space:

Vpqkl =  GUpq (t,v) ◦  (̂ R-Upq (tk,Vl)W Upq (t,v) ̂  0 ^RUpq (tk Vl^Upq (t,v) ̂  . (5b7)

The inverse Fourier transform of Eq. (5.17) is the pseudo-PSF for a single visibility 

sample.
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5.2.1 Visibility domain approximation

In the following, we describe the algorithm to approximate the visibilities of the pseudo- 

PSFs relative to the phase gradient. Since averaging and resampling with BDWFs distort 

the pseudo-PSFs differently, our algorithm is able to approximate the pseudo-PSFs in 

both cases, i.e. for simple averaging and resampling with BDWFs. To avoid confusion 

in terminology, V M now denotes the resampling visibility with simple averaging or BD- 

WFs and V (dis), the approximated version of V M. If we consider X  as a BDWF, then 

X  =  n  gives the case of simple averaging. The averaged visibility in Eq. (5.17) can be 

approximated in terms of the phase changes in time and frequency as:

VPtkl =  GUpq (tk,Vl) 0 R Upq (tk ,Vl)W Upq (tk,Vl) 0 R Upq (tk,Vl)XAtfpq ,A$pq , (5.18)

where A ^ pq and A $ pq are half of the phase difference in time and frequency respectively. 

I define these phases as

A^pq = 2n  ( (Upq(ts, vi) — Upq(te, vi)l +  (Vpq(ts, vi) — Vpq(te, vi))m

nAUpq(t, vi)l

2n
2A ^pq — (upq(tk, vs) upq(tk, ve))l +  (vpq(tk,v s) vpq(tk,ve))m

—'KAUpq (tk, v )1 ,

(5.19)

(5.20)

where ts =  tk—A , te =  tk+ A , vs =  vl — A  and ve =  vl+ A  are the starting time, ending 

time, starting frequency and ending frequency of the sampling bin. Eq. (5.18) represents 

the approximated single visibility sample of the baseline pq during the integrations At 

and Av.

From the approximation, if X  is treated as a 2-D boxcar window function n  (simple 

averaging in time and frequency) then

XA^pq ,A$pq =  n A^pq ,A$pq (5.21)

=  sinc(A ^pq) sinc(A $pq) , (5.22)

where the 2-D sinc comes from the 2-D Fourier transform of a boxcar window function 

(see the proof in Appendix B) .
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In the brute-force computation of the pseudo-PSFs, each pre-averaged bin contributes 

equally to the computation. In our method, all the pre-averaged visibility bins at (C=k, 

Vj=i) are discarded during the approximation. Only the visibility bin at (tk, vl) is used 

for the approximation, resulting in cheaper computation compared to the brute-force 

method (refer to Section 5.4 for the computing time estimate).

5.2.2 Image plane approximation

In the previous section, I presented an algorithm to approximate the pseudo-PSFs using 

the phase gradient. In this section, I describe an alternative algorithm to approximate 

the pseudo-PSFs relative to the PSF at the phase centre. The PSF is the inverse Fourier 

transform of the sampling function, sampled by a number of baselines pq at discrete 

time/frequency bins. Inverting the Fourier transform of the sum over all baselines of 

Eq. (5.17) and sampled at each kl results in the pseudo-PSF at (l,m )

P (dis) =  F  - 1 { £  VpMki}. (5.23)
pqkl

Applying the convolution theorem to Eq. (5.23)

P  =  F  R Upq (tk ,Vl) Xu pq (t,v) \F  \ <3upq (t,v) ◦  [ R u pq (tk,Vl)W Upq (t,v)) \, (5.24)
pqik

where

Ppqkl — F  GUpq (t,v) ◦  R Upq (tk ,Vl)W Upq (t,v) , (5.25)

represents the PSF for a single visibility sample for the baseline pq, and the term

Kpqki F  ‘|R Upq (tk ,n)XUpq , (5.26)

is the distortion function for this single visibility sample. We can write:

P (diS) — KpqklP pqkl. (5.27)
pqkl

Let us denote by P  the PSF at the phase centre of the array (i.e. P  — J2pqkl Ppqkl). Let 

us further assume that one can find a function K representing the cumulative distortion
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effects over all the visibility bins and treat Eq. (5.27) as a convolution

P (dis) =K  o P . (5.28)

The PSF at the phase centre of the array P  is known while the function K is unknown. 

In the following paragraphs, I discuss an algorithm to find an approximation for K.

In the time domain, assume the baselines trace out a perfect circle in the uv-domain as if 

they were East-West baselines (i.e. without a v offset in the ellipses) and observe a source 

at the zenith. This implies that a uv-track in time is a circle with radius y/u0 +  v  ̂ and 

angular velocity of 2 n /(3600 x 24) =  n / (432 x 102), with the 3600 x 24 seconds indicating 

one day period rotation:

u(9) =
n

u;) +  v0 cos(9) (5.29
432 x 102 ^

v(9) =
n

/ u 2 +  v0 sin(9), (5.30
43^< 102 ^

where 9 =  arctan(uo/vo) is the angle of orientation. The baseline, which samples the 

bin at (u — u0, v — v0), has coordinates (u0,v0). The uv-domain rotation speed in time 

is then given by the partial derivative of Eq. (5.29) and (5.30) :

du
d9
dv
d9

n
—432 x 102 

n
432 x 102 V

ŷ 2̂ 2 sin(9)

u2 +  v0 cos(9).

(5.31)

(5.32)

We can now approximate half of the phase difference in time as:

du, dv . .
A *  w n( 8 9 ' +  88m )A i. (5.33)

When averaging is carried out on channels to produce a single channel it leads to decorrel­

ation in the frequency domain. In the image domain, decorrelation can be characterised 

by the product of the fractional bandwidth A v /v  with the source distance \/'2 +  m2 

from the phase centre of the observation relative to the baseline length y/u0 +  v0. We 

can approximate half of the phase difference in frequency as:

A T n A v  a/ ' 2 +  m2^J u0 + v (5.34)
v
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Hence, the time-frequency cumulative distortion effects represented by the function K 

are approximated as:

K ^ F - 1 { Xa t } 

and the approximated pseudo-PSF by

P (dis) =  ( F - 1 {X a t  Xa $ } )  o P .

(5.35)

(5.36)

We note from this method that the pseudo-PSFs are approximated from the PSF at the 

phase centre of the array denoted here by P . Evaluating P (dis) at each given l and m is 

cheaper in computation, as we will analyse in Section 5.4. The above processes for ap­

proximating K is summarised as Algorithm 1 , which computes a pixelwise approximation 

of K.

Algorithm 1. The uv-domain is a discretized measurement of dimension M A u  x LAv, 

where the discretized bins are separated by the amount of Au and Av in the u and v 

direction respectively. In the image domain, the pixels are separated by the amount 

of A l and Am  in the l and m direction respectively.

1 : p rocedu re A pproximation  of K.

2: Au = 1
M Am

3: Av = 1
LAl

4: step_ u =  M—1  Au

5: step_ v =  L—1  Av

6: cst = n
432 x102

7: uo = 1-2m  Au

8: for i from 1 to M  do

9: vo =  ^  Av

10: for j  from 1 to L do

1 1 : 0 =  arctan(u0/v 0)

12: du =  — cst^/u2 +  v0 sin 0

13: dv =  csty/u2 +  v0 cos 0

14: A T  =  n(dulr +  dvmr )A t

15: A T  =  n ̂  ̂ l 2 +  m2^ u 2

16: K ij =  X?(AT)X?(AT)

v
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17: v0 =  v0 +  step_v

18: end for

19: u0 =  u0 +  step_u

20: end for

21: end procedure 

end

5.3 DDFacet and pseudo-PSFs: gridding-degridding

This section describes the implementation of pseudo-PSFs in the faceting DDFacet im­

ager [Tasse et al., b , in preparation]. The main advantage of implementing pseudo-PSFs 

in a faceting imager is that we can deconvolve each facet with a unique pseudo-PSF, 

i.e. the pseudo-PSF at the centre of the facet. Pseudo-PSFs do not vary significantly 

across a small portion of the sky (see Figure 5.4) . With the faceting approach, the sky 

map can be partitioned into subregions of grids or facets. To deconvolve each facet, the 

exact pseudo-PSF at the centre of the facet using Eq (5.23) is computed. The irregularly 

averaged visibilities for pseudo-PSFs computed from Eq. (5.17) are then transformed to 

interpolated gridded visibilities, which lie on a regular grid; this procedure is referred 

to as gridding and the reverse process that estimates the irregularly averaged visibilit­

ies in Eq. (5.17) from the gridded visibilities is referred to as degridding. Gridding and 

degridding can be represented as

V S  (u (t^ vc)) =  ^  Cpqki (u (tc, vc) — vi) ) V ^ { u (tk, vl) ) (5.37)
pqkl

V5 fcind(u (tk, Vl) ) =  ^  Cpqkl (u  (tk, vl) — u (t^ vc) ) Vgqjfl (u (tc, vc)) , (5.38)
pqcc

respectively. Eq. (5.37) shows that gridding is equivalent to a discrete convolution with a 

finite support convolution kernel C. Visibility bins that are in the range of the convolution 

kernel are averaged and this averaged value is allocated to the corresponding point on 

the grid (i.e to point c).
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5.4 Computational cost for exact and approximated pseudo- 

PSFs

The FFT computational complexity for a pseudo-PSF scales as:

O {NpqNtNv log2 Npix), (5.39)

where Npq is the number of baselines; Nt and Nv are the number of timeslots and channels 

respectively. The product NpqNtNv is the total number of visibilities and it predicts the 

time taken to evaluate the fringe induced by each baseline, multiplied by the source 

amplitude and followed by the summation over all the baselines visibilities. NpqNtNv 

typically scales as Npix and we have the following computational complexity:

O(Npix log2 Npix). (5.40)

Assume that Nsrc is the number of sources in the sky map. An iterative computation of 

pseudo-PSFs leads to a complexity of

O (NsrcNpqNtNv log2 Npix) . (5.41)

In the worst case where each pixel is a source (Nsrc Npix), we get

O (Npix log2 Npix). (5.42)

The computational complexity O (Npix log2 Npix) is the predicted cost to evaluate the 

pseudo-PSFs using a brute-force method. This complexity tends to be in the order of 

Npix and therefore scales very poorly for widefield imaging.

The uv-domain approximation for pseudo-PSFs uses the phase gradients (visibility at the 

centre of each resampling interval; R Upq(tk,Vl)) and discards other visibility bins for the 

approximation of a pseudo-PSF. Thus, if NpqNtNv is the total number of visibilities, then 

only a few visibility samples are used for the uv-domain approximation. In other words, 

if nt and nv are the number of time and frequency bins to resample, then NpqNtreNVe will 

be the number of phase gradients used in the approximation. Note here that Ntre =  Nt/n t 

and NVe =  Nv/n v. The complexity to approximate a unique pseudo-PSF in uv-domain
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scales as:

O(NpqNtreN e log2 Npix). (5.43)

The phase gradient is different for each source. This is problematic, as it emphasises 

the iterative computation of the phase gradient for each source, which increases the 

complexity for all the pseudo-PSFs by a factor of Nsrc, i.e.

O (NsrcNpqNtreN e log2 Npix) , (5.44)

which is much better than O (N srcNpqNtNv log2 Npix), given that NtreN£e ^  NtNv. 

Note here that the cost of evaluating the image plane response of the BDWFs X  (i.e. 

X ) is regarded as negligible, given that X  is a real function, and therefore does not 

involve any exponential functions (e.g. in Section 5.2.1, for X  =  n , Xa ^ A$pq =  

sinc(A Tpq)sinc(A Tpq) , which is computationally negligible).

The image domain approximation uses the PSF at the phase centre to approximate all 

the pseudo-PSFs. The complexity of evaluating the exact PSF at the phase centre scales 

as O (N pqNtNv log2 Npix) (see Eq. (5.39)). Suppose that O (7 ) is the computational 

complexity to evaluate the cumulative distortion effects K for all sources in the map. 

The image plane approximation for pseudo-PSFs shows a computation scaling of

O(NpqNtNv log2 Npix) +  O (7 ), (5.45)

where the cost O (7 ) can be regarded as negligible, given that the evaluation of K does 

not involve any exponential functions (see Section 5.2.2 for the definition of K), which 

implies that 7 ^  NpqNtNv log2 Npix and shows that the complexity in Eq. (5.45) is lower 

compared to O (NsCTNpqNtNv log2 Npix).

In the case of facet imaging, where the sky is partitioned into a subset of pixels and 

each subset is deconvolved separately with a unique pseudo-PSF before the results of 

each clean subset are merged, the computational complexity of evaluating the exact 

pseudo-PSFs iteratively with Nfacet facets is

O (Nfacet Npix log2 Npix) (5.46)
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where Nfacet ^  Npix which is much better than O (Npix log2 Npix) .

If the far pseudo-PSF sidelobes are insignificant (below some given threshold), then the 

size of the pseudo-PSF of each facet can be restricted to the facet size. In this case the 

computational complexity now scales as:

O (NfacetNpix,facet log2 Npix,facet) . (5.47)

Here, Npix facet is the number of pixels in each facet and Npix,facet ^  Npix. The complexity 

in Eq. (5.47) implies that deconvolution will run much faster compared to Eq. (5.46) .

5.5 Simulations and results

This section starts with examples showing the accuracy of pseudo-PSFs approximation 

in the visibility and image domains. We present the approximation using two resampling 

schemes: simple averaging and BDWFs. The BDWF used in this test is the sinc-1x1 

tuned to a 2° FoI. We show at the end of this section the results of deconvolution with 

pseudo-PSFs implemented in DDFacet.

5.5.1 Pseudo-PSFs: approximation accuracy

The accuracy of the pseudo-PSF approximation in the visibility and in the image plane 

can be measured and compared to the exact pseudo-PSF by means of simulations. Spe­

cifically, we have simulated the case for the JVLA in C configuration at 1.4 GHz.

The pseudo-PSFs’ approximation in the visibility plane (shown in Figure 5.1) for the 

case of simple averaging and in Figure 5.2 for the case of sinc-1x1 turned out to be 2° 

FoI. The left panels of Figures 5.1 and 5.2 show the results of pseudo-PSFs’ for a source 

at 1.5° while the right panels show the results for a source at 2.5°. The top panels of 

Figures 5.1 and 5.2 present the exact and the approximated pseudo-PSFs in dB, while 

the bottom panels are the residuals for the approximated pseudo-PSFs subtracted from 

the exact pseudo-PSFs.

The results in Figures 5.1 and 5.2 show the shape distortion and the accuracy of pseudo- 

PSFs approximation. The absolute residual error in Figure 5.1 is less than 0.08 and 0.05
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for a pseudo-PSF at 1.5° and 2.5° respectively. Note that the pseudo-PSFs for sinc-1x1 

turned out to be 2° FoI results in a different shape compared to simple averaging, with 

an absolute error less than 0.03 and 0.01 for pseudo-PSFs at 1.5° and 2.5° respectively.

Pseudo-PSF at 1.5°

Pixels

Figure 5.1: Simple averaging and pseudo-PSFs: exact PSF and approximation in 
the visibility domain. (Top panels) Exact and approximated pseudo-PSF for a source 
at 1.5° (left) and for a source at 2.5° (right) compared in decibel. (Bottom panels) 
Residuals for the approximated pseudo-PSFs subtracted from the exact pseudo-PSFs.

The image plane exact and approximated pseudo-PSF are shown in Figure 5.3. The top 

panel of this figure shows the exact pseudo-PSF, the middle panel shows the approxim­

ated pseudo-PSF, and the bottom panel shows the residual error. The results show that 

we achieve accuracy of approximation with an absolute residual less than 0.04 and 0.012 

for a pseudo-PSF at 1.5° and 2.5° respectively.
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mT3

Pixels Pixels

Figure 5.2: sinc-1x 1 and pseudo-PSFs: exact PSF and approximation in the visibility 
domain. (Top panels) Exact and approximated pseudo-PSF for a source at 1.5° (left) 
and for a source at 2.5° (right) compared in log scales. (Bottom panels) Residuals for 

the approximated pseudo-PSFs subtracted from the exact pseudo-PSFs.

5.5.2 DDFacet and pseudo-PSFs

In this section the effects when pseudo-PSFs are taken into account during deconvolution 

are studied. We simulate visibility data for the LOFAR radio telescope. The LOFAR 

configuration employed in the simulation corresponds to a 1 hour synthesis at 1 s integ­

ration with 10 MHz total bandwidth centred at 200 MHz, channelised into 100 channels 

of 100 kHz each. The measurement set is populated by noise-free simulated visibilit­

ies with a random sky model. We then generate a low-res measurement set to receive 

the resampled visibilities for 50 channels averaged together and convert the visibilities 

to dirty image, then deconvolve using DDFacet in its original form and in its modified 

implementation accounting for pseudo-PSFs. Example of output images are shown in 

Figure 5.4 and 5.5. The images are of size 80 arcmin by 80 arcmin and divided into 21
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facets by 21 facets. For deconvolution with pseudo-PSFs, each facet is deconvolved with 

the pseudo-PSF at the centre of the facet. The size of each facet determines the degree 

of variability of pseudo-PSFs within the facet; the larger a facet, the higher the degree 

of variability. This means that there is an advantage in using smaller facets rather than 

larger facets for pseudo-PSFs’ deconvolution. However, the computational constraints 

for a faceting imager using smaller facets during deconvolution remain unchanged, since 

each facet is imaged separately, then deconvolved.

Figure 5.4 shows the variation of pseudo-PSFs across the image. Note the severe distor­

tion of pseudo-PSFs away from the phase centre. Also, note that the pseudo-PSFs do 

not vary significantly within a small region in the image. This allows some tolerances 

for implementing a unique pseudo-PSF to deconvolve each of the sources within a small 

region in the image. The analysis shows that pseudo-PSFs are suitable for a faceting 

deconvolution framework, since the pseudo-PSFs are not evaluated for each source in the 

image, but instead for each facet, which results in a decrease in the computational cost 

of the pseudo-PSFs.

The top panel of Figure 5.5 shows the deconvolved image produced by DDFacet without 

using pseudo-PSFs. It illustrates the degraded image fidelity; the sources are severely 

distorted with the far-field sources smeared, compared to near-field sources. We cannot 

recover the structures of the original sources because the sources are deconvolved using 

the PSF at the centre of the image and neglect the fact that the pseudo-PSFs are distorted 

across the image.

The bottom panel of Figure 5.5 shows the result from the modified DDFacet, accounting 

for pseudo-PSFs. We see that we can recover the true shape of the original sources 

because the effects of the pseudo-PSFs have been subtracted properly. The image shows 

that the use of pseudo-PSFs is effective in deconvolution. In fact, the shape fidelity is 

expected to be exact for all the sources in the image because each of these sources is 

deconvolved with its exact PSF or a PSF relatively close to the source exact PSF.

5.6 Conclusion

In this chapter, I have presented a novel approach to radio interferometric imaging: the 

use of position-dependent PSFs in deconvolution. I have shown that boxcar averaging
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and BDWFs applied to visibilities result in a distortion of the PSF which depends on sky 

position. I have briefly described the radio interferometric PSF and proposed mathem­

atical frameworks to approximate a position-dependent PSF in both the visibility and 

image plane. These frameworks are cheaper in computation compared to the iterative 

brute-force computation of position-dependent PSFs. The advantage of this approxim­

ation is that the PSF at different sky positions can be used to deconvolve images at a 

lower computational cost. A pseudo-PSF deconvolution algorithm was then implemen­

ted in DDFacet. Simulation yielded high fidelity reconstruction of sources in the sky 

with pseudo-PSFs deconvolution. In addition to the image fidelity, pseudo-PSF decon­

volution allows one to deconvolve with fewer cleaning iterations. Since the smeared PSF 

are subtracted from the source, the fainter pixels affected by smearing are discarded for 

the next CLEAN iteration. The potential of the algorithms proposed in this chapter 

represent a step towards the development of advanced deconvolution techniques that use 

fewer computational resources and are capable of providing higher image fidelity.
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Figure 5.3: Simple averaging pseudo-PSFs: exact PSF and approximation in the 
image plane. (Top panels) Exact pseudo-PSF for source at 1.5° (left) and source at 
2.5° (right). (Centre panels) Approximated pseudo-PSFs for a source at 1.5° (left) and 
for a source at 2.5° (right). (Bottom panels) Residuals for the approximated pseudo- 

PSFs subtracted from the exact pseudo-PSFs.
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Distance from the phase centre [arcmin]

Figure 5.4: Pseudo-PSFs for 1 s integration time, 5 MHz compression intervals for 
LOFAR telescope observing at 200 MHz. Note the smeared and position-dependent

nature of pseudo-PSFs.
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Figure 5.5: (Top): DDFacet without pseudo-PSFs; each source is deconvolved with 
the PSF at the centre of the image, i.e. the inverse Fourier transform of the uv-coverage. 
Note the effects of smearing in the image, with a significant shape distortion for far field 
sources. (Bottom): DDFacet with pseudo-PSFs; each source is deconvolved with the 
pseudo-PSF at the centre of the facet to which it belongs. The result shows excellent 
ability of pseudo-PSFs to recover the image fidelity. The shape of each source in the

image is exact.



Chapter 6

General Conclusion and 

Perspectives

6.1 Problem and objectives

A radio interferometric correlator produces samples of the true uv-distribution by av­

eraging the signal of each baseline over discrete time/frequency bins. The bins may be 

further enlarged by averaging in the post-processing stage. This averaging results in a 

baseline-length-dependent loss of signal amplitude and phase coherence, which is depend­

ent on distance from the image phase centre. In general, the effect of averaging causes 

the visibilities to decorrelate and creates smearing artefacts in the image domain. For 

surveys with the new generation of radio telescopes such as MeerKAT and in the future 

the SKA, with wide FoIs and large bandwidth, the bin size, i.e. correlator dump time 

and channel width, must be kept very small to keep decorrelation down to acceptable 

levels, which leads to very high data rates. In the VLBI regime, the baselines are so long 

that smearing is the main bottleneck on the achievable FoI. Averaging also distorts the 

PSF differently at each sky position, since different baselines are attenuated differently. 

The goal of this thesis was threefold, namely;

(a) Develop a theoretical model to understand decorrelation/smearing and propose a 

novel approach to eliminate it while the visibilities are averaged at higher time/fre- 

quency compression factors without any compromise of the science goals.

110
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(b) Develop an analytical model to understand decorrelation/smearing with a BDA cor­

relator and study the possibility of decreasing smearing at a higher compression rate 

with BDA.

(c) Study the distortion of the PSF induced by averaging, and propose a novel algorithm 

to evaluate these PSFs at lower computational costs across each pixel in the sky map. 

Integrate a multi-PSFs deconvolution scheme in an imaging algorithm.

6.2 Methodology and results

I started the work by studying the origins of imaging artefacts as well as smearing effects 

in radio interferometry from a general signal processing point of view. Some window 

functions that are well-known in DSP were examined for the feasibility of their use in 

interferometric visibility averaging. Similarly, mathematical tools relevant to the problem 

of decorrelation and smearing were also studied. The main results and conclusions from 

these studies are:

(a) I have shown that visibility averaging (as currently implemented in correlators) is 

similar to convolution at the centre of the averaging intervals with a “boxcar” win­

dow function. Further, I have demonstrated, both theoretically and with simulations, 

that the use of suitably tuned window functions (referred to as BDWFs in this thesis) 

can both reduce smearing over the selected FoI (compared to simple “boxcar” aver­

aging) and suppress unwanted signal from regions outside the FoI while the data are 

compressed to an acceptable level. The penalty for this is a loss in nominal sensit­

ivity (since an unweighted average represents theoretically maximum sensitivity) at 

the centre of the FoI, but I have shown that this is offset by a decrease in smearing 

over the rest of the FoI. The study was further extended to the use of overlapping 

BDWFs. The following was established: The use of overlapping BDWFs can reduce 

smearing to under 5% and recover this nominal sensitivity loss, with excellent out- 

of-FoI source suppression. In principle, this should allow surveys to reach the same 

depth across the FoI, while reducing data sizes (by allowing for larger time/frequency 

bins). In the VLBI regime, larger FoIs become possible.

(b) I have studied the mathematical and implementation aspects for BDA. I have studied 

the use of BDA for decreasing smearing and for data compression. It was shown that
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BDA results in eliminating decorrelation on the longer baselines, while the data are 

significantly compressed on the shorter baselines. It was also shown that applying 

BDA to overlapping BDWFs results in less than 1% smearing over a selected FoI 

with excellent performance in far field suppression.

(c) I have also explored the PSF behaviour of off-axis sources (referred to as pseudo- 

PSFs). Using linear algebra, I have proposed two analytical methods to understand 

and approximate these pseudo-PSFs. The first method uses the phase gradient to ap­

proximate the uv-domain decorrelation effects for pseudo-PSFs. The second method 

uses the PSF at the phase centre of the observation to approximate the smeared 

behaviour of pseudo-PSFs from the image plane. The proposed methods are cheaper 

in computation compared to an iterative brute force computation of pseudo-PSFs. 

The approximation allows us to implement pseudo-PSFs in DDFacet imager, which 

is a novel and unique approach in radio interferometric imaging. It was shown that 

pseudo-PSFs deconvolution results in higher image fidelity compared to standard 

deconvolution algorithms.

6.3 Perspectives and future work

The work presented in this thesis opens up several possibilities for future work. Firstly, 

designing an optimally matched filter for a BDWF is an interesting avenue of further 

research. In practical situations, the image-plane response of a sinc-like lowpass filter 

is far from ideal in the sense that a sinc-like filter is band-limited (zero outside some 

intervals) and discretised. Filter design theory for lowpass filters could therefore be used 

to explore an ideal image plane response, by using an approximation to define the ideal 

response parameters, such as the passband, the transition band and the stopband.

The second avenue involves evaluating the degree of source suppression as a function of 

array layout and BDFWs’ parameters, i.e. the passband, transition band, stopband and 

the size of the filter.

The third avenue of exploration consists of investigating and exploring calibration with 

BDA and BDWFs applied across equal uv-distance. Currently, BDA and BDWFs can 

only be used post-calibration. Exploring the calibration parameters for BDA and BDWFs
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could open a new research avenue in radio interferometry, in view of the effective use of 

BDA and BDWFs.

Finally, this thesis was restricted to simulations. The next step will be to implement each 

of the techniques presented in this work in practical research scenarios, e.g. applying the 

filters to real interferometric data. Currently, BDWFs are being implemented in the EVN 

software correlator (SFXC) at JIVE [Keimpema et al., 2015b] and the results are already 

promising. It would be beneficial to include BDWFs in other interferometric arrays as 

well.



Appendix A

The Fourier Transform of the 

Sampled Signal

The Fourier transform of a function f  is defined as follows:

F { f  }(y) f  (x )e -iyxdx,

and its inverse

f(x ) /+ro
F { f  }(y )e iyxdy.

Now, it can be shown that the Fourier transform of a Dirac Comb is a Dirac Comb: A 

Dirac comb s is defined as below:

+^
s =  ^  5(x — kAx) where k is an integer,

k=-<X>

and its Fourier transform is

/ + ^  +^
y ,  £(x — kA x)e-iyxdx.

k=-<x>
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Since the Fourier transform is a linear operation, the previous equation can be rewritten

as:

F { s } ( y ) =  £
+:  C+ :

k=—oc :
£(x — kAx)e iyxdx.

For ^ =  x — kAx, then x =  ^ +  kAx, given that k and A x are constant, dx =  d^, we 

have

+:  T + :
F {s } (y )  =  ^  / £(x — kA x)e—iyxdx

k=-oo "'—:
+:  /* + :

e-iykAx /
k=—:

+ :

e  -
k=—oc

5(n)e-iy d̂ii,

-iykAx

A Dirac Comb with period Am  is presented in Fourier series as:

+ :
I  5(t — kAm)

k = - :

Let A x =  2n /A y; we can write

1
Am

+ :
—i kt

y e Am .k=—:

F {s } (y )
+ :
^  e—iAyky

k=—:
+ :

Ay - — e " Ay
k=—:

+ :

1 p—i Ay ky 
Ay

Ay 5(y — kAy).
k=—:
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The proof then follows:

F K } (y) == ( V { s } o F K  } )  (y) 

r
= / F {s } (x )F {d r }(y  — x)dx 

J — ̂
/* + ̂

= Ay /  ^  £(x — k A y )F {d r}(y  — x)dx
fc=—̂

= Ay ^  / £(x — k A y )F {d r}(y  — x)dx 

= Ay ^  F {d r}(y  — kAy).
k=—<x>



Appendix B

The Fourier Transform of 2-D 

Boxcar Window

The Fourier transform of 2-D boxcar window n  defined as:

n (t, v)
SSsV |t|< A t/2 , |v|< A v /2  

0 otherwise,
(B.1)

yields

F {n ( t ,v ) }
1

A tA v
1

A tA v

1
A tA v

F {n ( t ) }F {n (v )}

e—2njut dt
At2
At ' 2

1
-e— 2njut

At2

At22nju

sin(nAtu)\ /  sin(nAvu)' 
nAtu )  \ nAvu 

sinc(nAtu)sinc(nAvu).

Av2
Av2

e—2njuv

— 1 
2nju

e—2njuv
Av2

Av2

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)
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