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We undertake a study of the classical regime in which Planck's constant and 
Newton's gravitational constant are negligible, but not their ratio, the Planck mass, 
in hopes that this could possibly lead to testable quantum gravity (QG) effects in a 
classical regime. In this quest for QG phenomenology we consider modifications 
of the standard dispersion relation of a free particle known as deformed special rel­
ativity (DSR). We try to geometrize DSR to find the geometric origin of the space­
time and momentum space. In particular, we adopt the framework of Hamilton 
geometry which is set up on phase space, as the cotangent bundle of configuration 
space in order to derive a purely phase space formulation of DSR. This is neces­
sary when one wants to understand potential links of DSR with modifications of 
quantum mechanics such as Generalised Uncertainty Principles. It is subsequently 
observed that space-time and momentum space emerge naturally as curved and 
intertwined spaces. In conclusion we mention examples and applications of this 
framework as well as potential future developments.
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Chapter 1

Introduction

The 20th century marked an era of great advancement in theoretical physics with 
the conception of the classical theory of gravity and the small scale quantum the­
ory. There have been extensive research and observations for these theories re­
spectively and they have revolutionalized our understanding of modern physics. 
General Relativity(GR) provides a comprehensive way of describing cosmological 
physics and similarly Quantum Mechanics (QM) gives an accurate description of 
atomic and subatomic physics. As astonishing as these theories are at describing 
the physics in their respective domains, they offer strikingly different pictures of 
physical reality in which the description of reality given by the two theories seems 
to be quite contradictory. Quantum mechanics and/or quantum field theory, a 
relativistic version of quantum mechanics, are formulated in a fixed background 
space, called Minkowski space and posses a probabilistic nature [1], whereas gen­
eral relativity is completely backroung independent and is a classical theory which 
interprets gravity as a geometric property of spacetime. When applied to systems 
where neither one or the other is neglible, these theories turn out to be incompati­
ble, as a result of the properties we have mentioned. Thus one requires, for such a 
system, a theory which reconciles both GR and QM in order to describe the physics 
of the system. Such a theory of quantizing gravity is termed quantum gravity. The 
search for a quantum theory of gravity has brought about new fields of research [2­
4] such as string theory and loop quantum gravity to name a few. These fields aim 
to give a mathematical explanation of quantum gravity. However we currently do 
not posses sensitive enough intrumentation and/or apparatus to experimentally 
observe effects of quantum gravity. This restriction developed a new area of re­
search called quantum gravity phenomenology in which a "bottom-up" approach 
is adopted [5].

There are certain complications which arise when one considers a quantum 
theory of gravity. There are 'factual' and there are conceptual difficulties with such 
a theory [6]. The factual hurdles include

1. The difficulty to test any proposal of quantum gravity due to the inaccessi­
ble regimes at which quantum gravity is expected to manifest. We do not 
currently have the technology to reach these regimes.

2. There does not seem to be agreement on what sort of data and predictions 
we might expect from such a theory. We do not know what to expect inside 
a black hole for example.

There are of course also the conceptual difficulties one may encounter in a the­
ory of quantum gravity, such as

1. One might be faced with current conceptual obstacles that arise from the 
constituent theories of quantum gravity.

2. Also one will have to face the problem of conceptualising a theory that com­
bines these two theories viz QM and GR.

With these problems in mind, we ask ourselves , how can one define a concep­
tual framework in a mathematical consistent language which could represent an 
unknown quantum theory of gravity for which we have no tangible experimental
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evidence [7]. Theories which tackle the problem head on such as string theory or 
loop quantum gravity are commonly refered to as "top-down” approaches, and are 
more prone to such difficulties.

A quantum theory of gravity suggests the existence of a minimal length scale in 
nature, see [8] and has predicted an essential modification of Special Relativity [9], 
the so called Deformed Special Relativity. The existence of such a minimal length 
motivates the origin of the general uncertainty principle and non-commutative 
geometries [10], [11]. One can obtain numerous motivations of the existence of a 
minimal length, such as black hole physics and or space-time fuzziness amongst 
others. The correspondence between length and momentum thus enforces a max­
imal momentum/energy corresponding to the minimal length scale. The energy 
required to probe a region above this maximal energy is less than the energy re­
quired to form a mini black hole in that region of sphere [8], Thus this means that 
any attempt to probe a phenomena above this maximal energy will lead to the for­
mation of a black hole in that region of space, thus preventing any measurements 
in that region of space. In string theory, the minimal length is the order of mag­
nitude of the oscillating strings that form elementary particles, such that lengths 
shorter than this do not make sense. In this thesis, we will be using the term min­
imal length scale Ip as the second observer invariant scale in Deformed Special 
Relativity with

Ip =  1.6 1 622 x 10 -35m (1.1)

Deformed Special Relativity (DSR) is a proposal of how the theory of Special 
Relativity might experience drawbacks when energies close to the Planck energy 
Ep are considered. Planck energy is

Ep =  1.22 x 1028eV (1.2)

The theory of DSR thus claims to be a theory which is valid in the semi-classical 
regime, which lies between a full theory of Quantum Gravity and the general rel­
ativistic regime. The idea of such a theory has been around for over 15 [96],[97] 
years and since its inception it has attracted quite a lot of attention as some believe 
qualitative predictios of DSR could be tested experimentally in the very near fu­
ture. In DSR, in contrast to Special Relativity, one postulates the existence of two 
observer-independent scales, the speed of light c and a planck mass k ~  jp. The 
appearance of a minimal length in quantum gravity also results in the modifica­
tion of the Heisenberg Uncertainty Principle (HUP) of quantum mechanics. The 
HUP is a principle which asserts to two conjugate observables that they cannot 
simultaneously be precisely measured. When one is measured with precision, we 
lose all information of the other. Due to the minimal length, an extra term in the 
right hand side of the HUP inequality is introduced and the result of this deforma­
tion is called Generalized Uncertainty Relation (GUP) which possesses a minimal 
variance for the measurement of distances [12].
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1.1 Quantum Gravity
The problem of marrying Quantum Mechanics (QM) and General Relativity (GR) 
is one of the most difficult tasks of modern theoretical physics, which to this day, 
has not found a consistent and satisfactory solution. Our current understanding of 
gravity is based on Einstein's 1916 General Relativity. GR is a classical mechanics 
theory which does not take into consideration any quantum properties of particles. 
There have been numerous experimental tests and observations which enforced 
our trust and belief in GR, such as the motion of celestial bodies and predictions of 
black holes etc [6],[13]. In experiments concerning planetary motion, gravitational 
interaction is usually the dominant force over other forces, this is mainly due to 
the classical nature of planets. Planets are made up of elementary particles, each 
having its own energy/mass. Inspite of the fact that these elementary particles 
carry only a small amount of energy, in which quantum properties would come to 
play, say atoms, the additive nature of energy in forming celestial bodies results 
in the planet having a huge amount of energy/mass, in which quantum effects 
can be safely ignored. In the GR sense, the huge mass increases the curvature of 
spacetime around the mass, thus gravitation dominates over other interactions. 
Furthermore, as we have mentioned, a planet satisfies the conditions under which 
quantum theory is in the classical limit: in the description of the orbits of the plan­
ets the quantum properties of the composing particles can be safely neglected [14].

In the process of trying to reconcile these two major theories, QM and GR, there 
have been undeniable progress despite of the lack of a solution. Research in QG 
have sprung new theories over the years such as loop quantum gravity (LQG) 
and string theory to mention the most notable [3][4]. LQG tries to canonically 
quantize general relativity by starting from a regime in which h is negligible and 
jumping straight to quantum gravity regime. While on the other hand string the­
ory involves the introduction of a new object, the string, and retains the explicit 
connection with both quantum theory and the low-energy description of space­
time [15]. String theory starts by [15] neglecting G and aims to arrive at a regime 
where there is quantum gravity and all interactions unified. Huge mathematical 
progress has been obtained from both these theories and others, however they are 
still faced with conceptual and experimental difficulties. No one has been able to 
use these theories to conduct experiments and observe effects of quantum gravity. 
So naturally, one may ask whether there is a theory which is conceptually and ex­
perimentally accessible to us, that can be somehow taken as a starting point in the 
search for the quantum gravity theory.

There has been a lot of attention directed at trying to find observable evidence 
for the quantization of gravity by developing phenomenological models. Such 
models will be able to quantify possible quantum gravitational effects and can 
ideally be tested experimentally. This subfield of quantum gravity, which focuses 
on finding these models is termed Quantum Gravity Phenomenology. As an example 
for such phenomenological models, there has been a growing interest in a regime

in which both h and G are negligible, however their ratio is constant. This 
ratio is a unit we have encounted already, and we call it the Planck mass. This 
model is in a relativistic setting i.e we take c =  1, with the regime being termed 
Deformed Special Relativity (DSR), which formaly is the regime in which [16]

h —— 0 , G —— 0, (1.3)

with
h
G

(1.4)

fixed. There is a growing hope that a theory of DSR would become neccesary 
and sufficient for describing relativistic particles with high momenta travelling in 
spacetime with negligible gravity. As is, it currently seems like it would be a hard 
task to derive the complete form of a DSR theory from first principles, thus it is 
hoped that soon DSR will be able to be derived as an appropriate limit of loop
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quantum gravity [16]
This thesis makes an attempt at geometrizing this theory of DSR and hopefully get 
a clearer understanding of multiple quantum gravity phenomenological models.

1.2 Quantum Gravity Phenomenology
As we have been reiterating, the search for a quantum theory of gravity has been 
one of the main aims of theoretical physics for many years now. However the 
efforts in this direction have been often hindered by the lack of experimental or 
observational tests able to select among, or at least be able to constrain, the numer­
ous quantum gravity models proposed so far. The last decades have witnessed an 
increasing number of ideas about observable phenomena where QG could play a 
key role [8],[16],[17]. The following is a partial list of the phenomena of the pos­
sible observable quantum gravity and include the loss of quantum coherence or 
rather quantum decoherence (the wave-like property of quantum objects), devia­
tions from Newton's laws, black holes produced in colliders (large hadron collid­
ers) and violation of spacetime symmetries to name a few.

Quantum gravity phenomenology is a broad field encompassing many possi­
ble effects arising from a more fundamental description of spacetime such as the 
phenomena we listed above including cosmological perturbations. Many but not 
all of these phenomena arise from the addition of a Planck scale. In order to have a 
permissible quantum theory of gravity, such a theory must be able to make obvious 
predictions that in principle can be tested by experiments. This is where quantum 
gravity phenomenology comes in, as a "bottom-up” approach to a quantum theory 
of gravity. Contrary to popular belief, loop quantum gravity does make definite 
predictions such as that of measuring any physical area (e.g. total cross-section of 
a scattering process) and predicting that it must be given by the discrete spectrum 
of area [19]. Also in [20], there are proposed possible effects of angle quantization 
on scattering. The more pressing issue here is that these predictions demand ex­
periments or observations probing the Planck scale, which as we have mentioned 
earlier is currently out of reach. However, the existence of Planck stars, which 
are structures considered to replace the singularity in the traditional definition of 
a black hole, could produce detectable signals and the phenomenological conse­
quences of Planck stars in gamma-ray bursts have been studied in [21]. Planck 
stars are thought of as allowing general relativity to come back into play in a quan­
tum gravty regime (inside a black hole). Instead of a singularity in a black hole, 
which "destroys” information, the information is rather stored in a Planck star and 
as a Planck star expandes to a point where it passes the event horizon, the black 
hole disintegrates and the information is released back into the universe While 
Lorentz invariance can be made manifest in LQG, additionally in the spin foam 
theory [22], many other models suggest the violation of Lorentz invariance in the 
Planck regime which will modify the standard Lorentzian energy-momentum dis­
persion relation at lower-energy scales. Observations of Ultra High Energy Cosmic 
Rays (UHECR), the most energetic particles that have been observed thus far, put 
strong constraints on deviations from the Lorentzian mass-shell relation. In the fu­
ture, with improved precision of equipment, further investigation of such particles 
will either provide stronger constraining evidence or reveal the breakdown of the 
Lorentz invariance and enable theorists to disqualify different models in quantum 
gravity phenomenology.

As we have mentioned Quantum gravity phenomenology requires of course a 
combination of theory and experiments. It does not however adopt any particular 
preconcieved opinion concerning the structure of spacetime at short distances like 
the mathematically deserving string theory, LQG or non-commutative geometry. 
Although it must follow closely the few indications that these theories have and 
will provide (e.g. minimal length in string theory). We are thus guided by our 
expectation that quantum gravity research should actually proceed in small incre­
mental steps starting from what we currently know and combining mathematical
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physics studies with experimental studies to reach deeper layers of understanding 
of the problem of quantizing gravity.

Experimental Search and Predictions
Neutrino Physics

Neutrinos are one of the fundemental particles which make up the universe. They 
are similar to the more familiar electron, with one major difference in that neu­
trinos do not carry charge i.e. they are electrically neutral and thus not affected 
by the electromagnetic forces that act on electrons. These particles are interesting 
for the purpose of testing weak quantum gravitational effects. One reason being, 
they have a very small mass. Another being, their weak interaction which en­
ables them even with high energies to travel long, possibly cosmological distances 
without being disturbed [23]. Depending on their source, one can categorize neu­
trino experiments and these include Earth based neutrinos (like those from reactors 
or colliders), solar neutrinos, atmospheric neutrinos and cosmogenic neutrinos to 
name a few [24]. Cosmogenic neutrinos [25] are those that can reach the highest 
energies and longest travel times, with their flux being small at high energies such 
that with these neutrinos, collecting useful data is difficult. It has however been 
suggested in [26], to use cosmogenic neutrinos to strengthen bounds on Lorentz 
Invariance Violations (LIV) with experiments in the near future. LIV is the vio­
lation of the standard Special Relativity minkowski Lorentz Invariance. Lorentz 
transformations include boosts and rotations. One can learn more about LI in any 
Special Relativity undergraduate physics textbook. In [27], it has been pointed 
out that one can use cosmogenic neutrinos to possibly test the modification of the 
disperion relation to high precisions if a baseline of L ~  n m i/E5 [24] could be 
reached, where mp is the Planck mass. This is where one would find, the flux-ratio 
of different neutrino species would become sensitive to the distance. It has also 
been proposed to actually combine neutrino measurements with the detection of 
gamma-ray bursts to better constrain modified dispersion relations in DSR and 
LIV [27]

Astrophysical

In astrophysics, there are astrophysical processes which occur at higher energies 
than is currently accessible to human experiments like particle colliders, more­
over the less controlled experimental environments these processes occur in adds 
more uncertainty in these experiments. Due to this, astrophysical and collider 
constraints often complement each other [23]. There are some similarities on the 
constraints coming from ultra high energetic cosmic rays (UHECR) and collider 
phyics, however additional theoretical and experimental uncertainties come into 
play in UHECR due to higher energies.

One of the most studied predictions of DSR, which we will see in an experiment 
in the following chapter, is that of an energy-dependence in the arrival time of 
higly energetic photons from distant 7 -ray bursts (GRB) [23]. One can additional 
observe such an effect from Lorentz Invariance violation (LIV), however models 
steming from LIV are constrained already, whereas there are no such constraints in 
DSR, thus in [28], dispersion relation modifications of first order in the parameter 
a are considered. This time delay AT one expects between two photons with an 
energy difference AE for such a first order modification of the standard dispersion 
relation is given by

AT
E7L 7  +  o
Mp

E2E x
M2

(1.5)

where E7 is the energy of the more energetic photon, Mp the Planck-mass and L 
is the distance travelled by the photons. In 2, inserting values in this equation we 
will find that this time delay can be of order of seconds for a certain distance and 
a specific value a. GRB090510 came with one of the best limits for a to date, which
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is a <  1.2, for the case in which higher energetic photons are slowed down [29]. 
There has been a few suggestions [30][31], who assert that a modified dispersion 
relation of LIV and DSR may be tested with weak gravitational lensing. However, 
we acknowledge that this effect is out of possible precision currently.

1.3 Motivating Deformed Special Relativity
In 1905, Albert Einstein proposed a theory of Special Relativity (SR) [32]. This was 
and still is a generally accepted and experimentally confirmed theory perfectly de­
scribes the relationship between space and time. In special relativity, the concept 
of absolute time is abondoned and time is treated on equal footing as space. SR 
has been most successful in explaining all physical phenomena in flat space and 
high speeds. Einstein postulated a universal constant c, the speed of light in his 
theory and asserted that no particle can exceed this speed and all observers in a flat 
space-time would observe this quantity to be the same at all times. Deformed Spe­
cial Relativity (DSR) is a proposal of how Einstein's theory of Relativity might ex­
perience changes when high energies are considered. DSR therefore claims to be a 
theory which is valid in the semi-classical regime, which lies between a full theory 
of Quantum Gravity and the general relativistic regime. In physics, we have what 
are referred to as fundamental constants. These are the physical quanitites that 
stay invariant and constant with time under any circumstances. Those of impor­
tance to us are: the speed of light c, Newton's gravitational constant G and Planck's 
constant h. Consider a physical system which is characterized by the length l, time 
t and mass m [33]. One can use (l, t, m) to define quantities that asymptotically 
classify the space of physical regimes, the characteristic velocity v =  \, the action

l2 ll3
s =  m  and characteristic position x =  ^p. For example, consider the region 
when the speed of the physical system v is comparable to that of the speed of light 
c. If in this region we have a flat background and no quantum effects i.e G ^  0 
and h ^  0, then we can expect Special Relativity to fully explain physical phenom­
ena in such a region. Similarly, Quantum field theory (QFT) will describe regions 
where we have relativistic and quantum effects i.e v ~  c and an arbitrary h. Fig 
1.1 below was obtained from [33] and attempts to describe the asymptotic physical 
regimes on an (l, t, m) space. The region described by Deformed Special Relativity

is the region of constant Planck mass k =  G, where G ^  0 and h ^  0.

F IGURE 1.1: Asymptotic regions of the space of physical regimes, 
obtained from [33] (pardon the resolution, as it is at its best)

In the heart of a DSR theory lies the concept of this second invariant constant 
k which as we will later see, has far-reaching consequences. Extending Special
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Relativity from one invariant constant c, to a theory with two invariant constants 
c and k , was an idea originally proposed over 15 years ago in [34], [35]. Since its 
inception, it has recieved notable attention [9], [36], [37] and it is believed [33] that 
qualitative predictions of DSR could be tested experimentally in the near future. 
In the next chapter we will show how the introduction of a second invariant scale 
affects the general form of the algebra of symmetry generators of Special Relativity 
i.e. the linear Poincare group and later the effects it has on dispersion relations of 
particles. One should note that this is a direct consequence of the postulates a DSR 
theory should possses which are as follows [16]

1. We assume the relativity principle holds, i.e all inertial observers are equiva­
lent just like it is postulated in Special Relativity.

2. Instead of one observer independent scale c, there is an additional scale Mp 
with dimensions of mass. It should be noted that in the limit when this mass 
scale goes to infinity, DSR becomes the normal Special Relativity

Since these postulates affect the Poincare group, it follows that it should also 
be expected that the standard dispersion relation E2 =  p2 +  m2 is to be replaced 
by some nonlinear mass-shell relation [13], which should involve the second scale 
in such a way that in the limit that the Planck mass, which we will now write as
k , goes to infinity i.e k ^  ro, the dispersion relation simplifies to the standard one. 
Also including k in the "new" dispersion relation enforces it to be kept invariant by 
symmetry transformations [16]

l . 3.1 The minimal/fundamental length scale
In 1.3, we motivated the development of Deformed Special Relativity. In this sub­
section we make sense of the maximal energy, the Planck mass Mp, introduced 
above. We follow closely the argument presented in [38], by considering a physical 
system in a region of length scale L, with a mass M  enclosed in this region. Ac­
cording to Einstein's General Relativity, one can bound the mass M  by the mass of 
the Swarzschild black hole with a radius of the same length L i.e would be bound 
by

M l =  2G  (1.6)

where M l is the minimal mass required for a Swarzschild black hole to form. It 
should be noted that for a particle at rest, a bound in mass is equivalent to a bound 
in the energy. In light of this, it is apparent that the energy of a phenomenon of 
length scale L should not exceed ML, thus having a maximal energy.

Dealing with pheonomena in quantum gravity, one can not leave out quantum 
theory. Thus taking into consideration quantum mechanics, a system of length 
scale L will also have a minimal mass 5M  which one can think of as a notion of 
quanta of mass linked to the system, which is given by

5 M =  L  (1.7)

Another way to understand 5M would be to consider it as the uncertainty in the 
mass of such a system. This quanta of mass for objects e.g. an electron, is usually 
very small. Since we are working in a regime where we reconcile general relativity 
and quantum mechanics, we thus get both minimal and maximal bound on masses 
in regions of length L i.e.

h L
L  =  Mmin ^ M  ^ Mmax =  g  (1.8)

One then argues that the Planck scale Lp is the length at which the mass quanta 
5M become comparable to the maximal length ML

M min — M max ^  L  — L P — G h (1.9)
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Thus when the two masses become comparable, one expects there to be remnis- 
cence of both general relativity and quantum theory and the mass corresponding

to this regime is the Planck length Mp =  \[\|. One of the paradoxes of DSR is the 
high energies of macroscopic objects which exceed the maximal mass ML, hence 
such a situation would not make sense to be handled by a theory with a maximal 
energy. This paradox is commonly referred to as the "soccer-ball" problem. We 
will give a formal explanation/discussion of this paradox in the next chapter. One 
should note that in this regime, contrary to Special Relativity, we expect the mass 
of the object to be relevant in it's kinematics/dynamics , thus reminiscing general 
relativity.

Again to emphasise, DSR is a theory with a minimal length scale or equiva­
lently maximal energy/mass which is to be made an observer independent quan­
tity. In the following section we see how one can derive a deformation of the 
Heisenberg Uncertainty Principle (HUP) including how this deformed HUP is 
equivalent to a theory of DSR.

1.4 Generalized Uncertainty Principle
According to the Heisenberg uncertainty principle (HUP)[39], which represents 
one of the fundamental properties of quantum systems, there should be a funda­
mental limit for the measurement accuracy, with which conjugate pairs of physical 
observables, like position and momentum can not be precisely measured at the 
same time. In other words, the more precisely one quantity is measured, the less 
precise the other one can be measured. In quantum mechanics, when one talks 
about physical observables, one refers to operators that live in a Hilbert space. 
Suppose we have an observable A, then the uncertainty in A is defined as the stan­
dard deviation of A, i.e. AA given by < (AA)2 > =  < A2 > — < A > 2, where
< A > is its expectation value. Now when one employs the Schwartz inequality
< a|a > <  j8 |j8 > >  | < a|j8 > |2, this implies that with, |a > =  AA|a' > and 
|j8 > =  AB^ 1 >, and after a bit of algebra,we get the HUP

1
AAAB > ^ | < [A, B] >  | (1.10)

As an example of the HUP, we take position and momentum operators X and 
p respectively. These operators satisfy the canonical commutation relation [X, p] =  
ih. Consequently, their measurement uncertainties, Ax and Ap respectively have 
the relations

AxAp >  2  (1.11)

Thus this means when one wants to detect an arbitrarily small length scale, one 
has to use tools of sufficiently high momentum or equivalently energy. However, 
test particles of significantly high energy to resolve distances as small as those 
of Planck length are predicted to gravitationally curve [18] and thus signficantly 
disturb the structure of spacetime with which they are meant to probe. Therefore, 
in addition to the expected quantum uncertainty, another uncertainty creeps in, 
that which arises from spacetime fuzziness fluctuations at the Planck scale.

The canonical commutation relations between momentum operator p and posi­
tion operator x are in flat Minkowski space-time with metric y^v, thus the relations 
can be expressed as

[xF, pv] =  ih nFv (1.12)

However as we have mentioned, a test particle of sufficient energy, will cause 
gravitational disturbances, thus spacetime will be curved and have a different met­
ric f^v. This metric should be asymptotically flat, such that it decomposes into 
f^v =  VFV +  h^v, where now h^v is the perturbation to the flat backrgound. The 
commutation relations between position and momentum then become

\xp, pv\ = ihfpv (1.13)
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The function f  should contain the minimal length scale, such that in the limit 
when we go to normal length scales we obtain the usual HUP. This generaliza­
tion, which includes scales at the Planck length is termed the General Uncertainty 
Relation (GUP) [40], [41]. In a GUP, an extra term in the right hand side of Heisen­
berg inequality forces the existence of a minimal variance for the measurement of 
distances [12]. We will also see later how the General Uncertainty Principle and 
Deformed Special Relativity are equivalent and how one can recover the modifica­
tion of the dispersion relation from them. We will not, however, go in depth of the 
physics behind this equivalence, we shall only mathematically show this.

There are various ways of studying or deriving GUP, one of which includes 
non-commutative spacetimes. Firstly, we motivate, how a spacetime can become 
non-commutative. The minimal length reciprocal can be associated with a max­
imal mass as we have mentioned, which in turn gives us a maximal energy, the 
Planck energy mentioned above. The energy required to probe above this maxi­
mal energy scale is more than the energy to form a mini black hole, thus this means 
that any attempt to probe a phenomena above this energy scale could lead to a 
formation of a black hole in that region of space which in turn prevents any mea­
surements in that region of space. The fuzziness of spacetime in such a scenario is 
also termed non-commutativity. Next we provide an alternative to showing how 
one can attain GUP from non-commutative spacetimes. Non-commutative geom­
etry is a field of mathematics in which coordinates or observables do not commute 
[52]. In quantum gravity problems arise because, unlike other interactions, gravity 
is dealt with in a background, the spacetime. Other interaction quantization leave 
this frame invariant however, in GR, gravity interacts with matter and is techni­
cally the curving of spacetime due to matter, thus when quantizing gravity one is 
also faced with the problem of quantizing spacetime. Spacetime becomes an active 
agent in this quantization process, which poses a problem in such a way that when 
probing objects at distance of Planck length, measurements become fuzzy; exact 
locations are substituted by probabilities of finding an object in a given region of 
space at a given instant of time. This results in the coordinates of spacetime being 
non-commutative. In non-commutative geometry we have that these spacetime 
coordinates xy, which are associated to a quantum mechanics Hermitian operator 
xy, do not commute, i.e these coordinates have a commutation relation of the form.

[xy, xv ] =  iAyv (1.14)

where here Ayv is a real-valued, antisymmetric two tensor with dimensions of the 
order of Planck length i.e [Ayv] ~  ij,. This is the deformation parameter, and in 
the limit where Ayv ^  0, we recover the ordinary commutative spacetime. An im­
portant point to note here is that, this tensor is not a dynamical field and it defines 
a preferred frame, thus breaking Lorentz invariance. A physical interpretation of 
the deformation parameter is that it represents the smallest observable area in the 
yv-plane.This is a very good example of a system in noncommuting coordinates 
as the particle moves in a noncommutative space-time.

To illustrate the idea that a modified commutation relation can lead to a the­
ory of GUP, we consider the variables py and xy which we will allow to obey the 
standard commutation relations i.e.

[xy, x ] =  0 [xy, pv] =  i5y [pp  pv] =  0 (1.15)

Now suppose we define a new quantity py =  f  (py), where the function f  must 
have an inverse i.e. be bijective, so that f —1 (ply) =  py. Then for the "new" variables 
xy an pp, one has the following commutation relations

[x ,̂ x ] =  0 [xp, pv] =  i [ply., pv] =  0 (1.16)
O py

Now we should recall that for any two operators A and B, the uncertainty principle 
between the two operators is stated as
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1
AAAB >  ̂ |< [A ,B] >| (1.17)

Thus for the operators xy and py, we have

AxvAp~y > 1 |< d f -  >| (1.18)

Now when one inserts the expression for the variance on the r.h.s, i.e use the ex­
pression < p2 > — < p > 2 =  Ap2 and rewrites the r.h.s in terms of Ap2 and < p > 2 
then one can undoubtedly divide through by Ap2 and get

AxyApy > 2 |< d f  >| (1.19)

Which is another form of GUP.

1.5 Summary
In this chapter, we have layed down the problem of quantum gravity and how 
phenomenology is required instead of theories (string theory and loop quantum 
gravity) ,which currently do not have experimental proof, to try and solve this 
problem. In all theories of quantum gravity, there is a recurring idea of a mini­
mal length scale at which the fundemental laws of nature limit our ability to probe 
aribitrarily short distances. We saw that at the Planck scale i.e. minimal length, 
notions which rely on a metric structure appear to have an inherent difficulty to 
investigation. It has been shown in the literature [42][43], that different analysis 
based on contrasting ways of looking at the quantum gravity problem all give the 
same prediction in terms of the nature of space-time at the scales of the Planck 
length. We further provided a motivation of a theory of Deformed Special Relativ­
ity (DSR) in which one extends the theory of Special Relativity by introducing as 
an observer-independent scale the Planck mass. We looked at how this regime is 
asymptotically attained from well studied theories. Moreover, we introduced the 
idea of a Generalzied Uncertainty principle in which, classically, the commutation 
relations recieve a correction due to the fuzziness of spacetime when test particles 
of high energies are used to proble distances at Planck length. We noted that DSR 
and GUP are equivalent and this remains to be shown within the thesis.

1.6 Thesis Overview
This thesis is organized as follows. In the next chapter we examine in detail the 
theory of Deformed Special Relativity by appealing to an algebraic formulation 
of spacetime. The algebras of Minkowski spacetime in Special Relativity are de­
formed in such a way as to encapsulate the idea of a second observer independent 
constant. We then look at how DSR is constructed in different bases, which we 
show are all mathematically equivalent. We examine the non-linearity of transfor­
mation laws in DSR. Lorenz invariance has the potential to be broken in a theory 
with a second observer-independent scale. One then requires to modify the stan­
dard dispersion relation to contain a minimal length scale. In the next chapter, 
we also give an introduction to modified dispersion relations(MDR). Further we 
mention a few parodoxes or problems that a theory of DSR may bring about which 
include non-locality. We study in some detail the principle of Relative locality in a 
means to understand how to get rid of absolute locality since one cannot with ab­
solute certainty say two observers infer the same space time in a theory of DSR. We 
end the chapter by looking at an experiment which shows how a theory of DSR is 
a non-local theory. In chapter 3, we look at the geometrization of a theory of DSR. 
We however, take a step back and review the underlying theory needed for this 
geometrization. We study the mechanics of Lagrange and Hamilton, which allows
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the formulation of mechanics on phase space, the cotangent bundle of a base man­
ifold. In section 3.4, we introduce the framework of Hamilton geometry in hopes 
of a geometrized theory of DSR. In this framework we look at how phase space 
can be decomposed into spacetime and momentum space and look at the individ­
ual geometry of these spaces respectively. Moreover, we look at the symmetries of 
phase space in such a framework and then look at a few examples to get a feel of 
the theory. In chapter four we look at the effect of the entanglement of spacetime 
and momentum space as subspaces of phase space. We see here that the physical 
coordinates of spacetime are not those that are canonical to momenta but "new" 
effective coordinates that have a momentum dependence. This is shown to lead to 
an already established result of DSR in Snyder's basis.
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Chapter 2

Deformed Special Relativity

One of the most unsolved problems in physics today is finding a theory of Quan­
tum Gravity (QG) i.e. a theory that would successfully describe the physics in a 
regime where both Quantum Mechanics and General Relativity would have to be 
taken into account. As we have mentioned in the last chapter, such regimes in­
clude, for example, the physics inside a black hole and also the physics that would 
be required to describe what happens close to the initial singularity of the uni­
verse. Notable theories that have been considered for addressing this problem 
include, string theory and loop quantum gravity. Each of these theories is based 
on radically different ideas of what the fundamental physics will eventually look 
like. However, a common property of these approaches is, as we reiterate, the lack 
of testable predictions made by them, largely due to the lack of equipment that can 
reach energies high enough to probe this regime. It is widely known in the liter­
ature [43], that the boundary of the regime at which a theory of quantum gravity 
will become the dominating theory is given by the Planck scale. As noted above, 
the fundamental constants of physics viz. G (Newton's constant), h (Planck's con­
stant) and c (speed of light), can be combined in such a way as to give new con­
stants of dimensions of length, time, energy and mass. These so-called "new" four 
constants are the Planck length Ip =  VhG/c3 , Planck time Tp =  VhG/c5, Planck 
energy Ep =  V hc5/G and the Planck mass Mp =  y /hc/G  respectively. It is gener­
ally assumed, regardless of what the theory of QG might turn out to be, one should 
find that in the limit where the energies considered are well below Ep, the the­
ory reduces to the well-known theory of Special Relativity (SR) and GR. Thus one 
should expect a semiclassical regime to lie between the quantum gravity regime 
and SR/GR. This is precisely the regime where Deformed Special Relativity claims 
to be the dominating theory. Presently it would be plausable to concentrate on this 
semiclassical theory and work our way upwards to QG, since we have no clear 
picture of what quantum gravity looks like fully. One can then hope, with some 
inspiration from SR/GR and the little we do know about QG, we might actually 
be able to construct a theory in this semiclassical regime. In this chapter we will be 
concentrating on this semiclassical regime, for which we assert DSR to be the main 
candidate for a correct theory here.

Deformed Special Relativity (DSR) is a semiclassical theory that is built by con­
sidering Einstein's theory of Special Relativity when high energies, close to the 
Planck energy are considered. Thus DSR is claimed [44] to be the theory that 
lies between a full QG theory and a general relativistic regime. The idea of such 
a theory has been around since the beginning of the 21st century [45], and has 
since recieved immense attention from the scientific community [37][46][47], due 
to the possibility of qualitative predictions that could be tested experimentally in 
the near future [23]. DSR is based on two fundamental assumptions i.e. the prin­
ciple of relativity, which is also a fundamental principle in Special Relativity, and 
the postulate of the existence of two scales. In Special Relativity, there exist an 
observer-independent scale, which is the speed of light c . Moreover, DSR postu­
lates in addition to the speed of light another scale viz. the mass scale k which is 
inversely related to the Planck length i.e. l =  1. However, having this additional 
scale instantly faces one with a rudimentary problem, which can be summarized 
in the question: In which observer's inertial frame does one measure the energy
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Ep? Since two observers would be measuring the energy in each of their respec­
tive inertial frames, clearly these observers could disagree about a measured Ep. 
The obvious solution to such a problem is to introduce the scale k as an invariant 
scale, such that all observers observe the same value regardless of which rest frame 
it is measured in. The introduction of such a scale, as we will later see, has con­
sequences on how one writes the transformation laws between frames of distinct 
observers. Simply stated, we have to re-write the Lorentz transformations of Spe­
cial Relativity in such a way that the energy Ep will be the same no matter what 
transformation we apply. As one would expect DSR may somewhat replace Spe­
cial Relativity as a theory which describes the relativistic kinematics and dynamics 
of particles when energies close to the Planck energy are considered.

Relative Locality (RL) is a result of DSR and focuses on the nonlocalities and 
other features of deformed symmetries models, introducing some sort of momen­
tum space curvature that influences the localization process at a characteristic scale 
that we assume to be of the order of the Planck scale Ip [48]. In RL, one discards 
the notion that, what we observe around us is space or space-time and replaces 
this with the idea that we observe momentum space when we look around us. 
Our most fundamental measurements are all about energy-momentum quanta we 
absorb and emit. When looking at an object, one sees photons arriving with dif­
ferent momenta and energies at different angles. In the RL framework, one takes 
phase space as the arena for non-quantum physics rather than space-time. In ab­
solute locality, which was proposed by Einstein, it is postulated that all observers 
live in the same space-time. Moreover this assumption is equivalent to having a 
flat momentum space. However in Relative locality, the notion of absolute local­
ity becomes obsolete and different observers see different space-times and these 
space-times are energy and momentum dependent [44].

2.1 The Mathematical Structure of Deformed Special 
Relativity

Now that we have been able to motivate the introduction of an additional invari­
ant energy scale Ep, we may want to answer the question: What effects does this 
new invariant scale have on the mathematical structure of the theory that emerges 
from imposing such an additional assumption to SR. Particularly, one would be 
interested in knowing whether or not in this regime the Poincare algebra of the 
symmetry generators in Special Relativity still hold. In [16], it is shown that this 
is no longer the case, and that an additional invariant scale is not supported by 
the Poincare algebra. However, in the same article, a solution to this is proposed 
by suggesting a deformation of the usual Poincare algebra to get an algebra that 
allows for an additional invariant scale. This algebra is called the K-Poincare al­
gebra. K-Poincare algebra is attained by deforming the Poincare algebra, and the 
right-hand side of the commutation relations which make up the usual algebra 
now contain the parameter k, which is associated with the second invariant scale. 
K-Poincare algebras have the crucial property that they are distinguishable from 
normal Lie groups in that they are quantum deformed algebras (or Hopf algebras) 
[16]. The interested reader can find a good explanation on Hopf algebras in [49]. 
For a given Lie algebra, there is a corresponding quantum deformed algebra, es­
sentially the quantum algebra is the generalization of a Lie algebra, thus having the 
property of a universal enveloping algebra[16]. Consider for instance the quantum 
deformed group of the Lie group SO (3,1) which will be denoted as SOq(3,1). At 
this point it should be mentioned that for the K-Poincare algebra, one should re­
cover the usual Poincare algebra in the limit where k ^  to. In our example the q is 
related to the k scale and thus should bring us back to the undeformed Lie group 
in the appropriate limit. For illustration, we consider the algebraic part of the Hopf 
algebra SOq (3,1) and write it as follows [16]
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1
[M2,3, M i ,3] =  z sinh(zMi,2) cosh(zM0,3) (2.1)

[M2> M1,2] =  M1,3 (2.2)
[M2,3, Mo,3] =  Mo,2 (2.3)

1
[M2,3, Mo,2] =  z sinh(zM0,3) cosh(zM1,2) (2.4)

[M1> M1,2] =  — M2,3 (2.5)
[ M1,3, Mo,3 ] =  Mo,1 (2.6)

1
[M13, Mo,1 ] =  z sinh(zM0,3) cosh(zM1,2) (2.7)

[ M1,2, Mo,2 ] =  — Mo,1 (2.8)
[M1,2, M0,1 ] =  M0,2 (2.9)
[M0> M0,2] =  M2,3 (2.10)
[Mo,3, Mo,1 ] =  M1,3 (2.11)

1
[Mo,2, Mo,1 ] =  z sinh(zM1,2) cosh(zM0,3) (2.12)

where now z =  ln(q) and the generators of the algebra M v̂. An interesting and 
important point to note in the commutation relations above for the generators of 
the quantum deformed algebra is that on the right-hand side, we do not have linear 
functions of the generators, as it is in the Lie algebra case, but instead we now 
have analytic functions of them [16]. An immediate consequence of this algebra 
having analytic functions on the r.h.s is that one can use any analytic function 
of the generators to define a new basis for the quantum deformed algebra. This 
stands in comparison to the Lie algebra case, where only linear combinations of 
generators are allowed to be bases. This freedom in the choice of basis has led to 
several different proposals of bases for the K-Poincare algebra. We will see later 
that all these bases are equivalent.

One will see that, following this discussion, this freedom in choosing bases has 
led to several different proposals of bases for the K-Poincare algebra. Up until this 
point, the different bases that have been used in the literature include the bi-cross 
product basis, the Maguejo-Smolin basis and the classical basis. One has to how­
ever note, that a common feature of these different bases is that they are chosen 
in such a way as to leave the Lorentz subalgebra of the K-Poincare unchanged. 
For the sake of completion, one should mention that there is also another basis in 
the literature called the standard basis, in which the Lorentz sector is not of the 
form of the common Lorentz algebra. The commutators of the K-Poicare algebra, 
which involve the boosts and the momentum generators differs from the standard 
Poincare sector or simply put, the Poincare algeba is deformed in the Poincare sec­
tor. It is usually due to this that this framework is dubbed Deformed Special Rela­
tivity. There have been articles, that suggest the D in DSR stands for doubly, such 
that one has Doubly Special Relativity, due to the addition of a second observer- 
independent scale. The reason for leaving the Lorentz sector of the K-Poincare 
algebra unmodified and only modifiying the remaining commutators, is that if the 
Lorentz sector was modified as well, then upon integration, one would not obtain 
a group but a quasigroup [50]. It should be said that although mathematically we 
have the freedom to choose an arbitrary basis for the K-Poincare algebra, one might 
expect that there should ultimately be a physical argument which rules in favour 
of one particular basis and against any other basis.

Note, that in the algebra above, in the limit z ^  0 the algebra becomes the 
standard algebra SO (3,1), and this is the reason for using the notation SOq(3,1). 
The SO (3,1) algebra is known to be the 2 +  1 dimensional de Sitter algebra it has 
been well known for quite some time how one can retrieve the 2 +  1 dimensional 
Poincare algebra from it. Firstly, we need the energy and momentum generators
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which have the correct physical dimension, noting that the generators Mo,̂  are di­
mensionless. Normally, identifying the three-momenta P̂  as the generators Mo,̂  
when they have been appropriately rescaled and taking the Inomu-Wigner con­
traction yields our 2 +  1 Poincare algebra [16]. However, it becomes more complex 
in the quantum algebra case as the contraction poses trickery since one still has 
to convince themselves that after the contraction the structure obtained is still a 
quantum algebra.

In an attempt to contract the algebra (2.12), we first rescale some of the gener­
ators by an appropriate scale, which we get from combining certain dimensionful 
constants which one get from the definition of z . We do this because momenta are 
dimensionful whereas the generators M  in(2.12) are dimensionless. These combi­
nations are as follows

E =  VAh Mo,3 (2.13)

Pi =  V M M o,; (2.14)
M  =  M1,2 (2.15)
Ni =  Mi,3 (2.16)

When one then takes into consideration the relation z ~  VAh /k, which holds 
for small A, from (2.1) of (2.12) we find that

[N2, N1] =  — sinh(h—A /kM) cosh(E/K) (2.17)
h A

In a similar fashion, from (2.12) of (2.12), we find

[P2, P1 ] =  —AhK sinh(—Ah/K M) cosh(E/K) (2.18)

One can do similar substitutions for the rest of the commutators in (2.12). Keep­
ing k constant and taking the contraction limit A ^  0 one obtains the three dimen­
sional K-Poincare algebra in the standard basis

Nj] =  — M eij cosh(E/K) (2.19)

[ M, Ni ] =  e j N (2.2o)

[Ni, E] =  Pi (2.21)

[ Ni, Pj ] =  SjK sinh(E/K) (2.22)

[M, Pi ] =  e jP i (2.23)

[E, Pt ] =  0 (2.24)

[P2, P1] =  0 (2.25)

Now, in the latter algebra, one can easily notice that in the limit k ^  to, one 
recovers the standard Poincare algebra. Also, one should note that in this alge­
bra, both the Lorentz and translation sectors are deformed. However, recall that 
since quantum algebras posses analytic functions in their commutation relations, 
one can arbitrarily redefine the generator basis by choosing other forms of the an­
alytical functions. It turns out that one can find a basis where the Lorentz part 
of the algebra becomes undeformed. This is the bicrossproduct. In [16], the De­
formed Special Relativity model based on this basis is called the DSR1. In 2 +  1
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dimensions, the K-Poincare algebra has the form

[Ni, Nj ] =  —ejM  (2.26)

[ M, Ni ] =  e j N  (2.27)

[Ni, E] =  Pi (2.28)

[N„ p j  =  s,j2 f 1 — e—2E/K + — 1 P,P, (2.29)

[M, Pi ] =  eijPi (2.30)

[E, Pi ] =  0 (2.31)
[P1, P2] =  0 (2.32)

We can then notice that this algebra is just the 2 +  1 analogue of (2.12). In 
conclusion, in the case of 2 +  1 dimensional quantum gravity on de Sitter space, 
in the flat space, i.e. vanishing cosmological constant limit the standard Poinare 
algebra is replaced by K-Poincare algebra.

In summary, in 2 +  1 gravity, the scale k, arises naturally. One can also show 
that instead of the Poincare symmetry we have to now deal with the deformed 
algebra, that possesses the deformation scale k.

A crucial point that we will also come across in the later chapters is the con­
sequence of the emergence of the K-Poincare algebra. As in the standard case this 
algebra can be interpreted as the algebra of spacetime symmetries [16]. One can 
easily observe that this algebra can be interpreted as an algebra of Lorentz symme­
tries of momenta if the momentum space is de Sitter space of curvature k [16]. It 
can be shown that one can extend this algebra to the full phase space algebra of a 
point particle, by adding four non-commutative coordinates. The resulting space­
time of the particle becomes what has been dubbed K-Minkowski spacetime with 
the non-commutative structure

1
[xo, Xi ] =  — -  Xi (2.33)

The usefullness of this K-Minkowski spacetime is that one can build field theory 
on it, which in turn could be used to discuss phenomenological issues that we have 
mentioned in the introduction.

2.1.1 Deformed Special Relativity in various bases and space-time 
non-community

In the most part of this chapter, we are using the most frequently used frame­
work in studying the relativity theory with two observed independent kinemati- 
cal scales. The DSR construction here has been based on the quantum (Hopf) k- 
Poincare algebra as previously shown in the latter section. We will later study the 
geometrization of this theory in 3. In Special Relativity, we have the standard alge­
bra i.e the Poincare algebra, and the K-Poincare algebra is just a deformation of this 
standard algebra. However, there have been a variety of DSR theories proposed in 
the literature, which are different from the one we have discussed already i.e the k- 
Poincare theory in the bicrossproduct basis. We will briefly mention this DSR again 
for completeness here. Moreover, this variety of theories raises questions such as, 
how many theories of this kind may exist. Are these different theories physically 
equivalent? Can Quantum Gravity experiments deduce that there should be one 
unique theory? Here we will see that algebraically, these theories are completely 
equivalent and are simply expressed in different bases. To each of these different 
bases, one constructs a "different" DSR theory in appearance.

A very important assumption in the construction of a DSR theory is to not de­
form the Lorentz algebra i.e the subalgebra of the K-Poincare algebra. However 
one should note that this assumption is not satisfied by the so-called standard ba­
sis of the K-Poincare algebra. Thus, we therefore have to assume that the boost
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generators Ni and the rotation generators Mi satisfy the algebra.

\_Mi, Mj ] i.€ijkMk \_Mi, Nj ] i îjkNk

[Ni, Nj ] - i€ijkMk

Furthermore, another assumption to be put in place is that the action of rota­
tions is not deformed and that generators of momenta commute. We then take 
these postulates as starting points in defining the action of the Lorentz algebra on 
the energy-momentum sector. We should recap that a quantum algebra or Hopf 
algebra is in addtion to the algebra of commutators an algebra that possesses addi­
tional structures like the co-product and the antipode. Next we will present three 
bases of the quantum deformation Poincare algebra viz the bicrossproduct, the 
Maguejo-Smoling and the classical basis. One should note that the classical basis 
algebraic sectors are identical to the standard Poincare algebra [46].

The bicrossproduct basis

Since we have assumed that the action of rotations is not deformed i.e it is stan­
dard, it will suffice to write down the commutators of deformed boost generators 
with momenta [46]. We get

[Ni, pj] =  iSij^K  ( 1 — e 2po/K̂
) +  2Kp2)

(2.34)

1
=  i K pipj (2.35)

and

■S'o'SX (2.36)

One can easily check, see appendix for calculation, that a Casimir operator of the 
algebra , which is important to note that it lives in the universal enveloping alge­
bra, reads

m2 =  ( lx  sinh — p2epo/K (2.37)

Moreover the three-momentum is bounded above p2 < k2 for positive k , and p0 
corresponds to zero energy.

The quantum algebra structure in this basis is provided by the following co­
products A and antipodes S, whose only the explicit form of the momenta co- 
poducts

A(pi) =  pi 0  1 +  e Po/k 0  p i (2.38)
A(po) =  po 0 1 +  1 0  po (2.39)

will be relevant to what follows. Taking these formulas as a starting point, we can 
now turn to analysis of other bases.

Magueijo-Smolin basis

In a 2002 paper Magueijo and Smolin [51] proposed another DSR theory. A DSR 
theory that has the boost generators as linear combinations of the usual standard 
Lorentz generators and the generator of dilation. However it has to be in a way 
such that the algebra 2.34 holds. In this basis the commutators of four-momenta 

and boosts have the following form [46], (note the difference between p  ̂ and 
notation)
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[Ni, Pj] =  i (SijPo -  1 PiPj

and

(2.40)

[Ni,Po] =  i ( l  -  P0)  Pt

Calculating the Casimir, one obtains the following

(2.41)

M2 P02 -  P2
(1 -  P0/K)2

(2.42)

Now we would like to see if this basis is equivalent to the bicrossproduct one. 
As mentioned before, these bases are algebraically equivalent since one can easily 
check that the relation between the variable P̂  and p  ̂ is given by

Pi =  Pi, (2.43)

p0 250 + a
K K2 (2.44)

2p0/K +  p A 
+  K2

(2.45)

K
2

K
0 2

One should note from the above relations that the maximal momentum in the 
bicrossproduct basis corresponds to the maximal energy P0 =  k in the M-S basis.

Further we can easily develop the algebra here to a quantum algebra using the 
formulas above. We define the new co-products using the relation 2.43 and these 
read as follows

A (Pi) =  Pi ® 1 +
„ 2P0 P21 -  0 +

K K

1/2

® Pi (2.46)

A(P0) =  P0 ® 1 +  1 ® P0 ---- P0 ® P0 + 2P ® P0 +  1 -----------1 2 E  Pi ® P)2 2
2P0 . P2

1/2

(2.47)

The classical basis

For comparison, we present yet another basis which was first described in the early 
90's [133]. We call this basis the classical basis in which the classical Poincare al­
gebra is formed by the boosts-momenta commutators with the Lorentz sector. We 
have

[Ni, P j] =  iSijV0 [Ni, P 0] =  iPi (2.48)

The Casimir for this basis equals, of course the one of special relativity, to wit

M 2 =  P2 -  P 2 (2.49)

The classical generators P^ are related to the bicrossproduct basis generators 
by the formulas
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-»2
P 0 =  k sinh ^  +  eP0/KA  (2.50)

k 2k

Vi =  eP0/K pi (2.51)

and one can easily compute the expression for co-product

A(V0) =  2 ( k  ® K -  K-1  ® K-1 )  +  2k ( k - 1V 2 ® K +  2K- 1Vi ® Vi +  K-1 ® K- 1V 2)
K (2.52)

A(Vi) =  Vi ® K + 1  ® V j (2.53)

Where

K =  eP0/K
1
k

V0 +  ( p 2 - V 2 +  k2) 1/2

2.1.2 Noncommutatitive space-time
The setting within which spacetime noncommutativity could be formulated and 
lead to an observable phenomenon, well at least in principle, is of concern. Ev­
idently this setting cannot be based on classical mechanics, where the formalism 
provides no room for noncommutativity of coordinates. This in itself is not so 
shocking, since classical mechanics should only emerge as an approximate limit 
of a quantum theory of mechanics, and the limiting procedure from quantum me­
chanics to classical mechanics may be such that also the non-commutativity of 
spacetime coordinates is removed in the classical limit. One of the problems here 
is that even giving a formulation of K-Minkowski spacetime non-commutativity 
in a quantum-mechanics setup is not straightforward. The reader can see in the 
appendix ??, this is quite tricky as we tried quantizing the K-Poincare Hamiltonian 
and was faced with the problem of making it relativistic. This might be due to 
the fact that in K-Minkowski the time coordinate is a noncommutative observable, 
whereas in the standard formulation of quantum mechanics the time coordinate 
is just an evolution parameter. Time, according to K-Minkowski should be an op­
erator that does not commute with the spatial coordinate operators, but in the 
standard setup of quantum mechanics we are not in the situation of time being 
described by an operator that commutes with the spatial-coordinate operators: in 
the standard setup of quantum mechanics time is not an observable at all, it just 
plays the role of an evolution parameter.

In this section we try and closely follow the (general) step by step procedure 
on how to construct the space-time commutator algebras given in [46] . We will 
see that regardless of which choice of basis we make, the space-time commutation 
relation of K-Minkowski remains the same.

We show this easily as an example in the bicrossproduct basis. It follows that if 
one is to follow the steps depicted in [46], then

A

0 V 1
* 

1 A o V o (2.54)

from which we get

[x0, Xi ] =  - 1 Xi (2.55)

The standard relations

[P0, x0] =  i, [Pj, xj ] =  - iS j (2.56)

are then found by using step 3 of [46]. However, we are not done, 
that there is another non-vanishing commutator which is give by

as it happens



2.2. Non-linearity o f transformation laws in DSR 23

i
[ Pi, x0] =  -  K Pi (2.57)

and as required of a "nice" algebra, the above algebra satisfies the Jacobi identities.
Now, an interesting question is, do we obtain a similar algebra of the space­

time in other bases depicted above. We employ the Magueijo-Smolin basis and try 
to find the non-commutative structure of space-time. Step 1 in [46], suggests we 
start with

\Pp, Xv] =  - p̂V (2.58)

Now the next step is to observe that the only terms in (2.46) and (2.47) which come 
into play for computations are the bilinear ones. So we write

1
A(Pi) =  1 ® Pi +  Pi ® 1 -  P0 ® Pi +  ... (2.59)

K

2 1
A(P0) =  1 ® P0 +  Pi ® 1 -  KP0 ® P0 +  KEPi ® Pi +  ... (2.60)

and from this it follows that in the spatial sector an immediate non-vanishing com­
mutator is given by

i
[X0, Xi ] =  —  Xi (2.61)

K
and from [46] we find remaining commutators to be

[P0, Xi] =  - -P i [P0, X 0 ]=  i 1 -  2 P0 (2.62)K K
i

[Pi, Xj] =  -iSij [Pi, X0] =  -  - Pi (2.63)

of course the algebra above satisfies the Jacobi identity.
Furthermore, when one employs the classical basis {X p ,V p}, which is merely 

a different basis from the previously mentioned, again we start at step one and 
obtain the relation

[Vp, XV] =  - in Fv (2.64)

and to get the commutators in the spatial sector as above we similarly take the part 
of the co-product up to the bilinear terms and thus have

2 1
A(Vi) =  1 ® Vi +  Vi ® 1 +—  V0 ® Vi +—  Vi ® V0 +  ... (2.65)

K K
1

A(V0) =  1 ® V0 +  V0 ® 1 +  k EVi ® Vi +  ... (2.66)

which leads again to

1
[X0, Xi] =  -  -  Xi (2.67)

The rest of the commutation relations can be found from [46] however the point we 
would like to stress is that regardless of the basis we use, one recovers the spatial 
sector from energy momentum co-algebra as the K-Minkowski spacetime.

2.2 Non-linearity of transformation laws in DSR
If one is to derive the transformation rules for a DSR theory, he necessarily has 
to re-write the principles on which Special Relativity is bases and possibly add 
additional principles. The first two principles we will state should be familiar to 
the reader from above and in SR. They are as follows
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• Relativity o f inertial frames: Observers in free, inertial motion are equivalent

• Equivalence Principle: Under the influence of gravity, observers in free-fall are 
inertial observers and are all equivalent to each other.

One then needs to add more principles for a theory of DSR to accomodate for 
"new" ideas like the additional observer independent scale. These principles are as 
follows

• Observer independence o f the Planck scale/energy: In addition to the speed of 
light, all observers have to agree on the Planck scale as an invariant scale.

• Principle of correspondence: In the low energy limit, one has to recover the 
standard SR and/or GR.

In our next discussion, we follow closely the presentation in [51]. Starting with 
the Lorentz sector, we derive the symmetry generators for DSR. Noting from the 
first principle, we must have a transformation group that relates measurements 
made by different observers. However, the last principle, constrains this transfor­
mation group to one that reduces to the usual Lorentz group of SR at the appropri­
ate limit. Our expectation, similar to SR, the transformation group also has to have 
six parameters i.e. 3 rotations and 3 boosts. However, we find that the only group 
with these properties is the Lorentz group itself. At this point one faces a prob­
lem, in that the Lorentz group does not actually satisfy a theory with an additional 
Planck scale or Planck energy Ep. One way to get around this is to assume that our 
symmetry group is actually the Lorentz group, however it should act non-linearly 
on momentum space. Thus we are then required to write down an explicit form for 
the action on momentum space, which should be energy dependent and leave the 
Planck energy invariant. Adding a dilatation term to each boost generator turns 
out to allow us to achieve this. We remind the reader that this discussion is specific 
to a DSR theory in the M-S basis.

Here, one should note that we are working in momentum space rather than the 
configuration space., where by momentum space we are referring to the space P of 
momentum four-vectors pa where a € { 0, 1, 2,3 }  using the signature (+ , - ,  - ,  - ) .  
The standard Lorentz generators are then given by

^  =  p"W ? -  (2'68)

Our strategy as we have stated above, is to leave the rotation generators Ji 
where i € {1 ,2 ,3 } , unchanged but add an additional term to the boost generators 
Ki. This term we are adding now contains the dilatation relation generator D =  
pa d ^ , with the obvious action on M, D o pa =  pa. The modified generators of 
boosts are then given by

K  :=  L0 +  l p f D  (2.69)

where lp is the Planck length, which is the inverse of Ep.
Recall that we leave the rotation generators unchanged, thus they retain their 

usual definition

J l =  e ik Ljk (2.70)

One crucial point we would like to highlight is that even though, we have made 
modifications on the generators, they still satisfy the standard Lie algebra for the 
Lorentz group viz

{  J l, Kj }  =  ie iikKk, {  K , Kj }  =  - i e ijkJk, {  J l, Jj }  =  ie ijkJk (2.71)

Having set up the algebra of the generators, we tackle the next task, which is to 
exponentiate the boost generators so that we can find the transformation laws of 
the boosts. One hopes here, at the least the transformation laws we attain resemble
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those of SR. Firstly, we note that one can generate the modified, non-linear boost 
generators Kl, by using an energy dependent tranformation U(p0) =  elpp0D

K  =  U-1 ( p0 )L0U( p0) (2.72)

Exponentiating, one then recovers the representation of the Lorentz group we 
have been looking for, which has the form

R[wap ] =  U-1 ( p0 )eWa? LaP U (p0) (2.73)

The boost transformations are then, with 7  being the usual Lorentz factor, given 
by,

p0

pz

px

py

y (p0 -  vpz)
1 +  lp (y  - 1) p0 -  lpYvpz

Y( P:z -  vp0 )
1 +  lp (y  - 1) p0 -  lp jvpz

px
1 +  lp (y  - 1) p0 -  lpYvpz

py
1 +  lp (7  - 1) p0 -  lp jvpz

The reader should note that in the limit of small | pa |, these transformations 
reduce to the usual SR momentum space transformations. Also note that this set 
of energy-dependent transformations look similar to the standard SR transforma­
tions.

In writing down transformation laws which leave the Planck energy invariant, 
we had to pay the price of having a momentum space P with a constant curvature, 
thus having a de Sitter or anti-de Sitter geometry depending on which sign the 
curvature takes [31]. As a consequence of this, now translations on momentum 
space no longer commute.

2.3 The physics of Deformed Special Relativity
Having gone through the general mathematical structure of DSR, the next step 
one might want to consider is the kind of physics which might possibly emerge 
from such a theory of DSR. It should be noted however that since physicists still 
cannot agree on a single formulation of DSR theory, one can only speculate about 
the physics as well. In this section, we will have a look at two different aspects of 
physics, which include the modification of dispersion relations and the possibiliy 
of having an energy-dependent metric. The modification of the standard disper­
sion relation is a mathematical consequence of the particular form of our symmetry 
algebra, thus an integral part of the theory. Whereas the metric energy dependence 
should be regarded more as an intriguing, bold guess rather than a mathematical 
result.

2.3.1 Modified Dispersion Relations
Throughout this chapter, we have managed to motivate and introduce the math­
ematical formulation of an observer-independent energy theory of DSR. Further­
more we looked at the fundamental principles and how they change the transfor­
mation laws of SR to accomodate an additional observer-independent scale. Now 
we move on to consider modifications of the standard relativistic dispersion rela­
tion, which is

E2 =  p2 +  m2 (2.74)
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It should not come as a surprise that we might need to modify this disper­
sion relation in a theory of DSR, since we need to include somehow the observer- 
independent energy scale. One kind of modification that is sometimes suggested 
is of the following form

E2 =  p2 +  m2 +  (2.75)

where the function f  is in powers of E/Ep  of order greater than 2. Modified dis­
persion relations (MDR) of this fashion were first suggested in [34]. Dispersion 
relations are merely Casimirs of algberas, thus if given the K-Poincare algebra in 
a specific basis, one can straight forwardly derive a precise form of the modified 
dispersion relation. We should put emphasis on the fact that any modified disper­
sion relation in DSR is observer-independent i.e. under the non-linear momentum 
space transformations the MDR is left invariant. Recall there were many possible 
bases of the K-Poincare algebra, similarly, there are many forms of the function f  
with the hope that should DSR turn out to be correct, f  will be fixed by experimen­
tal data. To make things a little more concrete, let us give the explicit form of the 
modified dispersion relation used in [34]

e 2 » p2 + m2 ±  n r r  e 2 ( I ) ” (276)

Here we have introduced a modification which is only given up to leading or­
der, with the parameter n being the power of the leading correction. It is exciting to 
note that possible modifications of the dispersion relation for highly energetic pho­
tons can be tested in experiments which are already running or will become feasi­
ble in the near future. Thus DSR should be more prioritized in studies of quantum 
gravity since it provides one of first testable predictions made by any theory of the 
semi-classical regime, not mentioning the pure quantum gravity regime.

A consequence of modifying the dispersion relation this way is the possibility 
of an energy-dependent speed of light c(E). We make the assumption that the 
equation v =  still holds in the semi-classical regime, we then find [34] that 
for the modified dispersion relation (2.76), the speed of light c(E) with an energy 
dependence is given by

c(E) =  1 ±  ( ^  (2.77)

What should be clear from this relation, is that in the limit E ^  0, the speed 
c(E) tends to the speed of light c. As one should expect an energy-dependent speed 
of light might lead to conceptual problems of a theory. We will discuss an experi­
ment with an energy dependent speed of light towards the end of this chapter. A 
crucial point that has to be noted is that what we have done is to take the modified 
dispersion relation which is in terms of momentum space variables and apply the 
relation v =  dE /dp  which is an equation for calculating the position space quan­
tity v . Thus the conceptual problems one faces because of an energy-dependent 
speed of light might be attributed to the transition between momentum and con­
figuration space not being done correctly. It could be that the relation v =  dE /dp  
is not the appropriate relation to use in a semi-classical theory with an observer- 
independent Planck energy scale. Possibly, using the right relation here might or 
might not yield a speed of light which is energy-independent.

2.3.2 The Rainbow metric and Spacetime geometry in DSR
In the previous sections we have tried to outline the DSR formalism and make 
some of the concepts commonly used in the literature more precise. In [46] how­
ever, we have seen that there are multiple formulations of the DSR theory based 
on which basis is being used for the theory. An example is the DSR1 theory [16], 
which is a formulation in the bicrossproduct basis. In these different formulations,
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one of the key issues is the derivation and interpretation of the geometry of space­
time which as we have seen above derives as non-commutative geometry. In the 
next chapter, we will encounter a more geometric approach for recovering the ge­
ometry of spacetime. In particular we shall discuss a proposal which stems from 
considering the modification of the dispersion relation as level sets of a Hamilto­
nian on phase space. This is a different angle and provides a fresh view on the 
subject.

In this section however, we will be discussing the possibility of an energy- 
dependent spacetime metric which is dubbed the rainbow metric. We closely fol­
low the work presented in [31],[52]. We have seen in this chapter the energy- 
dependence of the deformed transformation laws and the dispersion relation by 
having introduced the observer-independent energy scale Ep. With this in mind it 
is natural to ask, is the geometry of spacetime also energy-dependent in itself? This 
was the question asked in [31] and a detailed discussion of the energy-dependence 
of the geometry of spacetime can be found in that paper and references therein. As 
a starting point, [31] assumes an energy dependent metric written as g(E), where 
the meaning of the quanitity E needs more clarity. E is then defined as the energy 
of a particle in spacetime as seen by someone observing the particle. However, 
by this definition, E will have kinetic energy contributions, leading to different 
observers attributing different energies to one and the same particle. Intuitively 
one can think of E as the energy with which a particle would probe spacetime, 
according to some distant observer. Recall, we saw in section 2.2 that introducing 
the invariant scale Ep resulted in deformations of momentum space, which can be 
achieved via the action of a map U of momentum space P into itself, U : P ^  P. 
Thus having

U o (E, pi) =  (U0, Ut) =  (/  ( E p  E, h ( E p  p ^  (2.78)

In order to obtain a frame in which one can describe a spacetime geometry at 
very low energies, we make use of the functions f  and h to write down energy- 
dependent orthornormal form fields

e0 =  f -1 (E/Ep)e~0, e{ =  h-1 (E/Ep)$ (2.79)

Then if one is to write the metric in terms of these fields we recover

g(E) =  nabea ® eb (2.80)

ep are the frame fields, which describes the spacetime geometry at very low en­
ergies. A crucial requirement is that in the appropriate limit i.e. E ^  0, one re­
covers the classical spacetime which we usually work with in GR and is energy- 
independent

Eim0 gpv (E) =  gpassical (2.81)

We have ended up with a one-parameter family of metrics. As we have men­
tioned a metric with such an energy-dependence is called a rainbow metric and 
it should be noted that the introduction of an energy-dependent metric is merely 
a mathematical construct and is not physical. The reader might be asking him­
self, does this mean that with an increase in the kinetic energy the gravitational 
field around a particle moving gets stronger? The answer to this is no. The only 
thing that happens is that an observer sees the particle moving in a metric which 
depends on the energy of that particular particle. So far this discussion of the 
rainbow metric has been dealing with a single particle. However, the situation be­
comes a bit more complicated once one consideres different particles at the same 
point in spacetime but travelling at different speeds, thus having different energies 
according to an observer. In a situation like this, the observer will then associate 
different metrics with each of the particles, thus posing the question of what over­
all metric the observer will see. In [31], it is suggested that the result should be a
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superposition of all the different metric, however it is not yet known how exactly 
the metrics superimpose. We only mention the rainbow metric here for the sake of 
completeness.

2.4 Some limitations in Deformed Special Relativity
Our discussion so far has concentrated on the formal development of a theory 
of DSR and we have not mentioned physically observable consequences that the 
theory of DSR might have. However we cannot ignore this if we ever wish to bring 
closer theory and experiment. In this section and subsections herein, we will shift 
attention to a few limitations Deformed Special Relativity might have or paradoxes 
pertaining DSR. Some of these issues with DSR have cast heavy doubt on some 
aspects of DSR in the scientific community. We will now continue to outline these 
arguments. The list of limitations given here is however not exhaustive.

2.4.1 Distance or spacetime fuzziness
The fact that the structure of the Quantum Gravity problem suggests that the clas­
sical description of spacetime should give way to a nonclassical one at scales of 
order of the Planck scale has been extensively investigated in the literature. How­
ever in the nonclassical description of spacetime, a key characteristic of quantum 
theory is the emergence of uncertainties, and one would expect that the position 
observable would also be affected by uncertainties. In ordinary quantum theory, 
we can still measure sharply any given observable, at the cost of losing all informa­
tion on a conjugate observable (HUP), however it appears as though in a theory of 
quantum gravity the observable distance would be affected by irreducible uncer­
tainties given the minimal length Lp of quantum gravity. This essentially means 
that the uncertainty in the measurement of distances could not be reduced below 
the Planck-length level, however there have been measurability bounds of other 
forms considered [53], where the uncertainty 5D is bounded by some function 
f  (D, Lp), which has a dependence on the minimal length. Regardless, the problem 
of a "fuzzy distance” is still pervasive. This problem of an irreducible measure­
ment uncertainty could be a significant hindrance in some context, one of which 
would be the noise levels in the readout of a laser interferometer receiving an ir­
reducible contribution from effects of quantum gravity. In principle, classically 
interferometric noise can be reduced to zero, such as done by the SKA, however 
already the analysis of ordinary quantum properties of matter includes an extra 
noise contribution. Taking into account quantum gravity would mean a funda­
mental uncertainty induced by the Planck scale. This would have an effect on the 
arms of the interferometer, hence introduce a source of noise.

2.4.2 Planck-scale departures from the equivalence principle
There have been quite a lot of views on the problem of quantizing gravity, how­
ever a few [53] seem to suggest the departures of one or the other forms of the 
equivalence principle i.e the strong or the weak. Here by the weak equivalence 
principle we mean the principle that states that all laws of motion for freely falling 
particles are the same as in an unaccelerated reference frame, whereas the strong 
equivalence principle builds upon the weak, however includes astronomic bodies 
with gravitational binding energies. We briefly mention here the argument which 
is based on the observation that locality is a key ingredient of the present formula­
tion of the equivalence principle. In fact, what the equivalent principle advocates 
is that, given the same intitial conditions, two point particles would go on the same 
geodesic independently of their mass. But this including extended bodies and de­
localised point particles in the equivalence principle, one reaches the conclusion 
that it does not apply for these objects. Now if the structure of spacetime were to
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induce an irreducible limit on the localization of particles, one could expect some 
departures from the equivalence principle.

2.4.3 The Soccer-ball Problem
In short, the "soccer-ball" problem is the problem of high energies that large bodies 
(with large energies exceeding the Planck energy) have in theories with maximal 
energies. This problem is termed as such due to a soccer ball being an example of a 
macroscopic body compared to the Planck length. These high energies exceed the 
Planck energy Ep and thus in DSR poses a paradox. More formally, in an approach 
to sum momenta when Lorentz symmetry in momentum space is modified, one 
chooses to maintain observer-independence [130]. In short, the problem is that we 
find a nonlinear modified Lorentz transformation A acting on momenta thus one 
finds that when transforming the addition of momenta, the result differs to when 
one adds the individually transformed momenta, i.e.

A(pi + p 2 ) =  A (pi) +  A(p2) (2.82)

Having this, we ruin one of the motivations to introduce deformed Lorentz-symmetry 
This then ruins observer-independence which was one of the main motivations to 
introduce deformed Lorentz-symmetry: If A is the unit element of the group, then 
the equation is fulfilled, and thus the restframe in which it is fullfilled singles out 
a preferred frame

One thus concludes that it is necessary to define a new, non-linear, addition 
law for momentum that has the property that it remains invariant under Lorentz- 
transformations and that can be rightfully interpreted as a conserved quantity.

It is presently not known how to define the sum of momenta in approaches 
that modify Lorentz symmetry in momentum space and mantain observers inde­
pendence. In a nutshell, the problem is that the modified Lorentz-transformation,
A, that acts on momenta is nonlinear, and thus the transformation of the sum of 
momenta is not the same as sum of the transformation of the momenta

Luckily, it is possible to construct a Lorentz-invariant new addition law without 
too much trouble. To see how this works, we refer the reader to the elaborate 
publication [54].

2.4.4 The Box Problem
In DSR literature, the issue of non-locality has been around for some time now. 
We will try and give a qualitative description of the problem following the paper 
[55]. In the next section, we study an experiment which leads to effects of non­
locality of macroscopic magnitude, as such one would believe they should have 
been observed a long time ago. However, for the reader not familiar with locality, 
we wil first try and explained what we mean by locality and non-locality in the 
context of DSR. By locality/non-locality we mean, when different observers agree 
or disagree on whether two events in spacetime are happenning at exactly the 
same point, independent of the observer. This is what is usually meant by a local 
theory. If a theory is however non-local, then events happening at a specific point 
in spacetime will only appear to be happening at that point for only one of the 
observers but not the others.

We have been arguing throughout this thesis that the energy associated to the 
Planck mass, should have an observer-independent meaning. However, the re­
quirement of assigning an observer independent meaning to the Planck mass re­
quires a modification of Special Relativity (hence DSR) and a new sort of Lorentz- 
transformations. In DSR as we have stated before, we postulate the Planck mass 
as an observer-independent invariant. The Lorentz transformations that leave the 
Planck mass invariant under a boost generically result in a modification of the stan­
dard dispersion relation and an energy dependent speed of light [47]. This energy 
dependent speed of light can, in the low energy be constant, increase or decrease.
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In other Deformed Special Relativity considerations [34], we saw that the speed 
of light is a function of energy c(E), such that this function is the same for all 
observers. Now suppose we transform the energy E to E, then we should have 
that c(E) =  c(E ) in contrast to SR where only one speed is invariant under the 
Lorentz-transformations i.e. c =  1. A confusion arises when one thinks about 
how an energy-dependent speed of light that can take different values can also be 
observer-independent.

To see how this confusion can be comprehended consider the following sce­
nario. Suppose we have a monotonically decreasing speed of light which reaches 
zero as the energy approaches the Planck energy. Then when we consider a photon 
of energy E =  mP, this photon should be at rest. Now we put this photon inside a 
box and let an observer in another frame with speed v observe this photon inside a 
box. The box moves, relatively to the observer with speed v in the opposite direc­
tion of the observer. The box here is taken as a classical, macroscopic, low-energy 
object. At the instant the photon is put inside the box, the observer observes the 
photon inside the box, however as time passes, the observer sees the box at a dis­
tance from the photon considering the photon should be stationary irrespective of 
an observer. In contrast to the observer-dependence of 'the same' moment in time 
that one also has in Special Relativity, this concerns the observer dependence of 
what happens at the same time and the same place [55] and this gives problems 
if one wants to accomodate such a scenerario in a local theory. This problem is 
termed the "box-problem", and further and elaborate discussions of this problem 
can be found in [55]. The next section discusses the issue of locality or rather non­
locality in the DSR context and an experiment depicting this paradox.

2.5 Relative Locality
In Special Relativity, when we infer the coordinates of a distant event we analyze 
light signals sent between the observer and the event. However, in doing so we 
throw away information about the energy of the photons. In this section, we ask 
ourselves questions like, how do we know we live in spacetime? And if so, how 
do we know we all share the same spacetime? We closely follow [44] in analyzing 
what happens when one considers the energy of light signals as well. Suppose we 
want to deduce spacetimes of events by Einstein's localization procedure, however 
we use two photons, one with the Planck energy and a red photon. Can we be sure 
that the spacetimes we infer in these cases is the same? Also how can we be sure 
that when two events are concluded to be at the same spacetime position by one 
observer, the same holds for another observer at a distance?

In Einstein's two theories of relativity SR and GR, the answer to the latter ques­
tions is yes. The simultaneity of objects is relative however locality is absolute. This 
clearly follows from assuming spacetime is where all of physics occurs. However 
in the approaches that exist of quantum gravity, the weakening of locality is cer­
tainly suggested and that the concept of spacetime is only emergent and should be 
replaced by something more fundemental (see 3 on how spacetime emerges from 
DSR). In the search for a full theory of quantum gravity, one would be interested 
in finding out if it was possible to relax the universal locality assumption in a con­
trolled manner, such that we have a progression in the solution of the problem at 
hand. In [44] a theory is proposed which make an attempt at answering questions 
like the ones above, which relaxes the assumption of universal locality and termed 
it Relative Locality.

In the Relative Locality regime, we again explore a classical non-gravitation 
regime of quantum gravity as we have done with DSR and try and capture some 
of the key delocalising features of quantum gravity. In this regime, h and G are 
both neglected, while their ratio is held fixed:

h ^  0, G ^  0, but with fixed
h

Mp (2.83)



2.5. Relative Locality 31

Here we switch off both quantum mechanics and gravity, but keep the effects due 
to the presence of the Planck mass. Surprisingly, as one will see [56], this regime 
includes effects on very large scales which can be explored in astrophysical exper­
iments. Furthermore, since h and G are both zero it can be investigated in simple 
phenomenological models. Fig 2.1 below shows the Relative Locality regime as a 
limit of the fundemental constants.

Quantized Galilean Relative Locality
land Quantized Newtonian Gravity?:

Galilean
Quantum
Mechanics urn Relative Locality

land Quantum Gravity?:

held Theory
G o W e o n

Relative
Locality

Galileo
Newton
Theory

Relative Locality regime

Special Relativity

F IGURE 2.1: The limit at which Relative Locality is observed. This 
diagram is obtained from [131]

When we talk about universal locality of spacetime, this is usually taken to be 
equivalent to saying that momentum space is a flat linear space. However when 
we propose [44] a relative principle of locality, we obtain the mass scale MP as 
parametrizing the non linearities of momentum space. Remarkably, these non lin­
earities can be understood as introducing on momentum space a non-trivial ge­
ometry (an example will be seen in chapter 3). In [44], a precise formulation of the 
geometry of momentum space from which the consequences for the earlier ques­
tions can be exactly derived.

Max Born has been noted as the first person to propose [45] the idea that mo­
mentum space should have a non-trivial geometry when quantum gravity effects 
are taken into consideration as early as the 20th century. In his argument [45], he 
insists that the validity of quantum mechanics implies that there is in physics an 
equivalence between space and momentum space. Over the years, this equiva­
lence has been coined the Born reciprocity. When we introduce gravity, this sym­
metry gets broken since in GR, spacetime is now curved while momentum space 
is a linear space. Thus for the symmetry to be maintained, allowing momentum 
space to be curved is a natural way of reconciling gravity with quantum mechanics 
from this view [44].

In describing the geometry of momentum space, we adopt the operational 
point of view in which a local observer is equipped with devices to measure the 
energy and momenta of particles around his vicinity [44]. In order for the observer 
to be able to determine the proper time we equip him with a clock. Now in this 
setup, one can determine the geometry of momentum space by also equipping the 
observer with aparatus which can measure energies like the calorimeter. When 
one constructs momentum space, similarly to spacetime, one requires a measure 
of distance i.e. a metric and for a notion of curvature or torsion one requires a 
connection. In this construction, one assumes that to each choice of the appara­
tus carried by the observer, there is a preferred coordinate system on momentum 
space, ka, equivalently xa for spacetime. Just as in spacetime, we would like the 
dynamics not to depend on the choice of the apparatus' coordinates i.e. to be ex­
pressed covariantly on our momentum space. We take the energy ground state 
ka =  0 to be the origin, thus any other value ka is a measure of momenta or energy 
above the ground state. Below we will derive a metric on the momentum space 
and the operational route to such a derivation is requiring the observer to measure
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only a single particle and as we will see later, be able to define a metric on the 
space. When one measures multiple particles, this determines the geometry of the 
space, whether it is curved at one point or straight at another, thus this measure­
ment enables us to define a connection on our space. In this discussion, we employ 
the reader to study [44] for an extensive derivation of the connection.

In determining the metric geometry, we employ our observer to measure the 
rest energy or relativistic mass of a particle. This measurement is a function of 
the four momenta, as we are in momentum space, the energy and 3-momenta of a 
particle is required. Locally the observer can also measure the kinetic energy K of 
a particle moving with respect to him. Our interpretation of these measurements 
will allow us to determine the metric geometry of the space. The relativistic mass, 
with respect to the coordinate system ka is taken to be the geodesic distance from 
the ground state or origin, thus this give

D2( p) =  D2( p,0) =  m2 (2.84)

which is the dispersion relation, with m the measured mass and D the geodesic 
distance of the particle.

Measuring the kineric energy then allows us to define the geodesic distance 
between a p particle at rest and a particle pf of the same mass and with kinetic 
energy K. That is D(p) =  D (p ') =  m and [44]

D2( p, p') =  - 2mK (2.85)

where we have the minus sign reflecting the Lorentzian of the momentum space. 
When one uses all these measurements, one can define a metric on momentum 
space as

dk2 =  hab (k)dkadkb (2.86)

As we have mentioned before, for the curious reader an extensive mathematical 
and experimental derivation of the connection in momentum space, can be found 
in [44].

Now one notices that within this framework of relative locality, we find that 
the momentum space P can actually be curved. Thus there cannot be a single 
spacetime M  for every point in momentum space. Therfore, we conclude that for 
each point k € P there should be a seperate spacetime Mk compared to a different 
point k' € P which would have a spacetime Mk'. This implies now that the phase 
space would be the cotangent bundle over momentum space i.e. r  =  T*P.

It would be interesting to try and compare the worldlines of particles at differ­
ent points in momentum space. In this scenerio if two particles' A and B worldlines 
were to meet, we cannot simply say xA =  xB, because this would be intuitively 
wrong. One cannot assert xA =  xB, because they live in different spaces just as 
in spacetime different momenta pA and pB of particles A and B would. Thus in a 
situation like this, one would ask how would you parallel transport one worldlne 
of particle A on momentum to that the spacetime of particle B. In the following 
chapter we see how this works with Deformed Special Relativity.

2.5.1 Deformed Special Relativity, a non-local theory?
In this section, we will construct an experiment which will lead to the conclusion 
that DSR theory is a non-local theory. More precisely, since we have seen that there 
is no single formulation of DSR theory that everyone agrees on, one should specify 
that we are talking about DSR theories, which have an observer-dependent speed 
of light. This arguement follows closely [28]. Let us introduce a law which gives 
the phase velocity of a photon in terms of its energy E

c ( E )  - 11 + “ M p ) + O (  M  ( 2 8 7 )
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where we only consider first order corrections in M and a is a constant, which is 
chosen to be negative in order for the velocity to decrease with increasing energy. 
The crucial point about this relation is that its functional form does not depend on 
the observer. Thus meaning that, even though the energy E is not invariant under 
transformations, the relation is. We now continue to describe the experiment.

Consider a gamma-ray burst, which emits two different types of photons. One 
is a photon with very high energy E7 — 10GeV — 10—18Mp and the other, a very 
low energy photon which we use as a reference. We should note that, both photons 
are detected here using an earth-bound detector and that the distance between the 
gamma-ray burst and the earth is set to be L — 4Gpc — 1026m. If we are to assume 
that the low and high energy photons get emitted simultaneously, then due to the 
energy dependence in the expression for the phase velocity, we find that there is a 
delay AT in the arrival times of the two photons in the detector. This delay is given

by 2

a t = l M + ° ( M p )  (288)

When we use the values given above, one finds that this delay is of the order of 
1 second. Lets now add a second detail to the experiment.

F IGURE 2.2: The setup of the non-locality. Both figures are taken 
from [28] (resolution is at best)

Consider also an electron with an energy Ee- — 10MeV, which gets emitted by 
a source which is directly in the vicinity of the detector on the earth. The source 
emits the electron in such a way that it arrives at the detector simultaneously with 
the high energy photon, thus also a time difference — te- =  AT earlier than the 
low energy photon. To add, also imagine, the high energy photon and the electron 
scatter off each other and creat some kind of macroscopic irreversible change. The 
precise details of this event are not crucial in this discussion.

Now we ask ourselves, what will a second observer see when observing the 
above setup, in particular to the arrival times of the different photons and the elec­
tron in the detector on Earth. Imagine, this second observer Neo, is in a satellite 
and moving towards the gamma-ray burst. Assuming Neo's satellite is moving 
at a speed of vs =  —10km.s—1 with respect to the detector on the earth, then this 
leaves a Lorentz factor of j s — 1 +  10—9. From Neo's rest frame, the high energy 
photon and the electron will appear to be blue-shiffted, however the very low en­
ergy photon will still be seen as having a very low energy. Thus calling the low 
energy photon the reference photon. Now, the high energy photon's energy is

E7
1 — vs
1 +  vs

E7 +  O
E2
E7
Mp

(2.89)



34 Chapter 2. Deformed Special Relativity

where E7' now indicates the energy in Neo's rest frame as opposed to the earth- 
bound detector's rest frame energy E7. Also making a transformation in the arrival 
difference time of the low energy photon and the electron te— into Neo's frame, we 
find

te
L 1/c(Ey) — 1
7s 1 — vs

(2.90)

Since the high energy photon now has a different energy in Neo's frame, this 
will affect the speed (2.87), thus we need to calculate the new speed c(Ey). Here 
the functional invariance of the expression c(E) comes into play and we have

c(E7) =  1
e Y_

Mp
1

1 v s
1 +  vs

E7 +  O
E2E7
Mp

(2.91)

Now also the distance that has been travelled by the photons becomes L' =  
7 s (vs/c(Ey) — 1) L. Putting everything together, we then find that the AT in Neo's 
frame is

AT ^  L
M p

1 —vs
1 +  vs

AT +  O
E2E7
Mp

(2.92)

Recalling in the earth-bound frame we had — te— =  AT, we now find that in the 
primes frame we have

AT' — te
1 —vs
1 +  vs

1
7s (1 — vs)

+  O
E2E7
M2

(2.93)

Now if we insert our values for 7 s and vs, we are left with AT' — te— — 10—5 AT, 
or in other words, the photon is lagging roughly one kilometer behind the electron. 
Thus we find that in Neo's frame, the high energy photon and the electron do not 
arrive in the detector at the same time, as they did in the detector's rest frame. 
As a result they will not scatter off each other and will not cause the macroscopic 
event. This is how non-locality in DSR theory arises, if we assume an observer- 
independent, energy-dependent phase velocity. Given the fact that we have not yet 
observed any such non-local effects allows us to make the conclusion that we can 
actually rule out an energy dependence of the form (2.87) up to a high precision. 
More presicely, since the centre of mass of the high energy photon and the electron 
is roughly 15MeV, the scattering process probes a spacetime distance of the order 
of 10f m. If the distance difference between the arrival of the electron and the high- 
energy photon in the detector is less than this distance probed by the scattering 
process, then non-locality is not an issue. Thus if | AT — t | < 10f m is fulfilled 
then the theory is still local. For boosts of up to about 7 s =  30, this allows us to find 
a bound on AT, namely AT < 10—23s or alternatively we can also find |a| < 1023. 
We see that by the latter inequality, we can rule out modifications in the phase 
velocity to first order in E/Mp.

Before ending this section it is worth noting the assumptions that we have 
made in the derivation of non-local effects. A very crucial assumption is that of 
an energy-dependent but observer-independent speed of light in position space. 
And the only reason why one might actually believe that the speed of light does, 
in fact depend on the energy is because of the modified dispersion relation, which 
as we have seen before is an inherent feature of the theory of DSR.
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2.6 Summary
In this chapter we have introduced Deformed Special Relativity in depth, going 
through the algebraic construction of the theory. We further showed how the the­
ory of DSR can be expressed in different basis and how these basis are all equiv­
alent. We did not exhaust all the different bases which DSR can currently be con­
structed in, however we felt the three mentioned here made the point we were 
trying to make. Furthermore, we mentioned some of the limitations or paradoxes 
that a theory of DSR could or is facing, and directed the reader to how these are 
solved in the literature. Moreover we introduced the Relative locality regime in 
hopes of showing the equivalence between DSR and RL. In our discussion of RL, 
we mentioned why a theory of RL is needed, furthermore we described how and 
why momentum space becomes curved in RL. We then showed as an example how 
one can obtain the metric geometry of momentum space through energy measure­
ments and concluded the chapter by constructing an experiment which led to the 
conclusion that DSR theory is a non-local theory.
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Part II

Hamilton Geometry of 
Deformed Special Relativity
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Chapter 3

Geometrization of Deformed 
Special Relativity

F i g u r e  3.1: Sir William Rowan Hamilton

3.1 Lagrangian and Hamiltonian mechanics: A review
In this section we review the Lagrangian and Hamiltonian mechanics based on the 
Principle of least action. Further we discuss the necessary structures to geometrize 
the space of Hamiltonian functions. Moreover we provide useful and coherent 
ways to analyse Hamiltonian mechanics.

Principle of Least Action

Consider a configuration of a mechanical system evolving in an n-dimensional 
space, with coordinates x =  (x1, x2, ..., x”) . One may decide to describe this system 
in generalized coordinates q =  (q1, q2, ..., q”) . The usefullness of these generalized 
coordinates will soon be apparent. Hamilton's principle otherwise the principle 
of least action can be simply stated as: Out of all possible paths in configuration 
space, between two points along which a dynamical system may move from one
point to another within a given time interval ^t,, f , the actual path followed by 
the system is the one which extremizes the line integral of the Lagrangian.

The function L =  L(q, q, t), which appears in the action integral below is called 
the Lagrangian. The integral

S
■t

L(q, q, t)dt (3.1)

is called the action of the system.
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More precisely Hamilton's Principle can be stated according to [57] as follows: 
Hamilton's Pricincple: The dynamical behavior o f a classical system is completely deter­
mined by the Lagrangian L : TM ^  R. The dynamical trajectories are the solutions of 
the variational equation SS =  0 where S is the functional 3.1, where the variation is over 
all curves y  : [ti, t f  ] ^  M with fixed endpoints y (ti), y ( t f ).

The variation of the above action according to the principle of least action yields 
a set of equations, called Euler-Lagrange equations. These equations specify the 
dynamics of a conserved mechanical system on the configuration space and are 
thus the equations of motion. These equations are of the form

d dL 
dt dcji

(3.2)

usually, one can obtain Hamilton equations by deriving them from the Euler- 
Lagrange equations. However, since we did not dwell on the variational principle 
with the Lagrangian, we will use it with the Hamitlonian. The Hamiltonian equa­
tions of motion can be directly calculated from the least-action principle. We start 
by defining the Hamiltonian function H , as the function given by

H =  Tipifji — L (3.3)

Then using the action equation (3.1) together with this definition, one obtains

S =  j  L(q, q, t)dt =  j  (Eip idqi — Hdt) (3.4)

Here in contrast to Lagrange formalism, one considers both pi and qi on equal foot­
ing and as independent dynamical variables and make the infinitesmal variation

qi ^  qi +  Sqi pi ^  pi +  Spi (3.5)

The corresponding action variation then has the form

SS =  E Spidqi +  pidSqi Sqidt 
dqi ^

S pidtM ^ . (3.6)

Integrating the second term by parts and using that Sqi\boundary =  0 (the variation 
of q is assumed to vanish at the boundaries) , one can then rewrite this equation as

SS
dH
— dt + Sqi dpi dt

H dqi .
(3.7)

Since for the actual trajectories, the action variation is trivial i.e SS =  0, taking Sqi 
and Spi to be arbitrary and independent, one concludes that both expressions in 
round brackets are zero, therefore

dqi dH
dt dpi

(3.8)

and
dpi =  dH 
dt dqi

(3.9)

These two equations of motion are dubbed Hamiltonian equations o f motion.
Hamilton's equations form a system of 2n ordinary differential equations of 

the first order for the 2n unknown functions ql (t), p j(t), i, j  =  1,2,..., n. Suppose 
we are given the initial values of these 2n functions at some instant in time t0, we 
are guaranteed by the standard existence and uniqueness theorems of the theory 
of differential equations that these equations of motion possess a unique solution 
on some time interval containing t0. That is to say, given the initial values of the 
spacetime coordinates and momenta, Hamilton's equations completely specify the 
position and momentum coordinates at all other times t € (t0, t0 +  c) for some 
constant c >  0.
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Unification of coordinates

As we have seen above, in the Hamiltonian formalism, one treats the q and p vari­
ables or coordinates on an equal footing. In this section, we explore the unification 
of these coordinates into a set of 2n variables that will be called the "unified coor­
dinates" written j 1, with the index i € {1,2 ,..., 2n}. These coordinates are divided 
into two smaller sets, with the first n of the Z representing the configuration space 
coordinates qp, and the second n, the momenta pp . More explicitly,

Z1 =  q , i € { 1  n}

Z1 =  pi—n, i € {n  +  1,..., 2n}

(3.10)

(3.11)

The next obvious investigation would be writing Hamilton equations of motion i.e. 
equations (3.8) and (3.9) in these coordinates. Here one has to be careful reading 
the indices as they must have different sets in which they run. We want to write 
Zl =  f l (Z), where the f l functions are to be determined using the equations of 
motion in canonical coordinates. One then finds that the first n of the f j are given 
by dH =  , and the last n are —15 =  —1 5 , such that the equations of motion
are given as [57]

Z  k =  1 ,- n  <3-12>

?  =  — k =  " + 1 ,- 2n <3-13)

One may then want to compactify these equations into one equation where the 
indices run in a single set In order for one to accomplish this, we introduce a 
2n x 2n matrix, given by

0 0n In
In 0n (3.14)

where I n is the identity matrix and 0n, the null matrix. This matrix satisfies the 
following properties

0 2 =  —I, 0 T =  —0  (3.15)

That is, it satisfies 0 -1  =  - 0  and is antisymmetric. To complete the introduction 
of this matrix, we note that we will denote by 9li the elements of the matrix 0 .  We 
can then proceed by denoting dk =  , that the canonical equations of motion can
be written compactly as

or alternatively

j  =  e1’ djH

Okt Zl =  dkH

here repeated indices indicate summation over the index.

(3.16)

(3.17)

3.1.1 The Poisson bracket and the symplectic structure
Poisson bracket

Another important idea in Hamiltonian mechanics is that of the Poisson bracket. 
Generally if f ,g  € F (T *M ), where F (T *M )  is the functional space of T*M, and 
where M  is a base manifold with T*M  its cotangent manifold, then the Poisson 
bracket of f  with g  is defined as [57]

{ f ,  g } =  (d if )e lk (dkg) =  d f  e lk d g
f  f  dg_ 
dqa dpa dpa dqK

(3.18)

where the rightmost expression gives the definition in coordinates which we are 
yet to define as canonical, which is usually the most useful form. The Poisson
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bracket in turn satisfies the usual properties of brackets which include bilinearity, 
antisymmetry and the satisfaction of the Jacobi identity, hence it is a derivative op­
erator if you fix one of its entries. In addition it satisfies a Leibnitz type of product 
rule [57]:

{ f , gh} =  g  { f ,  h } +  { f , g }  h (3.19)

hence by fixing one of its entries and not the other it becomes a derivative operator 
due the nature of its definition (defined usig space-time and momentum deriva- 
tives).x The aforementioned properties define a specific kind of algebraic structure 
called a Lie algebra, thus we note that the functional space F (  T* M) is a Lie alge­
bra under the Poisson bracket. We will see in the forthcoming sections that one can 
study Hamilton dynamics from the perspective of Lie algebras.

Suppose we consider a dynamical variable f  (q, p, t), it is possible to find how 
this variable varies along the motion using the Lie derivative along the dynamical 
vector field. Here by dynamical vector field we mean the field representing the 
flow. With the use of the bracket introduced here, we can find the change with 
respect to time of the variable f  as follows

L s f  =  f t =  { f ,  H } +  d t f  (3.20)

where A is a covariant derivative. We will discuss what covariant derivative is in 
the later sections. We can apply this equation to every dynamical variable and by 
taking f  to be the canonical coordinates, one can recover the equations of motion 
i.e.

C =  {  r ,  h }  (3.21)

We can also use (3.20) to indicate the conservation of energy for time-independent 
Hamiltonians. Due to the antisymmetry of the bracket one should note that { f , f  } =  
0 for any f  € T* M . Thus applying this property and using (3.20) we recover

H =  {H , H } +  dtH =  dtH (3.22)

that is, the total time derivative of the Hamiltonian is equal to its partial time 
derivative. However, if the Hamiltonian does not depend on time then dtH =  0, 
thus H =  0. One recovers the conservation of energy.

Symplectic form

This chapter focuses on the geometrization of Deformed Special Relativity, there­
fore the next logical step would be looking at how one can geometrize the equa­
tions of motion (3.8) and (3.9). In geometrizing these equations, we briefly intro­
duce some of the notation to be used which include the interior product or con­
traction ix  : f i p (M) ^  f i p—1 (M) where X is a vector field on f i p(M) and where 
f i p (M) is the p-dimensional space of vector fields on M. We will dwell more on 
this notion in the upcoming sections of the chapter. We now proceed to see how 
this relates to the canonical equations. The left and right hand sides of equation 
(3.16) are respectively given by the one-forms iA and dH. Where A is a dynamical 
vector field on T* M  with components given by the canonical equations of motion. 
By canonical we mean equations in terms of the coordinates (p i, ql), which satisfy 
the equation

pj, ? }  =  —Sj (3.23)

Thus in these local coordinates this vector field is of the form

AH =  +  P°W a (“ 4)

where H  indicates a Hamiltonian vector field. Equation (3.16) is then geometrically 
given by
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iAe =  dH  (3.25)

with the Oij of (3.16) being components of a two-form O. To see that O is here a two- 
form, note that i'a is a contraction thus, as stated above i'aO is a one-form. Using 
local coordinates on phase space, a two-form is generally of the form [57]

O =  Oadqa A dpa +  1 (aapdqa A dqp +  bapdpa A d p ^  (3.26)

with constants aap =  —a?a and bap =  — bpa. Contracting the latter two-form O with 
the vector field A one recovers

iAO =  q% (O%dp? +  a%pdqp)  — p% ( O%dqa — bapdpa)  (3.27)

On the other hand, the right-hand side of equation (3.24) is of the form

dH =  — p % dq% +  q % dp% (3.28)

thus equating (3.25) and (3.26) shows that a%p =  b%p =  0 and O% =  S% and conse­
quently recovering

O =  dqa A dpa (3.29)

We call this two-form the symplectic form, thus in order for one to geometrize the 
equations of motion, the required two-form is given by (3.29). We call a two-form 
closed if dO =  0, and one should notice that O is closed and nondegenerate. Non­
degeneracy explicitly states that ix O =  0 iff X is the null vector field, with physical 
consequences given in [57].

Canonical Transformations

A transformation in general is a mapping of variables to "new" variables. Saying 
a transformation is canonical in classical mechanics limits us to a certain set of 
transformations. In the next discussion, we consider a system with n degrees of 
freedom. Suppose that one is faced with a classical system that is described by the 
Hamiltonian H(q, p) in phase space P  =  T*M, where M  is the configuration space 
and T*M  is its cotangent bundle, such that for any point y €  P , n =  (q, p). The 
coordinates (ql, pi) undergo a time evolution which is explicitly described by the 
equations

dql =  d H 
dt d pi

dpi =  dH 
dt dql

(3.30)

(3.31)

We say one has a canonical transformation (ql, pi) ^  (q1, p i), if the new vari­
ables q, p preserve the form of equations (3.30) and (3.31) respectively. That is we 
want the coordinate transformations ql =  ql(q, p) and -pi =  p-i(q, p) to satisfy the 
equations

dq d H
dt d p

dp =  dH 
dt dq

(3.32)

(3.33)

where Hi is the "old" Hamiltoninan expressed in the "new" coordinates or alter­
natively, one could think about it in a more geometric sense in that the following 
must be satisfied. If we start with canonical coordinates

{ q , j = Sj (3.34)
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then the "new" coordinates should also be canonically conjugate, i.e. they should 
also satisfy

q , p j}  =  Sj (3.35)

Important conditions on q and p include being differentiable and invertible. If 
these are satisfied then one is able to write the "old" Hamiltonian H(q, p) in terms 
of the the transformed coordinates i.e H (q , p) is possible. However suppose we 
are given the Hamiltonian H  and a particular canonical transformation, a missing 
ingredient in order to determine the "new" Hamiltonian H  is the generating func­
tion F of canonical transformation. The method to determine H  is neatly shown in 
[58]. Using equations (3.30) - (3.33), and the chain rule one can calculate the L.H.S 
of (3.32) and (3.33) respectively and find that they reduce to

d H d H . . d p
d p  =  d p  {q p }  d t

(3.36)

Since H € F (P ), where F (P )  is the functional space of P , an important point 
to note is that in this work, the Hamiltonian H  must essentially be the original 
Hamiltonian H  re-expressed in terms of the the new variable (ql, pi). In that case 
the equations (3.36) and (3.37) hold, regardless of the Hamiltonian if and only if

{<f, p j}  =  Sj (3.38)

and ql =  ql(q, p, t) =  ql(q, p) and pi =  pi(q, p, t) =  qi(q, p) i.e new variables must 
be time independent. After a bit of algebra, it can be shown that (3.38) is equivalent 
to the equation

d dq> d dq!
d q - i{p  d f k )  =  W t { pj W —Pi

(3.39)

It will be shown in subsequent sections that this condition encodes the preserva­
tion of the symplectic form O. It can be found in [58] that (3.39) is a necessary and 
sufficient condition for the local existence of the function F , which we've called 
the generating function, such that

pidqj pjdqi =  dFij (3.40)

One main advantage of using canonical transformations is that these trans­
formations leave invariant the Poisson Bracket defined b y {f ,g }  =  jq  ̂  ||,
where f  and g  are functions on the manifold. It is worth noting that there are 
more general coordinate transformations that leave the Hamiltonian invariant in 
contrast to those that also satisfy (3.39)

3.2 Hamilton Geometry: The Geometry of Phase space
In general relativity, spacetime is entirely determined by the metric. In a similar 
fashion, in Hamilton geometry we allow the Hamilton function H  of the phase 
space of free particles to determine the geometry of phase space [59]. This frame­
work allows for a description where spacetime and momentum space become 
curved and intertwined. Equipped with a Hamilltonian describing the propaga­
tion of a free particle on phase space, one then fixes a symplectic structure. We 
know that in Special Relativity, at each point, a freely falling particle has the dis­
persion relation

E2 =  p2 + m2 (3.41)
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where E is the energy, p the three momenta and m the particles's mass. In this 
framework, we find that the dispersion relations are simply level sets of Hamilton 
functions on phase space. Given a spacetime metric g  and its inverse g —1 and the 
four momentum p of a particle, we can covariantly rewrite the dispersion relation 
in terms of the Hamiltonian Hg  as such

Hg  (x, p) =  g a b  (x) p a p b =  m2 (3.42)

Now the covariant dispersion relation demonstrates that the geometry of space­
times is derived from second derivatives of H  w.r.t the momenta p of particles. 
Also that particle worldlines are basically determined by Hamilton equations of 
motion.

In this chapter, we will demonstrate that the Hamiltonian phase space is con­
structed as a cotangent bundle of a base manifold, furthermore explore the Hamil­
ton geometry framework in detail including a detailed example where we apply 
the objects of the Hamilton geometry. Moreover, we look at Planck scale modified 
dispersion relations of free point particles and determine what underlying space­
time geometry one gets.

3.2.1 Phase space as a cotangent bundle
Phase space is the natural setting for studying the dynamics of an N-particle sys­
tem. Suppose we have a real n dimensional smooth manifold M. Then around any 
p € M  there exists a local chart {U ,$>} where U is an open set in M, and <p takes 
points p € U, and maps them to a local coordinate frame (x1(t),...,x n (t) €  R n 
where p exists independent of a coordinate system. We define, the cotangent bun­
dle of M  as the manifold T*M =  Up €M T*M  then the local induced coordinates 
on a subset of n —b(U) € T*M  are (x 1, p i ) , where n  is the projection defined by 
n  : T*M ^  M, n(p) =  p Vp € T*M ,fig. 3.2.

F IGURE 3.2: Construction of Phase space P  =  T * M ,  as cotangent 
space of configuration space M.

Remark 3.2.0.1, The map n  : T* M ^  M  is called the projection map of the fibre 
bundle ( t * M, n, M, T* M, where these are respectively the total space, base
manifold, fibre and Lie group repectively. A lie group is simply a smooth manifold.

In section 3.1.1, we mentioned one-forms without defining what a one-form is. 
Given a vector X € TxM  at a point x € M, we call the cotangent vector of X at x € 
M  a one-form. Here we introduce the one-form in the canonical coordinates and
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write it as Qp € T* M, Qp =  pidxl. The exterior derivative of this one-form gives 
the aforementioned symplectic two-form 9. We call the variable pi in this definition 
the momentum variable and it is canonically conjugate to the configuration space 
variable xl.

Suppose one wants to perform a coordinate transformation in configuration 
space M  i.e. x ^  x. Intrinsically this will have an impact on the cotangent bundle 
of M , thus inducing a change in the local coordinates on T* M  as follows

drj
x1 =  x1 (x1,..., xn) p =  d ^ p ,  (3.43)

with the tilde indicating transformed coordinates. Now equipped with the local 
coordinates and coordinate changes on T* M , we now simply ignore the base man­
ifold for a moment and consider the cotangent bundle as a manifold in its own 
right. Since T* M  is a differentiable manifold, one can have a look at its tangent 
and cotangent spaces i.e the tangent respectively cotangent spaces of the cotan­
gent bundle of the base manifold.

As stated before the exterior derivative of the one form Q is called the symplec- 
tic two-form 9 and is given by

9 =  dQ =  dpi A dxl (3.44)

However, what we did not mention was the importance of this structure in 
our geometry. This is the symplectic structure on phase space T* M  and as a conse­
quence, the manifold induced coordinates (x, p) have the property that the Poisson 
bracket between them is the canonical one i.e

dx> dpj dpi dx>
dpi dxj dpj dxj

(3.45)

Having introduced the basic geometrical structures required for phase space 
analysis, we now embark on our quest on geometrizing DSR. We will introduce 
any neccessary geometrical entities as we proceed through out the chapter.

3.2.2 Hamilton Geometry
As suggested by [59], here we propose the use of the framework of Hamiltonian 
geometry of phase space as the natural arena for geometrizing manifestations of 
quantum gravity in dispersion relations. We have previously stated that in the 
quantization of gravity one expects to recover a non-commutative space and by 
DSR, this space is accompanied by a curved momentum manifold of curvature of 
the order of the Planck scale. In this section and subsections herein, we attempt at 
showing geometrically how these results are found by closely following the frame­
work layed down in [59]. Quantum gravity phenomenlogy has received a lot of 
attention recently, as it should since some astrophysical observations are reaching 
sensitivity levels that allow one to test the consequences of modified dispersion 
relations on the time of propagation of particles i.e. experiments like Gamma Ray 
Bursts (GRB) detection[25]. It is however always possible to interpret any disper­
sion relation as the level sets of a Hamilton function H  on phase space

H(x, p) =  m2 (3.46)

where m is the particle's mass.
First we introduce the Hamiltonian vector field which we only mentioned in 

passing, this is an essential geometrical structure of phase space and phase space 
symmetries. The Hamiltonian vector field XH is

Definition 3.2.1. : The vector field Xh on T*M  defined by

dH =  — XH _9 (3.47)

is the globally defined Hamiltonian vector field determined by H
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here the "left hook product" is defined by

(X_i9 )(Y) =  29(X, Y) (3.48)

The following theorem lists important properties of a Hamilton system

Theorem 3.2.1. : For a Hamiltonian system (T*M, 9, H ) , where H is the Hamiltonian 
funcion and 9, the symplectic structure the following hold

1. There is a unique vector field XH e  X  (T* M) for which

iXH 9 =  -d H  (3.49)

2. The integral curves o f the vector field XH are given by the Hamilton-Jacobi equations 
which are as follows

dxl dH
(3.50)

dt d Pi

dpi d H 
dt dx1

(3.51)

The curves which solve the equations given in theorem 3.2.1 are called the au­
toparallels of the Hamilton geometry of the cotangent bundle when the Hamilto­
nian is homogenous with respect to the momenta as we will see later. Autoparallels 
of the connection are curves y  : R ^  T* M  with purely horizontal tangent. Thus y  
is an autoparallel if it satisfies [59]

p a +  Nab (x.p)xb =  0 (3.52)

Another useful proposition is the relationship between 9 and the induced Pois­
son brackets { . ,  .} which is as follows

Lemma 3.2.1.1. { f , g } =  9(Xf , Xg) , V f,g  e  F (T *M )  , V X e X (T*M)

Proof. { f , g }  =  X fg =  - X g f  =  - d f  (Xg) =  (iXf  9 )(X f) =  9(X f, Xg) □

Thus consequently our equations of motion can be expressed as follows

T T  =  {  H, x }  (353)

f  =  j  H,P i} (354)

This lemma indicates the elegance of using Poisson brackets on phase space.
In the next section we discuss the notion of connections. We already know, a 

linear connection is a structure on a vector bundle that defines a notion of parallel 
transport on the bundle. By parallel transport here, we mean a way to "connect" or 
identify fibers over nearby points. A linear connection can equivalently be speci­
fied by a covariant derivative, which is an operator that can differentiate sections 
of that bundle along tangent directions in the base manifold [60].

Essentially a connection determines the geometry of the manifold it is defined 
on. One also requires a connection to make sense of the notions of curvature and 
torsion on manifolds. Next we will define and analyze the connection on phase 
space T * M  and how this connection allows us to decompose the phase space into 
horizontal and vertical distributions.



48 Chapter 3. Geometrization o f Deformed Special Relativity

The Non-linear Connection

Consider an n-dimensional, smooth manifold M  and T*M, the cotangent bundle 
over M. As depicted in fig  3.2, let the projection map be such that n  : T* M ^  M. If 
we choose xl to be local coordinates in a local chart U on M, then we call (xl, pi),i =  
1, ...n the manifold induced coordinates and are taken as local coordinates in the 
local chart n - 1(U) on T*M. The momenta pi is provided by the one-form Qp =  
pidx1 where Qp e  T*M, x e  M  and {dx i } is the natural basis of T*M. In these 
coordinates the projection map takes the form n(x, p) =  x. The way we have 
defined coordinates here is such that, it should be clear that a coordinate change 
x ^  X on the base manifold M  induces the following coordinate change on the 
cotangent bundle

dxa
(x, p ) ^  (X(x), p (x, p )) , p a (x, p ) =  dx-b (xb ) (3.55)

Furthermore we consider j^ L , j ,  with i e  {1 ,...,n } the natural basis in

T(x,p)T*M  and {d x l, dp, }  the dual basis of T(x/p)T*M. Under the same manifold 
coordinate transformation as above, these bases transform as [59]

{ 3* =  dxa , d" =  5^ }  =  {d- x‘  db + 5 ,p„ # ,  ̂  5b} (3.56)

jd x a, dpa} ^  |dbxadxb, dbpadxb +  dbpadpb j (3.57)

Suppose now, we have a vector Z e  T(x,p) T*M

Z =  Za- ^  +  Za —  
Z dxa +  Z dpa

(3.58)

we note that, the differential of the pushforward of n, dn* : T(x/p) T*M ^  TxM, 
annihilates the d part of the vector Z i.e.

dn*x,p) (Za da +  Za 5a) =  Za da (3.59)

one should keep in mind that a vector field such as that right most of the latter 
equation is a vector field on a manifold with local coordinates given by jx a }.

The kernel of dn**xp), that is, the vector space of the part of all the vectors 
Z e  T(x,p)) T*M  that goes to zero is called the vertical tangent space to T*M  and 
is denoted V(xp) T* M. The existence of this canonical subspace of the tangent 
space of the cotangent bundle leads to the notion of a connection W(x/p) : T(x/p) ^  
V(x,p) T*M  which is a projection of the tangent space of T*M  to the vertical sub­
space V(xp) T*M. In the general theory, connections are associated with mappings, 
called bundle mappings, that project larger spaces onto smaller ones [61]. This
integrable vector space is locally spanned by j  j . The kernel of the connection
w, is then the vector subspace of T(x/p) T* M  that houses all the vectors that do not 
have a vertical part. We call this vector space the horizontal tangent space of the 
cotangent bundle and is denoted by H(x/p) T*M. The general definition of a con­
nection is a specification of a set of directions, called horizontal directions, that are 
complimentary at each point to the space of vertical directions. Thus the vertical 
and horizontal vector spaces divide the tangent space into

T{xp) T*M =  V(xp) T*M  ® H(x,p) T*M  (3.60)

In manifold induced coordinates (x, p) of the cotangent bundle, the projection 
w has the following form

w (x,p) dpa +  Nab(x, p)dxb ® d' (3.61)
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Such a projection is called a connection and is defined through its connection coef­
ficients Nab(x, p)

By requiring the basis of the tangent space of phase space to transform like ten­
sor components on the base manifold under manifold induced coordinate changes, 
we define a new basis for T(xp) T*M, {Sa, da} , called the adapted basis where

j. _  N J _
a 5xa dxa +  ab dpa

(3.62)

where its phase space cotangent space counterpart is Spb =  dpb +  Nab(x, p)dxa.
The diagram below is an attempt at visualising this split of phase space tangent 

space, where P  =  T*M. The boxes represent the tangent and cotangent spaces of 
the cotangent space, hence one can see these boxes being divided into complimen­
tary sections which are the horizotal and the vertical spaces. In this diagram n* is 
the pushforward from the horizontal space to the tangent space of the base mani­
fold, hence we can say that vectors live here.

F i g u r e  3.3: Visual illustration of the vertical and horizontal dis­
tribution as per [62]
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If we have a Hamilton system (M, T*M, H, 9), then the nonlinear connection 
coefficients Nab(x, p) of w are defined as

Nxp =  4 ( { g xp, Ha +  gaidbdlH +  g bldad!h )  (3.63)

and can nonlinearly depend on momenta, hence the name nonlinear connection 
coefficients.

Following this definition we state the following theorem

Theorem 3.2.2. The Hamiltonian nonlinear connection coefficients are the unique coeffi­
cients which satisfy

Nab =  Nba, Agjb =  0 (3.64)

wheregH =  dpa w aH

A proof of this theorem is provided in appendix A.2 (see also A.2 for definition 
of the covariant derivative A).

The non-linear connection provides us with means of splitting the tangent space 
T(x,p) T*M  of phase space i.e we can split it into vertical and horizontal distribu­
tions. The vertical distribution is integrable and has dimensions dim(V(x,p) T* M) =  
dim(M) =  n. It then naturally follows that the decomposition requires dim(H(x,p) T*M) =  
n since dim(T(x,p)T*M) =  2n.

Now suppose our connection coefficient is symmetric i.e Nab =  Nba, then we 
can rewrite our previous geometric structures in an invariant form i.e we can write 
the symplectic form 9 and Poisson bracket as

9 =  Spi A dxl (3.65)

{ f  , g } f  A -  d g  A
dpi Sxj dpi Sxj

d f  d d dg
d pi dxi d pj g d pi

A  _  N 1  f
dxi N  dp. f

f  A  _  N .. f  d g _  dg f  +  N .. f  d g
dpi dx{ i  dpi dp. pi dx{ i  dp. dpi

and these are both equivalent to the previously defined symplectic form and 
Poisson distribution. This can be seen in appendix A.2 For a metric Hamiltonian

gaHb A A  H
dpa dpb

(3.66)

the connection coefficients are basically the Christoffel Symbols of the Levi-Civita 
connection of the metric with components gab and is

Nab g  p ) =  - p q ^ (3.67)

whereby Christoffel Symbols we mean the array of numbers that describe a metric 
connection, in this case the Levi-Civita connection. They describe how the local 
coordinate bases change from point to point.

Parallel transport and Autoparallels

In this section we describe the geometric structure of phase space, and establish in 
a general way the relation between the mathematical, geometrical quantity "con­
nection" prevously defined and see how this geometrical structure will be identi­
fied with the physical quantity "force".
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Suppose we construct a phase space T* M , such that each point in T* M  is de­
scribed by (xa, pa). Now consider two points in spacetime, x and x ' , an infinites- 
mall distance dx apart. Define T*M\x as the subspace of T*M  representing all 
possible momenta the particle may take at the point x. If, at a time t , the particle 
is at point x, we may associate with it some momentum, say p E T* M. Similarly, 
if at a time t +  dT,the particle is at x ' , we may associate it with some p' E T*M. 
Now in Newtonian mechanics, the change in momentum over this interval of time 
dT represents the forces acting on the particle i.e F =  dT. However, viewing this 
same situation geometrically, we see that there is a subtle point here that has been 
overlooked in this view i.e. the momenta being compared here do not live on the 
same space.

Note that there is no way a priori to associate some element p E T*M\x with 
some p' E T*M\x' , since x and x' are infinitesimally displaced and thus the mo­
menta live in different spaces.

We must first parallel transport p' back to T*M\x and then we can compute the 
difference between it and p E T* M\ x. That is when comparing the momenta of the 
particle at points x and x ' , i.e. p and p ', one has to pushforward p to the space of 
p' in order to compare them and or be able to calculate the force F . Thus we need a 
connection before we can construct the rate of change of momentum representing 
the Newtonian force. As we have previously defined, we have the non-coordinate 
basis which is a one form and given by

S pa =  dpa +  Nab (x, p)dxb (3.68)

where as stated before the functions Nab(x, p) are the connection cooeffictients. 
Consider first the linear homogenous connection i.e the metric connection Nab (x, p) =  
—pqTqab. Defining the phase space connection 1-form

Wab =  —Tabc (x)dxc (3.69)

then (3.68) becomes
S pa =  dpa — Wabpb (3.70)

for this homogenous-linear connection. We can now calculate explicitly the equa­
tions for the curves defined by (3.68). Denote by X the unit tangent vector to these 
curves, we know that X_Spa =  0 for all a. The equation (3.70) then becomes

X_iS pa =  0 =  X^dpa — X^(Wabpb) (3.71)

0 =  d T  +  Tabcpbxc (3.72)

where t is a parametrization of the curve, and where dda denotes the derivative 
along the curve, and where we have taken

dpa bdPa
-d r  =  X_dp“ = x dx?

(3.73)

Assuming a free point particle Lagrangian, with mass m, for which

pa =  mxa (3.74)

equation (3.72) becomes

dr 2 +  TabcxbxC =  0 (3.75)

where this is the geodesic equation for a Riemannian space. Einstein demonstrated 
that this equation describes the forces of gravitation, and that the curvature of 
space is related to stress energy T v̂.

Now we relax the assumption of homogenous linearity. Consider connections 
of the form
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Nab (p, x) =  hab (x) +  gabc (x)pc (3.76)

where h and g  are simply functions of x at this point, physical meanings of these 
quantities will be apparent soon. The reason to assume a connection of this form is 
that, in the Riemannian limit we want the function g  to be the Levi-Civita connec­
tion coefficients such that as we have seen in the last chapter, for metric geometry 
we recover Nab(x, p) =  Tcabpc. The function h, functions as a "perturbation". Defin­
ing the set of forms

wa0 =  habdxb

wac gabcdx

equation 3.68 becomes

S pa =  dpa — w°a — wjbpb (3.77)

As before, we explicitly calculate the equations for the curves which nullify this 
one form, by contracting the unit tangent vector X with all of the 1-forms Spa:

X_Sa =  0

0 =  X_dpa — X_w0 — X_wlbp b

(3.78)

(3.79)

Assuming again a point particle Lagrangian, pa =  mxa, this becomes

0 =  m ^ T  — xbhab — mxbxcgabc (3.80)

in a form where the mass-dependence of the different terms is explicit,

dxu 1
0 =  - T  — — hF7 xY — g7aF xY xa (3.81)

Notice that, expressed in this form, the equivalence principle is manifest. Only 
one term must be without a mass term, the first order term. Mathematically , 
this must describe paths which particles will follow independent of their mass, 
which physically corresponds to gravitation, as Einstein's General theory shows. 
Other geometrically derived forces, the zeroth order term, and the second order 
terms and higher, correspond to forces whose effects will be dependent on the 
mass of the particle. This identification of force with connection allows one to 
identify stress-energy with curvature, where mathematical identities on the curva­
ture automatically produce the necessary conservation theorems on stress-energy. 
However, the approach described here generalizes Einstein's approach, by going 
beyond the affine connections derived from a metric in Riemannian geometry, to 
the most general expression for a non-linear connection on phase space. Whereas 
in Riemannian geomety, the metric is the fundamental quantity, from which quan­
tities such as the connection and curvature is derived, these connections we con­
sider, are the most fundemental quantities from which other geometric quantities 
such as curvature is derived. Such connections may not in general be derived from 
a metric. By adopting this more general framework, we can "geometrize" a wider 
variety of forces, notably the electromagnetic force.

Given a curve r  : I E R  ^  r (t) E T*M, the tangent vector dr can be written in 
the adapted basis as follows

dr =  dxa +  SEa —  =  dxa s +  S_Va_ da
dt dt Sxa dt dpa dt a dt

(3.82)

This curve is horizontal if and only if it lies in the horizontal space [59] i.e. it 
must be expressed in the basis of the horizontal space as follows
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dr dxa s
Tt =  HiSa

thus

(3.83)

Spi =  0 dt
(3.84)

^  dpa dxa
*  W - N “ ix- p ) -dT =  0

(3.85)

recall the Hamiltonian equations of motion are expressed as

x a =  dH
d Pa

(3.86)

d H
p a =  d d

(3.87)

and using these in (3.85) one obtains the following equation

dH „  dH n
dH  +  Nab dfb =

(3.88)

(  +  N-b ,p b )  H =  0 (3.89)

SaH =  0 (3.90)

And one can see that, being horizontal actually means parallel transport or 
curves are autoparallels in the tangent bundle of T*M  since the force term (3.90) 
is zero. Recall we have shown that the general Hamiltonian equations of motion 
were given by

pa +  Nab 5 +  SaH =  0 (3.91)

Curvature of Spacetime and Momentum space

In R n, when performing partial derivatives, one easily transports a given vector 
field X =  Xtei at x to a nearby tangent space with vector field X =  X le,. In flat 
vector spaces this is trivial, however the notion of parallel transport becomes non­
trivial for curved manifolds. One requires a structure called a connection, which 
will allow one to specify how generic tensorial objects are transported along curves 
on manifolds. We have seen above that with the introduction of the non-linear con­
nection and by identifying its transformation behaviour we were able to split direc­
tions on phase space into horizontal and vertical directions. We have seen that the 
non-linear connection coefficients define the geometry on phase space since they 
are the coefficients of the dynamical covariant derivative otherwise connection A 
defined in [59]. In order for us to specify the geometry of the spacetime , respec­
tively momentum space we need to find connection coefficients of their respective 
connections. Thus we introduce linear covariant derivatives of the directional vec­
tor spaces.

As, (Sj) =  4 Sk Aba ( d ) =  -Fada (3.92)

Aaa (Si) =  CkaSk Adb (db) =  -C ,badb (3.93)

Now the geometry of spacetime and momentum space will be described by the 
connection ceofficients given F and C respectively. There are numerous choices 
for covariant derivatives which satisfy the conditions given above, however on 
imposing extra conditions which include invariance of the Hamilton metric verti­
cally and horizontally and in addition torsion free, one recovers a unique covariant
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derivative. By torsion here we mean the ability of a manifold to twist. This covari­
ant derivative is called the Cartan-linear covariant derivative usually denoted ACL. 
The first condition can be explicitly expressed as

AC'aLg H =  0 A£LgH =  0 (3.94)

along the horizontal and vertical directions respectively. Here H  simply denotes 
that this metric is that of the Hamilton Geometry space. The coefficients of the 
horizontal and vertical covariant derivatives can then be give by

Fac =  1 g Haq ( SbgHq +  ScgHq -  SqgHb)  :=  ^  (3.95)

and

1
Ccab =  -  2 gHc d ag Hrb (3.96)

With the connection coefficients of the respective vector spaces, one would be in­
terested in finding out the curvature tensors of these spaces, and as it turns out 
they are give by [59]

RaHbqc (x, p) Sq =  ( ^  r «c -  sc + r bq rac -  r Cq r ai -  R,bcCf )  sq

for the horizontal distribution and

Qqbc(x, p)3q =  ( 3bCqac -  dcC f  +  CqbiCac -  CciCab) 3q

(3.97)

(3.98)

One can thus deduce from these expressions that our theory is consistent in that, 
when we have a free particle, the momentum space connection coefficients van­
ish and the spacetime connection coefficients become the Riemannian Levi-civita 
connection coefficients.

Furthermore, one should mention that the curvature of phase space should 
be associated with the nonlinear connection Nab. In the same logic, considering 
phase space as a manifold with a covariant derivative, the non-linear connection 
coefficients of A should determine the geometry of phase space. Thus if we have 
a trivial nonlinear connection coefficient then phase space is flat and is isomorphic 
to otherwise curved. It would be interesting to see what effect this curvature of 
phase space has on spacetime and momentum space.

3.3 Spacetime and Phase space: Local theory
In this section we discuss the symmetries and symmetry generators in phase space. 

Symmetries on Phase space

Let us suppose we restrict our attention to a case in which specifying an initial 
data set, possibly an instantaneous dynamical state, for the equations of the the­
ory determines a unique solution defined at all times. Then, roughly speaking a 
Hamiltonian treatment amounts to the following. The phase space of the theory is 
the space, T* M, of all initial data sets. Recall, the Hamiltonian, H, of the theory is 
the real- valued function on the phase space that assigns to each point of the phase 
space the energy of the corresponding physical state. We have shown in the pre- 
ceeding sections that a phase space can be equipped with a geometric structure, 
6, with the following feature: together H and 6 determine a family of curves in 
T* M, exactly one passing through each point; each of these curves corresponds to 
a solution of the theory's equation of motion, in the sense that the two objects pick 
out the same sequence of instantaneous dynamical states; and for any such solu­
tion there is a corresponding curve of this kind. So the structure (T *M ,6, H) in 
effect encodes the differential equation of the theory. It is natural to investigate the
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Hamiltonian symmetries of the theory: the one-to-one and onto maps from T* M 
to itself that preserve both 6 and H

We closely follow the symmetry analysis of phase space given in [59]. Suppose 
that we have a diffeomorphism O £ T*M, we say it is a symmetry of phase space if 
it leaves the function H : T*M ^  R  i.e the Hamiltonian invariant. Mathematically 
this statement can be represented as follows

H (O(x, p)) =  H (x, p) (3.99)

A taylor expansion of the diffeomorphism, truncated at first order in e  i.e

O(x, p) =  (xa +  e£a (x, p), pa +  e£a (x, p)) +  O (e2) (3.100)

allows us to find the vector field, that generates the symmetry transformation by 
imposing (3.99), thus this leads to

H (0(x, p)) =  H(xa +  £a(x, p), pa +  £a(x, p)

=  H (x,p) +  e (£a(x,p)3aH(x,p) +  £a(x,p)dH(x,p)) +  O(e2)

=  H(x, p) +  eZ(H )(x, p) +  O(e2)
=  H( x, p )

From the latter calculation, one can deduce that the vector field Z =  £a (x, p)da +  
£a(x, p)5a on T*M generates O. However for the diffeomorphism O to be a sym­
metry, we must have, according to (3.99) that

Z(H) =  0 (3.101)

We can then state that a symmetry generator in T*M is a vector field Z £ T*M 
that satisifies condition (3.101)

In phase space geometry, an important class of symmetries is that which is 
associated to a constant of motion of the Hamitlon dynamics. A constant of motion 
is a quantity C, which typically lives in phase space such that when one takes the 
poisson backets between the Hamiltonian H and C, the result is zero. This constant 
of motion must be conserved along solutions of the Hamilton-Jacobi equations, as 
such any change in this quantity along the solutions (x(A),p(A)) should be null. 
Here A is an affine parameter. This statement can be summarized mathematically 
as

dA C (x(A), p(A)) =  0 (3.102)
dA

Also from the above equation, with the use of poisson brackets we note that

dA C (x(A), p(A)) =  xa da C +  p a da C =  {C, H } (3.103)

thus for any constant of motion C, we have

{C, H } =  0 (3.104)

Spacetime to Phase space symmetries

In Hamilton geometry, we came across the notion of a lift from a base manifold M 
to a the cotangent manifold T*M, through the projection n  defined section 3.2. It 
is important for one to consider how symmetries on the manifold M translate to 
symmetries on T*M. One can generate an infinitesmal diffeomorphism of M by 
vector fields X =  r/a(x)3a £ M. Such a diffeomorphism on M acts as a change of 
local coordinates (xa) ^  (xa +  na). However, as we have seen in previous sections, 
the way we have defined phase space is such that a coordinate transformation on 
the manifold M induces a coordinate transformation on T*M. Keeping this in
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mind, we see that this diffeomorphism induces on T*M  a coordinate change of the 
form (xa, pa) ^  (xa +  pa, pa — Pqdanq). Thus a diffeomorphism on M generated by 
the vector field X induces a diffeomorphism on T* M generated by the vector field 
Xcomp.hft. This diffeomorphism is called the complete lift of X from M to T* M and 
we expicitely write it as

xcomplifl =  na da — Pq da da (3.105)

We then say, a manifold symmetry of the Hamilton geometry is a diffeomorphism 
Q of M whose generating vector field X satisfies

Xcomp.Uf t (H ) =  0 (3.106)

3.4 Applications of the theory
In this section we take a look at a few examples illustrating the theory we have 
developed in the chapter.

Example 3.1: The Spherical Pendulum

We here discuss the spherical pendulum of classical mechanics with modern math­
ematical techniques, by using spherical coordinates and the traditional frameworks 
of Lagrange and Hamilton. Further analysing the geometrical symmetries of the 
system. We will see that this motion is equivalent to a particle of unit mass moving 
on the surface of the unit sphere S2 under the influence of constant gravitational 
force of unit strength. fig  3.4 below displays a 3 dimensional spherical pendulum 
in cartesian coordinates.

F i g u r e  3.4: Spherical Pendulum in 3-D cartesian coordinates

A transformation from Cartesian coordinates to Spherical coordinates allows 
for an easy treatment of the system's mechanics. This transformation can be seen 
to be of the form

x =  sin 9 cos 9 
y =  sin 9 sin Q 

z =  — cos 9

(3.107)
(3.108)
(3.109)
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where 0 < Q < 2n  and 0 < 9 < n. Let the generalised coordinates be such that 
q =  (9, Q). In general the Lagrangian function L is given by

L =  T — U (3.110)

where T and U are the kinetic and potential energies of the system respectively. In 
this example, we take l =  1 and m =  1, where these are respectively the length 
of the string and the mass of the particle. The string is assumed to have neglible 
mass. Then the Lagrangian L of the spherical pendulum is

L =  1 ^92 +  sin2 9Q2j  +  g  cos 9 (3.111)

where the second term is the potential energy U =  —g  cos 9 and g  the gravitational 
acceleration.

We can then use the legendre transform to define the Hamiltonian function H , 
defined in phase space and generally given by

H =  pa qa — L (3.112)

where the pa are the conjugate canonical momenta to the configuration space co­
ordinates. One can calculate the generalised momentum pa E T*S2 at a point x of 
S2 by using the simple relation

pa
dL
dq

(3.113)

following this we get the momentum coordinates are

p9

p9

dL
dtp

sin2 9tp

which are canonically conjugate to the (9, Q) coordinates. From which, the Hamil­
tonian function then becomes

1 2 1
H =  2 p2 +  - 2  — g cos 9 (3.114)2 2 sin2 9

Hamilton's canonical equations are, as previously stated, the equations of motion 
in the Hamilton formulation. With the aid of (3.114) one recovers these equations 
to be of the form

dxa dH dpa d H
—  =  -  =  ——  (3.115)
dt dpa dt dxa

1
<p =  2 pq (3.117)sin2 9

and

pa =  'c °ira pQ — sin 9 (3.118)sin3 9

p Q =  0 (3.119)

the dynamics of the spherical pendulum system are given by solutions to these 
Hamiltonian equation. Now for the application of Hamilton geomerty, before cal­
culating any major geometrical structures one has to first obtain the metric gaHb. 
With the help of the inverse metric equation

g HaP (x, p) =  H  (3.120)
2 dpa dpb V ’
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simple algebra yields

g Ha/i =  (0  _ L )  (3.121)
0 sin2 e

Thus by inverting the latter equation, one recovers the metric to be

4  =  (o  sin02 e )  (3-122)

this metric allows one to write for the length ds2

ds2 =  de2 +  sin2 ed*2 (3.123)

which gives the geometry of the 2-sphere with unit radius. Fig 3.5 above gives a 
graphical representation of this scenerio. Now using this metric and the Hamilto­
nian, one finds after long and tedious calculations that the non-linear connection 
coefficients are

Nh«, (x, p ) = (  JO l P ■ f P* )  (3.124)
sin e P* 0

F i g u r e  3.5: Geometry of spherical pendulum is isomorphic to S2

It would be interesting to determine the autoparallels of the spherical pendu­
lum. The general equation for these is

p +  K b  d bH =  S a H (3.125)

which work out to be 

P2* cos2 e
P e sin3 e

cos e
sin e , P* -  s n e  PeP*

cos e
Pe P*sin e e (3.126)

in these equations, there seem to be a drag term pulling particles away from the 
geodesic paths. However these equations of motion simplify to

P a +  NabXb =  0 (3.127)

cos2 e  2
Pe . 3n P* =  0sin3 e

(3.128)

P* =  0 (3.129)

Thus we can conclude a spherical pendulum follows autoparallels on S2.
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Example 3.2: kappa-Poincare geometry

Suppose for simplicity we are working in 1 +  1 dimensions. Consider a particle 
moving on Minkowskian spacetime and characterized by a curved momentum 
space. Furthermore suppose the radius of this momentum space is given by a 
quantum deformation parameter l, in this case. The algebra of symmetries is the k- 
Poincare Hopf algebra, which herein is in the bicrossproduct basis. Describing the 
momentum space as a maximally symmetric manifold guarantees that the algebra 
has three generators of global symmetry transformations Po, P 1, N . Respectively 
these are the time translation, space translation and boost in Minkowski spacetime. 
In first order in l, the algebra of these generators is

{Po, P i }  =  0 {Po, N }  =  P i (3.130)

{ P i ,N }  =  Po -  l (Po2 +  2 P ? )  (3.131)

with the Casimir reading as follows

C =  P2 - P 2  -  lPoP2 (3.132)

Note again that for the sake of simplicity we have chosen to work in 1 +  1 di­
mensions, using the canonical phase space representation i.e phase space with co­
ordinates xV and pV satisfying the standard symplectic structure (3.44). Equipped 
with these canonical coordinates we can represent the generators as

Po =  Po, (3.133)

P 1 =  P1, (3.134)

N  =  P1 xo +  Po x1 - 1 x1 po +  2 x1 p2 (3.135)

thus having the Casimir

C =  Po -  P2 -  lPoP2 (3.136)
The Casimir is a constant of motion on phase space, thus one is able to take it 

as a Hamitlonian for the purposes of calculations. The Hamiltonian is then

HkP =  H =  po -  P2 -  lpoP2 (3.137)

Equipped with the Hamiltonian H, the natural step is to determine the phase space 
geometry associated with it. Finding the metric gH requires one to obtain its in­
verse. As such the inverse metric is

1
g HaP =  _ d bH 

thus yielding the metric

1 -lP1
lP1 - ( 1  +  lPo)

( !+ lPo lP1
lP1 -(1+lPo) (1+1po)-1p\

lP1 1
(1+lPo)-lP1 lP2-(1+lPo)

(3.138)

(3.139)

With the use of the metric, one can further calculate the non-linear connection co­
efficients Na, (x, p ) defined in (3.63), finding

Nab =  o o (3.14o)

This quantity allows one to calculate the curvatures of spacetime and momen­
tum space submanifolds. These are the structures which make parallel transport
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non-trivial along both spaces. Curvature in spacetime is obtained via the coeffi­
cients rfa  and respectively momentum space curvature via Q b. We find the coeffi­
cients r,a to all be identical zero i.e

r sbac =  0 (3.141)

This result informs us that the spacetime is flat, thus Minkowskian. However, 
one finds that connection coefficients required for determing the momentum space 
curvature do not vanish. Most of the coefficients are identical to zero, except for 
Co1 and Cq1, i.e.

Coo =  o, Coo =  o, Co1 =  o, C11 =  o (3.142)
1 1

C°o1 =  -  2 , C11 =  -  -  (3.143)

Thus we can conclude that the momentum space is curved, however finding its 
curvature requires one to calculate the quantities given by

Q f  =  CiblC‘ac -  C*C?b (3.144)

These result in all other components being zero except for Qoo1, which is

Q°o1 =  Co1Co1 -  C11C1o1 
l l f  l \ l

=  - 2 X - 2 -  V 2 J  2
=  f  
=  2

(3.145)

(3.146)

(3.147)

This curvature is that of the de Sitter momentum space with curvature of the 
oder of the planck mass (see fig  ?? in co-moving coordinates yx, this figure shows 
the parts of the de Sitter space that have constant energy and momentum, include 
infinite momenta,as is the case in Minkowsi space-time). Moreover, a momentum 
space with the curvature of y  corresponds to a specific non-commutative space­
time. This spacetime is the K-Minkowski spacetime and is characterized by the 
commutation relation

xo x1 i 1 - x 1 
k

(3.148)
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F i g u r e  3.6: Diagram depicting a de Sitter space in co-moving co­
ordinates

3.5 Summary
In this chapter we have reviewed Lagrange and Hamilton Mechanics, with em­
phasis on the latter. In the review of the Hamilton Mechanics, we introduced im­
portant topics such as Poisson Brackets, symplectic structure etc. These objects al­
lowed us to make a smooth transition to the Hamilton geometry framework, where 
we took the notion of cotangent bundle and used it as a phase space. This allowed 
us to be able to look at deformations of the mass-shell relation as level sets in phase 
space. In doing this we looked at the autoparallels of phase space and noticed these 
attain a dragging force whenever we don't have a homogenous Hamiltonian. Fur­
thermore we looked at the non-linear connection-coefficient which allowed us to 
determine the curvature of phase space and simultaneously allowed us to isolate 
spacetime and momentum space in phase space. However, we saw that this isola­
tion intertwines spacetime and momentum space whenever the Hamiltonian of a 
system is not a function of momenta only. We further looked at the symmetries of 
phase space, which included the constant of motion and also took a look at how 
one defines a manifold symmetry. Moreover, we took a look at a few examples for 
an understanding of this framework.
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Chapter 4

DSR as an effective theory of 
quantum gravity

In the last chapter (3), we found an important result that asserts that in the Hamil­
ton Geometry framework, one generally finds that, particles do not follow autopar­
allels but rather attain a dragging force-like term

pa +  Nabxb =  - 5 aH  (4.1)

where the RHS is the source term.
The physical interpretation of this source term as we have seen in the last chap­

ter, is that for a general Hamiltonian, the motion of particles cannot be understood 
as free fall motion in a geometry but rather there is a force-like term 5aH  present 
which drags the particles away from free fall [59]. This leads one to asking ques­
tions like: Are the space-time coordinates we are using in HG really the physical 
ones? We get a hint at the answer to this question towards the end of chapter 
3 when we realise in example 3.2 that the xa coordinates, which are canonically 
conjugate to the pa coordinates, are not the physical coordinates but rather we 
get non-commutative coordinates Xa as the physical spacetime coordinates. The 
non-commutativity of these coordinates is actually equivalent to the curvature of 
momentum space [16], hence in e.g. 3.2 the momentum space had a curvature of 
l2. This alone leads one to believe there is a relationship between momenta and the 
physical spacetime coordinates.

If we can back-track for a second, we find further motivation for the existence of 
these non-commutative coordinates in the search for a quantum theory of gravity. 
Quantum gravity encompasses both quantum field theory and general relativity. 
A feature one can expect to obtain in this theory is that of the existence of a minimal 
length scale. However the issue one usually encounters is how to reconcile such a 
structure (Planck length) with the requirement of Lorentz invariance.

From the point of view of a static observer at infinity, in GR, a particle of mass 
m creates a Schwarzschild metric with an event horizon at the distance r =  Is =  
2G m /c2, in which this event horizon is a Lorentz invariant boundary. Under a 
Lorentz transformation (say boosts), the distance r between the particle and a test 
particle will get contracted, however this distance will never be smaller than lS, 
hence the minimal length ls in GR. Similarly in QFT, in the presece of a massive 
field mass m. the Compton length scale lC =  h/mc establishes a minimal length 
scale. As we have seen in chapter 2, DSR becomes the framework to describe this 
same physical phenomenon which is due to two different causes in two different 
theories. The non-commutative geometry of DSR becomes important here as it 
allows for such a minimal length scale.

In this chapter, we briefly try to tie up the claim that the "new", physical coordi­
nates of spacetime are not those which are conjugate to the momenta with Snyder's 
theory of DSR [63]. We closely follow [64], and propose to recover a framework 
with non-commutative space-time coordinates, assuming that the space-time co­
ordinates that we measure are effectively not the usual x  ̂ but objects which also 
depend on the momentum p^. This introduces a class of momentum-dependent 
spacetime coordinates Xa. Recall, in the Hamilton Geometry framework we also
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found that the geometry of spacetime and that of momentum space is intertwined 
for a general Hamiltonian. Thus as a starting point it would make sense to have 
momentum-dependent spacetime coordinates. These coordinates are also suitable 
in that the worldline expressions in Xa coordinates is momentum independent 
[48], thus one does not encounter problems in fixing a reflexive, symmetric and 
transitive defintion for a time interval. We show that these effective coordinates 
naturally lead to a stable so(4,1) (or so(3,2)) structure similar to deformed special 
relativity which represents a minimal length scale.

In considering coordinates which are to be physical spacetime coordinates, it 
is essential one requires Lorentz covariance of the coordinates. In [64], an analy­
sis of how different cases of momentum dependence affect spacetime coordinates. 
There is a coordinate shift in pa and also a p2-dependent rescaling. In this chapter 
we are more concerned in the former. The shift is interpreted as a time-lapse or 
dragging in measurements, whereas the p2-rescaling has been interpreted as hav­
ing an impact on the measurement of the object's mass, deforming the surround­
ing spacetime. We do not have much interest in large masses that can influence 
the spacetime, thus as we have stated, we do not dwell much on the p2-rescaled 
coordinates.

The motivation for effective coordinates of momentum dependence, is that the 
mass of a particle is fundementally relatable to both the Swarzschild radius and 
Compton length (see chapter 1). On one hand, black holes are created by objects 
with huge 4-momenta on small regions, thus resulting in a deformed spacetime 
in that particular region and affecting the measured spacetime coordinates. As a 
result it would not be outrageous to think that in such a region, one would not have 
momentum dependent spacetime coordinates if he is to probe this region. On the 
other hand, we have also seen in our introduction of GUP (1) that the uncertainty 
principle relates the measurability of momentum and position, thus noting the 
position is affected by the momentum.

In our next discussion, we insist that we neither break nor deform Lorentz in­
variance and that the work done here is with Lorentz covariant objects. The metric 
signature used is (+----------).

4.1 Non-commutativity of effective coordinates
Our starting point here is analyzing the drag effect of the particle motion which is 
essentially measuring the position a bit later or earlier, with this depending on the 
drag term whether it is positive or negative. Our class of phase space functions is 
given by

x = x  ̂ K, p,  (4.2)

on the right hand side, we have put k for dimension purposes at the moment and 
we assume it to be an arbitrary mass scale with ty being a dimensionless Lorentz 
invariant function on phase space. A constraint on the function ty is that it has to 
be a scalar function and however, it can be a function of x2, p2 or the dilation D =  
xppp . Since one would like to focus on the momentum dependence of the effective 
coordinates, we do not inquire much about the possibility of a x2 dependence. We 
must note that a function of p2 does not change the Poisson brackets, thus not 
having much physical interest. An elimination of these possibilities then leaves 
one with the obvious case of a function ty(D) i.e with a dilation dependence. The 
Poisson brackets with such a dependence when computed result in

{Xp, Xv } =  -  jFV (4.3)

{ X p, pv }  =  n pv -  t y (D ) (4.4)
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where we have the Lorentz generators jpv =  xp pv -  xvpp .
This algebra of position-momentum is very similar to the algebra underlying 

the Deformed Special Relativity in Snyder's basis, (see [63] for a mathematical 
construct of Snyder's DSR). Now, if one is to put the constraint that the algebra 
(4.4) is to close, then this means that the function ty1 is constant[64]. Neglecting 
this term due to a shift ±Tpp, where T is a constant, amounting to a simple time 
shift on the particle's trajectory. We then have two possibilities for a =  ± , up to a 
renormalisation of the mass scale [64]:

Xp =  xp +  a D  p ,  (4.5)

Having the effective coordinate Xp this way then results on a commutation 
relation of the form

a
{Xp, Xv} =  - K2 jpv (4.6)

And the X, j's  form a closd Lie algebra, so(4,1) for a =  +  and so(3 ,2)for a =  - .
Notice how this is exactly the structure behind a theory of DSR, see [65]. Now 

if we are to assume that when we do measurements on spacetime, we measure 
the coordinates Xa, which are then the more physically relevant coordinates than 
the x's, then one ends up with a non-commutative spacetime of the DSR type. 
Also this is indicative of the natural appearance of so (4,1) and so(3,2) structure in 
special relativity.

It has been shown in [66] that any DSR theory can be understood as a particular 
coordinate system on four dimensional de Sitter space of momenta imbedded in 
five dimensional Minkowski space. Here we then see the Lorentz transformations 
are identified with the SO (3,1) subgroup of SO(4,1) group of the symmetries of de 
Sitter space while the (non-commutative) positions are taken to be the remaining 
four translation generators in momentum space wich satisfy the relation

ih2
[Xp, Xv] =  -  K2Jpv =  - i l pJpv (4.7)

where the deformation parameter is k =  h/lp . Mathematically, the momentum 
space is identified as the hyperboloid SO (4,1)/SO (3,1) and the coordinate oper­
ators are the de Sitter translation generators. And we recover the mathematical 
set-up of deformed special relativity (DSR). Here we see that for a DSR theory, the 
canonical spacetime coordinates do not quite give the physical spacetime we ob­
tain from the Hamilton Geometry framework. Instead what we notice is that there 
is a class of momentum-dependent spacetime coordinates that are more physically 
relevant than the configuration space coordinates given by

Xp =  xp 2̂ pp (4.8)

Next we show the choice of ty here which gives us the results of example 3.4 for 
the K-Poincare geometry.

We start by assuming a priori, a non-trivial coordinate system given by pa, 
for the momentum coordinate and likewise by Xa for the spacetime coordinates 
adding that these coordinates are not canonically conjugate to each other. Where 
the latter coordinates satisfies the relation

{ X a, X0 }  =  1  X a (4.9)

The mass-shell relation is defined as a square of the distance from the origin to 
a point p, with coordinates pa (p) i.e

C(p) =  D2(p) -  m2 (4.10)

Thus we need a metric to define the mass-shell relation. In [48], the deSitter 
momentum space in 1 +  1 dimensiona has a metric given by
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=  ( J  - ( 1  +0 2ipo) )  (411)

where l is the deformation parameter.
Defining the invariant line-element as

c p
D2( p) =  yap pa p p ds (4.12)

where s is the affine parameter parametrizing a geodesic p(s) connecting a point p 
in which a particle lies to the origin allows us to then recover a dispersion relation 
of the form

C(p) =  p2 -  p2 -  lpop2 (4.13)
We have already pointed out that pa and X a are not canonically conjugate, thus 
this causes a deformation of the symplectic structure between momenta and the 
spacetime coordinates. This induces a non-trivial poisson bracket between these 
coordinates given by [48]

{po, X 0}  =  1 { po, Xa } =  1 

{p«, X0}  =  -lpo {p i, X ^  =  5j 

|p«, pp}  =  0

and these accompanied by the relation {X i, X0 } =  lX i satisfy the Jacobi identities. 
In a symplectic setting we know that for conjugate coordinates xa and pa, we have 
the following poisson brackets

{ x a, xpj =  { pa, pp } =  0 

{x a, pp } =  Sap

Using the Jacobi identities, one can obtain a relationship between the coordinates 
X a and xa, which happens to be known in the literature [48]. This relationship is 
given by

Xa =  5p -  l < j  xp (4.14)

with the inverse relation being

xa =  +  l )  Xp (4.15)

This leads us to conclude that from the class of momentum dependent space­
time coordinates (4.8), the Hamilton Geometry framework picks out one particular 
physical spacetime given by the coordinates (4.14) where ty has a linear depen­
dence on the canonical coordinate xa.
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Chapter 5

Conclusion and Final remarks

Now that we have outlined the general features of DSR and discussed some of its 
aspects in more detail, we want to take a step back and make a few final remarks 
which will help us understand the bigger picture. What DSR does almost resem­
bles Einstein's theory of relativity in that Einstein took the Euclidean group of the 
dynamics in a Euclidean space and extended it to the Poincare group, simply by 
adding boost generators which allowed for more general dynamics on a Rieman- 
nian manifold. The Euclidean group is a subgroup of the Poincare group. Now the 
idea behind DSR is to take the Poincare group and yet again realise that it is part 
of a larger structure, namely a quantum group whose algebra is the K-Poincare al­
gebra. In going from the Poincare algebra to the K-Poincare algebra, we are not 
adding any additional generators and hence we do not extend the dynamics as is 
done in Einstein's relativity. The only thing we have done is to modify the genera­
tors and thereby obtain a more general algebra. It is claimed, see [59], that the Rie- 
mannian geometry used in GR is then replaced by the more general Hamiltonian 
geometry. Then the action of the kinematical group preserves not a Minkowski 
line element, but a Hamiltonian metric which depends on the cotangent bundle.

It is also interesting to note that in the regime of DSR, spacetime seems to reveal 
different physical phenomena, which are not significant when we are considering 
energies much lower than the Planck scale. These physical phenomena include 
the change in the dispersion relation to a relation whose precise form depends on 
the energy. Adding to that the possibility of having an energy dependent speed of 
light, as we discussed in an experiment in 2. Although the analogy might not be 
one-to-one, however one can think of spacetime as being analogous to a solid body 
that undergoes changes as it is heated up. In that light, the properties of spacetime 
also undergo changes as the energy used to probe it increase to the Planck energy. 
Deformed Special Relativity seems to be a theory which provides a new and ex­
citing way of thinking about the physics at energies close to the Planck scale. The 
elegance of a DSR theory essentially lies in the fact that it is based on a single and 
physically reasonable requirement, namely that all observers agree upon the ex­
act value of the length scale of which below this scale Quantum Gravity becomes 
the dominating theory. This requirement merely imitates the elegance of Einstein's 
Principle of Relativity where he introduces the speed of light as an invariant scale.

In hopes of trying to find a framework in which spacetime and momentum 
space were emergent from a theory that is more general, we interpreted a disper­
sion relation as level sets of a Hamilton function on phase space , which we had 
derived directly from a modified dispersion relation. These spaces were identified 
as subspaces of phase space and their geometry was consistently described in the 
Hamilton Geometry framework. What one finds is that for a general dispersion 
relation, geometric structures of spacetime and momentum space are dependent 
on positions and momenta. These structures could include covariant derivatives 
and curvature as examples. One then, in this framework, generally finds that the 
geometry of spacetime and that of momentum space are entangled as subspaces 
of the larger geometry of phase space. A special case where one can have these 
spaces seperate from each other is for those Hamiltonians who with respect to 
momenta have third or higher derivatives vanish. In this case, we recover a flat 
spacetime and likewise, a flat momentum space. In cases where we have a po­
sition independent Hamiltonian, we recovered a flat spacetime with a possibly
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curved momentum space.
Hamilton geometry has been observed to be an optimal framework in describ­

ing the level set geometry of Planck scale dispersion relations' modification [59]. 
A more crucial case for phenomenological purposes is when one introduces par­
ticles moving in a curved spacetime, which until now has been a very difficult 
assignment to describe in a coherent framework.

In standard Hamiltonian mechanics, particle trajectories are determined by the 
Hamilton-Jacobi equations of motion, however in the Hamilton Geometry frame­
work, these equations become the autoparallel equation of the phase space geom­
etry. Generally the autoparallel equation has a source term, such that the Planck 
scale effect on phase space is to drag particles away from purely geometric freefall 
[59]. However special case is when the Hamiltonian is homogenous with respect 
to momenta, then the source term vanishes and the particle trajectory is solely de­
scribe by the autoparallel equation.

As examples of the Hamilton Geometry framework, we analysed the phase 
space geometry of the K-Poincare quantum algebra dispersion relation. We saw 
that this phase space geometry yielded, as subspaces of phase space, a flat space­
time and a curved momentum space of curvature l2, where l is the Planck-scale de­
formation parameter. The K-Poincare algebra dispersion relation when recognized 
as level sets on phase space yielded a Hamiltonian with no spacetime coordinate 
dependence, thus from our statement above the curvatures of these spaces is as ex­
pected. We concluded based on the results of chapter 2, that the momentum space 
we recover is the de Sitter momentum space and the spacetime is the K-Minkowski 
flat space with the commutation relation [x°, x^ =  i1/Kxi. Furthermore since the 
K-Poincare Hamiltonian was homogenous in momenta, the equations of motion 
were the autoparallels with no force-like term. Moreover, the symmetries in the 
Hamilton Geometry framework are the symmetries of the Hamiltonian.

For further research in this framework, it will be interesting to devlope a coher­
ent description of particle interactions. However, this is expected to be a non-trivial 
task since relativistic compatibility would require to modify energy-momentum 
conservation. As one would see in [59], when spacetime and momentum space 
are both non-trivially curved, one has to consider tensor fields on phase space to 
describe the motion of particles. Now identifying these tensors on phase space for 
the description of the interaction of particles would pose a great challenge. Which 
would be a very interesting avenue to explore. One suggested path to attacking 
such a problem would be to look for an appropriate particle's momentum repre­
sentation. We know on a spacetime manifold M, the momentum is taken as the 
one form on M, however now one would need to generalize this in terms of tensor 
fields on phase space. With such an identification, one would proceed to look into 
particle interactions on phase space formulated in terms of these tensors. With this 
tensor identification on phase space P , the addition of momentum on P  could be 
realised by parallel transport of the momenta along autoparallels in momentum 
space which would resemble what is done in chapter 2 with relative locality where 
we have taken momentum space to be a curved base manifold and spacetime as a 
flat space at each point on the base manifold.
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A.1 Preliminaries on Fibre bundles
In this section we will introduce the reader to the basic definitions and properties 
of fibre bundles. In chapter 3 we applied these concepts to the study of Hamilton 
geometry. A formal definition of a fibre bundle can be found in any differential 
geometry text. We will give the definition according to the book [132]. We define a 
fibre as follows

Definition A.1.1. Fibre Bundle Definition: A differential Fibre Bundle (E, n, M, F, G) 
consists of the following

1. A differentiable manifold E, called the total space

2. A differentiable manifold M, called the base manifold

3. A differentiable manifold F, called the fibre

4. An onto mapping n  : E ^  M called the projection, which is such that 
n -1 (p) «  FVp E M

5. A Lie group, G, known as the structure group. which acts on the fibre

6. And an open covering {U 1} of M with diffeomorphisms O  : Ui x F ^  
n -1 (Ui), called the local trivialisation.

Remark A.1.0.1. One should note that essentially a fibre bundle is the projection 
n, since all other structures can be defined in terms of the projection map. For ex­
ample the total space T* M and the base manifold M are just the range and domain 
of the projection map respectively.

In fibre bundle language, we would like the total space P to be the cotangent 
bundle T* M and the base manifold M to be the spacetime manifold M. First, to 
each point p of P, we can associate a point p on the base manifold, and this is 
usuallly accomplished by the use of the projection map n  : P ^  M such that 
n(p) =  p. Note that this can be done globally. One should also notice that the 
projection map is not injective, since we would want it to map entire fibre Fp to 
points p. This basically captures the fact that to each point p, we are attaching a 
copy of the fibre bundle F which is enforced by the requirment

n -1 (p) «  F (A.1)

to each point P E M.For us it should be obvious at this point that to each point 
p E M, we associate a cotangent space TpM =  Fp which we will call the fibre to a 
point on the base manifold. Thus cotagent space is the total space.

Now one takes an open covering of M, {U i}, and a set of smooth homeomor- 
phisms, {Q; } and associate an open set of P given by the preimage n -1 (U ) with a 
product space

Qi : Ui x F ^  n -1 (U;) (A.2)

andsincethis map is between Q-1 ^  ) and U; x F,w ecan locally express points 
in T*M using points in Ui x F,i.e p =  (x1, p1) E T*M.



70 Appendix A. Appendix

A.2 Proofs
In subsection 3.1.3, it is stated that the transformed definition of the symplectic 
form and the Poisson bracket are equivalent to the previously defined symplectic 
form and Poisson bracket. Following is an attempt at a proof of this statement

{ f , g } d f  d g _ N.. d f  d g
dpi 3x; t dpi dpi

^  {f ,  g }
d f  dg
3p ; 3x;

^  d f  +  Nijp; 3x; 7

3g  3 f
dpi 3x;

d f  d g
dpj 3p;

(A.3)

(A.4)

0 =  Sp; A dx; =  ( dp; -  N;jdx7 j  A dx; =  dp; A dx; -  N;jdx; A dx7 =  dp; A dx; (A.5)

In section 3.1.3, we defined the nonlinear connection to be of the form

Nab =  1 ({g«b, h }  -  3a3“ Hg« -  3b3“ H g ^ ) (A.6)

we here show how this is obtained from theorem 1 in [59]. The proof is as follows 

Proof.

AgOb =  0

AgaHb =  {gaHb, h }  -  Q“ g“ b -  Q“ gaH“ =  0

{gaHb, h }  -  2NaqgHq“ gHb -  dad“ HgHb -  2NbqgHq“ gaH“ -  ^ “ H g “  =  0 

{gaHb, H } -  2Nab -  3a3“ HgHb -  2Nba -  ^ 3 “ ^  =  0 

4Nab =  {gaHb, H }  -  3a3“ HgHb -  3b3“ ^  

Nab =  4 ({gaHb, H } -  3a3“ HgHb -  3b3“ HgaHm)

□
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