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ABSTRACT 

The human skin blanching assay (HSBA) is a well-researched and validated method for 

the bioequivalence assessment of topical corticosteroids. Traditionally, visual assessment 

of skin blanching has been used. Such testing methods are not conducive for inter-

laboratory comparisons. Regulatory bodies prefer less subjective methods of analysis. 

The FDA released guidelines on the assessment of bioequivalence for topical 

corticosteroids that recommends the use of a chromameter as a reliable method to 

measure skin blanching although the use of visual assessment with acceptable validation 

is also provided for. However, the FDA does not elucidate on the manipulation and 

handling of the chromameter during skin blanching measurements. The purpose of this 

project was several fold, which included investigations to standardize the manipulation 

and handling of a chromameter. In particular, measures to avoid skin whitening resulting 

from the effects of pressure on the skin during chromameter use were investigated.  

Other methods of analysis should surpass or at least be comparable to the HSBA if such 

methods are to be used for the assessment of topical corticosteroids. Microdialysis is a 

relatively new technique for assessing the rate at which drug penetrates the skin. The 

advantage of using this method is that there are fewer restrictions for selection of an 

appropriate study population unlike those required for the HSBA where one has to be 

both a ‘responder’ and a ‘detector’ for their results to be used in data analysis.  

Microdialysis was investigated by initially conducting experiments in which 

microdialysis probes were embedded into topical formulations containing mometasone 

furoate (MF) and the initial results revealed that relatively low drug was released from 

the formulations. These results indicated that should microdialysis be applied to measure 

the in vivo release of MF from such topical formulations following application to the 

skin, even lower concentrations of MF would likely result in the dialysate, necessitating 

the need for ultra-high sensitive methods of analysis. Typically, the availability of an 

appropriate analytical technique such as liquid chromatography coupled with mass 

spectrometry (LCMS) would be a pre-requisite for such in vivo studies. However, only 

high-pressure liquid chromatography (HPLC) and other less sensitive equipment was 

available in the laboratories. The study objectives were therefore focussed on in vitro 



 iv 

assessment of the release of MF from topical formulations using microdialysis and Franz 

cells. In addition, the in vivo release of MF was also studied using the HSBA. Data 

obtained from the microdialysis experiments were compared with the data obtained from 

the Franz cell diffusion studies in order to provide information on the pharmaceutical 

availability of MF from the various topical MF dosage forms. Subsequently, 

pharmaceutical equivalence was investigated from the comparative pharmaceutical 

availability data using statistical analysis.  

An additional objective was to attempt to correlate in vitro with in vivo data (IVIVC) to 

establish a model that could be used to assess safety and efficacy of generic topical drug 

products. The in vivo data obtained from the HSBA were processed according to the FDA 

requirements and these pharmacodynamic data were subsequently compared with the 

microdialysis and Franz cell results. 

 

In summary the objectives of this project were: 

1. To develop a system to improve the reproducibility of the use of a Minolta® 

chromameter and compare this with the standard/normal manipulation and 

handling of such instruments. 

2. To develop and validate an HPLC method for the analysis of MF for use with in 

vitro diffusion studies using microdialysis and Franz cells. 

3. To conduct a comparative HSBA on proprietary MF topical creams from two 

different countries in accordance with the FDA guidance.  

4. To assess the pharmaceutical equivalence of topical formulations containing MF 

using Franz diffusion cells and in vitro microdialysis. 

5. To compare the in vivo data obtained from the HSBA with those obtained in vitro 

using microdialysis and Franz cells.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Topical corticosteroids have been in use for a considerable time and more recently, 

following patent expiry of the brand products, many generic topical corticosteroids have 

become available.1 Topical corticosteroid products are the most frequently prescribed 

products used in dermatology2,3 but unfortunately their increasing availability has 

resulted in misuse and abuse. For example, topical corticosteroid products are often used 

as skin lighteners, particularly in black populations.  The prevalence of the use of skin 

lighteners in Nigeria has been reported as being in the region of about 80% and as recent 

as 2002 black African women in Lagos top the list.4 Consequently, health professionals 

have had to reinforce and disseminate information on the disadvantages of topical 

corticosteroid abuse. This has partially achieved its purpose but has also led to topical 

corticosteroid phobia often resulting in the under usage of the relevant products in 

appropriately indicated conditions.3,5 The perception by patients is that limited (under) 

use even whilst prescribed will prevent the listed associated side effects and/or the 

adverse effects, especially skin thinning and other long term effects that may occur.  

 

The numerous modalities available for the treatment of dermatological diseases 

complicate the choice of the appropriate product. Since topical corticosteroid therapy is 

used over the full spectrum of patients, from paediatric patients through to 

postmenopausal and geriatric patients, issues of the efficacy and safety profiles of these 

corticosteroids are of primary importance.6 In addition to the different treatment 

modalities which may also involve different topical corticosteroids, generics products are 

generally available. The advent of generic products has necessitated the need for 

comparative bioequivalence studies to be performed whereby the generic (test) product is 

compared to the innovator (reference) product to establish their safety and efficacy. 

Furthermore, since different topical corticosteroid compounds have different degrees of 
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potency, it is convenient to group these various corticosteroids into classes of potency 

which provide better knowledge for the prescriber for use for a particular indication. Such 

information provides confidence to the prescriber which is then reflected in the 

counselling of the patient.7 An informed patient who has confidence in the prescriber 

together with knowledge of the efficacy and safety of the preparation will more likely use 

the correct dose for the prescribed time. Concordance results in cutting down of costs 

given that more than seven million Americans are affected by psoriasis alone. As early as 

1974 in the USA, approximately one hundred million dollars was spent on the purchase 

of topical corticosteroids.8 

 

Mometasone furoate was selected as the topical corticosteroid for study in this research 

project and topical products containing this particular corticosteroid were evaluated for 

safety and efficacy using both in vitro and in vivo methods. 

  

It has previously been established by Mackenzie and Stoughton9 that topical 

corticosteroids cause skin blanching. The degree of skin blanching can be related to the 

amount of topical corticosteroid entering the skin; hence the use of this 

physiological/pharmacological response can be used as a basis for the comparison of 

bioequivalence of the various topical corticosteroids, also sometimes known as 

dermatocorticoids.  

 

The human skin blanching assay (HSBA), which is purported to be based on the degree 

of vasoconstriction following the application of a topical corticosteroid to the skin, has 

thus been used as a measure to compare the efficacy of a generic formulation when 

compared with the innovator equivalent. Generic products contain the same percentage of 

active pharmaceutical ingredient (API) but may differ in the vehicles/excipients used. 

Very often, the vehicle may become the rate-limiting step of drug release from the 

formulation. Bioequivalence studies are therefore a check of these different 

vehicles/excipients to ascertain whether they have the same influence on the release of 

the corticosteroid from both the test and the reference dosage form and subsequent 

efficacy and safety of the product. 
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1.2 Mometasone Furoate  

1.2.1 Description 

Mometasone furoate (MF) (CAS 83919–23–7, Sch 32088)10 is 9α, 21-dichloro–11β, 

17α–dihydroxy–16α–methylpregna–1, 4–diene–3, 20–dione–17–(2–furoate), a synthetic 

corticosteroid with empirical formula C27H30Cl2O6 and molecular weight of 521.43 

(Figure 1.1).  
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Figure 1.1 Chemical structure of mometasone furoate 

 
MF is a white to off-white powder that contains not less than 97.0% and not more than 

102.0% of C27H30Cl2O6, calculated on the dried basis.11 

 

1.2.2 Physicochemical Properties  

1.2.2.1 Melting Point 

MF melts at about 220 ˚C with decomposition.11 The melting point of anhydrous MF 

using a hot-stage microscope was found to be between 233 and 242 ˚C. Concomitant 

degradation was observed with melting.12 

 

1.2.2.2 Solubility 

MF is practically insoluble in water, freely soluble in acetone and methylene chloride and 

slightly soluble in alcohol.11 MF solubility at pH 1, 4, 7, 8 and 10 is described as 

sparingly soluble.10 
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Solubility studies of MF in Mcllvaine buffer solutions, comprising 0.05 M citric acid and 

0.1 M disodium hydrogen phosphate (pH 2.5, 3, 4, 5, 6, 7 and 8), and in water were 

conducted by adding excess MF to the appropriate solvent and shaken at 37 ˚C in a water 

bath for 24 hours. The samples were analysed after 24 hours using a validated HPLC 

method (vide infra Chapter 4) and the results of these solubility samples have been 

summarized (vide infra Figure 6.2 and Table 6.2). Solubility in binary compositions of 

propylene glycol and water was assessed using a Junior Orbit Shaker (Lab-Line 

Instrument Inc., Melrose Park, Illinois, USA) at room temperature (22 ˚C) and in a water 

bath at 32 ˚C.  

 

1.2.2.3 Dissociation Constant (pKa) 

The acid dissociation constant, pKa, of MF is 13.08 ± 0.20.10 The dissociation constant 

measures the tendency of a drug molecule to keep the proton at its ionization centre(s) 

and defines the extent of ionization of a drug molecule and its predicted chemical and 

biological behaviour. If a molecule is not readily ionized it tends to stay in non-polar 

solvents such as the nature of the lipid membrane cells in biological systems as opposed 

to being in the aqueous tissue compartment. 

 

1.2.2.4 Partition Coefficient (Log P)  

Log P is the logarithm of the partition ratio of a drug between octanol and water also 

known as the partition coefficient. Log P of MF is 4.725 ± 0.523.10 Using the 

chromatographic hydrophobicity index method that is correlated with measured log P, a 

log P value of 3.49 was obtained for MF.13 Log P gives an insight on drug partitioning 

between water and lipids in vivo. Hence the partition coefficient of a molecule is one of 

the core properties that may be used to estimate the absorption, distribution and 

transportation potential of a drug in biological systems.14 Drugs with a partition 

coefficient between 2 and 3 have been shown to have the optimum percutaneous 

absorption.15  
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Higher log P values, (higher lipophilicity) are associated with correspondingly higher 

permeability coefficients.15 MF intake into the stratum corneum is thus high and there is 

greater retention within the tissue. Since the skin is the site of action, retention thus 

should give favourable results. The furoate in the 17α position increases the lipophilicity 

of MF thereby enhancing the ratio of topical to systemic potency and increasing the 

interaction of the molecule with the glucocorticoid receptor. 

 

1.2.2.5 Ultraviolet Absorption Spectrum 

 

 
 

 
 

Figure 1.2 Ultraviolet absorption spectrum of mometasone furoate 
  
A methanolic solution of MF was scanned using a double beam GBC UV/VIS, Model 

916 Spectrometer (GBC Scientific Equipment Pty Ltd, Victoria, Australia) and the 

maximum absorption of MF was found to be 249.6 nm. (Figure 1.2) 

 

Wavelength 

Absorption 
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1.2.2.6 Stability 

Storage conditions for MF products should be between 2 and 30 ˚C for the different 

topical preparations cream, ointment and lotion. If stored at this temperature then the 

expiration date is two years following date of manufacture.16 

 

1.2.2.7 Structure Activity Relationship 

Topical corticosteroids such as MF are synthesized from the natural steroid, cortisol. The 

structures of MF and cortisol are depicted in Figure 1.3. 
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Figure 1.3 Chemical structures of cortisol and mometasone furoate 
 
The 4, 5 double bond and the 3-keto groups are essential for mineralocorticoid and 

glucocorticoid activity of cortisol. These were selectively left intact in ring A. The 1, 2 

double bond increased the glucocorticoid activity of MF but slowed its metabolism. The 

11β-hydroxyl through its electron withdrawing effect increases the glucocorticoid and 

anti-inflammatory effects imparted by the chlorine atom at the 9α position. The 16α-

methyl group eliminates the mineralocorticoid activity. 

 

Where MF has the 16α-methyl group, beclomethasone has the β configuration and the 

chlorine at position 21 of MF replaces the hydroxyl group in beclomethasone. The 

structural differences between beclomethasone and MF increase MF topical anti-

inflammatory activity. The esterification of the 17-hydroxyl group also increases the anti-

inflammatory activity of MF as compared to mometasone. 
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1.2.3 Pharmacological Properties 

1.2.3.1 Classification 

MF is a synthetic 16α-methyl analogue of beclomethasone. It is classified as a medium 

potent glucocorticoid for dermatological use.17 It is available as 0.1% cream, ointment 

and lotion formulations and is sold under the trade name Elocon® or Elocom, depending 

on the country where it is marketed. MF shows higher affinity for the glucocorticoid 

receptor in vitro than betamethasone dipropionate. It is better at suppressing erythema 

and has greater activity and a longer duration of action than both betamethasone 

dipropionate and betamethasone valerate.18 

 

1.2.3.2 Indications 

MF is used for the treatment of glucocorticoid-responsive dermatoses, in the management 

of patients with atopic dermatitis, seborrheic dermatitis, eczema, allergic contact 

dermatitis, scalp psoriasis and psoriasis vulgaris where it is generally applied as a 0.1% 

cream twice a day. The ointment is for use on dry, scaly fissured lesions whereas the 

cream is suitable for moist lesions and is cosmetically acceptable on the face. The 

ointments are associated with lower incidence of hypersensitivity because of the absence 

of preservatives.3 Elocon® lotion is applied to scalp sites and other affected skin areas by 

massaging a few drops of the lotion thoroughly into application site until the medication 

has disappeared.17 

 

1.2.3.3 Dosage 

This chlorinated corticosteroid is lipid soluble and long acting; as such MF offers the 

convenience of a once-daily topical dose. Application to moist areas such as the perianal 

region, results in greater absorption hence drug formulations should be applied sparingly 

over such affected areas.17,19 Care should be taken in the case of application in the nappy 

area of babies. The nappy acts as an occlusive dressing hence will result in increased 

absorption. 
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1.2.3.4 Mode of Action 

Steroids act on target cells by regulating their gene expression and protein biosynthesis.17 

The steroid enters the cytoplasm of a target cell by passive diffusion, binds to the steroid 

receptor proteins and then proceeds to the nucleus. Activation of the steroid-receptor 

takes place resulting in dimerisation. This dimer interacts with particular regions of the 

DNA known as hormone responsive elements (HRE) located in the 5’-upstream promoter 

region, inducing or suppressing gene transcription.6 Translation of the mRNA gives a 

variety of proteins responsible for the plethora of effects within the inflammatory 

cascade. Corticosteroids inhibit the cytokine production including inteleukin-1 (IL-1), IL-

2, IL-2 receptor, interferon-a (INF-a), tumour necrosis factor (TNF) and various colony 

stimulating factors (CSFs) such as IL-3.6 Lipocortin inhibits the action of pLA2, an 

enzyme that catalyzes the conversion of arachidonic acid into the eicosanoids, 

prostaglandins and leukotrienes. These eicosaniods give rise to noxious effects. In 

addition, corticosteroids inhibit the attraction of inflammatory cells to the site of an 

allergic reaction.  

 

Endogenous cortisol inhibits vasodilation, leakage of capillaries and may block 

chemotaxis.19 Cortisol also acts as an immunosuppressant inhibiting lymphocyte action 

which if permitted to act leads to type IV allergic reactions when lymphokines access 

target cells. Synthetic topical corticosteroids act in the same way as endogenous cortisol 

but their effectiveness is due to a combination of their higher intrinsic activity and better 

bioavailability.20 The therapeutic effectiveness of synthetic topical corticosteroids in 

general is based on their anti-inflammatory and anti-pruritic activities.  In addition, they 

show anti-mitotic effects on the human epidermis accounting for the additional action in 

psoriasis and other dermatologic diseases that have increased turnover of basal cells of 

the epidermis.20,21 However, inhibition of DNA synthesis is not without consequence, 

atrophy of the epidermis and dermis occurs after prolonged treatment.  

 

The above traditional genomic theory does not explain the rapid effects of 

corticosteroids. Currently a nongenomic theory has been put forward. Nongenomic 

actions are mediated by a distinct membrane receptor. This membranous receptor 
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compares well with the cytoplasmic receptor, implicated in the genomic theory, in terms 

of hormone-binding properties. The membrane receptor is thought to be linked to several 

intracellular signalling pathways that act via G-protein-coupled receptors and a number 

of kinase pathways. Kinases and phosphatases associated with the glucocorticoid receptor 

and released on hormone binding may be accountable for the rapid induction of tyrosine 

kinases in some cells.22 

 

1.2.3.5 Adverse Effects 

MF is a well tolerated drug with mild to moderate transient side effects such as stinging, 

burning, folliculitis and dryness. Serious adverse effects can occur after prolonged and 

extensive use. Long term continuous treatment with MF should be avoided as far as 

possible as this may cause atrophic changes in the skin leading to thinning, loss of 

elasticity, and dilatation of superficial blood vessels, telangiectasiae and ecchymoses. 

These changes are likely to occur on the face or when occlusive dressings are used. Even 

though these adverse effects can occur it has been shown that for an equivalent dose of 

betamethasone 17-valerate MF produces approximately half of the suppressive effect on 

the hypothalamic-pituitary-adrenal axis.17 

 

In addition, the atrophogenic potential is low and no greater than that of other 

glucocorticoids in the class. No clinical or histological signs of atrophy were observed 

after a once a day dose application for one year.18 Signs of skin atrophy have been 

described with steroids of lower or similar efficacy when applied under occlusion.23 Thus 

it can be concluded that MF has a favourable adverse drug reaction profile.  

 

1.2.3.6 Contraindications 

MF is not for use in patients hypersensitive to the drug or other corticosteroids. It is 

contraindicated in most viral infections of the skin, tuberculosis, acne rosacea, peri-oral 

dermatitis, fungal skin infections and ulcerative conditions.17 
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Ideally MF should not be used in children under the age of two or in pregnant women. In 

children treatment should not be for more than three weeks as adrenal suppression is 

more likely to occur.17 Corticosteroids exert a suppressive effect on growth by decreasing 

the release of the growth hormone. Corticosteroids have the potential to reduce bone 

formation, increase bone resorption, decrease calcium absorption and renal calcium 

reabsorption leading to osteoporosis. However, the use of topical corticosteroids with 

minimal systemic bioavailability limits the effects on growth, thus at recommended doses 

no growth retardation is observed.6 Prolonged use on the face, flexures and intertriginous 

areas is undesirable. 

 

1.2.4 Pharmacokinetics of Topical Mometasone Furoate 

1.2.4.1 Absorption 

The systemic absorption of MF is extremely low. Following topical applications in 

animals only 2–6% of the drug was absorbed systemically whereas from intact human 

skin, only 0.4% was detected consequent to systemic absorption when Elocon® cream 

(0.1%) was applied as a single dose for 8 hours. When Elocon® ointment 0.1% was used, 

about 0.7% of the dose was absorbed systemically.17  

 

1.2.4.2 Distribution 

Being more lipophilic, MF remains in the skin with lower systemic absorption in 

comparison to similar corticosteroids.6 MF exhibits high topical potency and high affinity 

for the glucocorticoid receptor with low systemic absorption. When inhaled, MF has a 

total systemic bioavailability of less than 11%.13 MF demonstrates a strong anti-

inflammatory activity, rapid onset of action, low systemic bioavailability and a 

favourable ratio between local and systemic side effects,24 consequently, it shows a 

comparably longer duration of action and at the same time has low potential to cause 

adverse effects such as suppression of the hypothalamic-pituitary-adrenal (HPA) axis.  
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1.2.4.3 Metabolism 

Absorbed corticosteroids are handled in a similar way to systemically administered 

corticosteroids. Mometasone, the free alcohol, is one metabolite of MF which results via 

hydrolysis of the furoate ester. Mometasone has a high binding affinity for the 

glucocorticoid receptor.25 Metabolism of MF includes hydroxylation resulting in the 

formation of 6β–OH-MF, 6β–OH-mometasone25 and substitution of the C21–chlorine 

group by a hydroxyl group to form 21-OH–MF. These metabolites have high binding 

affinities for the glucocorticoid receptor hence are potentially responsible for the 

systemic activity.25  

 

1.2.4.4 Excretion 

MF undergoes virtually complete hepatic metabolism.13 Excretion is via kidneys and 

some metabolites are found in bile. The products resulting from the different metabolic 

pathways are shown in Figure 1.4. 

 



 12 

O

OH

Cl

Cl

O

O

O

O

O

OH

Cl

Cl

O

O

O

O

OH
O

OH

Cl

OH

O

O

O

O

O

OH

Cl

Cl

O

OH

O

OH

Cl

Cl

O

OH

OH

O

OH

Cl

OH

O

OH

mometasone furoate

6-OH-mometasone furoate 21-OH-mometasone furoate

21-OH-mometasone

6-OH-mometasone

mometasone

 
Figure 1.4 Metabolic pathway of MF23 

 

1.2.5 Preparations 

MF preparations are classified as endodermal preparations.26 For a formulation to be 

described as an endodermal preparation, the drug contained in it must pass the stratum 

corneum, penetrate deeper into the dermis but not reach the general circulation. Such 

preparations are intended for local treatment of tissues below the site of application.27 
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Corticosteroid receptors are located between the stratum corneum and the upper dermis 

layer.28 

 

Mometasone furoate is available as different formulations; cream, ointment and lotion. 

The creams are cosmetically acceptable on the face whereas the lotion is useful for 

application to the scalp and ointments are used for dry lesions. The innovator company 

manufacturing MF products is the Schering Corporation, USA. Several other companies 

have subsequently developed generics and these include Fougera, Perrgio Co, Warrick 

Pharm and Clay-Park Labs.16 
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CHAPTER 2 

HUMAN SKIN BLANCHING ASSAY 

 

2.1 Literature Review Including Background 

Blanching is the whitening (pallor) of skin as a result of topical corticosteroid application. 

This pharmacodynamic response was first observed by Hollander in 1950.29 Later, in 

1962, the observation that the degree of blanching could be employed as an index of 

percutaneous absorption of the active drug was noted by McKenzie and Stoughton.30 This 

observation has formed the basis of one of the best established human bioassays for 

assessing topical corticosteroid products and is commonly referred to as the human skin 

blanching assay (HSBA).31 Generally, the intensity of the blanching response is related to 

the degree of percutaneous absorption of the topically applied corticosteroid. Earlier 

blanching tests involved the application of ethanolic topical corticosteroid solutions or 

suspensions or other preparations for 6-16 hours, followed by visual assessment at a 

single time point usually two hours post removal of application.32,33 An all-or-none 

evaluation of the vasoconstriction response was done visually. The assay methodology 

has undergone many modifications since it was first suggested. Barry34 in 1976 modified 

the McKenzie–Stoughton blanching test by taking readings of pallor over a longer period 

of time (up to 96 hours). The all-or-none system of evaluation was replaced by the use of 

a graded scoring schedule.29 Subsequently, the HSBA was further modified to include 

multiple dose duration applications, a method which is currently used to assess 

bioequivalence of topical corticosteroid preparations.30,32 The assay has been further 

improved by optimizing the study design facilitating the acquisition of dose-response 

data and the application of appropriate statistical procedures.20,32,35 The advancement in 

technology and statistical approach has resulted in a refinement of the bioequivalence 

procedure for topical corticosteroid assessment.28 The assessment of the bioequivalence 

of topical formulations to-date can generally only be accomplished by clinical trials 

except in the case of topical generic corticosteroids where the HBSA can be readily 

applied for this purpose. Clinical trials are time consuming, costly, inconvenient, and 



 15 

laborious, require the incorporation of large numbers of patients29 and often lack 

sensitivity.32 In addition, the application of a placebo is also required. Furthermore, 

patients suffering from dermatological diseases are not ideal subjects as standardized 

lesions are difficult to obtain yet these are required for the bioequivalence assessment of 

topical formulations. Clinical trials usually use parallel group design where patients are 

allocated to different groups where either a test (generic) or reference (innovator) product 

or a placebo is applied. The disadvantage is that inter-subject variability cannot be 

controlled hence such study designs are not ideal for bioavailability or bioequivalence 

studies.36 Consequently other methods for topical corticosteroid product assessment need 

to be developed. 

 

HSBA has been the preferred method compared to tape stripping, ultraviolet irradiation, 

antigranuloma assays and cytological studies for topical corticosteroid assessment as it is 

less tedious, does not require the use of animals and is pain free.30,37 Also, the HSBA is 

non-invasive, inexpensive, and reproducible.28 An important advantage of the HBSA is 

that healthy volunteers are used and the simultaneous comparison of more formulations 

may be made in the same subject.30 In addition, the FDA preferentially recommends the 

assessment of bioequivalence using pharmacodynamic effect studies as compared to 

clinical trials, in vivo animal studies or in vitro studies.32 

 

2.1.1 Mechanism of Blanching 

Several theories to explain blanching have been put forward29,38, amongst which is the 

inference that blanching could be due to vasoconstriction. Studies conducted following 

topical corticosteroid application suggest that topical corticosteroids cause 

vasoconstriction indirectly by sensitizing the vascular musculature to norepinephrine 

(NE).31 NE is a hormone closely related to adrenaline and with similar actions. It is 

secreted by the medulla of the adrenal gland and is the neurotransmitter of most 

postganglionic sympathetic nerve fibres. When NE is released it diffuses across the 

synaptic cleft, it binds briefly to the adrenergic receptors, thereby activating them and 

causing a physiologic response. This process is terminated by the uptake of NE into the 

prejunctional neurons where it is degraded by monoamine oxidase (MAO) and also 
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extraneuronally by the action of catechol O-methyltransferase (COMT).39 NE release 

results in constriction of small blood vessels.  

 

It has been suggested that corticosteroids augment vascular tone by potentiating the 

actions of vasoconstrictor hormones such as NE and angiotensin II. Potentiation has been 

linked to the indirect influence of topically applied corticosteroids on NE metabolism or 

re-uptake29 and up-regulation of vasoconstrictor receptors in vascular smooth muscle 

cells.38 Direct action of topical corticosteroids on vascular smooth muscle cells that are 

independent of vasoconstrictor hormones38 has also been implicated. It is proposed that 

the corticosteroid attaches itself to a receptor site, subsequently causing the release of 

adenosine or guanosine monophosphate (AMP or GMP).29 Some researchers have 

suggested that topically applied corticosteroids stimulate the release of NE held in 

cutaneous stores in nerve endings, hence tachyphylaxis may result when these sources are 

depleted.29 Where some researchers have found evidence for, others have found evidence 

against – Fritz and Levine29,38 observed the potentiation of vasoconstrictors by 

corticosteroids, however, Sessa40 and Bockman41 did not whereas Mihayara42 actually 

observed 50% reduction in contractions due to NE. 

 

Since the mechanism of blanching has not been fully elucidated this bioassay should be 

referred to as the HSBA and not the vasoconstriction assay.29 

 

2.1.2 Bioequivalence Assessment of Topical Corticosteroid 

Formulations 

HSBA has been shown to be a useful tool for the comparison of potency of different 

topical corticosteroid formulations. The assay is discriminatory hence it is used for 

regulatory purposes in bioequivalence testing.32 A direct correlation has been 

demonstrated between the intensity of corticosteroid-induced skin blanching and 

therapeutic potency.29,32 Since the 1960s the quantitative assessment of induced skin 

blanching has been carried out subjectively by visual observation and grading. HSBA has 

been criticized since visual assessment is subjective.28,43,44  
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The FDA suggested that with increasingly sophisticated methods of detecting physical 

and chemical changes, the ability of the human observer to assess the magnitude of the 

pharmacodynamic effect was perceived to be inadequate.32 In attempting to standardise 

the technique of in vivo topical corticosteroid formulation bioequivalence assessment, the 

FDA, released a guidance document entitled Topical Dermatologic Corticosteroids: In 

vivo Bioequivalence32, in which it was stated that any investigations initiated after the 

issue date, 2 June 1995, should generally conform to the recommendations of the 

guidance. The use of an instrumental method involving a chromameter to measure skin 

blanching was one of the recommendations of the guidance. The reasoning being that the 

use of an instrumental method for the assessment of blanching is supposed to be 

objective, more reproducible/reliable than visual assessment and can readily be validated 

through calibration and other appropriate procedures. Policies adopted by the FDA tend 

to have regulatory implications in countries other than the US. Consequently, many 

regulatory agencies have also adopted this procedure and approach for the bioequivalence 

assessment of topical corticosteroid dosage forms.  

 

2.2 Blanching Assessment Methods  

2.2.1 Visual Assessment  

Quantitative assessment of induced skin blanching in the past has generally been carried 

out subjectively by visual observation and grading.28,43,45,46 Ordinal data scales are used 

in these assessments such as: 

0 – Normal skin 

1 – Slight blanching of indistinct outline; 

2 – More intense blanching 

3 – Even blanching with a clear outline of the application site; 

4 – Intense blanching. 

 

Visual assessment of the degree of skin blanching varies among investigators, 

environments and subject populations and requires the use of experienced observers or 

assessors. A minimum of two blanching trials (12 subjects) using at least 10 observation 
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times28 has been suggested as the minimum experience needed for one to be an 

acceptable/reliable visual assessor. The surrounding vascular skin colour and degree of 

pigmentation interfere considerably with the interpretation of results.47 In addition, the 

use of ordinal data limits the power of the statistical analyses which can be carried out on 

the resultant data.43  

 

Many factors influence human perception of colour such as age, mood, certain 

medications, source of light and background. There is no physical scale for measuring 

colour hence no two people can describe colour in the same way. Scientifically, it is 

preferable to have an objective method for the measurement of skin blanching. Human 

vision cannot recognize colour as precisely as reflectance spectrometry 48. However, 

visual assessment has been proven to be reproducible in spite of the subjectiveness of the 

method 28,45, hence it provides a standard against which an objective technique must 

equate or surpass prior to being replaced with any alternative such method. 

 

2.2.1.1 Scores 

Total possible score percent (TPS %) against time was used to assess visually obtained 

results.29,30 The following equation was used: 

 

%100% ×=
TPS

eActualscor
TPS    (Equation 2.1) 

 
TPS is calculated using the formula:  

 

VSnTPS ×××= 4      (Equation 2.2) 
Where, 

4 = the maximum blanching score per site,  

n = Number of independent observers  

S = Number of sites per dose duration and 

V = Number of volunteers  
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The use of a %TPS versus time profile allows computation of the area under curve 

(AUC) using the trapezoidal rule.  

 

2.2.2 Chromameter Assessment 

A chromameter is a reflectance colorimeter that uses sensors that simulate the way the 

human eye sees colour and quantifies colour differences between a standard and a 

sample.  

 

 

Figure 2.1 Minolta® chromameter CR-400 
 
The Minolta® chromameter (Model CR-400, Minolta, Osaka, Japan) comprises a 

measuring head and a data processor as shown in Figure 2.1. In the measuring head, a 

pulsed xenon arc lamp inside the mixing chamber provides diffuse, even lighting over an 

8 mm diameter measuring area. This light shines on a specimen area of about 201 mm2. 

Only the light reflected perpendicular to the specimen surface is collected by the optical 

fibre cable for analysis. The photocells convert the light energy they receive into a 

current proportional in strength to the brightness of the light. This current is further 

changed into a proportional analogue voltage, then into a digital signal that the 

microcomputer uses to determine the values of the measured surface.49  

 

Before any measurements are taken, the white plate provided by the manufacturer is used 

to calibrate the chromameter to baseline. This serves as a basis for comparison of 

subsequent readings. In addition to similar sensitivities to the human eye, the 

chromameter measurements are effected using the same light source and illumination 
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method. As a result, the measurements generated are objective and reproducible provided 

a planar hard surface is measured. 

 

The Commission Internationale de l’Eclairage, CIE (L a*b*) 1976 standardized colour 

space was used to quantify skin colour. This colour space simulates the sensitivity of the 

human eye and has been used by a number of researchers43,44,46,48,50-52 including the 

FDA.32 This system is now widely accepted. CIE (L a*b*) 1976 has been described as an 

approximately uniform colour space produced by plotting, in rectangular coordinates 

(scale readings), L* (lightness 0–100), a* (+60 redness/–60 greenness) and b* (+60 

yellowness/–60 blueness). It has been recommended for use in the guidance, hence its use 

in this research project. 

 

2.2.2.1 a* Scale Readings 

The FDA recommended method of assessment of blanching intensity utilizes the a* 

coordinate only, disregarding L and b* coordinates.32 However, both L and a* 

coordinates have been shown to have highly significant correlations with % TPS.44 These 

findings have resulted in almost all researchers using a* coordinates only for the 

assessment of skin blanching.  

 

2.2.2.2 Euclidean Distances 

Colour vision is trichromatic meaning that it is described by three values. Hunter and 

Harold46 suggested that a single perceived colour results from the effect of three separate 

stimuli on the visual cortex. These separate stimuli can be regarded as a mixture of red, 

green and blue, the primary colours. As such describing colour is like giving it a position 

in 3 dimensions. A change in one direction results in a new position which can only be 

adequately expressed by three values. Hence each colour can only be fully described in 

terms of the 3 unique coordinates, Euclidean distances.46 When the chromameter is 

calibrated according to the white plate, a point of reference is defined in 3 dimensions 

described by L*, a* and b*.  
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The Euclidean distance (ED) representing skin colour is calculated as the vector of the 

three points using Equation 2.3: 

 

222 )()()( baLED ∆+∆+∆=     (Equation 2.3) 

 
All readings following the application of topical corticosteroid formulation were baseline 

adjusted by subtracting the reading for each site taken at the beginning of the experiment 

before the formulation was applied (Equation 2.4).  

 
Raw reading – Site reading before drug application = Baseline adjusted value  

(Equation 2.4) 

 

The baseline-adjusted sites were also corrected by subtracting the average of the 2 blank 

sites on each forearm to take away the effect of the endogenous cortisol and other effects 

on the absolute colour coordinate (Equation 2.5). These corrections allow us to obtain the 

effect on skin colour due to blanching.  

 

Baseline adjusted reading – Untreated control, baseline adjusted reading = Treated site, 
baseline adjusted value        (Equation 2.5) 
 

Analysis of chromameter results was made using both a* scale values2,28,32,45 and the 

EDs.43,46 Area under effective curve for each subject was calculated using the trapezoidal 

rule for both sets of data.53  

 

2.2.2.3 Application of the Chromameter 

The chromameter has been employed by several workers for quantitative analysis of 

blanching but less than satisfactory results have been obtained. Consequently, the 

precision and reproducibility of the chromameter in measuring human skin blanching has 

been questioned.28,43,46,50 Hand-held chromameters have been developed for measuring 

planar, homogenous surfaces. When measuring skin colour using the chromameter, 

reproducibility problems have been encountered due to the varying pressure applied at 

each site and the change in the angle at which the chromameter is presented to the skin. 
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As a result, skin colour measurements obtained are not very reproducible, accurate or 

precise.43 These problems make inter-laboratory comparisons impossible. The current 

FDA Guidance does not have any recommendations relating to the handling of the 

chromameter in order to ensure an acceptable degree of reproducibility. Skin blanching 

assessment using the chromameter requires the operator to make sure that constant 

pressure is applied through out the experimental duration. Skin pallor changes with 

pressure, variable amounts of which would introduce inevitable  skin colour changes.54 

Measuring skin colour at a focal point above the skin, as put forward by some 

researchers,28 contradicts with the modus operandi of the chromameter. The site to be 

measured must be sealed off; the measuring head must be in contact with the site so that 

neither incident light nor light reflected from the site is lost. It is also difficult for an 

investigator to hold the measuring head stationary and motionless with the same uniform 

pressure applied at each site and consequently reproduce these conditions each time 

measurements are undertaken.28,55 At each observation time each subject usually has 

about 8 application sites on each arm. When using at least 12 subjects for each study, 192 

readings have to be made at each sitting. Hand holding the chromameter measuring head 

introduces human error. Such problems have resulted in chromameter measurements not 

surpassing visual assessment.56 This has been further explained by Schwarb et al43 who 

concluded that the use of the hand-held chromameter was still subjective as the reading 

depended on the operator of the chromameter.  

 

Because of these problems, modifications to the Minolta® chromameter CR–400 were 

made to attempt to improve the reproducibility and precision of measuring skin colour by 

controlling pressure and the angle at which the chromameter was applied to the skin site. 

Studies were conducted to assess any differences between the hand-held and the modified 

mounted chromameter. Information on reproducibility is a prerequisite before a method 

can be used in comparative studies.54 Reproducibility within and between operators of the 

measuring instrument should be demonstrated. Inter-instrument reproducibility and day-

to-day variation should be established.54  

 



 23 

2.3 Objectives 

Experiments were conducted to assess the effect of the following: 

• Mounting the chromameter compared to the hand held chromameter. 

• Change in spatial orientation and alignment of the chromameter.  

• Differences of skin colour between Caucasian, Indian and black ethnic groups. 

• Effect of pressure on skin colour. 

• Inter-operator variation. 

• Intra-operator reproducibility. 

 

2.4 Methods and Procedures  

2.4.1 Modifications to the Chromameter  

The Minolta® chromameter CR–400 was mounted onto a movable horizontal beam 

connected to a system of swivels which allowed free movement in 3 dimensions (Figure 

2.2). A movable balancing mass was coupled to the beam and was used to control the 

pressure exerted onto the skin site during measurements. Four pressure sensors were 

attached to the base of the measuring head of the chromameter, equally spaced from each 

other. These were in turn connected to a light system that comprised 8 small light sensors 

that were arranged in 2 concentric circles of 4 each. The inner circle of green light 

sensors illuminate when light pressure is applied to the skin during measurements. 

Adding more pressure illuminates the outer red light sensors to indicate excess 

unacceptable pressure. Opposite sides of the demarcated application sites and the 

corresponding sites on the chromameter measuring head base were marked with 

reference marks to ensure the exact placement of the chromameter for successive 

readings. 
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Figure 2.2 Patented mounted chromameter 
 

Care was taken to place the measuring head of the chromameter flat onto the skin site, 

which is indicated when all the 4 light sensors of the inner concentric circle become 

illuminated. Unbalanced positioning of the chromameter on the skin site results in one or 

more of the green light sensors not being illuminated. Application of excess pressure 

results in the illumination of one or more of the red light sensors. Once the optimum 

positioning of the measuring head had been established with the aid of the light sensors, 

the balancing mass was set to a predetermined position for the duration of the studies to 

control the degree of pressure applied by the measuring head on the skin. The system of 

mounting was subsequently patented (Patent number 2006/04964). 

 

2.4.2 Preparation of Volunteers 

The ventral forearms of volunteers were washed and patted dry prior to the start of the 

studies. Sites, 2.5 cm centre-to-centre and singly stacked on the flat flexor aspect of the 

left forearm between the antecubital fossa and the wrist of the volunteer, 3-4 cm from 

either end, were demarcated and numbered (Figure 2.3). The opposite sides of the 

demarcated application sites and the corresponding sites on the chromameter measuring 

head base were marked to ensure the exact placement of the chromameter for successive 

readings. 
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Figure 2.3 Numbered skin sites on the flexor aspect of the forearm showing the placement 
marks for each site 

 
Topical corticosteroid formulations were not used in this set of studies. The volunteers 

enrolled were not suffering from any dermatological conditions and had not used any 

topical corticosteroids in the last two months. The study population comprised of the 

following volunteers shown in Table 2.1. 

 

Table 2.1 Chromametric method validation  

Study Description Chromameter used Volunteers 
1 Static chromameter Hand-held and 

Mounted 
1 black 
1 Caucasian 

2 Realigning 
chromameter 

Hand-held and 
Mounted 

1 black 
1 Caucasian 

3 Non-aligned 
chromameter 

Hand-held and 
Mounted 

1 black 
 

4  Effect of pressure Mounted (10, 30, 
50, 100 g pressure) 

1 Caucasian 

5 Skin colour rhythm 
variation 

Mounted (30 g 
pressure) 

2 blacks 
2 Caucasians 
2 Indians 
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2.4.3 Assessment of Instrument Measurement Variables 

2.4.3.1 Positioning and Application Pressure  

In study 1, the chromameter was positioned with the reference marks on the measuring 

head corresponding to those on the demarcated skin site. Three successive readings were 

made at each site without lifting the chromameter off the skin, i.e. statically, and 3 second 

intervals were allowed between readings at the same site. Both the hand-held and 

mounted chromameter setting were used to take static readings. By statically holding the 

chromameter in position, the variation due to the inexact placement of the measuring 

head over a skin site could be eliminated. Using the hand-held chromameter, the variation 

in measurements due to variable pressure applied by the operator could be elucidated. 

Using the mounted instrument, the appropriate pressure could be kept constant.  

 

In study 2, one reading per site was taken from site 1 through to site 7. This procedure 

was repeated twice, ensuring exact realignment to the marks each time, to give three 

readings per site. Both, the hand-held and mounted chromameter configurations were 

used to assess the effect of realignment. This experiment mimicked the FDA designed 

chromametric study32 where readings are taken at intervals e.g. at times 0, 2, 4, 6, 19 and 

24 hours after drug product removal. The variability of the measurements due to 

realigning was used to assess precision. 

 
Study 3 differed from study 2 in that the spatial orientation of the measuring head of the 

chromameter was not kept constant but the same skin site was repeatedly measured 

(n=3). The change in spatial orientation was accomplished by rotating the chromameter 

through 180˚. Reference marks were used in reverse to ensure that readings were made 

on the same site each time. Readings were taken using both the mounted and the hand-

held configurations. As in study 2, one reading per site was taken from site 1 through to 

site 7 and the procedure repeated to give three sets of measurements per site. 

 

The effect of pressure on the skin of both forearms was explored in one Caucasian by two 

different chromameter operators in study 4. In this study only the mounted chromameter 

was used. The balancing mass on the horizontal beam holding the chromameter head was 
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adjusted so as to apply a predetermined pressure on the arm. The following average 

masses were used: 12.04 ± 1.49 g, 28.10 ± 4.02 g, 49.96 ± 1.56 g and 101.80 ± 1.77 g 

(n=5). For each pressure application, at each site, triplicate readings were made in the 

manner described in study 2, realigning the chromameter. The same chromameter was 

used by both operators. 

 

2.4.3.2 Assessment of Skin Colour  

In study 5, the forearms of six human volunteers were gently washed and dried 30 

minutes prior to chromameter measurements being done sequentially on each of the 

volunteers in order to allow the skin to equilibrate with respect to its natural colour. Each 

volunteer was processed sequentially at 10-minute intervals to minimize environmental 

variables. Sites were demarcated and numbered (Figure 2.3). During this time interval 

subjects were confined in an air conditioned room where the study was conducted allow 

to stabilization of blood flow. The mounted chromameter was used and when the 

measuring head of the chromameter was properly aligned over the skin site, (all green 

pressure light sensors on), the chromameter was left in position and the shutter button on 

the chromameter data processor depressed to measure the skin colour. One reading per 

site at various time intervals was taken as follows: Subject 1: 0800, 1200, 1400, 1500, 

1700, 2000, 2100, and 2200 and continued at 0830 and at 1130 hours the following day.  

 

2.5 Results and Discussion 

2.5.1 Positioning and Application Pressure  

The readings obtained from the hand-held chromameter were generally higher than those 

from the mounted chromameter (Figure 2.4). The precision, calculated as percent relative 

standard deviation (% RSD) was however, comparable between the mounted (0.3–0.6%) 

and hand-held configurations (0.1–0.8%). The higher a* readings obtained with the hand-

held chromameter could be due to higher, unregulated pressure applied to the skin on 

measuring44 (Figure 2.4). 
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Figure 2.4 Effect of application pressure  
 
Significantly different means were observed between the hand-held and the mounted 

chromameter in the static position (p < 0.0001) using the paired t-test. This indicates that 

there is a significant contribution from uncontrolled application pressure when the hand-

held configuration is used to make the measurements. 

 

Both hand-held and mounted chromameter configurations were realigned to the exact 

skin site for repeat measurements. Variation was found to be from 0.2 to 2.0% for the 

hand-held chromameter whereas the mounted chromameter showed percent relative 

standard deviations of 0.5% to 1.5%. Wide variations in the %RSD obtained per site 

implies a variation in the applied force. Such variations are likely to produce erroneous 

results when using a hand-held chromameter since the application force is neither known 

nor constant. Although the hand-held chromameter may be comparably precise, it may 

not be reliable as evidenced by the chromameter assessment studies that have been 

previously been reported.28,43,46,50 

 

A comparison between the realigned and the non-aligned mounted chromameters show 

that no discernible differences were observed due to the spatial orientation of the 

chromameter (Figure 2.5). A change in spatial orientation of the chromameter which 

could occur between measurements may result in a change in the sealing off of the skin 
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site hence producing significantly different results. However, if the measurement is 

appropriately controlled by completely sealing off the site, as was achieved in this study, 

then significant differences between the different alignment positions can be avoided.  
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Figure 2.5 Effect of chromameter placement  
 

2.5.2 Effect of Skin Colour 

It was observed that generally Caucasian skin gives lower a* readings compared to that 

of black skin (Figure 2.6). The fluctuation of readings taken consecutively from a 

particular site is wider for Caucasian skin as compared to black skin. From these 

preliminary results it would seem better to use blacks in blanching experiments as there is 

potential for consistent, less variable results, however, this would depend on the detection 

of an adequate blanching response in such individuals.  
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Figure 2.6 Effect of Skin Colour – a* readings from Caucasian and black skin 
 

2.5.3 Control of Application Pressure 

In order to control the application pressure and placement of the chromameter on the 

skin, a mounted configuration was used.  

 

It was found that as the pressure applied to skin site increased, higher a* readings were 

obtained. Highest a* readings were observed when a 100 g weight was applied to the 

respective sites, whilst the lowest readings were seen with a minimum weight of 10 g. 

These observations were consistent between operators (Figure 2.7 and 2.8). Readings 

obtained by both operators were very reproducible and inter-operator variability was low. 

The percent relative standard deviation (%RSD) for operator 1 was from 0.5% to 6.8% 

while for operator 2 it was 0.9% to 9.6%. There were no significant differences between 

the readings by the two operators. The benefits of using a mounted chromameter 

configuration are thus apparent. 
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Figure 2.7 Effect of pressure on a* scale readings – Operator 1 
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Figure 2.8 Effect of pressure on a* scale – Operator 2 
 
Application of weight to the chromameter measuring head resulted in differences in L*, 

a* and b* values related to the particular weight. The a* values which have been 

recommended for use by the FDA32 actually show the most marked change with 

pressure.44 About 11% increase, from 10 g to 100 g, on the a* scale reading was observed 

at sites 3, 4 and 5. 
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In this research it was found that L* readings also increased with pressure (Figure 2.9) 

but not as much as a* readings. No obvious pattern was seen with b* readings when 

pressure applied to the site was increased (Figure 2.10). Waring et al44 found 

contradicting results in terms of L* value assessment where L* values were found to 

decrease with pressure. 

 
Graphical results for operator 1 are given to show comparisons between L*, b* scales and 

EDs.  
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Figure 2.9 Effect of pressure on L* reading – Operator 1 
 

16.0

17.0

18.0

19.0

0 1 2 3 4 5 6

Site

b
* 

S
ca

le
 r

ea
d

in
g

10g 30g 50g 100g
 

Figure 2.10 Effect of pressure on b* reading – Operator 1 
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Figure 2.11 Effect of pressure on Euclidean distance – Operator 1 
 
Like a* values, EDs increase with increasing pressure (Figure 2.11). Euclidean distances 

describe colour more precisely than the use of any one of the components of the CIE L*, 

a*, b* system. Since pressure plays a role in the colour change of the skin,57 it should 

therefore always be controlled when assessing blanching. 

 

When using a minimum mass of about 10 g the likelihood that that the measuring head 

base of the chromameter did not completely seal off the skin site was high. The 

measuring head “bounced” off the site and required more time before constant placement 

was possible. The chromameter assesses surface colour based on the tristimulus analysis, 

i.e. the analysis of the three colours; red, green and blue, of the reflected xenon light 

pulse. Incomplete sealing off of the site to be measured results in the loss of some of the 

xenon incident light or that reflected from the site leading to erroneous data. An average 

mass of 100 g results in excess pressure being applied to the site. Excess pressure 

changes skin colour possibly by occluding blood from the region being measured.57 Since 

skin colour varies due to variability in factors such as perfusion and vasomotion,54 a 

constant pressure should be applied for consistent readings. This pressure should not be 

in excess such that it changes perfusion and results in skin colour changes. A minimum 

pressure that allows the measuring head to be in appropriate contact with the surface of 

the skin permitting the site to be completely sealed off thereby preventing any light 
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escaping is necessary. This minimum pressure needed was found to be approximately 30 

g. Maintenance of a consistent minimum pressure when taking chromameter 

measurements on the skin surface permits acquisition of results that are both accurate and 

precise. The aperture diameter of the measuring head is 8 mm (surface area of 0.50 cm2); 

the pressure applied to the skin by the mounted chromameter is thus only 60 g/cm2. If the 

hand-held chromameter is applied to the skin by weight alone, it applies a pressure of 

1060 g/cm2 since the chromameter head weighs about 530 g. In addition, the pressure is 

increased and varied by the operator’s hand. Application of pressure greater than 1 kg per 

cm2 definitely skews data resulting in erroneous results. This pressure on its own results 

in a change in perfusion in the forearm hence a true representation of the blanching 

profile is not obtained. Some workers have increased the surface area of the chromameter 

measuring head base so as to control the pressure applied to the skin during 

measurements.58 Manual handling of the chromameter by an operator may add a variable 

amount of pressure between individual operators.43 The results obtained from the 

patented mounted chromameter are thus more reliable since important variables can be 

well-controlled and are independent of the operator. 

 

An average mass of 30 g was set on the patented mounted chromameter and used for 

subsequent blanching studies.  

 

2.5.4 Circadian skin colour changes 

On plotting a* scale values versus time, the amplitudes associated with the changes in a* 

values per unit time for each site on Caucasian skin were much more pronounced than 

those of either blacks or Indians. The a* values for blacks and Indians ranged from about 

8 to 10 yet those for Caucasians were in the range 3 to 9. This shows that Caucasians 

respond much more to the factors that result in a change in skin colour. Racial differences 

in skin colour are due to the activity of the melanocytes rather than the number of 

melanocytes present.59 Melanocytes are found in the basal epidermal layer of the skin 

below the squamous keratinocytes that make up the outermost layer of the skin. Melanin 

production takes place in melanosomes which are organelles found in melanocytes. 
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Melanin is distributed to the keratinocytes via dendrites. Darker skinned individuals have 

higher concentrations of melanin in the epidermal layer of the skin and this probably 

camouflages the change in skin colour that is otherwise detected in their lighter skinned 

counterparts. In addition, racial variations as a response to topical corticosteroid 

application have been found to exist.29 

 

Increases in a* readings were observed periodically in each of the subjects following 

meals (meal times are shown by the arrows). It was shown in 1971 by Krieger et al60 that 

plasma corticosteroid and ACTH levels increased after meals and were high between 

0400 and 0800 hours whilst nadirs occurred during late evenings. Maximum plasma 

corticosteroid levels occurred ½ to 2 hours after awakening. The pattern of change in skin 

colour as observed in this research follows closely to the pattern described for the release 

of endogenously secreted cortisol. Cortisol may thus have an effect on skin colour as it is 

an endogenous corticosteroid. It can thus be deduced that skin colour follows a circadian 

rhythm governed by the secretion of endogenous corticosteroids.  

 

Euclidean distances also showed a similar pattern to a* readings, but the pattern was not 

as prominent. Whereas a* scale readings are the most affected by skin colour changes 

inclusion of the L* and b* readings in the calculation of EDs results in the dampening of 

the effect otherwise observed when only a* scale data are used. Based on these results it 

is more appropriate to use a* readings only for assessment of blanching. However, both 

a* readings and EDs were assessed after topical corticosteroid application (vide infra 

Chapter 3).  

 

The assessment of skin colour without the application of topical corticosteroids reveals 

why the chromameter data must be doubly corrected at each site before this data can be 

used for analysis. The manipulation of chromameter data is shown in Section 2.2.2. Skin 

colour changes due to endogenous cortisol secretion in addition to other factors during an 

experiment, hence to analyse only the effect due to blanching there is a need to adjust the 

baseline and to further correct the measurements using untreated site controls. Figures 
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2.12 to 2.17 show the skin’s circadian response to endogenous cortisol in the different 

races. The response was calculated using both a* scale readings and EDs.  
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Figure 2.12 Skin colour readings (a*) in volunteer 5 (Caucasian) 
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Figure 2.13 Skin colour changes (ED) in volunteer 5 (Caucasian) 
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Figure 2.14 Skin colour changes (a*) in volunteer 3 (black) 
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Figure 2.15 Skin colour changes (ED) in volunteer 3 (black) 
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Figure 2.16 Skin colour changes (a*) in volunteer 6 (Indian)  
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Figure 2.17 Skin colour changes (ED) in volunteer 6 (Indian)  
 

2.6 Conclusions 

When using the chromameter, it is imperative that the pressure applied to the skin site be 

closely controlled in order to get precise, reproducible results. Whilst the use of a 

mounted chromameter configuration facilitated the assessment of blanching as well as 

providing better control with respect to pressure on the skin and placement of the 

measuring head of the instrument, the data obtained do not provide convincing evidence 

of superior reproducibility. Generally, higher L* and a* values were observed with the 
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hand-held chromameter as opposed to the patented mounted chromameter. Spatial 

orientation does not significantly change the results obtained. It is important that 

placement of the chromameter ensures that no loss in incident or reflected light occurs 

during measurements which is facilitated by the use of a mounted chromameter 

configuration. It is however emphasized that the above described investigations were 

performed on untreated skin in order to establish skin colour variability using a 

chromameter. It is thus quite likely that a well-controlled procedure for assessing skin 

blanching on corticosteroid treated skin by using a mounted chromameter, should provide 

an advantage over the commonly used hand-held system.  

 

Furthermore, during a HSBA, measurements are taken at 2 to 3 hour-intervals for about 

30 hours which can result in operator fatigue using the hand-held configuration with a 

deleterious effect on precision and reproducibility. The advantage of the mounted 

chromameter configuration is that it provides more consistency of measurement as 

readily observed in this investigation where no significant differences were observed 

between operators using the mounted chromameter configuration.  

 

The pressure applied to a site when measuring skin colour results in a distortion of the 

readings obtained. As the pressure applied increases, L*, a* and ED values also increase. 

The b* values are the least affected by pressure. Application of a constant and adequate 

pressure which allows the complete sealing off of the skin site to be measured is required 

to ensure accurate, precise measurements and can be readily achieved using a mounted 

chromameter configuration.  

 

The patented mounted chromameter was successfully used to assess baseline skin colour 

changes in different races. Caucasians showed the largest amplitudes in the response 

versus time plots. There was no significant difference between the respective amplitudes 

seen on Indian and black skin. Larger amplitudes imply better response to factors causing 

skin colour changes and the results obtained indicate that Caucasian skin has a potentially 

better blanching response than either Indian or black skin. 
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In the studies conducted, it has become evident that the patented mounted chromameter 

can measure skin colour precisely and reproducibly compared to the commonly used 

hand-held chromameter configuration. The patented mounted chromameter has therefore 

been chosen for use in all the subsequent skin blanching assessment studies. 
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CHAPTER 3  

ASSESSMENT OF BIOEQUIVALENCE OF MF 

FORMULATIONS USING THE CHROMAMETER 

 

3.1 Introduction 

Bioavailability of a drug is the rate and extent to which the active pharmaceutical 

ingredient (API) or therapeutic moiety is absorbed from a pharmaceutical product and 

becomes available at the site of drug action.61 If a comparative bioavailability study is 

done on different formulations of the same drug and they are claimed to be bioequivalent, 

it is assumed that they will be equivalent with respect to safety and efficacy. 

Bioequivalence is thus an indirect or surrogate measure of safety and efficacy, and can be 

defined as the absence of a significant difference in bioavailability between two 

pharmaceutically equivalent products under similar conditions in an appropriately 

designed study. For registration of generic formulations, proof of bioequivalence when 

compared with the innovator product is required. Innovator companies are required to go 

through all the phases of clinical testing to ensure that the drug formulation is safe and 

effective for clinical use. The costs accrued by the innovator company are huge. This is 

reflected in the cost price of the innovator product as the company tries to recover the 

money expended on drug development. Companies manufacturing generic products do 

not have to repeat the initial clinical trials performed by the innovator on their product; 

instead they undertake a bioequivalence assessment to compare the bioavailability 

between the generic (test) product with the innovator or brand (reference) product. 

Circumventing clinical trials results in less expenditure in that component of drug 

development, thereby permitting the cost of a generic product to be considerably reduced. 

 

The innovator company usually holds a patent on their product for a certain number of 

years (usually 20 years in most countries) which provides marketing exclusivity for the 
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period of the patent. Only at the end of the patent period can generic companies enter the 

market with their generic product. 

 

The bioequivalence test procedure for topical corticosteroids is known as the HSBA. 

Topical corticosteroid formulation is applied to healthy skin, penetrates it and elicits a 

blanching response. The response is quantitated chromametrically or visually and 

compared. 

 

Different ethnic groups respond to topical corticosteroids in different ways. The actual 

reason why this occurs is not known but several postulates have been put forward. In 

addition, variation in blanching response even may exist among individuals within the 

same ethnic group. Skin structure and the factors that affect the percutaneous absorption 

of topically applied products have been summarized below. 

 

3.2 Skin Structure  

The skin consists of three main histological layers, the epidermis, dermis and the 

underlying subcutaneous layer (Figure 3.1).  

 
Figure 3.1 The components of the skin62 
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3.2.1 Epidermis 

The epidermis, the uppermost layer consists of two main parts, the stratum corneum, a 

dry keratinized outer layer of dead and anucleate, flattened cells and the inner moist 

viable stratum basale. Two minor layers, the stratum granulosum and stratum spinosum 

lie between the two main layers. The epidermis consists of stratified squamous cells. The 

overall epidermis is about 0.06–0.1 mm thick and where it is thickest, on the palms of 

hands and soles of feet, it is about 0.6 mm.47,63 

 

In the stratum corneum, keratinocytes produced in the viable basal layer of the skin 

differentiate and move successively towards the surface. At the surface they alter 

morphologically and histochemically, and flatten and shrink into a stratified squamous 

type of epithelium. In addition, these cells extrude lipid components which end up in 

between the keratinocytes arranged in bilayers. This bilayer of intercellular cement has a 

major function in skin barrier properties. The stratum corneum has 15-20 layers of flat 

keratinized, cornified dead cells, which are vertically stacked in a highly organized 

structure.64 The cell edges interdigitate with the other adjacent cells. An integral factor in 

the final stages of formation of keratin is the oxidation of the sulfhydryl containing 

substances. The strong disulphide bond of keratin accounts for the great resistance of 

keratinized structures. These structures resist the effects of acids and many enzymes.47,63 

This horny layer provides an almost impermeable layer which controls the percutaneous 

absorption of compounds.47,65,66 The stratum corneum is the rate limiting step of drug 

absorption via intact skin.  

 

Although the stratum corneum is the principal barrier to the penetration of substances in 

the skin, lipid soluble substances transverse this layer more readily than water and water 

soluble substances. Amphipathic substances penetrate the stratum corneum more easily 

than either of the above.47 Permeation of the stratum corneum can be described by the 

laws of passive diffusion.27 
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3.2.2 Dermis  

The dermis is a layer of dense connective tissue which functions as a supportive vascular 

stroma for the epithelial structures of the skin. The connective tissue is composed of 

collagen fibres and elastic fibres embedded in an amorphous ground substance of 

glycosaminoglycans, salt and water. The dermis forms papillae towards the epidermis 

which project into and are enclosed by the overlying epidermis. The papillae are 

composed of cellular connective tissue and each papilla contains a tortuous loop of 

capillary blood vessels or tactile corpuscle.66 Where it is thickest the dermis is almost 4 

mm thick. The dermis is divided into two main layers; the pars papillaris and the pars 

reticularis. In contrast to the stratum corneum, the dermis is a freely permeable.27,64 

 

3.2.3 Subcutaneous layer 

The fatty subcutaneous layer, stratum subcutaneum is situated below the dermis but is 

inseparable from it. It contains many blood vessels that supply the skin and also because 

of the lipophilic nature it acts as a sink, absorbing lipophilic substances that pass through 

the dermis.27 This layer is variable in thickness but generally the deeper layers of the 

subcutaneous tissue are continuous.64 

 

3.3 Percutaneous Absorption 

3.3.1 Via Stratum Corneum 

The main pathway for drug penetration is via the stratum corneum.28,31 The extent of 

absorption through the stratum corneum is determined mainly by the composition of the 

delivery vehicle, concentration of the active substance in contact with the barrier,27 the 

integrity of the stratum corneum and the degree of hydration of the skin. The stratum 

corneum is accepted as the rate-limiting step in the process of percutaneous absorption 

when it is continuous and unperturbed.26 If the stratum corneum is damaged, as in certain 

diseases or physical or chemical trauma, leaving the aqueous sub-tissues exposed to the 

preparation, the rate limiting step becomes the diffusion of the drug in the preparation.31 
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Absorption of materials through the epidermis follows some general rules. Molecules 

pass through the epidermis more easily than ions; small molecules pass more easily than 

larger ones and materials soluble in both lipid and water pass more easily than those only 

soluble in either water or lipid. 

 

The stratum corneum acts as a passive, but not an inert diffusion medium. Application of 

preparations to the skin results in changes in the hydration of the skin due to the water 

contained in the preparation or to the occlusive nature of the preparation. Other 

components of topical dosage forms such as penetration enhancers result in a change in 

the barrier nature of the stratum corneum. Exposure to such treatment results in the 

interruption of the protein framework and alteration of the distribution coefficient 

between the skin and the preparation of the drug, changes in the keratin adsorption and 

desorption of the drug and other physical parameters. Together with these changes the 

sink function of the skin is enhanced thus increasing the transport rate of the 

dermatological preparation.39 

 

Topically applied drugs which have an effect on living tissue cells penetrate the non-

living stratum corneum until they get to the regions where they exert their effects. No 

energy is required but transfer across the skin requires a concentration gradient. Diffusion 

of the drug molecules occurs from a site of high concentration to that of lower 

concentration until equilibrium is obtained. Drug molecules diffuse intra-cellularly, inter-

cellularly and via the appendageal route, equilibrating laterally until they emerge from 

the distal surface of the stratum corneum.  

 

3.3.2 Appendageal Route 

Sweat glands and hair follicles have a potential role in the absorption of drugs from the 

skin surface. Topically applied dyestuffs showed that the vicinity of follicles was stained 

more intensely than the rest of the epithelium.47 The appendages act as short-circuit 

diffusion pathways or diffusion shunts. Such pathways can be important for some 

substances but not all. Ions and large polar molecules that struggle to cross the intact 
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stratum corneum use this pathway.31,67 In the human forearm the density of sweat glands 

is around 220 cm-2 and that of hair follicles is about 100.47 This pathway is about 0.1% 

available for drug transport.67 

 

3.3.3 Hydration of the Skin 

Skin hydration decreases the diffusional resistance of the barrier and results in an 

increased percutaneous absorption rate.68 This has been shown by the better clinical 

response obtained after occlusive dressings were applied to the application site.8 On such 

sites, it was observed that equivalent vasoconstriction appeared with topical 

corticosteroid concentration 100 times less than that needed for a non-occluded arm. It 

was also noted that plasma cortisol levels decreased when dermatitic patches of a patient 

were occluded with glucocorticosteroids and the pituitary adrenal axis was suppressed by 

the percutaneously absorbed synthetic steroids.47 Absorption in the well hydrated nappy 

areas, perianal, flexures and other moist sites results in greater permeation of drug 

molecules. 

 

3.3.4 Vehicle Composition 

For the drug to be available for absorption it has to be released from the vehicle in which 

it is formulated. A vehicle with greater affinity for the drug substance than the horny 

layer of the skin results in less drug partitioning into stratum corneum per unit time. Less 

affinity for the vehicle results in maximized thermodynamic leaving potential of the drug 

for the stratum corneum.34,55,69-72 The greatest thermodynamic potential of a system 

would be one that contains a saturated solution of the drug in the vehicle.15 The release 

from a vehicle can be influenced by a number of factors which include: lipophilicity, 

particle size of active pharmaceutical ingredient (API) and selection of solvents and the 

drug concentration that provides for maximal thermodynamic activity of the drug.27 

Thermodynamic activity of water in the vehicle and the stratum corneum also affect 

percutaneous absorption. The multi-step process of percutaneous absorption requires drug 

dissolution within the vehicle first before it is released for partitioning into the stratum 

corneum.73 The pH of the vehicle has an effect on drug release.74 By varying the vehicle 
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only, betamethasone dipropionate has been formulated into four potency classes.2 The 

therapeutic effect depends on the rate of steroid release from the vehicle as well as the 

rate at which the steroid passes through the stratum corneum.75 Intra-vehicle diffusion of 

a drug is affected by the viscosity of the formulation vehicle.  

 

The inclusion of penetration enhancers results in increased percutaneous absorption. 

Chemical penetration enhancers improve the thermodynamic properties of the drug 

and/or alter the skin integrity increasing its permeability. The penetration enhancer is 

purported to replace water bound in the stratum corneum forming a much looser structure 

through which drug molecules penetrate easily or lead to swelling of the stratum corneum 

due to its hygroscopicity.37 

 

3.3.5 Chemical Structure of the Active Pharmaceutical Ingredient 

A study using steroids inferred that the more polar molecules penetrated relatively slower 

as a result of stronger chemical binding with the stratum corneum.47 This inference could 

form the basis of the explanation for the reservoir function of the skin towards 

corticosteroids. Chemical structure also influences the drug partition coefficient. The rate 

of absorption of substances increases with an increase in lipid solubility. However, there 

is a delicate balance between lipophilicity and water solubility. The water soluble 

compounds find it the most difficult to traverse the stratum corneum. Lipophilic 

compounds have more difficulty penetrating the stratum corneum than an amphipathic 

compound with bipolar moieties. As such, optimal percutaneous absorption occurs when 

the drug substance combines lipid solubility with moderate water solubility. Sufficient 

lipophilicity allows for partitioning into the stratum corneum and moderate hydrophilicity 

enables second partitioning step into the highly aqueous viable epidermis.73 

 

3.3.6 Particle Size 

Macromolecules are not readily taken up if they are in an aqueous medium. However, if 

in a solvent that has high lipid solubility these macromolecules penetrate the barrier 

layer.47 The effect of particle size on percutaneous absorption has been further 
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investigated using topical corticosteroids as the blanching response they elicit can be 

quantitated. A formulation containing micronized fluocinolone acetonide was found to be 

superior to another containing coarse particles of the same compound.37  

 

3.3.7 Drug Concentration 

Diffusion of drug molecules across the stratum corneum is driven by a diffusion gradient. 

The rate of diffusion is directly proportional to the concentration of drug at the stratum 

corneum. The effect of concentration is demonstrated by Fick’s law37 (Equation 3.1). 

 

sps CKJ ∆=       (Equation 3.1) 

Where, 

Js = steady state flux of solute 

Kp = permeability coefficient 

Cs = concentration difference of solute across the membrane 

 

The degree of the blanching response is greater when higher amounts of drug are applied 

to the skin. In addition, increasing the time allowed for drug contact with skin and the 

frequency of application results in a corresponding increase in drug absorption.55,76  

 

3.3.8 Temperature  

An increase in skin temperature has been shown to result in a corresponding increase in 

percutaneous absorption (Table 3.1). 

 

Table 3.1 Effect of temperature   

Drug Temperature change Increase in 
permeability 

constant 

Reference 

Acetylsalicylic acid 10 ˚C to 40 ˚C 8-fold 77 
Alcohols (C8 – C10) 10 ˚C to 50 ˚C 10-fold 78 
Salicylic acid and 
carbinoxamine 

20 ˚C to 38 ˚C 5-fold 79 
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3.4 The USA FDA’s Procedure for the Bioequivalence 

Assessment of Topical Corticosteroid Products 

Whereas for most dosage forms, the dose delivered is usually known to a great degree of 

certainty, in dermatology, the amount of drug that is absorbed through the skin is not 

easily quantifiable. A number of methods have been put forward to assess the dose 

responses that use concentration, surface area, frequency and time of exposure. As the 

concentration, surface area and frequency of application increase a corresponding 

increase in the dose response is expected. In addition, the dose response increases with 

time of exposure (dose duration).80 However, dose response increases until saturation of 

the receptors. After saturation of the receptors, continued increase in the time of 

exposure, frequency or concentration does not result in a change in the dose response 

elicited, thus a plateau is reached. Comparative studies must be done at doses that are not 

in this plateau region. To figure out the dose duration at which the comparative studies 

are to be conducted, the FDA recommends the use of a pilot study. 

 

3.4.1 Pilot Study 

The relationship between a ligand (drug molecule) and its receptor is a simple, reversible, 

bimolecular relationship (Equation 3.2). This relationship can be explained in terms of 

the law of mass action which states that the velocity of a chemical reaction is 

proportional to the product of the concentrations of the reactants.81 

 

Ligand + Receptor    Ligand–Receptor   (Equation 3.2) 

 

The association rate constant for the forward reaction depends on the concentration of 

both free ligand and free receptor. The number of binding events per unit time is 

calculated using Equation 3.3. 
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Nb = kon × [Ligand] × [Receptor]    (Equation 3.3) 

Where, 

Nb = number of binding events per unit time 

kon = association rate constant 

[Ligand] = concentration of free ligand 

[Receptor] = concentration of free receptor 

 

On the other hand the dissociation rate constant, depends upon the concentration of 

ligand-receptor complex. 

 

Nd = [Ligand-Receptor] × koff     (Equation 3.4) 

Where,  

Nd = number of dissociation events per unit time 

[Ligand-Receptor] = concentration of ligand-receptor complex 

koff = dissociation rate constant 

 

The law of mass action is followed if dissociation does not result in a change in either the 

ligand or the receptor.  

 

With time, equilibrium is reached, and the rate at which new ligand-receptor complexes 

are formed is equal to the rate at which the ligand-receptor complexes dissociate. The 

equilibrium dissociation constant, Kd, is thus calculated as the ratio between the 

dissociation rate constant and the association rate constant as shown in Equation 3.5. 
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   (Equation 3.5) 

 

From the above equation, if ligand concentration is equal to Kd at equilibrium, the ratio 

between the concentrations of the receptor and ligand-receptor complex is 1, meaning 

that ligand occupies half of the receptors whilst the other half is unoccupied. If a receptor 

has a high affinity for a ligand, a low concentration of the ligand results in substantial 
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binding, hence Kd is low. On the contrary, if a receptor shows low affinity for the ligand 

then Kd is high and a higher concentration of ligand is needed for binding to occur.  

The relationship between ligand concentration and the fraction of receptors binding the 

ligand is given by Equation 3.6. 

 

Fractional occupancy = 
][

][

dKLigand

Ligand

+
       (Equation 3.6) 

 

The dose response elicited increases as the concentration of the ligand increases until 

saturation of receptors occurs. Above saturation no increase in dose response may be 

observed (Figure 3.2).  
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Figure 3.2 Fractional occupancy of ligand on receptors81 
 

The FDA suggests the use of the Emax model to analyse pilot study results (Equation 3.7). 

The Emax model describes binding of a ligand to a receptor that follows the law of mass 

action. Although the law of mass action is a simple one, it provides a useful 

approximation. 

 

Emax 

½Emax 

KD 
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Where,  

E = effect elicited 

E0 = baseline effect in the absence of ligand 

Emax = maximum effect elicited 

ED50 = dose (D) at which effect is half-maximal 

 

The Emax model is most commonly used as it has the ability to predict baseline effect in 

the absence of drug and the maximum achievable effect at increasing doses. This 

quantitative assessment of the dose-response relationship of a formulation results in the 

development of a sensitive pharmacodynamic assay to assess bioequivalence. 

 

The reference drug formulation is applied topically for different time durations after 

which it is washed off completely from the skin and assessment of the response checked 

at intervals. Long dose durations result in a greater blanching response being observed 

compared to short dose durations. A plot of area under the curve(AUC) at each dose 

duration is plotted against the dose duration. AUC represents the blanching response to 

the drug after a particular dose duration (time of exposure). ED50 and KD are calculated 

in the same manner shown in Figure 3.2. At ED50 the response is half maximal. In 

addition to ED50 the FDA guidance defines two other dose durations of importance D1 

(lowest dose calibrator) and D2 (highest dose calibrator). D1 and D2 are defined as ½ and 

twice ED50 respectively. D1 and D2 correspond to 33 and 67% of the maximal response 

which represents the sensitive portion of the dose-duration response curve.32 The ED50 

lies between D1 and D2, where the response falls within a sensitive log-linear region 

(20% to 80% of Emax).
9 Bioequivalence assessment should therefore be undertaken at the 

ED50.
80,82 The pharmacodynamic response (blanching) and confidence intervals depend 

on the size of the dose.9 Close to the plateau response (4 times ED50), the confidence 

interval is reduced greatly and the response is dose independent. Therefore, the use of 

dose durations greater than ED50 indicates decreasing sensitivity to detect a potential 

difference between the test and the reference products, should a difference exist.  
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The pilot study determines the dose duration - response relationship of the topical 

corticosteroid under study. This is analogous to developing a standard curve in the assay 

of a drug in a biological matrix. The pilot study utilizes “responders” only for its subjects. 

Responders are subjects with the ability to blanch after application of the topical 

corticosteroid under set conditions, e.g. 2 hours after the after application of 7 mg of 

formulation to a 1 × 1 cm site for 4–6 hours a responder must show at least a single unit 

based on visual assessment. At each dose duration the AUC of a* scale, baseline adjusted 

and untreated site control corrected, against time after removal of application is 

calculated for each subject. Data from all the subjects are used in the Emax model to 

compute ED50, D1 and D2 using non-linear least squares regression. The objective of the 

pilot study therefore is to determine ED50, D1 and D2. 

 

3.4.2 Pivotal Study 

The purpose of the pivotal study is to document in vivo bioequivalence of the test product 

to the reference product.32 The pivotal study should be carried out using the parameters 

obtained from the pilot study. The drug is applied to the demarcated skin area for ED50, 

D1 and D2 dose durations calculated from the pilot study. For the inclusion of a 

volunteer’s data in the analysis of bioequivalence, the FDA specifies a minimum dose 

duration-response ratio between AUC of D2/AUC of D1 to be greater or equal to 1.25 

such subjects are called detectors.32 Only the data from detectors is used for analysis. 

Data analysis using Locke’s method is described later in Section 3.7.2.  

 

Detectors have the ability to sufficiently discriminate between high (D2) and low (D1) 

dose durations hence the ED50 falls within the required range. Selection of only those 

volunteers who can discriminate between D1 and D2 enriches the study design and 

increases the sensitivity of the study to detect potential differences between test and 

reference products. The HSBA sensitivity is greatest at dose durations that produce 

response in the rapidly rising region of the dose-response curve based on the Emax model.9 
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3.5 Objectives 

To assess the following after application of a topical corticosteroid product: 

• Inter-operator variability during the assessment of skin blanching - preliminary 

study. 

• Differences between blanching assessment using visual grading results compared 

to Euclidean distances and a* readings using the patented mounted chromameter 

– preliminary study. 

• Bioequivalence assessment of Elocon® cream 0.1% (Isando, South Africa) as a 

reference product and Elocom™ cream 0.1% (Quebec, Canada), as the test 

product using the patented mounted chromameter in accordance with FDA 

requirements. 

 

3.6 Methods and Procedures 

3.6.1 Selection Criteria 

The following criteria were used for the selection of the study populations as 

recommended by the FDA. 

 

3.6.1.1 Inclusion Criteria 

Only those subjects meeting the following criteria were included in the study: 

• Healthy and normal subjects in terms of physical and dermatological examination 

at the pre-study screening who were available for the entire study period. 

• Willingness to adhere to the protocol requirements, follow study restrictions. 

• Able to give an informed consent (in relation to age and mental well-being). 

• Between 18 and 50 years of age. 

 

3.6.1.2 Exclusion Criteria 

• Clinically significant hypertension or circulatory disease. 

• Individuals smoking within one week of study. 
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• Caffeine intake of more than 5 cups per day prior to or during the study. 

• Clinically significant history of alcoholism or drug abuse. 

• Use of dermatologic drug therapy on ventral forearms, including prior dosing of a 

topical corticosteroid in a pharmacodynamic study to a particular skin site, within 

one month prior to the study. 

• Adverse reactions to topical or systemic corticosteroids. 

• Any current or past medical condition, including active dermatitis or any other 

dermatologic condition, which might significantly affect pharmacodynamic 

response to the administered drug. Use of any vasoactive medication, constrictor 

or dilator, prescription or non-prescription medicine that could modulate blood 

flow. (Examples: nitroglycerin, anti-hypertensives, anti-histamines, aspirin, 

NSAIDs and OTC cough/cold products containing anti-histamines and/or either 

phenylpropanolamine or phentolamine. 

• Any obvious difference in skin colour between arms. 

 

3.6.1.3 General Study Restrictions 

• Subjects were not restricted with respect to posture during the study, however, no 

exercise with both arms and no strenuous exercise overall, was to be maintained 

for the study duration. 

• No bathing or showering during the periods of drug application and assessment of 

skin blanching. 

• No prescription preparations, vitamins, natural products used for therapeutic 

benefits, or antacids were allowed for at least one week prior to the study. 

• No alcohol would be taken by the subjects from 24 hours prior to the start of the 

studies until the assessment was complete. 

• No strenuous physical activity was to be undertaken by subjects from 12 hours 

before starting time until assessment was completed. 

• Subjects were not allowed to apply emollients or skin conditioning creams to their 

forearms for a period of 24 hours prior to the scheduled time of the start of the 

study. 
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• Subjects were confined to the clinic but were allowed to leave in between 

measurements of skin blanching.  

• From the time at which the formulations were applied, custom-made, non-

occlusive guards were left in position to avoid smudging of the formulation into 

the surrounding skin other than at the marked skin sites. The guards were 

removed when synchronized washing took place for each individual. 

• Food and fluid were taken ad libitum.  

 

3.6.1.4 Criteria for Removal from the Study 

• Any subject may be withdrawn from the study at any time due to the following: 

• Voluntary withdrawal by the subject due to any reason. 

• Illness or injury if regarded as clinically significant. 

• Any adverse events or toxicity if regarded as clinically significant. 

• Failure of the subject to comply with, or who is uncooperative towards, any study 

requirements or restrictions if regarded as clinically significant by the study 

investigator. 

 

3.6.1.5 Pre- and Post-study Medical Check Up 

The following check-up was conducted on each volunteer that was used in the 

preliminary, pilot and pivotal studies. 

 

Table 3.2 Screening tests 

 Pre-study Post-study 
Medical history √  
Physical examination  √ 
Dermatological assessment √  
Blanching response √  
Adhesive sensitivity √  
 

• Medical history – demographic data (date of birth, sex, origin), emotional 

(psychiatry), alcohol consumption, smoking habits, dietary habits, sporting 

commitments. 
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• Dermatological – general assessment of skin and any dermatological condition 

that may influence the barrier function of the skin and impact on the absorption of 

mometasone furoate. 

• Blanching response – assessment of subject’s ability to blanch after topical 

application of the reference product. Selected subjects showed distinguishable 

visual skin blanching following exposure to 7.5 mg of formulation to an area 1.1 

cm × 1.1 cm, for 6 hours. The visual reading was made 2 hours post exposure.  

• Adhesive sensitivity – assessment of subject’s sensitivity to adhesive on 

application site demarcation tape. 

• Physical examination – examination of forearms and application sites. 

 

3.6.2 Study Products 

The test and reference products were kept in a dark cupboard, away from direct light and 

below 25˚C. 

 

Table 3.3 Description of study products 

 Test product Reference product 
Trade name Elocom™ Elocon® Lot 2 
Dosage form Cream Cream 
Drug/Strength Mometasone furoate 0.1% Mometasone furoate 0.1% 
Manufacturer Schering Canada Inc Schering – Plough (Pty) Ltd,   
City, Country Quebec, Canada Isando, South Africa 
Batch/Lot No. 6NGFA17 4NGFA07 
Expiry Date AL 08 October 2006 
 

3.6.3 Study Populations 

Three healthy Caucasian volunteers, two males and one female (aged from 35 to45 years) 

who had been pre-screened for positive blanching were selected for use in the 

preliminary blanching study. In the pilot study, six volunteers (4 Caucasians, 1 Chinese 

and 1 black) with no history of dermatologic disease were chosen to participate. The 

pivotal study incorporated 24 Caucasian volunteers. Only the results from detectors were 

used to analyse bioequivalence data.  
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Approval to conduct the studies was obtained from the Rhodes University Ethical 

Standards Committee in compliance with the 1964 Declaration of Helsinki and its 

subsequent amendments. 

 

3.6.4 Method of Application and Subject Monitoring 

Using the flexor aspect of the forearm eight 1.1 × 1.1 cm sites were demarcated on each 

arm. Squares 1.1 × 1.1 cm were cut out of adhesive labels (Redfern labels, Johannesburg, 

South Africa) to make templates which were placed over the demarcated sites on the 

volunteers’ arms. The templates were secured in position using Micropore™ 1530 

surgical tape (3M, St Paul, Minnesota, USA). The appropriate topical formulation was 

dispensed from a 2 µL Eppendorf® combitip from (Eppendorf Ag, Hamburg, Germany) 

set to extrude approximately 7.5 mg.  

 

The extruded formulations were evenly spread on each designated area using a glass rod. 

Polyvinyl protective covers were used to avoid inadvertent contamination of other test 

sites, accidental smearing of untreated sites or loss of the formulation from the treated 

site. Care was taken to avoid contact of the protective guard with the formulation. These 

protective covers allowed free air circulation and did not occlude the sites.  

 

In the preliminary and pilot studies only the reference product was used in the application 

of the following dose durations; 0.25, 0.5, 1, 2, 4 and 6 hours. The chromameter baseline 

readings were taken one hour prior to formulation application of the longest duration, 

which was 6 hours. Staggered application with synchronized removal was used.Two 

untreated sites per forearm were used as controls. After the required dose durations, the 

adhesive tape was removed together with the templates and the drug was washed off and 

the forearm dried as previously described in Chapter 2. Readings were started 1 hour post 

removal of the formulation and continued as follows: 2, 3, 4, 6, 8, 18, 22 and 26 hours 

post removal. 
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All readings were taken in an air conditioned room of about22°C which provided a 

comfortable temperature. The standard overhead fluorescent lights were used as the light 

source in all studies. The volunteers placed their hands horizontally on the table directly 

in front of the observer for both visual and chromameter assessments. This position was 

used for the assessment of blanching for the duration of the study.  

 

In the pivotal study, 8 sites per arm were randomized according to the following 

specifications: 

 

T: Test product at the dose duration corresponding to approximately ED50 (2 sites 

per arm). 

R: Reference product at dose duration corresponding to approximately ED50 (2 sites 

per arm). 

D1:  The low dose calibrator, D1 = 0.5 × ED50, (1 site per arm). 

D2: The high dose calibrator, D2 = 2 × ED50, (1 site per arm). 

UNT: The untreated control (2 sites per arm). 

 

For each volunteer the application pattern on one forearm was complementary to the 

other as per FDA requirements32 as shown in Figure 3.3. Readings were taken one hour 

prior to time of drug application to active sites and skin blanching readings at the 

following times after drug product application: 0, 2, 4, 6, 8, 10, 12, 18, 22, 24 and 26 

hours. 
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ANTECUBITAL FOSSA 
Left Arm Right Arm 

D1 D2 

T R 

UNT UNT 

R T 

UNT UNT 

T R 

D2 D1 

R T 

WRIST 
Figure 3.3 Application sequence for a particular subject  

 

3.7 Assessment Methods 

3.7.1 Visual Assessment  

Visual assessment was conducted for the preliminary study by one trained observer. The 

grading of the response was done using a five-point scale as described earlier (Section 

2.2.1). The grading was made under a standard overhead fluorescent light with the 

volunteers’ forearms placed horizontally on a table at about 22˚C. 

  

3.7.2 Chromameter Assessment  

The chromameter was calibrated at the beginning of the experiment. Two different 

operators assessed the blanching response chromametrically in the preliminary study. 

Readings of the same volunteer by one operator were made within 10 minutes of the 

other. In the pilot and pivotal studies the blanching response was assessed using the 

mounted chromameter only. 

 

Locke’s method is recommended by the FDA for the analysis of chromameter generated 

skin blanching data that has been corrected for baseline and untreated site responses. The 
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use of Locke’s method for the analysis of chromameter data generates an exact 

confidence interval without the need to transform the data.35 

 

Locke’s method was utilized to calculate the exact 90% confidence interval (CI) for the 

pivotal study using Equations 3.8 to 3.10. 
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Where G is calculated as follows: 
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And K is calculated using Equation 3.10: 
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  (Equation 3.10) 

Where, 

RT XX ,  = sample means of test and reference  

RRTT σσ ˆ,ˆ  = sample variances of test and reference  

TRσ̂  = sample covariance 

t = the 95th percentile of the t-distribution for n-1 degrees of freedom 

 

3.8 Data Analysis 

Data analysis is the backbone to all studies. First the most appropriate method for 

collecting data must be utilized. Experimental designs range from parallel group design 

through to crossover study design and balanced incomplete block design.36 In addition, an 

appropriate mathematical model must be selected to infer what the generated data means. 
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3.8.1 Study Designs 

In parallel group design, subjects are randomly assigned to one of the 2 groups where one 

of the groups acts as the control. One group receives a test product whilst the other group 

receives a reference product. Such a design is not appropriate for most bioequivalence 

studies as the inter-subject variability is not accounted for. The crossover study design is 

more rigorous and eliminates the inter-subject variability by allowing the same subject to 

be tested for both the reference and the test product with a wash out period, 5 times the 

half life (t½), in between the experiments.36 Each subject serves as their own control 

increasing the sensitivity of the method hence this design can be used with fewer subjects 

but with the same statistical power as the parallel group design.  

 

Another experimental design method is the balanced incomplete block design. This is 

used when a number of treatments, usually more than two are required and the crossover 

design would take too long. The design is incomplete if the number of treatments 

received by each volunteer is less than the total number of treatments to be evaluated in 

the study.36 If balanced, the number of subjects receiving each treatment is equal.  

 

The study design recommended by the FDA involves a balanced complete block design 

hence each volunteer is its own control. 

 

3.8.2 Statistical Analysis 

3.8.2.1 Comparison of Visual and Chromameter Methods 

The selection of the appropriate statistical procedure to rank the blanching responses 

associated with the respective dose durations in both the visual and chromameter data 

was done using the statistical tree in Figure 3.4. 
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Figure 3.4 Statistical method decision tree83 
 

Statistical analysis of data requires defined parameters for the selection of an appropriate 

method. One needs to know the type of data being used, quantitative or qualitative. 

Different statistical methods are employed depending on whether one is looking for a 

relationship or differences between measurements. Statistical procedures used for the 

comparison of two groups of data are different from those used for three or more groups. 

Selection of the appropriate test also depends upon the relation between the samples, 

whether there is a dependent or independent relation as depicted in the statistical method 

decision tree. 

 

Furthermore, different statistical procedures are used for data following Gaussian as 

opposed to non-Gaussian distributions. However, small samples sizes do not have enough 

power to discriminate between Gaussian and non-Gaussian distributions.84 Testing for 

deviations from Gaussian distribution (test for normality), in small sample sizes, using 

the Kolmogorov–Smirnov test is thus inadequate. Statistical approaches that cater for 

non-Gaussian data are non-parametric tests. Non-parametric tests consider the relative 
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ranks of the values and not the absolute values, hence the suitability of such tests in data 

analysis from small sample sets (n=3, preliminary study). No assumptions about the 

distribution of data are made hence both visual assessment and chromametric data can be 

assessed using non-parametric tests.  

 

Data obtained from the preliminary study was assessed for the rank order between dose 

durations. It may seem that the Wilcoxon matched pair test is the best to use for data 

analysis. However, the Wilcoxon matched pair test is a non-parametric test that compares 

two paired groups. There are six groups of data corresponding to the dose duration used 

in this study, matched according to the time at which the readings were taken. Hence in 

this study, the Wilcoxon matched pair test cannot be used since more than two groups 

need to be concurrently assessed. An appropriate method is required to analyse all the 

groups at one time. 

 

The Friedman 2-way ANOVA by ranks test is more appropriate and has been used by a 

number of researchers85-88 for similar types of analyses. This test is appropriate when 

differences between quantitative data of more than two groups need to be analysed and in 

which there are dependent relationships between samples. A Friedman p-value greater 

than α (0.05) shows that there is no significant difference between the groups and any 

differences observed in the data are due to chance alone. If the Friedman p-value is less 

than 0.05 then there is at least a dose duration that significantly differs from the rest of 

the others. The Friedman test is followed by a post hoc test to pinpoint exactly where 

such differences lie, i.e. which dose durations are significantly different from each other.  

 

Various other methods of statistical analysis can be used such as the chi-square test and 

Fisher’s test.84 However, for small samples (<100), application of the chi-square test 

needs to be used in conjunction with Yates’ continuity correction in order obtain 

acceptable results.  

 

In this research the Friedman test followed by Dunn’s post hoc test was used for the 

statistical analysis to compare chromameter versus visual data.  



 65 

The correlation between visual and chromameter data was assessed using the Spearman 

rank-order correlation, ρ. This test was chosen because other workers have reported 

reliable results using the same test when comparing visual to chromameter data.28,89 

Spearman’s rank-order correlation is used to quantify the correlation between 2 sets of 

data, A and B. A correlation of zero implies that A and B do not vary together hence there 

is no correlation. If 0 > ρ > 1, it means that A and B increase or decrease together whereas 

when -1 > ρ >0 it implies that as A increases, B decreases. When ρ = 1, a perfect positive 

correlation exists but when ρ = -1 a perfect negative or inverse correlation exists.84 A p-

value is also calculated from the correlation. If the p-value is large (>0.05), the data dose 

not give a reason to conclude that the correlation is real hence the probability of 

correlation is insignificant. When the p-value is smaller (<0.05) the hypothesis that 

correlation is due to random sampling is rejected. 

 

3.9 Results and Discussion 

All volunteers completed the studies. No adverse events occurred during the treatment 

period. Figure 3.5 shows the typical blanching response observed at Tmax (8 hours) in 

both the preliminary and pilot studies. (Raw data of these studies and application 

sequences can be found in the appendices filed on the compact disc). 

 

 

Figure 3.5 Skin blanching at 8 hours  
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3.9.1 Visual data analysis 

Visual and chromameter (a* and EDs) generated data from the preliminary study were 

compared by ranking the blanching responses at the various dose durations used. 

Although the assessment of visual data usually necessitates at least three trained 

observers, it has been shown that there is no significant difference in the grading of the 

response to blanching between trained observers hence only one trained observer was 

used in this study.28,88  

 

The maximum blanching response observed visually occurred at approximately 8 hours 

post removal of the excess topical corticosteroid formulation (Figure 3.6).  
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The symbols represent the dose durations 
Figure 3.6 %TPS versus time profile (n=3) 

 
The percent total possible score (%TPS) versus time profile shows that the greatest 

degree of blanching occurred at the longest dose duration. It was noted that no discernible 

skin blanching was observed at sites to which the drug formulation had been applied for 

only 0.25 hours. These sites show no difference to untreated sites.  
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Figure 3.7 AUC of % TPS – time profile 

 
AUC increases as the dose duration increases (Figure 3.7). From this graph one may 

conclude that the maximum blanching response was not achieved as no plateau is evident 

from the plot. Analyses of visual data were performed to give the rank order of the 

blanching responses associated with the different dose durations. Statistical analyses were 

performed at the 95% level of significance using the Friedman test followed by Dunn’s 

post hoc test using GraphPad Prism Version 4.0 (2003) (GraphPad Software Inc., San 

Diego, California, USA). A Friedman statistic of 40.47 was obtained (p<0.0001) which 

indicated that the blanching response of at least one of the dose durations differed 

significantly from the rest. Dunn’s post hoc tests were carried out and the results obtained 

are shown in Table 3.4.  

 

Table 3.4 Dunn’s post hoc test – on visual data 

Dose duration (hour) 0.5 1 2 4 6 
0.25 NS NS S* S*** S*** 
0.5 - NS NS NS S** 
1 - - NS NS S** 
2 - - - NS NS 
4 - - - - NS 
Key: ***P < 0.001, ** P < 0.01, NS > 0.05, NS = not significant, S = significant 
 
The rank order of the responses at the associated dose duration could be classified as 0.25 

< 2 < 4 < 6 hours. However, blanching responses at dose durations of 0.5 and 1 hour did 

not show significantly different results from the response observed at dose duration 0.25 
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hours. Even though visual assessment was able to distinguish between the responses at 

the various dose durations in this study, previous studies have indicated that such 

differences have not always been distinguishable. In some cases ‘equivalent’ product 

formulations, according to visual assessment, were shown to be inequivalent using the 

chromameter.49 

 

3.9.2 Chromameter Data Analysis 

3.9.2.1 Effect of Blanching on a* Readings 

Chromameter a* readings that were baseline and control site adjusted were used to plot 

Figure 3.8. Since visual measurements are made by comparing blanched skin to the 

surrounding untreated skin, chromameter data likewise need to be adjusted accordingly to 

take into account any inherent underlying contribution to the readings at each site. 

Comparisons between visual and chromameter data can thus be carried out only when 

chromameter data have been adjusted and corrected for the baseline and untreated site 

control. The adjustment of values to baseline ensures that only the effect of the drug is 

reflected in the obtained value.2,90 

 

The a* scale reading versus time profile was similar to the %TPS versus time profile 

(Figure 3.6). However, whereas no blanching could be detected visually following a dose 

duration of 0.25 hours, blanching was detected with the chromameter at that dose 

duration. This suggests that the chromameter is better at detecting much smaller 

responses/changes in blanching compared to the eye. Notwithstanding, the time at which 

maximum blanching occurs, Tmax, was 8 hours in both cases. 
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The symbols represent the dose durations 
Figure 3.8 Average a*(x-1) adjusted and corrected  

 
Significant differences were observed between the six groups of data (Friedman statistic 

= 34.78, p < 0.0001). Dunn’s post hoc test results are shown in Table 3.5  

 

Table 3.5 Dunn’s post hoc test - a* scale readings 

Dose duration (hour) 0.5 1 2 4 6 
0.25 NS NS NS S* S*** 
0.5 - NS NS NS NS 
1 - - NS S** S*** 
2 - - - NS NS 
4 - - - - NS 
Key *** P < 0.001, ** P < 0.01, * P < 0.05, NS > 0.05, NS = not significant, S = significant 
 

Significant differences were observed between responses at 0.25 hours compared to those 

at dose durations of 4 and 6 hours. No significant differences in responses were observed 

between 0.5 hours and at the other dose durations. However, the blanching responses at 

dose durations of 4 and 6 hours showed significant differences compared to those seen at 

dose duration of 1 hour. These anomalies indicated that Friedman’s test could not be used 

to compare the various methods (visual and chromameter). Further attempts were made 

in order to establish whether a correlation exists between the two methods. Spearman’s 

rank-order correlation was therefore used to assess the correlation between visual data 

and a* readings and EDs (vide infra Section 3.9.3). 
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Figure 3.9 AUC0-26 of a*(x-1) adjusted and corrected 
 
Area under the curve is the calculation of total amount of drug that passes into the skin. 

As shown in Figure 3.9 above, the greater the exposure of the drug to the skin, the greater 

the penetration that occurs. AUC at dose duration 0.5 hours was greater than AUC at 

dose duration 1 hour. No differences in AUCs were observed between dose durations of 

0.25 and 1 hour. In view of large inter-individual variability in the blanching response, 

the FDA recommends that a pilot study be done in order to establish the optimum 

conditions for a subsequent pivotal study. Since dose-response varies from individual to 

individual, the data obtained from a pilot study is pooled and used to approximate a 

population’s dose-response curve. To further reduce this inter-subject variability a subset 

of volunteer data is selected for analysis in a pivotal study depending on whether it 

adheres to the set criteria (Section 3.4.2).  

 

3.9.2.2 Effect of Blanching on L* and b* Readings 

It was also observed that both L* and b* readings change with time in a blanching study 

(Figure 3.10 and 3.11). L* and b* readings increase to a maximum and fall off after 

peaking at Tmax = 8 hours. Since all the components of the CIE L*, a*, b* system are 

affected by blanching, this suggests that the use of a* readings only in skin blanching 

assessment is questionable. Hence L*, a* and b* readings should all be used to fully 

describe the colour change as each of them contributes in the quantification of colour. 
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The results obtained show that only using a* readings, will not give a true indication of 

the change in skin colour at the application site. 
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The symbols represent the dose durations 
Figure 3.10 Averaged L* scale results (n=3) 
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The symbols represent the dose durations 
Figure 3.11 Averaged b* scale results (n=3) 

 
Changes of L* and b* readings in response to skin blanching have also been observed,91 

yet they are not included in the skin colour assessment. The use of all three indices in the 

formula cannot be overstated; the use gives a true representation of skin colour due to 

blanching.  
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3.9.2.3 Effect of Blanching on Euclidean Distances 

It has been shown that ED plots show greater similarity to the visually obtained blanching 

profiles in contrast to the individual profiles of the L*, a* and b* values.1 The 3-

dimensional colour specification technique closely resembles the sensitivity of the human 

eye to colour44 hence the similarity of ED plots to visual profiles. 

 

Like both a* and visual data, skin blanching increases to a maximum in 8 hours and then 

declines with time in the ED-time plot as depicted in Figure 3.12. 
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The symbols represent the dose durations 
Figure 3.12 Average Euclidean distances results (n=3)  

 
Analyses using the Friedman test (95% level of significance) were performed to give the 

rank order of the different blanching responses associated with the respective dose 

durations. Significant differences were observed between the groups (Friedman statistic = 

38.40, p < 0.0001). 

 

Table 3.6 Dunn’s post hoc test results - Euclidean distances 

Dose duration (hour) 0.5 1 2 4 6 
0.25 NS NS NS NS NS 
0.5 - NS NS NS S* 
1 - - NS S*** S*** 
2 - - - NS S* 
4 - - - - NS 
Key *** P < 0.001, ** P < 0.01, * P < 0.05, NS > 0.05, NS = not significant, S = significant 
 



 73 

The results obtained show no discrimination between blanching at dose durations of 0.25, 

0.5, 1.0 and 2 hours. Significant differences in response were observed at the 6 hour dose 

duration compared to the responses at 0.5, 1 and 2 hour dose durations. 

 

The AUC of the ED versus time profile followed the typical blanching response that has 

been observed with visual blanching. Lower dose durations have correspondingly lower 

AUC values compared to the higher dose durations.  
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Figure 3.13 Inter-operator variability (n=3)  
 

It is seen (Figure 3.13) that no significant differences were observed between the 

operators of the mounted chromameter. Large variability was typical in this study. 

 

3.9.3 Comparison of Visual Assessment to a* Readings and Euclidean 

Distances 

As previously mentioned, the drawback of statistical methods such as the Friedman 

ANOVA based method in the assessment of dose-response profiles is that each point is 

tested independently of the others.92 Such methods result in a myriad of comparisons 

making it difficult to obtain a clear and meaningful outcome. 
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The AUC at the different dose durations is tabulated in Table 3.7. The results obtained 

showed that there was a significant correlation between a* readings and visual data, (ρ = 

0.8986, p-value = 0.0333). The Spearman rank-order correlation (ρ) between visual and 

EDs (ρ = 0.8286, p-value = 0.0583) was close to 1. However, a larger sample size is 

required to confirm such a correlation if it truly exists. 

 

Table 3.7 AUC at different dose durations – visual and chromameter 

Chromameter Dose duration (hour) Visual assessment 
 

ED a* scale 

0.25 1 57 22 
0.5 16 58 33 
1 247 37 22 
2 652 60 36 
4 977 83 47 
6 1310 94 56 

 

Based on these results, subsequent data analysis was performed using a* readings only. 

 

3.9.4 Pilot Study  

The pilot study blanching-profile was found to be comparable to that obtained visually in 

the preliminary study. Due to the variability of the human skin blanching data, standard 

deviation bars were omitted in blanching profiles for clarity sake. 
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The symbols represent the dose durations 

Figure 3.14 Pilot study blanching profile, a* scale 
 
It can be observed from Figure 3.14 that the curves at 0.25 hours and 0.5 hours fall in a 

region were the response to blanching is small. At a dose duration of 1 hour the response 

increases to a peak which is almost the same as that of 2 hours. Increases in response 

after 1 hour are smaller. From this data it can thus be inferred that the most sensitive part 

of the graph is between 0.25 and 1 hour. The areas under the curves shown in Figure 3.14 

was calculated and used to determine the ED50 and subsequently D1 and D2 from the Emax 

model (Figure 3.15). 

 



 76 

1 2 3 4 5 6 7

-80

-60

-40

-20

0

20

40

60

Dose duration (hours)

A
re

a 
u

n
d

er
 c

u
rv

e 
(A

U
C

)

 
Figure 3.15 Emax model for MF reference product 

 
GraphPad Prism was used to analyse the results obtained from the pilot study on MF 

using a one site binding equation which describes binding to a receptor that follows the 

law of mass action. The best fit values for Emax and ED50 were -33.73 and 0.4226 hours 

respectively. 

 

ED50 was rounded up to 30 minutes, D1 and D2 used were thus 15 minutes and 1 hour 

respectively. 

 

From the pilot study 50% of the responders met the detector criterion. As previously 

discussed, a responder is a subject who shows a response to a single dose duration of the 

reference drug under the conditions used in the pilot study. The same conditions used in 

the pilot study are to be used for the pivotal study when testing the test drug against the 

reference. The FDA requires the use of 40 to 60 detectors per assessment of the 

bioequivalence. Detectors are subjects whose AUC values at D1 and D2 are both negative. 

In addition the ratio of the AUC at D2 to that at D1 should be greater or equal to 1.25.This 

implies that pivotal studies stemming from the described pilot study must have about 80–

120 volunteers. The use of such large numbers of volunteers is prohibitive cost-wise 

hence in this research project only 24 volunteers were used. 
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3.9.5 Pivotal Study 

Declaration of bioequivalence requires that the test product meets the acceptance criteria 

stipulated by the FDA and most other regulatory authorities/agencies. Generally, this is 

so when the means of the AUC ratios (T/R) fall within the bioequivalence limits of 80 to 

125% at a 90% confidence interval. However, for topical corticosteroids the FDA 

recognizes that wider limits may be necessary,32 but does not state these limits. The 

declaration of bioequivalence thus is left to the agency that evaluates the data submitted. 

In South Africa, the Medicines Control Council (MCC) accepts the registration of generic 

topical corticosteroids if they do not differ by more than 20% from the innovator product 

based on visual assessment.1 

 

Before calculation of the 90% confidence interval using Locke’s method, a parameter G 

calculated as shown in Equation 3.9 must be less than 1. This parameter is not defined in 

the guidance except that if G ≥1, the study does not meet the bioequivalence 

requirements.32 From this statement it can be assumed that if G < 1 then the test product 

is bioequivalent to the reference. The confidence interval is only calculated when the in 

vivo bioequivalence requirements are met. The ‘G’ parameter decreases with an increase 

in the number of evaluable volunteers in the study.  

 

As previously mentioned, the FDA recommends the use of 40 to 60 evaluable volunteers 

(i.e. detectors), which may be inferred to be the number of subjects needed to provide 

adequate statistical power. Hence data from a smaller number of volunteers such as used 

in this project cannot unequivocably be used to declare bioequivalence.35 Using a small 

sample set results in very wide confidence intervals such that the bioequivalence of the 

formulations cannot be readily demonstrated.93  

 

From the 24 subjects incorporated into the pivotal study, only seven evaluable subjects 

were obtained. Replication of the data of the seven evaluable subjects to simulate  larger 

cohorts of detectors based on the same data obtained from the seven were made in an 

attempt to predict the assessment using adequate numbers as required by the FDA (Table 

3.8).  
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Table 3.8 Pharmacokinetic data obtained from evaluable volunteers (n=7) 

Number 
of 

iterations 

G Mean T/R (%) Calculated Limits (%) 

7 0.7144 74.1 -13.4 – 107.7 
48 0.0710 74.6 64.2 – 83.2 
120 0.0261 74.1 68.2 – 79.4 

 

The width of the bioequivalence interval decreases with an increase in the number of 

volunteers, n. Using the results from only the seven evaluable volunteers resulted in a 

wide  interval of -13.4% to 107.7%. Hence in spite of the G parameter predicting that in 

vivo bioequivalence requirements were met between the Canadian and the South African 

MF creams (G<1), the data fall outside the equivalence limits for the declaration of 

bioequivalence. Once again, it is re-emphasized that in view of the lower number of 

detectors, confirmation of bioequivalence or otherwise could not be confirmed. 

 

Iterations of the results of detectors to give larger numbers advocated for by the FDA 

show a significantly reduced calculated limit up to the use of data of 48 detectors. Larger 

numbers of detectors (beyond 48) do not have a large effect on the upper and lower limits 

of the intervals. From the iterations (n=120) the calculated limits are 68–79%. Under 

statistical analysis the FDA guidance refers to the following statement “The Office of 

Generic Drugs has not determined at this time the equivalence interval for 

bioequivalence. The Office recognizes that an equivalence interval wider than 80–125%, 

as a public standard, may be necessary pending evaluation of data submitted to the 

agency”.32 On the other hand, as described in SUPAC-SS,94 in vitro assessment of drug 

release from semisolids a confidence interval of 75–133% is used.  

 

In comparison to the published FDA limits, the results obtained show that MF release 

from the test product, Elocom™ 0.1% cream (Canada) is lower than that of the reference 

product, Elocon® 0.1% cream (South Africa). The calculated interval of 68–79% is quite 

close to the 80–125% limits hence if such data is submitted to the office of the FDA it 

may pass the bioequivalence test.  
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The data obtained from all the subjects (n=24) used in the pivotal study, disregarding the 

findings that they did not meet the “detector” criteria, were also processed and are shown 

in Table 3.9. 

 

Table 3.9 Pharmacokinetic data obtained from all volunteers (n=24) 

Number 
of 

iterations 

G Mean T/R (%) Equivalence Limits (%) 

24 0.2118 86.1 57.7 – 121.6 
48 0.0994 86.1 67.2 – 107.9 
120 0.0383 86.1 74.4 – 98.8 

 

A blanching profile of the pivotal study using data from seven evaluable subjects is 

depicted in Figure 3.16. 
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Figure 3.16 Pivotal study – Skin blanching profile (n=7) 
 

The data shown in Figure 3.16 is comparable to that obtained from the pilot study. The 

AUC of ED50 for the reference drug is between AUC of D1 and that of D2 confirming that 

the pivotal study was done at dose durations within the sensitive part of the graph. 

However, large standard deviations from the means were observed and are summarized 

in Table 3.10 below:  
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Table 3.10 Pharmacokinetic parameters derived from area under curve of D1, D2 and ED50 

(n=7) D1 D2 ED50 Reference ED50 Test 
Mean -8.6 -24.6 -14.9 -11.1 

Standard 
deviation 

5.1 21.5 17.1 15.5 

% RSD -59.4 -87.3 -115.1 -138.9 
 

The data obtained were quite erratic. The deviations from the mean were between 59 and 

138%. Large deviations are typical of the human skin blanching studies as shown in the 

example provided in the FDA guidance32 and which are due to inter-subject variability. 

An increase in the number of evaluable subjects, therefore, is necessary in order to 

declare bioequivalence, if equivalence truly exists. 

 

3.10 Conclusions 

Using a highly precise and accurate method has been shown to increase the power of the 

statistical analysis.95 Furthermore; the use of a mounted chromameter as opposed to the 

hand-held mode also reduces variability thereby contributing to the increased reliability 

of data. The extent and justification to reduce the number of subjects in such studies, 

however, remains to be elucidated. 

 

Visual assessment by a trained observer showed that the blanching response at a 0.25 

hour dose duration was virtually not detectable i.e. a reading of zero was observed 

throughout this study whereas blanching using the a* scale readings showed a curve that 

peaks at about 8 hours. This demonstrated the distinct advantage of using a chromameter 

compared to visual assessment. Clearly, the chromameter readings were found to be more 

sensitive to the colour changes than the eye. 

 
Even though the blanching response based on L* and b* readings were readily measured 

subsequent to topical corticosteroid application, incorporation of that data into the 

statistical analysis as EDs did not show a significant correlation between visual and EDs. 

A larger number of subjects may be necessary for conclusive results since it was found 

that the value of p > 0.05 was obtained using such data. On the other hand, a* readings 
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showed a strong correlation with the visual data. Since visual assessment of blanching 

has on numerous previous occasions been shown to be reliable in the hands of 

experienced observers45,96 the visual method has been considered as the yardstick with 

which any method to be adopted should be compared. In this study, since a* readings 

correlated well with the visual data, a* values were subsequently used for bioequivalence 

assessment by chromameter in both the pilot and pivotal studies. 

 

From the pilot study, it was estimated that about 50% of the volunteers recruited for the 

pivotal study would be evaluable subjects. However, out of the 24, only seven were 

evaluable. This ratio implied that to get the required 40 to 60 evaluable subjects, more 

than 200 volunteers would be needed for the particular MF products used in this research.  

 

Some researchers have also obtained small numbers of detectors from pivotal studies they 

conducted.9,28 Both studies enrolled 40 subjects each for the pivotal studies and one 

obtained seven evaluable subjects whilst the other obtained 16. Definitive conclusions 

could not be drawn from these studies as a result of the lack of explanation of the 

parameters ‘G’ and ‘K’ used in Locke’s method. As seen in this and other studies,28 

bioequivalence is met using the ‘G’ parameter alone for evaluation. However, at times 

the confidence interval limits generated are not in the acceptable range (80 to 125%). The 

use of ‘G’ in the determination of bioequivalence requires further investigations.  
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CHAPTER 4 

ANALYTICAL HPLC METHOD DEVELOPMENT AND 

VALIDATION 

 

4.1 Literature Review Including Background 

The development of an in vitro method for the analysis of MF was based on previous 

methods found in literature. Most of the methods are based on high performance liquid 

chromatography (HPLC) with various detection methods. Ultraviolet light (UV) has been 

used as the main detection method by most researchers whilst mass spectrometry has also 

been successfully applied. Other methods used, which include spectrophotometry,97 

competitive enzyme immunoassay98 and a TLC densiometric method,99 have been 

described for determination of MF. TLC methods have been used for purity 

determination and qualitative identification of MF.11,97 Table 4.1 summarizes the methods 

and conditions for the analysis of MF as published in literature.  

 

4.2 High Performance Liquid Chromatography (HPLC)  

The emergence of liquid chromatography as an alternative to gas chromatography in the 

1960s provided a rapid separation method. Greater potential was realised with liquid 

chromatography in terms of column efficiency over gas chromatography.100,101 

Consequently, liquid chromatography gained favour over other methods used and has 

now become the main analytical technique for the analysis of a large variety of 

compounds. Liquid chromatography has been referred to as high speed (HSLC), high 

efficiency (HELC) and high performance liquid chromatography (HPLC) due to its 

attributes. HPLC is now the generally accepted term. The HPLC column can be re-used 

without need for regeneration of the column. HPLC provides great resolution and is less 

operator-dependent, hence reproducibility is increased. In addition, the sample can be 

readily recovered after use in HPLC.100 HPLC has been widely applied to an enormous 
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variety of compounds and has the capability to effect separation with great speed, 

sensitivity and precision.101,102 

 

Table 4.1 Review of the analytical methods used for the determination of MF  

Column Matrix Mobile phase composition Detection Reference 
Supelco LC-8  
250 × 4.6 mm 

API methanol/water (35/65)  
1 ml/min 

Radioactivity,  
UV 254 nm 

103 

Partisil 10 
Normal phase 
a)250 × 4.6 mm 
b)500 × 9.4 mm 

API dichloromethane-methyl/tert.-
butyl ether (93/7) 
a)1 ml/min 
b)4 ml/min 

Radioactivity,  
UV 254 nm 

103 

Symmetry RP-18 
150 × 4.6 mm 

plasma methanol/water (65/35)  
1 ml/min 

UV 254 nm 104 

Luna C18 
50 × 2.1 mm 

API 0.1% formic acid (v/v) in water 
and 0.1% formic acid (v/v) in 
acetonitrile, (gradient elution) 

MS/MRM-positive 
ion mode, source 
temperature 550 ˚C 

105 

Ultrasphere octyl 
150 × 4.6 mm 

biological 
fluids 

methanol/water (59/41) 
1.5 ml/min 

UV 248 nm 106 

Ultrasphere 
750 × 4.6 mm 

API 10 mM sodium phosphate buffer 
(pH 6.5)/methanol (41/59) 

UV 247 nm 107 

Octylsilane 
250 × 4.6 mm 

API methanol/water (65/35) 
1.7 ml/min 

UV 254 nm 11 

LC-18-DB 
33 × 4.6 mm 

plasma methanol/ammonium acetate 25 
mM (80/20) 
1 ml/min 

APCI/MS/MS  
(positive ion mode) 

108 

Symmetry C18 
150 × 4.6 mm 

plasma 0.2% acetic acid (v/v) in water/ 
acetonitrile in water from 60/40 
to 29/71 (water/acetonitrile) in 
gradient elution,  
1 ml/min 

UV 254 nm 109 

 

HPLC is an analytical procedure where components of a complex mixture can be 

separated, identified and quantitatively determined. The separation of sample constituents 

is facilitated by differences in the partition coefficients of solutes between a stationary 

and a mobile phase. In HPLC, the sample is injected onto the column (stationary phase) 

whilst mobile phase is permeating through the column. The average rate at which a solute 

migrates depends upon the average time it spends in the mobile phase. This rate will be 

less for solutes with partition ratios that favour retention on the stationary phase, and vice 

versa for solutes with partition ratios that favour partition in the mobile phase. Ideally, 
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the differences in affinity of solutes between stationary and mobile phases cause the 

components in a sample mixture to separate into separate bands located along the length 

of the column, which then move along and out of the column with the mobile phase. 

 

The object of HPLC is thus to separate sample components within a reasonable time. 

This separation depends on three main factors: column efficiency, column selectivity and 

retention. 

 

4.2.1 Column Efficiency 

The plate theory, the original theory of chromatography, describes migration rates in 

quantitative terms. This theory envisages the column to be composed of a series of 

narrow discrete theoretical plates, the movement of the solvent and solute then being 

viewed as a series of stepwise transfers from each step to the next. At each step, the 

equilibration of the sample between the mobile and stationary phase is assumed to take 

place. The efficiency of a chromatographic column as a separation device can then be 

said to improve as the number of equilibrations or “steps” increase. Thus, the number of 

theoretical plates, N, is used as a measure of column efficiency. A second term, the 

height equivalent of a theoretical plate, H, also serves this purpose. The relationship 

between these two parameters is described by Equation 4.1. 

 

H

L
N =      (Equation 4.1) 

Where, 

L = Length of column packing (cm) 

N = Number of theoretical plates 

H = Height equivalent of theoretical plate (cm) 

 
The use of the plate theory was limited as it failed to describe the effects of numerous 

variables responsible for zone broadening. This theory was then replaced by the kinetic or 

rate theory, which is capable of accounting for these variables; however N and H are still 

used as criteria for the description of column efficiency. N can be experimentally 

evaluated from a chromatogram by the substitution into Equation 4.2 or 4.3 of the various 
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parameters depicted in Figure 4.1. The theoretical plate number (N) should ideally be 

greater than 2000. 
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Where,  

tR = Retention time of solute 

W = Width of peak at base 

Wh/2 = Peak width at half –height  
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Figure 4.1 Chromatographic separation of two substances11 
 

4.2.2 Capacity Factor 

The capacity factor (k') is used to describe the migration rate of the solute. The capacity 

factor simply describes where the solute peak of interest elutes relative to the solvent 

front or void volume. Equation 4.4 illustrates how k' can be derived from a 

chromatogram.  
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Where, 

tR = time taken before elution by substances not retained on column (dead time) 

tM = retention time of solute 

 

Ideal capacity factors range between 1 and 5. Capacity factors less than unity result in 

rapid elution and those greater than 20 give long retention times.101 

 

4.2.3 Selectivity 

The selectivity factor (α ), is a measure of how well the column separates two solutes. It 

is defined as: 

 

A

B

k

k
′
′

=α     (Equation 4.5) 

Where, 

k�B = capacity factor for the strongly retained species 

k�A = capacity factor for the more rapidly eluting solute 

 

The selectivity factor, α is therefore always greater than unity. There are two primary 

ways to improve resolution as illustrated in Figure 4.2. The first is by decreasing peak 

width (zone width) whilst maintaining the zone centre constant, and the second by 

increasing the distance between the zone centres between the two peaks, whilst holding 

the peak width constant. The first method involves the efficiency of the column, and the 

second, the selectivity.  
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Figure 4.2 Illustration of the difference between increasing efficiency and increasing 
selectivity11 

 

4.2.4 Resolution 

The ability of a column to resolve any two peaks of interest is of primary importance in 

HPLC. Resolution (Rs) is dependent upon both selectivity and efficiency. Resolution can 

be calculated from Equation 4.6. 
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Resolution less than 1.5 means that there is incomplete separation of peaks.101 

 

4.2.5 Liquid Chromatography Modes 

Liquid chromatography has several operational modes (Table 4.2). The liquid 

chromatography modes use a liquid mobile phase and differ from each other by the 

stationary phases employed. 

 



 88 

Table 4.2 Different liquid chromatography modes, stationary phases employed and the 
potential analyte to which the method is applicable100,101 

Liquid chromatography 
mode 

Stationary phase Analyte to which method is 
applicable 

Liquid – liquid Solvent adsorbed on packing 
material 

MW<10000, non-ionic, 
polar  

Liquid – bonded phase Solvent covalently bonded to 
packing material 

MW<10000, non-ionic, 
polar 

Liquid – solid  Solid particles MW<10000, non-polar 
Ion exchange Ion exchange resin MW<10000, ionic 
Gel permeation Liquid in polymeric solid MW>10000, non-polar 
Gel filtration Liquid in polymeric solid MW>10000, polar or ionic 
 

The major disadvantage of using liquid-liquid chromatography is the lack of stability 

when compared to liquid bonded phase chromatography.101 The stability and versatility 

of liquid phase bonded chromatography has resulted in its use in several different fields - 

clinical medicine, forensics, food industry and in the pharmaceutical industry. Liquid 

bonded phase chromatography can be divided into two further operational modes; normal 

phase and reversed phase. 

 

The above differ from each other based on the polarity of the stationary and mobile 

phases. The stationary phase in NP-HPLC is polar and the mobile phase is relatively non-

polar and is used to separate polar compounds which are preferably retained on the polar 

stationary phase. The use of NP-HPLC for the analysis of topical corticosteroids would 

result in ultra-short retention times. Topical corticosteroids are relatively non-polar due to 

the fused ring system which is beneficial for local application. Hence such corticosteroids 

would not be retained on a polar stationary phase making separation of the relevant 

corticosteroid drug difficult. RP-HPLC stationary phase is non-polar and relatively polar 

solvents are used as the mobile phase. Corticosteroids are retained on the stationary phase 

of RP-HPLC and by changing the composition of the mobile phase, chromatography of 

the corticosteroid drug can be readily achieved. The retention time can also be readily 

adjusted by changing the composition mobile phase. 

 
Reverse phase liquid chromatography was chosen as it appeared to be the method of 

choice as gleaned from the reviewed literature.11,103-109 RP-HPLC is more rugged and 
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provides better separation than other liquid chromatography methods. Furthermore, the 

solvents employed in RP-HPLC are generally compatible with UV detectors.  

 

4.3 Methods  

4.3.1 Method Development 

4.3.1.1 Reagents and Chemicals 

Mometasone furoate (MF) and clobetasol 17-propionate (CP) were obtained from 

Symbiotec Pharmalab (Indore, India). HPLC grade acetonitrile 200 UV ROMIL - SpS™ 

Super Purity Solvent was obtained from Romil Ltd (Waterbeach, Cambridge, UK). The 

water used for chromatography was initially purified by reverse osmosis followed by 

filtration through a Milli-Q system (Millipore, Bedford, MA, USA). The water 

purification system consisted of a Milli-Q® Academic A10 with a Quantum™ EX 

Ultrapure Organex Cartridge equipped with Q-Gard® 1 Progard pre-treatment packs.  

 

4.3.1.2 Instrumentation and Chromatographic Conditions  

All experiments were performed using a Waters Alliance HPLC system equipped with a 

separation module (Model 2690), a photodiode (PDA) detector (Model 2996), an online 

degasser, and an auto-sampler (Waters Corporation, Milford, MA, USA). The column 

temperature was maintained at 25 ± 1 ˚C and the injection volume was 10 µl. 

 

4.3.1.3 Preparation of Standards Solutions 

Standard methanolic stock solutions (1 mg/ml) were made by accurately dissolving about 

20 mg of MF and CP in 20 ml volumetric flasks using a top loading analytical balance 

(Mettler Model AE163, Zurich, Switzerland). Serial dilutions of the relevant stock 

solutions were made to prepare seven concentrations over the concentration range of 0.2–

15 µg/ml. Stock solutions and serial dilutions thereof were sonicated prior to use using a 

Branson B12 sonicator (Shelton, Connecticut, USA). These solutions were prepared on 
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three different days for use in linearity, precision and accuracy experiments and further to 

assess the limits of detection and quantitation. 

 

4.3.1.4 Mobile Phase Preparation  

The mobile phase consisted of acetonitrile and HPLC - grade water (46/54 v/v). Prior to 

use, the mobile phase was filtered under reduced pressure through a 0.45 µm Durapore 

(PVDF) filter (Millipore, Bedford, MA, USA) and degassed using an Eyela Aspirator A-

2S (Tokyo Rikakikai Co. Ltd, Tokyo, Japan).  

 

4.3.1.5 Column Selection  

The solvents used in RP-HPLC are generally polar, water-miscible organic solvents and 

percolate over the stationary phase which allows separation of a mixture of compounds 

into its various components. The molecular structure determines the chromatographic 

behaviour of the analyte molecules.  

 

MF is a lipophilic (log P = 4.725) basic (pKa of 13.08)10 compound with a chemical 

structure consisting of a fused ring system which imparts the drug’s hydrophobic nature 

(refer to Figure 1.1 in Chapter 1) and thus poor water solubility. The lipophilicity of MF 

facilitates retention on reversed-phase material due to preferential partitioning of MF 

from the predominantly hydrophilic mobile phase onto the hydrophobic stationary phase 

surface. 

 

A reversed phase Luna C8 (2) (Phenomenex, Macclesfield, Cheshire, England) column 

was used for the HPLC analysis of MF. The column contains 5 µm particles with a pore 

diameter of 100 Å, an internal diameter of 2 mm and a length of 150 mm.  

 

4.3.1.6 Mobile Phase Selection 

Typical mobile phases used in RP-HPLC are water with either/or acetonitrile and/or 

methanol and other alcohols, and organic modifiers such as tetrahydrofuran, dioxane and 
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acetone,110 amongst others. The choice of mobile phase was based, initially, on the 

separation of MF and clobetasol 17-propionate (CP) as illustrated in Figure 4.4 using CP 

as internal standard. CP has comparable characteristics to MF and the elution of MF and 

CP is thus conveniently similar. The mobile phase can be manipulated to give relatively 

short retention times that are economically advantageous as use of expensive HPLC-

grade solvents is minimized.  
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Figure 4.3 Chromatogram of MF (tR ~ 9.2 min) and CP (tR ~ 8.2 min) at 238 nm 

 
A mobile phase composition of acetonitrile/water (45/55) yielded no separation as shown 

in Figure 4.4. Increasing the acetonitrile content of the mobile phase resulted in slightly 

longer retention times. However at a mobile phase composition of 48/52 

acetonitrile/water, the retention times increased to about 10 and 12 minutes for CP and 

MF, respectively which was considered too long. Above 48/52 acetonitrile/water the 

retention times decrease with a loss in resolution. Adequate separation was thus achieved 

at a mobile phase mixture of 46/54 acetonitrile/water which resulted in acceptable 

retention times of 8.2 and 9.2 minutes for CP and MF, respectively. 
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Figure 4.4 Retention times versus percent acetonitrile in mobile phase 
  

4.3.1.7 Detection Method 

A PDA detector was used in view of its scanning facility and associated advantages.111 

The PDA detector permitted the simultaneous collection of chromatographs at different 

wavelengths with spectral scanning between 200 and 400 nm. The chromatograms at the 

different wavelengths were then analysed in order to optimize the detection wavelength 

required to provide the best peak shape and requisite sensitivity. HPLC analysis of the 

samples was performed at 238 nm where MF and CP showed optimum absorption. 

 



 93 

4.3.1.8 Chromatographic Conditions 

Table 4.3 Chromatographic conditions  

Column  Phenomenex ® Luna C8 (2) column  
   Length 150 mm 
   Internal diameter 2 mm 
   Particle size 5 µm 
   Pore diameter 100 Å 
Detector  Waters 2996 PDA   
Pump and injector Waters 2690 Separations Module, Alliance 
Recorder  Waters Empower™ Software 
Wavelength  238 nm 
Flow rate  0.5 ml/min 
Injection volume 10 µl 
Temperature  25 ± 1 ˚C 
Mobile phase   Acetonitrile: Water (46: 54) 
MF retention time  ca 9.2 minutes 
CP retention time ca 8.2 minutes 
Column pressure 2500 psi 

 

4.3.2 Stability Studies 

The stability of MF in 70/30 PG/water and methanol was assessed one month after 

storage at 4˚C in a refrigerator and protected from light. Drug samples initially containing 

between 1.5 and 18 µg/ml of MF were used in this assessment. 

 

4.4 Results and Discussion 

4.4.1 Assay Validation 

Assay validation is the process that establishes that the performance characteristics of the 

method meet the requirements for the intended analytical application. Validation provides 

the yardstick from which results obtained by the use of that method are compared. These 

results play a essential role in the evaluation and interpretation of bioavailability, 

bioequivalence and pharmacokinetic data.112 

 

Typical characteristics used in method validation are accuracy, precision, specificity, 

detection limit, quantitation limit, linearity and range according to compendial methods.11 
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In addition, ruggedness and robustness are specified according to the Federal Food, Drug 

and Cosmetic Act.15 

 

4.4.2 Accuracy and Bias 

Accuracy is the closeness of the obtained results to the true value112 and should be 

established across the whole range. Bias is the difference between the calculated value 

determined for the analyte of interest and the theoretical or known level of analyte 

actually present.113 The Tripartite International Conference on Harmonization (ICH) 

suggests a minimum of nine determinations over a minimum of three concentration levels 

covering the specified range.114 Percent bias was calculated using the equation: 

 
(Theoretical value – Calculated value)/Theoretical value × 100%   (Equation 4.7) 

 

Table 4.4 Accuracy data  

Theoretical 
concentration (µg/ml) 

Calculated mean concentration 
(µg/ml) (n=3) 

% RSD % Bias 

0.9 0.9 3.0 -2.1 
19.8 20.7 1.8 -4.3 
102.6 101.5 1.2 1.1 
180.4 182.0 1.0 -0.9 

 

The bias is less than ± 5% which meets the requirements for the maximum allowable 

deviation and thus complies with the validation requirements for accuracy. 

 

4.4.3 Precision 

Precision is the degree of agreement among individual test results when the method is 

applied repeatedly to multiple samplings of a homogenous sample.11,115 Precision can be 

divided into three types: repeatability, intermediate precision and reproducibility.113 

 

4.4.3.1 Repeatability 

Repeatability is the intra-assay (with-in day) precision over a short period of time using 

the same operating conditions.11 The percent relative standard deviation (%RSD) was 
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calculated using Equation 4.8 below and found to be less than 5% indicating full 

compliance with the validation criteria for repeatability. 

 

% RSD = Standard deviation/ Calculated mean × 100%  (Equation 4.8) 

 

4.4.3.2 Intermediate Precision 

Intermediate precision refers to data obtained on different days (inter-day). Intermediate 

precision was thus assessed over three days. Triplicates of three concentrations covering 

the specified range were used. Results depicted in Table 4.5 show that all the % RSD 

values were less than the 5% limit set in our laboratory. 

 

Table 4.5 Precision data 

 Theoretical 
concentration 

(µg/ml) 

Mean 
calculated 

concentration 
(n=3) 

Standard 
deviation 

Precision 
% RSD 

Day 1 0.9 0.9 0.0 1.6 
 19.8 20.7 0.4 1.8 
 102.6 101.5 1.2 1.2 
 180.4 182.0 1.8 1.0 
Day 2 0.9 1.0 0.0 4.3 
 19.8 20.0 0.1 0.4 
 102.6 100.1 0.1 0.1 
 180.4 180.8 0.8 0.5 
Day 3 0.9 0.9 0.0 2.1 
 19.8 20.7 0.3 1.3 
 102.6 101.1 1.6 1.6 
 180.4 180.4 1.0 0.6 
 

4.4.3.3 Reproducibility 

Reproducibility refers to use of the same analytical procedure in different laboratories as 

in collaborative studies11 or method transfer experiments.110 Reproducibility was not 

assessed in these studies. 
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4.4.4 Linearity 

Linearity is a measure of how well a calibration plot of response versus concentration 

approximates the straight line. The calibration curve was constructed from 0.5 to 200 

µg/ml. Triplicate determinations of the nine concentrations were used and the calibration 

curve showed a high degree of linearity as demonstrated by the r2 values that were 

obtained, 0.9997. R2 is the correlation coefficient obtained from the least squares of linear 

regression analysis of the data. The equation for the regression line was found to be y = 

50 063x–21328. Such linearity (Figure 4.5) confirms the suitability of the assay for the 

studies as these calibration curves can be used directly to ascertain the concentration of 

analyte in sample in the tested range. 
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Figure 4.5 Calibration line of the plot of area under curve versus MF concentration  
 

4.4.5 Limit of Quantification and Detection 

The limit of quantitation (LOQ) is the lowest amount of analyte in a sample that can be 

determined with acceptable precision and accuracy under the stated experimental 

conditions11 or the lowest concentration of an analyte that can be measured with a stated 

level of significance.112 The limit of detection (LOD) is the lowest amount of analyte in a 

sample that can be detected but not necessarily quantitated under the stated experimental 

conditions.11 It has also been described as the lowest concentration of an analyte that the 

analytical process can reliably differentiate from the background noise.112 
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Several methods have been put forward for the determination of the limits of 

quantification and detection. According to ICH regulations in the case of instrumental 

analytical procedures that exhibit background noise, a comparison of the signal from a 

low concentration of analyte with that of a blank sample is made. The LOD is described 

as the concentration of the analyte at which the signal to noise ratio is either 3:1 or 

2:1.110,115 For HPLC methods however, the ratio 3:1 is applicable.110 Another method for 

the calculation of LOD is based on the standard deviation (SD) of the response and the 

slope of the curve at levels approximately equal to the LOD. This method uses the 

formula: LOD = 3.3 (SD/slope of curve).116 The LOD can also be calculated using the 

equation: LOD = intercept + 3 Sy. The intercept is determined from linear regression and 

Sy is the standard deviation of the y estimate from linear regression.117 Another method 

qualifies LOD as the mean of blank value plus 2 or 3 standard deviations.118 Visual 

approach sets LOD as the minimum level of analyte detection.115 

 

LOQ is defined in a number of ways. LOQ can be estimated as the concentration at 

which the signal to noise ratio (S/N) is 10 to 1.110,115 Another method involves the 

injection of different sample concentrations of different S/N. The different 

chromatograms are then assessed for precision. Depending on the definition of precision, 

LOQ is defined. A third method calculates LOQ using the formula LOQ = 10 (SD/slope 

of curve)116 and the fourth one: LOQ = intercept + 10 Sy.117 Statistically determined LOQ 

is set at 10 times the standard deviation above the mean blank value.118 The quantitation 

limit is the minimum concentration of analyte that is quantifiable.115 

 

The LOD and LOQ quoted in this research were determined using the Tripartite ICH115 

guidelines on method validation based on the use of S/N. LOD = 0.02 µg/ml (S/N = 3.4) 

and 0.2 µg/ml (S/N = 10.9). 

 

4.4.6 Stability of MF in Methanolic Solutions 

MF was found to be unstable in methanol at low concentrations when stored at 4˚C in the 

refrigerator for a month.  
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Figure 4.6 MF stability after 1 month of storage in methanol at 4˚C  
 

C-17 and C-21 steroids undergo aqueous degradation. The ester group of C-17 and C-21 

steroids is hydrolyzed resulting in a steroid base remnant. The steroid base undergoes 

further degradation via C-17 side chain alteration or ring A degradation.119 MF is a C-17 

furoate ester hence susceptible to hydrolysis and other degradation reactions. Like most 

steroids, MF is stable in acidic conditions and degrades in alkaline solution. MF degrades 

in phosphate buffer of pH greater than 6.73 via base catalysis. In phosphate buffer at pH 

7.38 almost 25% of MF may be degraded to epoxides. Some degradation may occur at 

lower pH values but is relatively insignificant.119 

 

MF undergoes a rearrangement following loss of water to form the C-21 steroidal ester. 

Both the C-21 steroidal ester and MF may undergo epoxide formation with concomitant 

loss of hydrochloride resulting in 3-11 epoxides. The C-17 epoxide may lose the ester to 

give another degradation product.119 

 

4.5 Conclusions 

The HPLC method described is simple, rapid, reproducible, precise and accurate and thus 

applicable for the quantitative analysis of MF. Baseline separation was achieved within 
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suitable retention times using a reverse phase C8 minibore column. Optimisation of the 

mobile phase and detection wavelength resulted in well resolved peaks. Performance 

characteristics of the optimised method met requirements for the intended analytical 

applications. Although CP could readily have been incorporated in this assay as an 

internal standard since it is well-resolved from MF, it was deemed unnecessary. The 

Waters Alliance Separations system included an auto-injector which was highly precise 

as can be seen from the precision data thereby precluding the possibility of injection 

volume errors.  

 

MF was found to be relatively unstable in methanolic solutions. Therefore, all methanolic 

calibration standards were freshly made on the day of analysis. 
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CHAPTER 5   

APPLICATION OF MICRODIALYSIS TO EVALUATE 

PHARMACEUTICAL AVAILABILITY 

 

5.1 Background 

Microdialysis is a relatively new bioanalytical sampling technique that enables the 

measurement of substances in the body’s extracellular fluid (ECF), which is 15–20% of 

the body’s tissue volume.120,121 Microdialysis allows for the quantification of drug 

content that passes through the stratum corneum into the vicinity of the microdialysis 

probe. It is advantageous as it gives high temporal resolution unlike tape stripping, skin 

blister formation or skin biopsy which results in a single concentration-time point being 

determined per administration. 

 

During the development of corticosteroids, their lipophilicity was increased by 

fluorination. Whilst this feature has several practical advantages with important 

physiological/biological consequences, the increase in lipophilicity, however, poses a 

great drawback for studying such compounds by microdialysis because of poor aqueous 

solubility. When applied topically the drug tends to remain in the corneocytes hence very 

little passes through to the vicinity of the probe. Consequently, either more sensitive 

methods of analysis have to be used or the perfusate has to be modified to facilitate 

adequate recovery. 

 

Modification of the perfusate can pose problems when used in vivo. Addition of lipids or 

propylene glycol (PG) has the potential to increase the osmotic potential of the perfusate 

resulting in larger dialysate volumes and a profound effect on the microenvironment of 

the probe. In other cases, extraction from the perfusate may be necessary and specific 

techniques and resources have to be available. The use of a modified perfusate in vivo is 

restricted to its compatibility and suitability for use at physiological pH and tonicity 
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whereas when used in vitro, the perfusate can be easily modified without such 

constraints.  

 

5.1.1 Components of the Microdialysis System 

The microdialysis probes used in this investigation were made from single hollow fibres 

(210 µm i.d. and 218 µm o.d.) with a molecular weight cut off of 5 000 Daltons as 

depicted in Figure 5.1. Cut-off is defined as the molecular weight in Daltons of a 

compound at which 80% of the molecules are rejected by the membrane.122 The 

membrane fibre used was obtained from a Haemophan fibre dialyser Alwall GFS plus 12 

(Gambro, Leuven, Belgium) which is normally used as haemodialysis membrane. Guide 

wire (Metalann, Meslin-I-‘Eveque, Belgium) 100 µm i.d. and 70 mm long was inserted 

into the fibre. The use of the guide wire is necessary to stabilize the probe and does not 

influence recovery at flow rates below 10 µl/min.123 The length of the membrane 

accessible to dialysis was 40 mm. On either side of the membrane Portex® nylon tubing 

of flexible grade, 0.50 mm i.d. 0.63 mm o.d., tubing (Scientific Laboratory Suppliers Ltd, 

Nottingham, UK) 10 cm long, was attached using Loctite® Super glue gel, a 

cyanoacrylate glue (Scientific Laboratory Suppliers Ltd, Nottingham, UK) unless 

otherwise stated, to provide linear microdialysis probes as shown in Figure 5.1. The 

outlet was placed into a 300 µl micro-insert (Waters Cooperation, Milford, 

Massachusetts, USA) through the pierced vial cap. Samples were collected every 30 

minutes and analysed using the validated HPLC method described in Chapter 4. 
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Figure 5.1 Diagrammatic scheme of a linear microdialysis probe 
 

The probes were connected to the glass syringes of CMA 400 Syringe microinjection 

pump, (CMA/Microdialysis AB, Solna, Sweden) via tubing adapters (Ref 340 9500, 

CMA/ Microdialysis, Solna, Sweden).  

 

5.1.1.1 Membrane Structure 

Dialysis of a drug from the probe occurs through the haemodialysis fibre. These fibres 

may be made from different materials and each affects drug dialysis in different ways 

depending on the properties of the drug and membrane. The choice of membrane is 

critical when dealing with compounds that are lipophilic and which may also be adsorbed 

onto the probe. Lipophilic compounds permeate the skin slowly and thus in the few hours 

in which microdialysis can be performed, very little drug may be detectable in the 

dialysate. If the drug, in addition to being lipophilic, also adsorbs onto the tubing or fibre, 

then it makes it even more difficult to analyse the resultant dialysate with conventional 

methods such HPLC. More sensitive methods need to be used in such cases and may be 

prohibitively expensive and therefore unavailable in most university laboratories. Such 

methods include radio-labelling of drugs, immunological assays or mass spectrometry. 

 

Fibres used to fabricate linear dialysis probes in-house may be obtained from haemo-

dialyser cylinders also known as artificial kidneys. These are cylinders containing semi-

permeable bundles of fine hollow fibres that are used in blood dialysis in kidney failure. 

Tubing 
Guide 
wire 

Glue 
Membrane 
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The different polymeric materials used for dialysis membranes range from regenerated 

cellulose e.g. Cuprophan,124,125 to synthetics such as polycarbonates or polyamides. 

Synthetically modified cellulose membranes are mid-way between the two extremes and 

include Haemophan and cellulose acetate. 

 

Regenerated cellulose membranes form hydrogels in the presence of water and the 

compound diffuses across the gel. Regenerated cellulose membranes such as Cuprophan 

are effective for the diffusive transport of small solutes but cellulose membranes are 

naturally brittle.126 As previously mentioned it is necessary to insert a guide wire into the 

fibre but such handling may result in damage to the fibre. Cellulose-based membranes 

contain hydroxyl groups, hence the potential to bind positively charged ions or create 

dipoles on a molecule. They have a poor biocompatibility profile compared with either 

synthetics or the modified cellulose membranes.126 

 

Haemophan is derivatized cellulose and is modified by the inclusion of diethylaminoethyl 

(DEAE) groups. By reducing the hydroxyl groups available that are present in cellulose, 

the undesirable characteristics of cellulose membranes can be minimized.  

 

The synthetics form the last class of haemodialysis membranes that are available for 

clinical use. These are engineered thermoplastics that include polysulfones, polyamides, 

polycarbonates, saponified ester cellulose and polyacrylonitrile–polyvinyl chloride 

copolymers. These materials are generally hydrophobic and are blended with hydrophilic 

polymers like polyvinylpyrrolidone.  

 

5.1.1.2 Structure of the Connecting Tubing 

Portex® tubing consists of nylon a synthetic polyamide. The numbers usually appended to 

the different versions of nylon refer to the number of ‘CH’ units between the reactive 

ends of the monomer. Portex® has 11 of these units and is made from flexible surgical 

grade material. Nylon is tough, lightweight, and resistant to chemicals. The amide linkage 

is affected by acidity and alkalinity with associated implications for retention of the 

particular drug perfused through such a Portex® probe.  
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PEEK (polyetheretherketone) is a polyketone obtained from nucleophilic reaction of 

aromatic dihalides and bisphenolate salts. PEEK is resistant to both organic and aqueous 

environments, hence its use as a biomaterial for medical implants. 

 

5.1.2 Microdialysis Sampling Principle and Technique 

Microdialysis follows the principle of passive diffusion across the semi-permeable 

microdialysis membrane.121,127 Two fluid compartments can be described in this setting 

as separated by the microdialysis membrane and these are the ECF and the perfusate 

flowing through the microdialysis probe. The microdialysis membrane is permeable to 

water and small molecules hence exchange of molecules across the membrane occurs in 

both directions i.e. into or out of the probe.  

 

Due to a concentration gradient the drug either enters the perfusate in the probe or leaves 

the perfusate and enters the ECF following the concentration gradient according to Fick’s 

law of diffusion. The permeability of the probe is controlled by the molecular weight cut-

off of the membrane. Diffusion of the drug is also determined by the physicochemical 

properties of the drug, i.e. size and charge. The geometry of the extracellular space, 

active processes such as blood flow and the thickness of the membrane wall which 

controls the effective diffusion rate of the membrane, all affect the rate at which the drug 

enters the perfusate.121 Absolute recovery which is the mass of substance recovered 

during a defined time period also depends upon the molecular weight cut-off of the 

dialysis membrane, the length of the membrane (area available for diffusion), the flow 

rate of the perfusion fluid and the diffusion coefficient of the compound through the 

ECF.122 

 

A linear relationship has been demonstrated between the logarithm of percent recovery 

and molecular weight of the substance sampled using a commercially manufactured 

microdialysis probe (CMA/10 microdialysis probe). Therefore, an exponential 

relationship exists between these two factors. As such a microdialysis probe with a 
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molecular weight cut-off of 20 kDa has minimum recovery at approximately 5 kDa.128 

An acceptable relative recovery is obtained if the drug/substance of interest has a molar 

mass lower than approximately one-fourth of the membrane molecular weight cut-off.129 

 

In microdialysis a blank fluid is used as the perfusate. The perfusate enters the inlet 

tubing, flowing at the set flow rate, past the microdialysis membrane where diffusion 

takes place into the outlet tubing from which the collected fluid is now termed the 

dialysate as illustrated in Figure 5.2. The reverse process of microdialysis, retrodialysis, 

differs from microdialysis in that the perfusate contains the drug of interest. Diffusion 

occurs at the membrane resulting in some of the drug of interest being lost to the ECF. 

Because of the reversibility of the process endogenous compounds can be collected at the 

same time as the exogenous compounds are introduced into the tissue.125 

 

Proteins and enzymes are excluded from entering into the perfusate because of their size 

resulting in a relatively clean sample that requires little or no sample preparation prior to 

analysis. 

 

 

Figure 5.2 Schematic representation of the principle of dermal microdialysis sampling 
technique121 

 

 

 

Perfusate Dialysate 

Skin 

Microdialysis probe 

Drug  
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When choosing a probe or perfusate, the appropriate choice should result in a good and 

reproducible analyte recovery. In dermal microdialysis linear probes are useful in order to 

maximize recovery. As the molecular weight of the analyte increases, the recovery 

decreases for a particular membrane cut-off limit.130 Analyte charge in the perfusate or 

peri-probe fluid affects diffusion across the membrane and the membrane surface may 

also affect analyte movement depending on whether it is hydrophobic or hydrophilic. 

 

5.1.3 Advantages of Microdialysis 

Microdialysis sampling is performed from a defined compartment as opposed to skin 

biopsies, tape stripping and other types of tissue removal. Biopsies undergo 

homogenization which disrupts all tissue components hence the drug concentration 

obtained is an average across the whole tissue which may include drug from intracellular 

fluid, interstitial tissue including that in residual blood entrapped in the tissue and 

structural tissue components.131 Assessing the concentration of a drug directly in the 

target tissue is very useful for the comparison of pharmacokinetic and pharmacodynamic 

responses between two or more formulations.120,132 Generally, microdialysis causes 

minimal tissue damage compared to other methods such as skin biopsies.131,133 Linear 

probes used in dermal microdialysis cause even less damage at the insertion site.  

 

Microdialysis allows continuous sampling which can simultaneously be performed at 

different sites in a single individual.132 When performed in vivo,  the perfusion medium is 

matched as closely as possible, in terms of ion strength, osmotic value and pH, to the 

ECF of the dialysed tissue.125 Consequently, there is no net fluid exchange thus no 

interference with the processes that govern the pharmacokinetic behaviour of the 

drug.127,134 Microdialysis thus allows assessment of the linearity of the penetration 

process in terms of time after application and offers high temporal resolution hence 

facilitating pharmacokinetic analysis.127,135 Tissue removal methods have limitations with 

respect to the number of samples that can be collected per subject therefore data obtained 

is sparse.131 
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The microdialysis membrane normally used excludes protein and thus direct injection of 

relatively clean samples into an analytical system is possible.132 Exclusion of protein 

prevents enzymatic degradation of sample and usually no or minimal sample preparation 

is necessary prior to analysis.134 Microdialysis makes it possible to assess the amount and 

rate of drug penetration into the skin and consequently that which reaches the site of 

action.  

 

Experiments may be performed for relatively long periods of time in addition to 

continuous sampling which is extremely advantageous for use of this method in 

pharmacokinetic studies. The continuous monitoring of extracellular free drug 

concentration for metabolic and pharmacokinetic purpose is thus enabled.121,131 

 

5.1.4 Limitations of Microdialysis 

After insertion, blood flow to the skin in the region of the probe increases. The area 

becomes erythematous and the skin thickens after the insertion. Although skin reaction is 

minimal, an equilibration period of between 90 and 120 minutes66,136,137 has been 

advocated. An equilibration period is required for the vascular reaction to the needle 

trauma to return to the baseline range.  

 

To further minimize the pain felt on insertion of the probe a local anaesthetic can be 

applied. Local anaesthesia prior to insertion reduces trauma effects. Topically applied 

anaesthetics such as EMLA are effective but must be applied approximately an hour prior 

to guide cannula insertion thus making it impractical in most clinical settings.138 

However, the application of a local anaesthetic affects skin perfusion. An equilibration 

time of about two hours is generally purported to reduce the effect of the local anaesthetic 

on the experiment as well.66 Ice has also been used for pre-treatment of skin prior to 

needle insertion. Application of ice on the skin numbs the area making the insertion of 

the needle relatively pain-free.138 The effect of ice on the skin is quite brief hence the 

equilibration period required is less than that when local anaesthetic is used.  
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With time, the microdialysis probe begins to disintegrate as a result of the environment it 

is exposed to in the skin. Consequently, a true representation of what is happening in the 

skin may not be possible. Late response allergic reactions can also be expected to occur. 

However, constant recovery has been shown to be maintained for at least 24 hours 

following topical application of 5-flourouracil indicating that experiments of 24 hour 

duration are feasible.133 

 

5.1.5 Microdialysis of Lipophilic Compounds 

Sampling of lipophilic drugs presents one of the greatest challenges in microdialysis due 

to relatively low recovery of such compounds132 since lipophilic drugs will not be present 

in high concentrations compared to hydrophilic drugs in ECF.139 Topical corticosteroids 

are intended to remain locally for action in the skin and are therefore largely lipophilic in 

nature. Lipophilic drugs become highly bound to proteins when they penetrate the skin 

making it difficult to quantitate them in extracellular fluid. The plasma protein binding of 

MF is 98.5%.105 As such only 1.5% of the dose is the fraction unbound available for 

diffusion and pharmacokinetic and pharmacodynamic processes including receptor 

binding. In order to increase recovery of lipophilic drugs, the perfusate flow rate may be 

decreased. Reducing the flow rate is usually accompanied by reduced time-resolution as 

the adequate dialysate sample takes longer to collect. By making provision for reduced 

collection intervals,139 time resolution can be increased. However, an ultra-sensitive 

analytical method will be necessary to handle the resulting low sample volumes. 

 

Another option would be to alter the composition of the perfusate by adding either a 

protein or lipid component but this would have a drawback in analysis. The lipid or 

protein components would first have to be separated from the drug in question and an 

extraction process will usually be necessary.  

 

5.1.6 In Vitro Calibration of Microdialysis Probes 

Calibration of microdialysis probes is very important and necessary especially with in-

house manufactured probes. In vitro calibration must be performed to ensure that the type 
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of probe used provides reproducible sampling. Where work is intended to be done in vivo 

then calibration of the probe should be done in vivo as well. In vitro recovery may differ 

significantly from in vivo recovery at times due to changes in kinetic processes, 

physiological parameter changes such as tortuosity and altered volume fraction.124,140 In 

addition, in vitro drug release does not allow an evaluation of the effects of complex 

living tissue on the drug and its metabolism.141  

 

The assessment of microdialysis probes also allows the investigation of the possibility of 

adherence to the microdialysis probe components to be investigated. The compound of 

interest being investigated may adhere to the probe and this must be taken into 

consideration for the microdialysis data to be reliably used for the estimation of the 

unbound fraction of the drug being monitored.142 

 

Calibration can be assessed in several ways using the “no-net flux” method, the 

“extrapolation to zero flow” method, extraction efficiency and retrodialysis. During this 

research, the in vitro recovery of MF was determined by extraction efficiency and 

retrodialysis. 

 

5.1.6.1 “No-Net” Flux Method 

The no-net flux method or the zero net flux method124 is based on diffusion which is a 

process that occurs in the presence of a concentration gradient.129,143 Without a 

concentration gradient, there would be no net flux. In order to obtain the respective 

recoveries, the concentration of the perfusate is varied.124 The difference between Cdialysate 

(concentration in dialysate) and Cperfusate (concentration in perfusate) is plotted against 

Cperfusate. The point where the regression line crosses the x-axis (Cperfusate) is the 

concentration in the peri-probe (surrounding medium).130,139,140,143 The slope of the 

regression plot represents the drug recovery.129,130,139,143 

 

The advantage of this method is that no presumptions about the analyte and the behaviour 

pattern in the peri-probe fluid has to be made as the relative recovery is interpolated 
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rather than extrapolated.129 However, the “no net flux” method is time consuming as a 

number of measurements have to be made under different conditions. 

 

5.1.6.2 Extraction Efficiency 

The probe is placed in spiked peri-probe fluid and blank perfusate is pumped through the 

probe. An equilibration time is allowed for steady state results to be obtained. 

Subsequently, samples are collected at various intervals of time for analysis. Recovery is 

calculated using the Equation 5.1: 

 

100(%) ×=
− probeperi

dialysate

C

C
R

   (Equation 5.1)130 

Where, 

Cperi-probe = average drug concentration in the peri-probe fluid. 

 

Extraction efficiency, which is recovery by gain, mimics the in vivo situation in which the 

drug from a specific site is sampled. In vivo, drug from the particular tissue diffuses into 

the probe. Different levels of the drug concentration should be used to assess recovery to 

ascertain any differences in recovery that are dependent on concentration.130 

 

5.1.6.3 Retrodialysis 

A spiked perfusate is used and the probe is placed into blank peri-probe fluid. The peri-

probe fluid should not contain any drug substance before the actual calibration process. 

After allowing for equilibration, samples are collected at 30 minute time intervals. 

Retrodialysis is based on the reversibility of passive diffusion across the dialysis 

membrane with influx equal to outflux. Loss of the substance through the membrane is 

thus the same as the recovery. Plock et al129 calculated recovery by Equation 5.2. 
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dialysate

C

C
R

   (Equation 5.2) 
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To calculate the percentage relative recovery Schuck et al130 used the Equation 5.3. 

 

100(%) ×
−

=
perfusate

dialysateperfusate

C

CC
R

   (Equation 5.3) 

which is the same as relative recovery as defined by Simonsen.144  

 

Unlike the other methods which require the assessment of the probes to be done before 

the pharmacokinetic experiment, retrodialysis can be done concurrently with the running 

experiment. This is done by spiking the perfusate with a marker substance. This 

substance should be well chosen with the diffusion characteristics being close to those of 

the drug of interest.139 In such a case, the loss of the retrodialysis marker will be equal to 

the recovery of the drug of interest by dialysis. During an experiment, air bubbles may 

form or the membrane pores may be occluded by cells139 affecting the recovery. With the 

introduction of a retrodialysis marker into the perfusate, the fluctuations in recovery 

during the experiment can be taken into account and it can be used to convert analyte 

microdialysate concentrations into extracellular concentrations.127 

 

The use of a retrodialysis marker with different diffusion characteristics from the drug of 

interest is not recommended even though the two may be structurally similar. 

Theophylline (1, 3-dimethylxanthine) and caffeine (1, 3, 7-trimethylxanthine) for 

example, which are structurally close have shown differences in in vivo recovery. No 

interaction should be observed between the retrodialysis marker and drug. To circumvent 

this aspect of retrodialysis the drug itself may be spiked in the perfusate and a 

retrodialysis experiment conducted at the start of an in vivo study before there is any drug 

in the tissue.139 

 

Percent loss (% loss) may be calculated by using perfusate spiked with the drug of 

interest. The dialysate concentration and the concentration of drug in the perfusate are 

used in the calculation. Percent gain (% gain) is obtained by the use of a blank perfusate 

with a known concentration of drug of interest in the peri-probe fluid. Under these 

conditions % gain should be equal to % loss.139 However, this holds true for hydrophilic 
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compounds only. For lipophilic compounds % loss is not always equal to % gain.140 In 

vivo the lipophilic compound binds to proteins hence the concentration of unbound 

compound is greatly reduced affecting the % gain. 

 

5.2 Methods 

In vitro microdialysis was applied to topical formulations for the assessment of release of 

MF as a measure of pharmaceutical availability. In order to accomplish such an 

evaluation, several experimental considerations were necessary.  

 

5.2.1 Preliminary Investigations and Optimisation of Experimental 

Conditions 

5.2.1.1 Perfusate Selection 

Various types of perfusate have been used to recover lipophilic or highly-bound 

compounds. Perfusate modifiers increase the concentration of the drug by preventing 

binding to the dialysis equipment.143 Encapsin® (hydroxylpropyl β-cyclodextrin), 

Intralipid® (a fatty emulsion containing soybean oil, phospholipids and glycerine)145 and 

bovine serum albumin146 have been used to increase the recovery of certain drugs. On the 

other hand, solvents such as propylene glycol and other mono- or polyhydric alcohols 

which are water-miscible could be considered for use as recovery enhancers. 

 

The solubilities of MF in binary compositions of PG and water were tested as described 

later (vide infra Chapter 6). Excess amount of MF was added to each binary composition 

of PG/water prior to shaking for 24 hours on a Junior Orbit Shaker. The excess 

undissolved MF was filtered at the end of the shaking period through hydrophilic PVDF 

syringe filters of pore size 0.45 µm (Millipore Millex-HV, Millipore Co., Billerica, 

Massachusetts, USA). Stability studies were also conducted to assess how stable MF was 

in the 70/30 PG/water (vide infra Chapter 6). 

 

The samples were analysed after 24 hours of shaking.  
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5.2.1.2 Connection Tubing Selection 

Two different types of connecting tubing, Portex® and PEEK, were incorporated with the 

microdialysis fibres to fabricate linear dialysis probes. Ten centimetres of tubing were 

used on either side of the microdialysis membrane, as the inlet and outlet tubings. Both 

the inlet and outlet connection tubing in the one type of the microdialysis probes 

consisted of Portex®. In the second type, Portex® was used at the inlet whilst the outlet 

was comprised of PEEK tubing. PEEK (250 µm i.d. and 1600 µm o.d.) could not be used 

as the inlet tubing because the connection to the glass syringe did not give a snug fit. The 

tubing adapters were too small to be used to connect PEEK tubing to the glass syringe. 

Portex® tubing was thus attached to the inlet side of the fibre membrane onto the glass 

syringe via tubing connectors whilst PEEK tubing was connected to the outlet of the fibre 

membrane to form a linear microdialysis probe described in Figure 5.1.  

 

Retrodialysis was used to assess the recovery of MF using the two different connection 

tubings, PEEK and Portex®. A solution of MF in 70/30 PG/water (45 µg/ml) was used as 

the perfusate. Blank 70/30 PG/water was used as the peri-probe fluid. Samples were 

collected at 30 minute intervals of time using a microdialysis flow rate of 3 µl/min so that 

each sample collected would provide a volume of 90 µl.  

 

Drug recovery increases with the length of the dialysis membrane, hence, the longest 

possible length of membrane would be the best choice. However, the limiting factor in 

the choice of the length of the membrane is a technical one, i.e. the difficulty of inserting 

the guide wire through a membrane increases with the length of the membrane. Insertion 

of a relatively long probe for in vivo use would also be impractical and difficult with 

membrane lengths greater than 3–4 cm. The length of the membrane exposed for 

diffusion to occur was 40 mm.  

 

5.2.1.3 Flow Rate Selection 

The effect of flow rate on recovery was investigated using the reference product, Elocon® 

cream (Lot 2). The microdialysis probes were inserted into glass tubes (4 mm i.d., length 
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6 cm) with the inlet and outlet tubings protruding from either side of the glass tubes. 700 

mg of MF formulation, accurately weighed, and introduced into each glass tube using a 5 

µl Eppendorf pipette (Eppendorf Ag, Hamburg, Germany) embedding the microdialysis 

membrane.  

 

Microdialysis was carried out using 70/30 PG/water as the perfusate at the following flow 

rates: 3, 6 and 10 µl/min.  

 

5.2.2 Assessment of Adsorption Using Retrodialysis in Air 

MF was added to binary compositions of PG/water (70/30, 50/50, 30/70, and 20/80) to 

make 0.5 µg/ml perfusate solutions. The solutions were perfused (3 µl/min) through 

microdialysis probes suspended in air. The dialysate was collected and weighed every 30 

minutes for 4 hours.  

 

5.2.3 Assessment of In Vitro Retrodialysis Using Different Peri-probe 

Fluids 

Microdialysis probes were perfused at 3 µl/min with a solution of MF in 70/30 PG/water 

(54.1 µg/ml) whilst immersed in different peri-probe fluids (70/30, PG/water, phosphate 

buffer at pH 7.4 or water). 

  

5.2.4 Assessment of Extraction Efficiency 

In order to assess the diffusion of MF, a blank solution of 70/30 PG/water was perfused 

through the probe that was inserted into a solution of MF (54.5 µg/ml) serving as the 

peri-probe fluid.  
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5.2.5 Assessment of Proprietary MF Formulations 

Drug release from MF creams and ointments from several different countries was 

assessed using this “in vitro” microdialysis technique using 70/30 PG/water as the 

perfusate. The study products used are described in Tables 5.1 and 5.2. 

 

Table 5.1 Proprietary creams assessed for pharmaceutical equivalence 

 Reference Test Test Test 
Trade name Elocon® Lot 2 Elocon® Lot 1 Elocom™ Elocom 
Manufacturer Schering-

Plough (Pty) 
Ltd 

Schering-
Plough (Pty) 
Ltd 

Schering 
Canada Inc 

Schering-
Plough 

City, Country Isando, South 
Africa 

Isando, South 
Africa 

Quebec, 
Canada 

Rio de 
Janeiro, Brazil 

Expiry date October 2006 October 2007 AL 08 December 
2007 

Batch/Lot No. 4NGFA07 5NGFA99004 6NGFA17 506  

  

 

Table 5.2 Proprietary ointments assessed for pharmaceutical equivalence  

 Reference  Test  
Trade name Elocon® Lot 2 Elocom™ 
Manufacturer Schering – Plough (Pty) Ltd   Schering Canada Inc 
City, Country Isando, South Africa Quebec, Canada 
Expiry date October 2006 October 2008 
Batch/Lot No. 4NGFA07 5UHKA70004 
 

5.3 Data Analysis - Assessment of Pharmaceutical 

Equivalence 

Comparison of the pharmaceutical availability data for the relevant products obtained 

from the microdialysis experiments provided information for use to assess 

pharmaceutical equivalence. This is analogous to using comparative bioavailability 

between two or more products (usually a test versus a reference) for the assessment of 

bioequivalence. A number of statistical methods, mathematical models and model-

independent models have been used in the study of drug release kinetics.  

 



 116 

5.3.1 FDA In Vitro Release Comparison Test 

A test for the pharmaceutical equivalence that is suggested by the FDA is called the in 

vitro comparison test. If a drug release test is conducted for a test product (n=6) and 

reference product (n=6) the calculations are as follows: Each of the 6 release rates 

obtained from the test product are divided by the each one of the release rates from the 

reference product producing 36 individual T/R ratios. The resulting ratios are sorted in 

order from the smallest to the highest. Once ordered the 8th and the 29th ratios are the 

lower and upper limits respectively of the 90% confidence interval for the ratio of the 

median in vitro release rate for test over the median in vitro release rate for the reference. 

Pharmaceutical equivalence limits are between 75 and 133% in this first stage. If the 

calculated interval for the ratios falls within the equivalence limits then the test product is 

deemed pharmaceutically equivalent to the reference product.94  

 

In the event that the test does not pass the first stage a further four runs are conducted 

yielding n=18 (including first-stage results) for each product. Ratios are calculated as 

previously described to generate 324 individual ratios. After ordering the ratios from the 

smallest to the highest the 110th and 215th ordered individual ratios are the lower and 

upper limits respectively. Based on the same equivalence limits as in the first stage, 

pharmaceutical equivalence is evaluated.  

 

Depending on the number of times an experiment is done, n, the position of the ratios 

used as the lower and upper limits changes. In cases where some of the data is missing 

and were the metric system is used (n=5) as opposed to the imperial system (n=6) one 

may not be able to calculate the lower and upper limits without expert advice.  

 

5.3.2 Statistical modelling 

ANOVA is assessed at each time point in the drug release profile between the test and the 

reference products. As such it takes into account the variability in data at the single time 

point. Differences are elucidated at each time point hence the release mechanism of the 

formulation can be inferred from ANOVA studies. The disadvantage of ANOVA testing 
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is that each time point is treated independently from the rest of the profile. A 

consequence of multiple comparisons is that the overall risk of incorrectly concluding 

that products are pharmaceutically not equivalent is greater than the nominal 5%.92 

Multiple comparisons may be statistically significant at some points in the profile, but not 

all, making it difficult to conclude whether differences truly exist. In addition, ANOVA 

does not rely on curve fitting procedures thus this method of comparing dissolution is 

tedious to perform, inefficient and ambiguous in interpretation. The use of ANOVA for 

release profiles other then those from immediate release products at a single time point is 

inappropriate and not recommended.92 

 

5.3.3 Model-Dependent Methods 

Model-dependent methods are based on different mathematical functions which describe 

the dissolution profile.147 A suitable mathematical model is chosen and the drug release 

profile is evaluated depending on the model parameters. The in vitro release comparison 

test suggested by the FDA94 is based on Higuchi kinetics which is model dependent. The 

similarity of model parameters from the different formulations are then compared using 

statistical analysis such as ANOVA.  

 

5.3.3.1 Zero Order Kinetics 

In order to describe the kinetics of drug release from a formulation, various mathematical 

models have been proposed. A zero order reaction which is independent of the 

concentration of the reactants is given by:  

 

tkQt 0=     (Equation 5.4)148 

A change in the concentration of the reactants therefore does not speed up or slow down 

the rate of reaction.  
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5.3.3.2 First Order Kinetics 

Another model, based on a first order reaction is a unimolecular reaction dependent on 

the concentration of only one reactant.  

 

tkQQt 10lnln −=     (Equation 5.5)148 

 

5.3.3.3 Higuchi Kinetics 

The Higuchi model is derived for a system fulfilling the following three requirements: 

Firstly, that the drug in the semi-solid formulation is in a fine state such that the particles 

are smaller than the thickness of the applied layer placed on a surface. Secondly, the 

amount of drug present per unit volume should be substantially greater than the solubility 

of the drug per unit volume of the vehicle. Lastly, the surface to which the drug 

formulation is applied should be immiscible with the formulation and thus constitute a 

perfect sink for the released drug.149 

 

According to the Higuchi model, drug release from an insoluble matrix is directly 

proportional to the square root of time and is based on Fickian diffusion. 

 

2
1

tkQ Ht =     (Equation 5.6)148 

Where, 

Qt = amount of drug released in time t 

Q0 = initial amount of drug in formulation 

k = release rate constant (k0 – zero order, k1 – first order, kH – Higuchi model) 

 

In 1983 Fick’s first law was used to describe the transfer of a diffusing substance through 

a particular material using Equation 5.7. 
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x
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DJ

δ
δ−=

     (Equation 5.7)64 

Where, 

J = rate of transfer per unit area of the surface (flux) 

D = diffusion coefficient 

C = concentration of the diffusing substance 

x = the spatial co-ordinate measured normal to the section. 

 

In other words, Fick’s first law may be interpreted to mean that the rate of transfer of 

drug is related to the velocity of molecular movement and the concentration of the 

molecule in motion.62 Fick’s first law gives the flux in the steady state. 

 

Fick’s second law of diffusion describes the non-steady state flow. It states that the 

change in concentration with time in a particular region is proportional to the change in 

the concentration gradient at that point in the system and is mathematically expressed as: 
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δ
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δ
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     (Equation 5.8) 

At steady state rate of penetration is given by: 

 

 
L

DAa

dt

dQ

s

v

γ
=      (Equation 5.9)150 

Where, 

dQ/dt = steady rate of penetration 

av = thermodynamic activity of the drug in the vehicle 

γs = effective activity coefficient of the drug in the skin barrier 

A = area of application 

L = diffusion path length 

 

It is thus apparent that increasing the thermodynamic activity of the formulation by 

altering vehicle composition would be expected to enhance the rate of penetration. 
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Drug release data from the microdialysis of proprietary formulations were applied to the 

Higuchi equation and the average cumulative amount was plotted against the square root 

of time. Linear regression analysis was performed for each plot and the rate of release 

determined from the slope of the plots. Lag time was obtained by extrapolating the 

Higuchi plot to the time axis.151 The lag time corresponds to the delay that needed for 

drug molecules to be released from the dosage form and diffuse across the synthetic 

membrane if the membrane is not rate limiting.152 

 

5.3.4 Method of Data Analysis 

The drug release profiles were analysed using the Higuchi model to obtain release rates. 

Differences in the release rates were evaluated using ANOVA followed by Bonferroni 

post hoc testing. 

 

5.4 Results and Discussion 

5.4.1 Microdialysis Conditions Selected for Experimental Work 

5.4.1.1 Flow Rate Selection 

Since the volume of perfusate to be collected is dependent on the sample size 

requirements of the particular analytical method being used, the frequency of sampling is 

a primary consideration. For example, if an assay requires a sample size of 20 µl of 

analyte, the sampling frequency needs to be at 20 min intervals if a flow rate of 1 µl/min 

is used. To increase drug concentration in the dialysate, low flow rates can be employed 

but these subsequently lead to decreased temporal resolution,132 since a flow rate of 0.5 

µl/min will result in a temporal resolution of 40 minutes. Lower temporal resolutions 

may become more important when very low amounts of drug are present in the analyte as 

is the case with lipophilic drugs. Where very low drug concentrations are encountered, 

the use of ultra sensitive analytical methods becomes a pre-requisite. 

 

Perfusion rates normally used in microdialysis are in the range 0.1–5.0 µl/min.139,153 

During this research, a flow rate of 3 µl/min was used which provided sufficient sample 
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volume and also permitted satisfactory recovery rates. The effect of flow rate on the rate 

of drug recovery is tabulated in Table 5.3. 

 

Table 5.3 Effect of flow rate on the rate of recovery 

Flow rate (µl/min) Rate (µg/cm2/hr½) Correlation coefficient (r2) 
3 0.3 0.9979 
6 0.2 0.9690 
10 0.1 0.9977 
 

It has been shown that, using flow rates between 0.5 and 5 µl/min, no net loss of liquid 

across the dialysis membrane occurs.153 Higher flow rates interfere with the diffusion 

process that controls microdialysis, i.e. a lower perfusate flow will allow more time for 

the drug to diffuse into the perfusate132,140 even though the temporal resolution of the 

measurements will be reduced.139  

 

Although equilibrium can be achieved at any particular perfusate flow rate, attainment of 

such equilibrium does not give the absolute concentration of the drug of interest in the 

peri-probe fluid or the formulation in which the probe is embedded. This is termed 

relative recovery and is always below 100%. Relative recovery describes the efficacy of 

microdialysis.154 

 

5.4.1.2 Perfusate Selection 

The perfusate was selected primarily on the basis of the solubility of MF in the binary 

composition of PG/water. Generally, the solution in which MF is optimally soluble is the 

most appropriate one to sure that sink conditions are maintained during the experiment. 

During this research, a 70/30 PG/water composition was chosen as the perfusate for the 

microdialysis experiments. The solubility of MF was found to be 170 µg/ml and MF was 

stable after one month of refrigeration in 70/30 PG/water at 4 ˚C (vide infra Section 

6.4.2).  

PG was selected as it can be considered for use with in vivo microdialysis in addition to 

its ability to dissolve corticosteroids.155 It is non-toxic and is readily metabolized and 

excreted. When used topically, PG has minimum irritancy. A daily intake of about 25 
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mg/kg of body weight is acceptable according to the WHO standards. It is also used in 

concentrations of between 10–60% in parenterals as a cosolvent or as a solvent.155 

However, when being considered for in vivo use the tonicity of the binary solution is of 

paramount importance. The use of a hypertonic perfusate will cause a net flow of 

extracellular fluid (ECF) into the perfusate. This will result in an alteration of the ECF 

fraction thereby affecting the extraction efficiency. A shift in ECF volume affects the 

local analyte concentration. If a hypotonic perfusate is used, the perfusate will tend to 

move out through the microdialysis probe into the ECF thereby diluting the drug in the 

peri-probe area. Hence, the use of either hypotonic or hypertonic perfusate in in vivo 

experiments will affect the recovery of the drug being investigated. 

 

5.4.1.3 Selection of Connection Tubings  

The retrodialysis method is also referred to as reverse (micro)dialysis.125,127 The relative 

loss of drug from the perfusate in retrodialysis is equal to the relative recovery of that 

same drug in microdialysis. As such the calculated relative loss from retrodialysis can be 

termed the relative recovery. This relative recovery is calculated as shown in Equations 

5.2 and 5.3. 

 

Table 5.4 Retrodialysis results from the use of different tubings in the microdialysis 
probe: Portex® and PEEK tubings 

Time 
(minutes) 

Portex®  
(% 
Recovery) 

Standard deviation  
(%) 

PEEK  
(% 
Recovery) 

Standard deviation 
(%) 

30 17.1 7.8 41.2 6.4 
60 3.5 0.8 20.1 7.5 
90 2.7 1.7 9.5 3.8 
120 4.7 4.3 8.7 2.1 
150 2.9 1.4 9.6 4.4 
180 2.8 0.6 8.4 4.1 
210 3.7 1.2 6.3 3.8 
240 3.2 0.5 5.9 2.5 
Microdialysis probes in which PEEK tubing was incorporated showed a significantly 

higher percent recovery (8%) than Portex® (3%) at equilibrium (p = 0.0017, α = 0.05). 

However, lower %RSD (below 2%) was observed with Portex® than with PEEK 
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(between 2 and 5%). In addition, equilibrium was reached much faster using the 

microdialysis probe connected with the Portex® tubing (60 minutes) compared to that 

with the PEEK tubing (90 minutes) as shown in Table 5.4. Microdialysis probes made 

using Portex® tubing only for both the inlet and outlet were chosen over those that 

incorporated PEEK as these rigid probes were difficult to handle whilst the Portex probes 

are quite flexible and relatively easy to manipulate. 

 

The final conditions selected for the in vitro microdialysis experiments are summarized in 

Table 5.5. 

 

Table 5.5 Microdialysis conditions selected 

Perfusate   70/30 propylene glycol/water 
Flow rate   3 µL/min 
Membrane   Gambro GFS Plus 12  
Molecular weight cutoff 5 kDa 
Length    4 cm 
Tubing membrane  Portex® tubing, 10 cm on either side of membrane 
Temperature   Ambient 
Stirring rate   Quiescent (No stirring) 
 

Gravimetric assessment of the mass of dialysate was made under the conditions depicted 

in Table 5.5 at the end of each 30 minute interval. It was observed that no drug solution 

was lost due to either convective fluid loss or evaporation.  

 

5.4.2 Retrodialysis and Microdialysis 

Microdialysis and retrodialysis of MF yielded the results depicted in Figure 5.3. In 4 

hours the percent of recovered drug increased to about 3%. The increase in the recovery 

rate was small and was thus expected not to increase significantly from 3%. The % lost 

from retrodialysis of MF is about 97%. Combining the % lost in retrodialysis and the % 

recovered in microdialysis should give a total of 100% which was observed in this case.  
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Figure 5.3 Retrodialysis and microdialysis (n=4) - MF solution made up in 70/30 PG/water, 
dialysis using Portex® tubing  

 

5.4.3 Retrodialysis in Air in the Assessment of Adsorption 

Retrodialysis in air was performed to investigate binding of MF to the membrane. The 

results showed that when the PG content was greater than 50%, MF did not bind to the 

probe; instead all the MF was recovered from the dialysate (Table 5.6).  

 

Table 5.6 Retrodialysis with Portex® tubing suspended in air 

MF concentration (µg/ml) Perfusate (PG/water) % Recovered in dialysate 
0.5 70/30 100 
0.5 50/50 100 
0.5 30/70 0 
0.5 20/80 0 
 

At low PG and high water content it appeared that the water wetted the membrane such 

that MF had greater affinity for the membrane. In any system, the presence of an 

interface causes free energy increase. To reduce this increase in energy, the system 

spontaneously modifies the shape or the structure of the interface until a new equilibrium 

is reached. In the case of a solution the dissolved analyte moves towards the surface of 

the vessel or other rigid particles suspended in the solution (e.g. silica gel, zeolites or 

activated carbon) and becomes adsorbed.156 
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Non-specific binding to the membrane, tubing, glass syringe and plastic connectors may 

occur in the absence of organic solvent or protein.105,130 Binding affinity depends on the 

partition of the compound to plastic or glass and into the solvent used as perfusate.130  

 

Retrodialysis experiments were repeated with different peri-probe fluids (Table 5.7). The 

perfusate of 70/30 PG/water containing MF was used for all the experiments. Less than 

5% of the drug was recovered in the dialysate in each case where buffer or water was 

used as the peri-probe whereas most of the MF was recovered using 70/30 PG/water. MF 

release is a function of its solubility in the perfusate.150 The more soluble the drug in the 

perfusate the more drug is recovered in the dialysate. In this study, the osmotic 

differences between the perfusate and the peri-probe fluids were different. Consequently 

there was net movement of the peri-probe fluid (buffer and water) into the microdialysis 

probe. This resulted in the dilution of the 70/30 PG/water perfusate thus increasing the 

perfusate water content. The reduction of the PG content reduced the solubility of MF in 

the resulting PG/water mixture hence only about 5% was recovered in the dialysate. 

 

Table 5.7 Retrodialysis of MF in solution  

MF concentration (µg/ml) Peri-probe composition % Recovered in dialysate 
54.1 buffer ~5 
54.1 water ~5 
54.1 70/30 PG/water ~97 
 

The volume of the peri-probe fluid used was about 40 ml so as to offer sink conditions.  

The drawback of such a set up was that the peri-probe fluid at the end of the experiment 

could not be tested for the presence of MF as it was too dilute. However, it can be 

inferred from the results from retrodialysis in air that the greater the water content of the 

perfusate, the more the MF binds to the microdialysis probe. 

 



 126 

5.4.4 Assessment of the release of MF from Proprietary MF 

Formulations: Comparison of Results Using Portex and PEEK Tubing 

Microdialysis drug release rates of MF from Elocon® ointment were lower than those 

from Elocon® cream (Table 5.8). This trend was obvious for both microdialysis probes, 

i.e. one incorporating Portex® tubing only and the other which incorporated PEEK tubing 

as well. Despite significant differences observed between the two microdialysis probes in 

retrodialysis, no significant differences were observed in the assessment of the Elocon® 

cream and ointment. 

 

Table 5.8 Cumulative amount of MF dialysed using PEEK and Portex® tubing 

Formulation Type of tubing used Cumulative amount 
dialysed (µg) 

Elocon® cream (S.A.) PEEK 1.8 ± 0.1923 
Elocon® cream (S.A.)  Portex® 1.9 ± 0.4592 
Elocon® ointment (S.A.)  PEEK 0.8 ± 0.2409 
Elocon® ointment (S.A.) Portex® 0.7 ± 0.2518 
 

The maximum amount of drug dialysed from the cream was 1.9 µg in 720 µl at the end of 

4 hours. The dialysed drug concentration of about 3 ng/ml is 50 000 times less than the 

solubility of MF in 70/30 PG/water which is 170 µg/ml. Sink conditions have been 

described as being 10 times the maximum achievable drug concentration during the 

course of an experiment.157,158 This shows that adequate sink conditions are met.  

 

MF is hydrophobic and thus is held more firmly by the ointment vehicle than by the 

cream base hence the release from the ointment base is slow. The greater solubility of MF 

in the ointment base may also account for the decrease in rate of drug release.159 Cream 

bases which are generally oil in water (o/w) emulsions form a continuum with the water 

of the receptor phase70,159 (70% PG: 30% water) hence the greater release. When the 

continuum is formed, the concentration of the drug dissolved in the water of the o/w 

emulsion is lowered as the drug redistributes in a larger volume of water. The equilibrium 

diffusion state between the concentration of drug in oil and that in water is disturbed, 

hence to re-establish this equilibrium more drug diffuses into the water component. The 
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water available in the matrix aids the dissolution of the drug as it moves towards the 

diffusion surface. The thermodynamic activity of the drug in the vehicle is the product of 

the concentration of drug and the activity coefficient of the drug in the vehicle. The 

concentration of the drug is the same in both formulations but they differ in the activity 

coefficient in the vehicle with the cream having a higher activity coefficient hence a 

higher thermodynamic activity. 

 

In addition, the viscosity of a formulation has been implicated in the release rate of the 

drug. The higher the viscosity of a formulation the lower the rate of drug release.160 The 

tortuousity of the ointment is far greater than that of the cream. Drug dissolution in the 

ointment is thus restricted to the minimum top layer that is just covering the microdialysis 

membrane in the amount of time that this experiment was done. It is possible that the 

oleaginous ointment vehicle plugs the pores of the membrane thus delaying drug 

penetration.  

 

Table 5.9 Release from Elocon® 0.1% (South Africa) cream and ointment (Portex® tubing)  

Model r2 Cream r2 Ointment 
Zero order 0.9824 0.8917 
First order 0.8802 0.7789 
Higuchi 0.9899 0.9566 
 

Correlation coefficient (r2) values closest to unity are indicative of acceptable fit. The 

cream and the ointment both follow Higuchi kinetics hence the drug release from both 

formulations is a diffusion controlled process.  

 

5.4.5 Bioequivalence Assessment of Proprietary MF Creams 

The proprietary creams from the different countries show that there are differences 

between the creams. The Brazilian cream releases more drug in comparison with the 

other 2 creams, whilst the Canadian cream releases the least amount (Figure 5.4). 
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Figure 5.4 Drug release profiles from proprietary 0.1% MF cream formulations 
 

Both lots of the South African cream showed release rates that were quite similar. Lot 1 

had an apparent release constant of 3.6 µg/cm2/hr½ and Lot 2, 2.7 µg/cm2/hr½. Elocom 

0.1% cream (Brazil) had the highest apparent release constant (ARC) which was found to 

be almost double that of Lot 2 of the South African cream and three times that of the 

Canadian cream. However, even though the ARC of the Brazilian cream was quite high, 

the lag time observed was four times greater than that of the Canadian formulation. The 

lag times of both Lot 1 and 2 of the South African cream are short compared to that of the 

Brazilian cream. A shorter lag time implies that the drug is more rapidly available for 

diffusion at the skin surface hence penetration to the site of action occurs faster and 

pharmacological action may be achieved earlier.  

 

Some studies have been carried out to show the differences in ARCs between 

formulations of different bases e.g. lotions, gels and creams.152 This study on the other 

hand, has shown that proprietary generic formulations may differ in the rate and extent to 

which the drug is delivered. The manufacturing processes between the different countries 

as well as formulation differences may thus contribute to the differences in ARCs found.  

Lot 1 and 2 of the MF creams, both made at the same manufacturing plant, Isando, South 

Africa, were quite comparable with respect to their ARCs and lag times in comparison 

with either the Brazilian or the Canadian creams. 
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Table 5.10 Comparison of drug release kinetics from MF creams  

Product Apparent release 
constant 
(µg/cm2/hr½) 

Lag time (hr½) Correlation 
coefficient (r2) 

Elocon® SA Lot 1 3.6 2.4 0.9940 
Elocon® SA Lot 2 2.7 1.3 0.9994 
Elocom™ Canada 1.6 0.7 0.9983 
Elocom Brazil 5.3 3.0 0.9974 
 

The r2 values obtained after linearizations using the Higuchi model show that drug 

release from the proprietary MF creams in the microdialysis experiments follow Higuchi 

kinetics (r2 > 0.99).  

 

Comparison of the Canadian and South African ointments also showed that they differed 

significantly as shown in Figure 5.5. 
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Figure 5.5 Drug release profiles from proprietary 0.1% MF ointment formulations 
 

Whereas the Canadian cream released MF at a slower rate than the South African cream, 

the results from the study of drug release from the ointment formulations showed the 

opposite to be true. Elocom™ ointment (Canada) releases MF at a significantly faster rate 

that Elocon® ointment (South Africa). The rate of drug release from Elocon® ointment 

was about 1.0 µg/cm2/hr½ in the first 150 minutes. Above 150 minutes the rate dropped to 
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0.2 µg/cm2/hr½, closer to steady state. Consequently, the calculated lag time was negative. 

The overall release rate was calculated to be 0.8 µg/cm2/hr½. On the other hand, ARC 

from Elocom™ ointment was 3.4 µg/cm2/hr½. 

 

Table 5.11 Comparison of drug release kinetics from MF ointments 

Product Apparent release 
constant 
(µg/cm2/hr½) 

Lag time (hr½) Correlation 
coefficient (r2) 

Elocon® SA 0.8 - 0.9665 
Elocom™ Canada 3.4 0.6 0.9914 
 

The straight line plots of amount of drug released versus the square root of time for the 

products were obtained and the r2 values are shown in Table 5.11. A negative lag time 

was obtained for Elocon® ointment (South Africa). Drug release profiles for formulations 

that have low release rates are almost parallel to the time axis hence the negative lag 

time. The ARC obtained for the Canadian ointment was 4 times that of the South African 

ointment. This may be due to the differences of the drug product formulations, probably 

different excipients both qualitatively and quantitatively and differences in the 

manufacturing process. The release data obtained by applying microdialysis to the 

different products were fairly approximated by Higuchi kinetics.  

 

Table 5.12 ANOVA results for pharmaceutical equivalence  

95% CI for 
difference 

Formulation Mean 
difference 

p-value 

Lower 
limit 

Upper 
limit 

Significant/Not 
significant 

Elocon® Lot 1 1.323 p>0.05 -0.901 3.548 Not Significant 
Elocom Brazil -2.971 p<0.001 -5.195 -0.746 Significant 
Elocom™ 
Canada 

0.7358 p>0.05 -1.489 2.960 Not Significant 

 

Significant differences were observed between the reference product and Elocom cream 

(Brazil). No significant differences were observed between the reference product and the 

Canadian cream. 
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Used as described in this research in vitro microdialysis has the potential for use as a 

surrogate method of measuring release rates from formulations. Further modifications 

may be necessary before microdialysis probes can be used in quantitative and qualitative 

assessments. 

 

5.5 Conclusions 

The in-house fabricated linear microdialysis probes were seen to give reproducible and 

can be reliably used for these types of microdialysis experiments. 

 

Recovery experiments are a pre-requisite for the application of microdialysis to assess 

drug binding to the various materials, membranes and tubing. Differences in the hardness 

of the tubings can lead to major differences in binding of the drug. Higher in vitro 

recovery was obtained when PEEK connection tubing was incorporated into the 

fabrication of the microdialysis probes in retrodialysis using 70/30 PG/water as a peri-

probe fluid. When both probes were used for the assessment of the Elocon® formulation 

no significant differences were observed. In addition, Portex® probes had better 

reproducibility as evidenced by the smaller standard deviations, and they are flexible and 

easier to manipulate hence their selection over PEEK probes.  

 

More MF was released from Elocon® 0.1% cream per unit time compared to Elocon® 

0.1% ointment. These results indicate the utility of microdialysis for the determination of 

release rates of MF from topical formulations. Furthermore, release rates between 

different formulations can be readily assessed by this technique and therefore very good 

potential for use to assess the pharmaceutical availability of topical preparations.  

 

Differences in formulation and manufacturing process(es) may be responsible for the 

differences in release and this has significant implications for the bioavailability of 

topical MF formulations (and other drugs formulated for topical use). Hence, such 

pharmaceutical availability information has good potential to predict possible differences 

that may occur with respect to bioavailability of active compounds used in topical 
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formulations. It can be used in preliminary investigations to assess the bioequivalence of 

different formulations during product development, as well as to assess differences 

between a test and reference product prior to undertaking a pivotal bioequivalence study. 

Further research and optimization of variables in in vitro microdialysis is needed. The 

results discussed show that the method has potential in the in vitro assessment of drug 

release from semi-solid formulations.  
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CHAPTER 6 

IN VITRO RELEASE OF MF FROM TOPICAL 

PREPARATIONS USING FRANZ CELLS 

 

6.1 Background 

The establishment of quality, safety and efficacy is paramount for every new drug 

product prior to release onto the market. Controlled clinical studies are used for the 

assessment of safety and efficacy in the early phases of drug and drug product 

development. Safety and efficacy have to be demonstrated to ensure that product quality 

and performance are maintained in the presence or absence of change in later stages, after 

the drug has been approved. Controlled clinical studies are expensive and are also 

extremely time consuming. Whilst clinical studies are essential in the case of new drug 

entities and products, appropriate surrogate methods may be used to assess safety and 

efficacy of generic drug products, such as the currently accepted bioequivalence testing 

procedures. 

 
For the API of a drug formulation to be absorbed it has to be released from its dosage 

form. Following drug release from a topical dosage form, the API comes into contact 

with the epidermis through which the drug must diffuse. Only after diffusion has 

occurred can drug absorption be possible. Consequently release rate determination is an 

important quality control parameter.161 

 

In vitro release testing of semisolids has been accepted as a universal regulatory tool to 

monitor batch to batch uniformity in manufacturing.162 This in vitro method tests product 

performance qualitatively and quantitatively. In vitro release testing is used for 

monitoring product reproducibility during component and compositional changes, 

manufacturing equipment and process changes, batch scale up or transfer to another 

manufacturing site,163 and as such is a very valuable product development tool to assess 

pharmaceutical availability. In vitro release studies are carried out to quantify the rate of 
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drug release from the excipients/vehicle components of the dosage form. Information on 

the rate, degree and mechanism of penetration of drugs and other substances is required 

for the optimization of therapeutic activity of a drug product. 

 

In vitro release is one of the standard methods used to characterize performance of 

finished topical formulations. The FDA Guidance for Industry, Non-sterile Semisolid 

Dosage Forms Scale-up and Post-approval Changes: Chemistry, Manufacturing, and 

Controls; In vitro Release Testing and In vivo Bioequivalence Documentation, released in 

May 199794, commonly known as SUPAC-SS, requires the use of validated methodology 

and provides a guide to the study design. The in vitro release study should use 

appropriate diffusion cells and membranes and the receptor medium used should be 

justified. Replicates of the drug release profile are required. Furthermore, an infinite dose 

should be applied and protected from vehicle evaporation. At least five sampling times 

over an appropriate period of time in which adequate drug release has occurred are 

essential. Quantification of the drug released has to be done using a sufficiently sensitive 

validated method of analysis such as HPLC.94 Franz cells are widely used since they are 

relatively affordable, give reproducible results and are less time consuming164 than most 

in vivo studies.  

 

Drug release testing is considered as the single most useful in vitro method for 

assessment of batches,165 lot-to-lot variation, stability, and for the development of new 

formulations as a preformulation tool.94 In vitro drug release testing is also used to ensure 

continuing product quality after changes in the process of manufacturing, site of 

manufacture or after a scaling-up process.94,147 Drug release in vitro is a property of the 

formulation and is thus used to assess pharmaceutical availability to provide information 

on the product sameness after minor changes.166 

 

In vitro drug release testing of semi-solids has been performed on Franz cells,164,165,167,168 

flow through cells,152,169 insertion cells,170 plexiglass cells,167 enhancer cells,160 glass 

diffusion cells,171,172 Perspex diffusion cells151 and the modified version of Franz 

cells.53,173,174 The choice of the particular cell is usually based on the solubility of the 



 135 

drug and reproducibility. Satisfactory drug release needs to be demonstrated as a 

prerequisite for therapeutic efficacy.167 

 

6.1.1 Diffusion Cells 

The Franz static vertical cells as modified by Keshary and Chien173 were used. These 

cells have been shown to be superior to the Franz diffusion cells in several ways. The star 

studded magnetic stirrer added to the receptor fluid rotates at 600 rpm and ensures 

complete mixing of receptor compartment contents.71,173,175 The water jacket surrounding 

almost the whole cell results in better temperature control. The static diffusion cell is 

used for a drug whose ultimate concentration after permeation does not reach greater than 

10% of the maximal solubility in the receptor fluid.175  

 

 
Figure 6.1 Schematic diagram of a modified Franz cell176 

 

6.1.2 Temperature 

Temperature affects drug release from a formulation. Temperature should thus be kept 

constant for the duration of the study. However, the temperature at which Franz cell 

diffusion studies are to be carried out is not specified in the SUPAC-SS guidance. 

Consequently a number of different temperatures have been used but most researchers 

maintain the receptor fluid at 32 ˚C.15,71,177-179 with the justification that skin surface 

temperature is about 32 ˚C.175,176 It was observed that when the receptor cell fluid was 
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heated using water in the water jacket at 37 ˚C, the surface temperature of the receptor 

fluid was maintained at 32 ˚C. Some portions of the cell are open to room temperature, 

such as the sampling port and the donor compartment hence some heat is lost.144,175,180,181 

High temperatures are associated with melting of semisolid formulation resulting in a  

reduction in viscosity of the vehicle in its molten state which increases diffusion of the 

drug from the vehicle.169 In addition, kinetic energy imparted to the drug particles 

increases their thermodynamic activity thereby increasing drug release. Higher 

temperatures are not justifiable as these may result in degradation of the drug contained 

therein or the loss of volatile components of the vehicle.  

 

6.1.3 Membranes  

The ideal membrane for assessing percutaneous absorption in vitro is purported to be 

dermatomed human skin (thickness of 200 µm) excised from the anatomical site of 

topical application.26 However, the availability of both fresh and human cadaver skin is 

limited due to ethical reasons and the danger posed as a result of the diseases skin can 

harbour including HIV.165 In addition, the permeability of the anatomical site from which 

the skin is taken varies quite significantly from site to site.71,165,182 Subsequent 

distribution, biotransformation and excretion processes occurring in skin are not 

separated from percutaneous permeation thus complicating the interpretation of results.26  

 

Artificial skin that has been successfully used in skin grafting and the treatment of burns 

has been used as the membrane for in vitro assessment of topical preparations. Living 

skin equivalent models which consist of a homogenous layer e.g. reconstituted 

epidermis,26 have also been used but these tissues were found to be fragile thus providing 

a less substantial barrier.  Although these systems eliminate the disadvantages of the use 

of live tissue, where large numbers of experiments are to be carried out, artificial skin 

availability may be a problem that is limited by cost issues. There may also be an 

overestimation of flux across the artificial skin.64 
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Skin from guinea pigs, monkeys, pigs and rats have been suggested as suitable 

replacements for human skin.64 Snake skin has been used due to its similarity to human 

stratum corneum in terms of structure, composition, lipid and water permeability.15,26 

 

Synthetic membranes are easily and widely available. They allow for the measurement of 

percutaneous absorption without interference of distribution, biotransformation and 

excretion processes.26 The objective of in vitro drug release is to develop a method that is 

simple, reliable and reproducible to assure batch to batch uniformity.165 The 

manufacturing process of commercial synthetic membranes ensures a precise pore 

diameter and a consistent pore size hence batch-to-batch homogeneity and uniformity. As 

such the commercially available synthetic membranes provide reproducible results hence 

their use by many researchers in the assessment of lot-to-lot and batch-to-batch 

variations, and their choice for this project. The membrane chosen should be inert 

towards the formulation but be permeable to the drug hence should not be a rate limiting 

step in the drug release process.152,169 The membrane should act as a physical support and 

protect the semisolid dosage form from surface erosion. The membrane should not allow 

back diffusion.27,152,169 Mesh screens might seem to be the best to use instead of a 

membrane as mesh screens only offer a supporting platform for the semisolid without 

interfering with the diffusion process. The mesh method works well with water insoluble 

or water immiscible formulation bases. Water miscible and water-soluble formulations 

are sloughed off leaving the formulation exposed to the receptor from all sides. This 

introduces channels in the formulations thus increasing diffusion from the resulting larger 

surface area. Consequently, surface area cannot be quantitated and hence no basis of 

comparison can be established.165  

 

Durapore® membrane (Millipore Co., Billerica, Massachusetts, USA) was used for the 

assessment of creams.  Synthetic Durapore® is a hydrophilic polyvinylidene fluoride 

(PVDF) membrane with pore size of 0.45 µm and is relatively inert. The Durapore® 

membrane was trimmed to fit the aperture of the receptor cell through which diffusion 

took place.  
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6.1.4 Receptor Phase  

A number of receptor fluids have been used: 50% (v/v) ethanol: water, varying 

concentrations of polyethylene glycol (PEG 20), or glycerol and serum albumin in saline 

solution for the assessment of in vitro diffusion studies of lipophilic molecules.71 Due to 

the insoluble nature of MF it was necessary to add a suitable solvent to facilitate 

solubility so as to achieve necessary concentrations above the limit of analytical 

quantification. PG was selected as previously explained (Section 5.3.1.2). 

 

6.2 Method and Procedures 

6.2.1 Preparation of Buffer 

Sodium dihydrogen phosphate (0.1 M) and citric acid (0.05 M) buffer were used to 

prepare Mcllvaine buffer at different pHs (pH from 2.5 to 8). Sodium hydrogen 

orthophosphate (14.2 g - NaHPO4) (Associated Chemical Enterprises (Pty) Ltd, 

Johannesburg, South Africa) and 10.5 g citric acid granules (Pal Chemicals, South 

Africa) were dissolved separately per litre of HPLC grade water. The solutions were 

separately sonicated for about 5 minutes (Model B-12 Ultrasonic bath, Branson Cleaning 

Equipment Co., Shelton, Connecticut, USA). The solutions were mixed and then adjusted 

to the required pH by varying the proportion of the respective buffer solution component.  

Mcllvaine’s buffer was used as it spans a large pH range (2-8). A Crison pH meter (GLP 

21, Crison Instruments, Barcelona, Spain) was used for all pH measurements. The buffers 

were filtered under reduced pressure through a 0.45µm Durapore® PVDF membrane. 

 

6.2.2 Preparation of Binary Compositions of Propylene Glycol/Water 

Appropriate volumes of propylene glycol (Merck, Wadeville, South Africa) and HPLC 

grade water were mixed and added to a volumetric flask to make the following PG/water 

compositions: 10, 30, 50, 70 and 80 and 100% PG. The binary mixtures were briefly 

mixed by shaking by hand then sonicated for 5 minutes to ensure uniform mixing. 
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6.2.3 Solubility Studies 

The Shake – Flask method was used for the solubility studies.150,183 Excess (about 12.5 ± 

1.5 mg) MF was weighed into a 10 ml Kimax glass test tubes and either Mcllvaine buffer 

or a binary composition of PG/water added to result in an approximate concentration of 

1.25 mg/ml. Equilibrium was reached by either shaking on the oscillating water bath, 

Julabo PC, (Labotec, Johannesburg, South Africa) at 32 ˚C, or shaking on a Junior Orbit 

Shaker at ambient temperature at 200 rpm for 24 hours in all cases. At the end of 24 

hours sample aliquots were filtered through a syringe filter, hydrophilic PVDF of pore 

size 0.45 µm (Millipore Co., Billerica, Massachusetts, USA). Five hundred microlitres of 

the filtered sample were then added to a vial containing 500 µl of methanol184 to ensure 

that the drug did not precipitate at room temperature after removal from the water bath. 

The samples were analysed using HPLC.  

 
 

6.2.4 Sampling Times  

Diffusion is a relatively slow process hence assessment was made over 48 hours. Samples 

were taken at 2, 6, 10, 24, 30 and 48 hours after initiating the experiment in order to 

generate adequate points for the drug diffusion profile. At each sampling time the 

receptor compartment was completely emptied and re-filled with fresh receptor fluid.164 

The samples were kept at 4˚C until analysis by HPLC.  

 

6.2.5 Assessment of Proprietary MF Formulations 

The assessment of the proprietary formulations of MF was carried out using the 

conditions summarized in Table 6.1 below. 

 

Table 6.1 Diffusion study conditions 

Membrane Durapore® (PVDF) 0.45 µm 
Formulation amount 700 mg 
Receptor phase 70/30 PG/water 
Temperature 32 ˚C 
Sampling times 2, 6, 10, 24, 30, 48 hours 
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Small star studded teflon coated magnetic stirrers were placed at the bottom of the cell 

containing the receptor fluid and the trimmed membranes were placed horizontally over 

the aperture of the diffusion cells between the receptor phase compartment and the donor 

phase compartment. The diffusion cell cap was secured into position using Parafilm ‘M’® 

(American National Can™, Chicago, USA) and clamped tightly. The formulation (700 

mg) was applied by spreading it on the exposed membrane area with a glass rod which 

was subsequently weighed to account for any possible removal of the dosage form. The 

donor cell was sealed using parafilm, an impermeable film and foil to prevent accidental 

contamination and drying up of the cream.72 The diffusion cells were then filled with 

receptor phase fluid comprising 70/30 PG/water from the spout making sure that no air 

bubbles were present at the interface of the liquid and the membrane. The receptor phase 

was continuously stirred using the small magnetic stirrers. At predetermined time 

intervals, the receptor compartment was completely emptied via the injection spout 

shown in Figure 6.1 refilled with fresh receptor fluid and the concentration of MF in the 

samples was assayed by HPLC. 

 

6.3. Data Analysis 

6.3.1 Higuchi Kinetics 

The Higuchi theory is valid under the following conditions:  

• the percentage of drug released is not more than 30% of the total drug content in 

the applied formulation 

• only a single drug species is included in the vehicle 

•  the diffusion coefficient does not vary with respect to time or position within the 

vehicle layer 

• only the drug species diffuses out of the vehicle and sink conditions are 

maintained in the receptor phase.185 

 

If the release pattern obeys the Higuchi model it means that the process of diffusion 

controls drug release from the formulation. The Higuchi equation predicts that a linear 
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plot of amount versus square root of time is obtained for an infinite dose of drug in a 

formulation.186 

 

The kinetics of in vitro release studies as explained by the Higuchi model have been 

previously discussed and are summarized in Section 5.3.3.3. This model describes drug 

release from one side of a semisolid layer in which the drug is completely dissolved.185 

 

6.3.2 Assessment of Pharmaceutical Equivalence  

Pharmaceutical equivalence was assessed as previously discussed in Section 5.3. 

 

6.4 Results and Discussion 

6.4.1 Solubility  

6.4.1.1 Solubility in Mcllvaine Buffer 

There were no significant differences in solubility at different buffer pHs after 24 hours. 

The solubility of MF in Mcllvaine buffer was found to be low, 0.7 µg/ml. Since the acid 

dissociation constant, pKa, of MF is 13.08 ± 0.20,10 it remains virtually completely un-

ionized throughout the entire pH range used of 2–8, thereby confirming its insoluble 

aqueous properties and lack of influence by pH. 

 

Table 6.2 Solubility of MF in Mcllvaine buffer at 32˚C in a water bath 

pH Solubility (µg/ml) 
2.5 0.7176 
3 0.7313 
4 0.7309 
5 0.7225 
6 0.7340 
7 0.7208 
8 0.7307 
 



 142 

It was therefore necessary to use an appropriate solubilizer in order to maintain a 

workable concentration of MF in solution. Propylene glycol was thus chosen as the 

appropriate solvent using mixtures of PG/water.  

 

6.4.1.2 Solubility in Binary Compositions of PG/water  

MF solubility in the binary compositions of PG/water was found to be higher than that in 

aqueous buffer solutions. Solubility of MF in binary compositions of PG and water 

increased with an increase in PG content. At 10% PG content and ambient temperature 

the solubility was about 1 µg/ml. It increased by almost 2 00 times to 2 mg/ml at 100% 

PG. At 70/30 PG/water and ambient temperature, the solubility was found to be about 

170 µg/ml. At this composition, the solubility of MF at 32˚C in the water bath was about 

163 µg/ml. Above 70% PG the solubility of MF in the water bath at 32 ˚C reached a 

maximum and deviated from the results obtained from the shaker as depicted in Figure 

6.2 below.  
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Figure 6.2 Solubility of MF in binary compositions of PG/water under different conditions 
 

Results obtained show that the Junior Orbit Shaker mixed the drug and solvent much 

better than the water bath; higher solubility was observed at ambient temperature on a 

Junior Orbit Shaker than with the shaking water bath at higher temperature. Almost the 

same solubilities were observed in mixtures which had low content of PG, i.e. below 
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70%. This may be explained by the fact that below 70% PG the binary solutions are fluid 

enough to ensure adequate mixing with MF. At higher PG content, higher viscosity 

solutions need more force to be well-mixed. The Julabo shaking water bath which shakes 

the solutions with a relatively gentle side-to-side movement was not adequate, hence true 

solubility equilibrium was not reached.  

 

Differences between the solubility after shaking for 24 hours at either 80 rpm or 200 rpm 

were indiscernible. The rotational shaking motion of the Junior Orbit Shaker was 

effective in ensuring complete mixing.  

 
The solubility of MF in the binary compositions of PG/water tended to follow a 

logarithmic sequence. Semi-logarithmic relationships have been observed for other 

corticosteroids such as ethynodiol diacetate.187 Betamethasone 17-valerate, 

hydrocortisone and hydrocortisone 17-butyrate give higher but comparable results as a 

function of solubility in binary compositions of PG.188 

 

6.4.2 Stability of MF in 70/30 PG/water 

MF was found to be sufficiently stable after one month storage in 70/30 PG/water in a 

refrigerator at 4˚C with the maximum percent of drug lost being less than 10% As shown 

in Figure 6.3. The pH measured at the end of the study was found to be 5.9. The slightly 

acidic pH may partly explain the stability of MF in PG/water. 
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Figure 6.3 MF stability after one month of storage in 70/30 PG/water at 4˚C 
 
The stability of MF in 70/30 PG/water allows this binary mixture to be used in the 

diffusion studies. The diffusion experiments were carried out over two days and the 

collected samples were refrigerated at 4 ˚C until the end of the experiment. The samples 

were then analysed on the third day. The demonstrated long stability of refrigerated MF 

ensures that no significant decomposition would have taken place between sampling, 

storing and analysing.  

 

6.4.3 Receptor phase selection 

PG (70%) mixed with water(30%) was chosen for use as the receptor phase in the Franz 

cell diffusion studies for comparative purposes with microdialysis of the same 

formulations (Chapter 5). The receptor fluid used should be highly fluid, i.e. non-viscous. 

At 70/30 PG/water the binary mixture is quite fluid and this is necessary to ensure that air 

within the membrane pores has been replaced completely by the liquid. The surface 

tension of the receptor fluid should be less than or equal to the critical surface tension for 

perfect wetting.176 A combination of 70/30 PG/water is a good compromise between 

affording sink conditions in the diffusion cell receptor compartment and preserving the 

integrity of the HPLC column. The viscosity of PG may lead to increased operating 

column back-pressure hence incorporation of water to reduce the viscosity was useful. 
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6.4.4 Assessment of Proprietary Formulations  

The in vitro release profiles of the different proprietary MF products measured through a 

synthetic membrane using the Franz diffusion cell are illustrated in Figure 6.4. 
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Figure 6.4 Drug release profiles from 0.1% MF proprietary creams 
 
Drug release from Elocom cream (Brazil) was highest, followed by Lot 2 of the South 

African Elocon® cream. The release rates from Elocon® (South Africa) Lot 1 and 

Elocom™ (Canada) were virtually equal. Contrary to expectations, Elocon® cream 

(South Africa) Lot 1 showed a significantly lower release rate of MF compared to Lot 2 

of the same manufacturer. The analysis of variance showed that there were significant 

differences among the formulations (p=0.0116, ANOVA). Further analyses using 

Bonferroni post hoc test showed that the significant differences were between the 

Canadian and Lot 1 of the South African creams when compared with Elocom cream 

(Brazil). 

 

Changes in the manufacturing process, storage conditions or ambient conditions 

prevailing during processing time may cause differences in the release rates of the creams 

from the same supplier. This can possible be due to variable exposure conditions during 

transportation of the creams from the manufacturing plant to the community pharmacy. 

Transportation may cause settling of the cream due to vibration whereas variation in 
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temperature, especially excessive heat, may also cause the formulation to melt leading to 

separation of constituents and result in differences in the distribution of the API in the 

formulation.15  

 

Table 6.3 Comparison of drug release kinetics from MF creams 

Formulation Apparent release constant 
(µg/cm2/hr½ ) 

Lag time 
(hr½) 

Correlation 
coefficient (r2) 

Elocon® Lot 1 1.4 0.9 0.9875 
Elocon® Lot 2 3.3 - 0.9936 
Elocom™ 
Canada 

1.5 0.8 0.9935 

Elocom Brazil 5.9 0.7 0.9991 
 

In vitro drug release from ointment formulations was negligible compared to that from 

creams. The cumulative amount of drug released from the Elocon® cream (South Africa) 

Lot 1 was greater than 200 µg/cm2 whereas about 2 µg/cm2 was released from the 

ointment (Elocon®, South Africa). This may be attributed to the different vehicles used in 

the respective formulations or other possible effects due to the interaction with vehicle 

components and the membranes.  

 

MF is lipophilic hence is likely to be more soluble in the ointment as compared to the 

receptor phase leading to MF being retained in the ointment. When an ointment vehicle is 

used which is non-miscible with the receptor phase the synthetic membrane should be 

impregnated with lyophillic material such as isopropyl myristate.161 For comparative 

purposes to the microdialysis set-up, impregnation of the membrane with solvent was 

omitted. Further analysis of the ointments was abandoned as the resulting low drug 

concentrations obtained could not be used to assess pharmaceutical availability. 

  

The cumulative amount of drug released per unit area was linear and directly proportional 

to the square root of time. The slope, ARC (steady state flux) was calculated by linear 

regression. Drug release from all the cream formulations appeared to fit the Higuchi 

model (r2>0.9800). Such correlation coefficients indicated that the release of MF from the 

cream formulations was probably diffusion controlled. 
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The drug incorporated into a formulation must leave the vehicle and reach the skin 

surface at an adequate rate and in sufficient amounts for therapeutic effectiveness.76 This 

rate may be quantitatively assessed for generic formulations using pharmaceutical 

availability (in vitro release) testing. The assessment of the comparative ARCs, lag times 

and time taken to achieve the maximum rate can be compared to determine 

pharmaceutical equivalence. Statistical analysis involving the use of ANOVA was used 

to assess the pharmaceutical equivalence of each test product compared to the reference 

product, Elocon® Lot 2. The results of the ANOVA testing are tabulated in Table 6.4. 

 

Table 6.4 ANOVA results for pharmaceutical equivalence  

95% CI for 
difference 

Formulation Mean 
difference 

p-value 

Lower 
limit 

Upper 
limit 

Significant/Not 
significant 

Elocon® Lot 1 -1.895 p<0.001 -2.510 1.280 Significant 
Elocom Brazil -2.696 p<0.001 -3.311 -2.081 Significant 
Elocom™ 
Canada 

1.748 p<0.001 1.1320 2.363 Significant 

 

Significant differences were observed between the reference product and Elocom™ 

cream (Canada). Bioequivalence assessment using the HSBA is the accepted method and 

hence provides the yard stick against which other methods are evaluated. The results of 

the Franz cell diffusion study showed that the difference between the Canadian cream 

and the reference products is very high (p<0.001). The Franz cell diffusion study appears 

to be quite discriminatory compared to in vitro microdialysis. All the test products 

showed significant differences with the reference product (p<0.0001, ANOVA). 

Significant differences were also observed between Lot 1 and Lot 2 of the Elocon® cream 

(South Africa) (p<0.001, Bonferroni post hoc). 

 

Discrimination of a method depends upon the variables in the study. To validate in vitro 

methods against HSBA, a series of experiments have to be carried out. These should be 

in an attempt to produce the same rank order for the test products as the ones for the 

reference HSBA. As such more than three pharmacodynamic studies must be conducted 
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and the data ranked. The rank order resulting from the HSBA can then be compared to 

other in vitro methods with proper assessment.  

 

6.5 Conclusions 

MF was found to be readily soluble and stable in 70/30 (PG/water). As such the 70/30 

PG/water was used as the receptor fluid. 

 

The data obtained from the Franz diffusion study indicated that formulations of the same 

strength do not necessarily release the API at the same rate. Differences in the vehicle 

composition of the formulation either qualitatively or quantitatively may result in 

deviations in the drug release profiles of the formulations containing the same amount of 

the same drug. 

 

The Franz cell diffusion study results were comparable to those obtained in 

microdialysis. In both methods, Elocom cream (Brazil) had the highest release rate 

followed by Elocon® cream Lot 2 which was also the reference product and Elocom™ 

cream (Canada) at the lower end. Drug release from Elocom™ cream (Canada) and 

Elocon® cream Lot 1 was almost the identical and these two formulations had the lowest 

drug release rates in the Franz cell diffusion study. Whereas Elocon® cream Lot 1 and 2 

were significantly different from each other in the Franz cell diffusion study, these two 

lots did not show any differences in the microdialysis study. The Franz diffusion study 

method appears to be more discriminatory statistically compared to the microdialysis. To 

ascertain if these differences are real further studies are necessary. It is necessary to 

assess bioavailability of MF from Elocom cream (Brazil) and Elocon® cream Lot 1 

compared to that from the reference Elocon® cream Lot 2. Based on the results from such 

a study, the statistical discrimination seen in the Franz cell diffusion study may be 

explained.  
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CONCLUDING REMARKS 

Patents on the early and most commonly used topical corticosteroids expired over 20 

years ago resulting in a large number of generic formulations being released onto the 

South African market as well as all over the world. Comparative bioavailability for the 

purpose of establishing bioequivalence between the innovator or brand (reference) 

product and a generic (test) are necessary to establish that the safety and efficacy will be 

the same during clinical use.  

A system was developed and subsequently patented for the handling and manipulation of 

a chromameter and which was found to be a more reliable and reproducible method of 

assessing skin blanching and skin colour, in general. Using this system, pressure applied 

to the application site during skin colour measurements was adequately controlled and 

consequently no significant differences were observed between operators using this 

patented system. Changes in skin colour due to circadian rhythm are difficult to monitor 

visually whereas use of the patented chromameter successfully assessed baseline skin 

colour changes in different races. This was important since changes in skin colour due to 

endogenous factors were more apparent in Caucasians compared to the other races. 

At low dose durations the chromametric method is more discriminatory than visual 

assessment. Contrary to the expected, a* scale readings showed a stronger correlation 

with visual assessment compared to EDs. As a result the a* scale readings were used in 

the bioequivalence data analysis.  

 

The results obtained from a pilot bioavailability study showed that the probability of a 

“responder” also being a “detector” was 50%. Based on those results 12 out 24 subjects 

were expected to be “evaluable” according to the FDA guidance. However, only seven 

were subsequently found to be evaluable following a pivotal study. A larger number of 

evaluable subjects would thus be necessary for adequate statistical power to establish 

bioequivalence. Although definitive conclusions on bioequivalence could not be drawn 

from the blanching study due to insufficient statistical power as a result of relatively low 

numbers of evaluable subjects, it can be inferred from the mean AUC ratio of the test to 
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the reference product (74%), that MF release from an MF cream marketed in Canada 

(Elocom™) 0.1% was lower than that from the South African product (Elocon® Lot 2).  

 

The analysis of blanching profiles requires the use of methods that analyse the whole 

profile rather than multiple single point comparisons. It is proposed that future studies 

attempt to analyse blanching study profiles using mathematical functions. A typical 

parameter obtained from such mathematical functions is to determine the value of the 

slope after regression analysis. The derived parameters of the models are then compared 

with those from the reference product using ANOVA or the t-test. Mathematical 

functions that describe the whole profile are simpler to use for the evaluation of 

pharmaceutical equivalence. This makes it easier to compare pharmaceutical equivalence.  

 

An HPLC method was successfully developed and validated. However, the limit of 

quantitation (LOQ) indicated that using HPLC would not provide the necessary 

sensitivity to measure MF in the dialysate following in vivo microdialysis.  

 

In vitro microdialysis has good potential for use as a tool to monitor the release of MF 

(and other compounds) from topical dosage forms in order to assess pharmaceutical 

availability. Diffusion experiments using Franz cells provided data that was relatively in 

good accordance with the in vitro microdialysis data. Whereas the in vitro data obtained 

from microdialysis and Franz cells were compared with the in vivo data obtained from the 

HSBA, the low number of evaluable subjects from the pivotal HSBA study was 

insufficient to assess bioequivalence of the 2 creams tested. Hence, in order to utilise in 

vitro data as a surrogate measure for bioequivalence, many more subjects will need to be 

used in HSBA studies to validate both procedures and correlate them with in vivo data 

obtained from topical dosage forms. Such an IVIVC model will provide a valuable tool 

for the assessment of the bioequivalence of topical dosage forms that contain active 

compounds that do not blanch. 
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