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Pipelines for calibration and imaging of radio interferometric data produce many in-
termediate images and other data products (gain tables, etc.) These often contain
valuable information about the quality of the data and the calibration, and can pro-
vide the user with valuable insights, if only visualised in the right way.

However, the deluge of data that we’re experiencing with modern instruments means
that most of these products are never looked at, and only the final images and data
products are examined. Furthermore, the variety of imaging algorithms currently
available, and the range of their options, means that very different results can be
produced from the same set of original data. Proper understanding of this requires a
systematic comparison that can be carried out both by individual users locally, and
by the community globally.

We address both problems by developing a systematic visualisation framework based
around Jupyter1 notebooks, enriched with interactive plots based on the Bokeh2 and
Datashader3 visualisation libraries.

1https://jupyter.org
2http://bokeh.org
3http://datashader.org/
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Chapter 1

Introduction

The first astronomical instrument was the human eye, sensitive to the so-called optical
wavelengths of the electromagnetic spectrum. Eventually, astronomers developed op-
tical telescopes, which are responsive to the visible light wavelength radiation emitted
by celestial objects such as stars and galaxies. At the most basic level, these telescopes
function by collating incoming light to some focus, where it is then magnified, thus
making the target objects visible. For a long time, this “optical window” of the EM
spectrum was the only viable window onto the Universe, and while great discoveries
were made (and continue to be made) this way, astronomers remained blind to the
rest of the EM spectrum.

However, in 1932, a radio engineer by the name Karl G. Jansky accidentally discovered
extraterrestrial radio signals from the centre of the Milky Way (Jansky, 1932; Jansky,
1933). Unbeknownst to him at the time, this discovery would open a new window into
the observation of the sky and beyond, and birthed the science known as radio astron-
omy. Henceforth, distant celestial objects could be studied with “unobscured” views,
and astronomers could explore more than the visible properties of these objects. Since
then, instruments known as radio telescopes (typically consisting of a single parabolic
dish, and a receiver responsive to radio wavelength emissions) emerged and have been
used to perform astronomical observations. However, it quickly became apparent that
single radio telescopes could not provide adequate angular resolution. A technique
known as aperture synthesis (see (Burke, Graham-Smith, and Wilkinson, 2019) chap
6), involving the use of multiple dishes to improve the angular resolution of the tele-
scopes, was developed. This technique shall be discussed in Chapter 2.

A number of large aperture synthesis radio telescopes are in operation today, such as
Westerbork Synthesis Radio Telescope (WSRT), Very Large Array (VLA), Australia
Telescope Compact Array (ATCA), Low Frequency Array (LOFAR), MeerKAT to
name just a few. These have gradually become very advanced, complex and fast sys-
tems, owing to the recent technological advancements that have resulted in a surge of
ubiquitous computing faculties. As a result, massive growth in ingenious applications
of these technologies has been evident. This growth can be attributed to the fact
that electronic components become smaller and cheaper by each leap as predicted
by Moore’s law, thus allowing for more complex and compact circuitry. Compo-
nent miniaturisation translates to increased processing power and consequently, an
increased data production rate. The MeerKAT telescope is an example of such ap-
plication ingenuity. MeerKAT is a precursor to the more powerful and anticipated
Square Kilometre Array (SKA) telescope. One of MeerKAT’s goals is to facilitate the
development and testing of SKA technology and science (Norris, 2010). MeerKAT
can generate up to 275 Gigabytes of raw data per second, while its successor, the
SKA, is expected to generate up to 160 Terabytes of data per second, an incredibly
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massive data load which is currently technically impossible to process in its entirety
(Farnes et al., 2018). Such amounts of data undoubtedly fall into the domain of what
is known as Big Data where meaningful data extraction and analysis is a demanding
task.

To further complicate astronomers’ lives, data collected using radio synthesis tele-
scopes (known as visibilities) is often tainted by interfering signals from electrical
equipment and devices which also emit EM radiation such as communication equip-
ment. This interference is known as radio frequency interference (RFI). In addition,
propagation of the signal through the Earth’s atmosphere and the antenna electronics
introduces its own distortions. Therefore, to make use of the data, various steps must
be performed, such as RFI excision or mitigation (“flagging”), as well as calibration and
correction for the effects of the signal path (“gains”). The sheer amount of data from
modern telescopes makes a manual process impractical. Thus, there have been various
efforts to automate the process of extracting science-ready images from raw visibility
data through the development of data pipelines. An example of such a pipeline is
CARACal1, which shall be discussed at various points of this thesis. However, because
of the time and resources consumed in processing extensive data and the need for ac-
curate results, it is essential to monitor the pipeline data products, such as calibration
solutions and calibrated visibility data, to ensure that the final data is of good quality.

One way to examine pipeline data products is through graphically visualising them
before a final scientific image is produced. While multiple tools can be used to do
this - the most notable being the Plotms tool in CASA (McMullin, 2007), the output
generated by these tools takes the form of static plots2. This means that:

(i) Data views in the generated plot cannot be modified unless the data is re-plotted,

(ii) It is difficult to embed a lot of information in a plot without obscuring the data,

(iii) To get multiple views of the data, numerous plots must be generated,

(iv) It is difficult to precisely locate sources of outliers on the plot, as well as explore
the data.

The goal of this work was to develop a tool, RAGaVI (Radio Astronomy Gains and
Visibilities Inspector), that generates interactive plots of calibration solutions and
visibility data. This is done to enable the embedding of multiple auxiliary data, in
addition to the desired plots, which would allow a user to identify and trace problems
within the data quickly and promote data exploration. Moreover, the plots do not
require any special software to provide interactivity, as they are HTML based. They
can thus be generated in batch mode, and examined “offline” using any browser.

1.1 Thesis Structure

The rest of this thesis is sectioned as follows:

Chapter 2: An introduction to the basic concepts of radio astronomy, visibilities,
the Radio Interferometer Measurement Equation (RIME) and its relationship
to calibration and calibration products, and the importance of pre-imaging data
inspection.

1https://github.com/caracal-pipeline/caracal
2Strictly speaking, Plotms can be run interactively. However, this mode of operation requires an

X11 session, and it is therefore challenging to fit into the batch processing paradigm of a pipeline.

https://github.com/caracal-pipeline/caracal
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Chapter 3: Here, we describe some tools that were essential in the development
of RAGaVI as well as some justifications as to why they were chosen. We also
briefly describe the structure of the Measurement Set and calibration solutions
because they are the main data formats in which the data we visualise are stored.

Chapter 4: We introduce RAGaVI, describe its features and implementation.

Chapter 5: We present the results in terms of performance and output layouts
of RAGaVI in comparison to CASA Plotms, and discuss challenges faced during
this research.

Chapter 6: We present conclusions and future work.
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Chapter 2

Basics of Radio Astronomy

Celestial objects emit various forms of electromagnetic (EM) waves. However, owing
to the Earth’s atmosphere, only waves in the optical (visible light) and the radio range
of the EM spectrum are detectable from the Earth’s surface. This is because the other
wavelengths of the spectrum are either reflected or absorbed (Condon and Ransom,
2016).

Figure 2.1: Frequency window within which we can observe radio
waves emanating from celestial objects. Image source: Wikipedia

While optical emissions are useful in the study of celestial objects, they are limited to
a relatively narrow band of the EM spectrum. In contrast, radio emissions occur over
a larger range of frequencies and can avail astronomers with more information on the
properties of celestial objects. Moreover, they are detectable from the Earth’s surface
using radio telescopes.

Therefore, radio astronomy is the observation and study of celestial objects through
the use of radio waves. These waves are characterized by longer wavelengths in com-
parison to those of visible light, as demonstrated in Fig. 2.1 and hence, tend to be
far weaker. Detected radio emissions must first be recorded and processed to produce
an image which astronomers can use. The goal of this chapter is to introduce the ba-
sic concepts associated with radio signal collection, correction and, ultimately, image
generation.

https://en.wikipedia.org/wiki/Radio_window


Chapter 2. Basics of Radio Astronomy 5

2.1 Single Dish Radio Telescopes

Different kinds of antennas, from simple dipoles to parabolic dishes, may be used to
detect radio waves. However, of particular concern to us is the parabolic dish antenna
type, which we shall refer to as a single-dish radio telescope. A typical design consists
of a single antenna with a parabolically shaped dish known as an aperture which col-
lects incoming radiation, and has a diameter D. Due to the aperture’s shape, collected
radiation is reflected towards a feed horn at the focal point. This feed horn usually
houses dual feeds, which sample orthogonal polarisation states of the signal (either
linear or circular polarisation) (Cotton, 1999). Parabolic dishes are used because they
are highly directional. To detect radio waves from an object in the sky, the telescope
must be pointed directly towards that object.

We may characterise a telescope by its sensitivity : a measure of the weakest source
of radio emission that it can detect (Wrobel and Walker, 1999), and its angular res-
olution: the smallest angular distance that it can distinguish. Using the Rayleigh
criterion, the angular resolution, θ, in radians, for a single dish is defined as:

θ ≈ 1.22× λ

D
, (2.1)

where λ is the observing wavelength, and D is the dish diameter. It is desirable to
have a telescope with a smaller value of θ to increase the level of discernible detail
of the observed object. Because of the longer wavelengths in the radio regime with
respect to the optical regime, Eqn. (2.1) suggests that the resolution of single-dish
radio telescopes is very poor.

One way to increase resolution is to increase D. Telescopes such as the Arecibo
telescope in Puerto Rico (Roshi et al., 2019) and the Five-hundred-meter Aperture
Spherical radio Telescope (FAST) in China undertook this challenge, with FAST cur-
rently being the largest single-dish telescope, having D = 500 m (Li and Pan, 2016).
If we consider the FAST telescope observing at a 6 cm radio wavelength, the resulting
resolution will be ≈ 0.503′. On the other hand, a 100 times smaller optical telescope
with D = 5 m at a 750 nm optical wavelength would have a resolution of θ ≈ 0.0006′.
It is clear from this example that, to match the resolution available at optical wave-
lengths, an unrealistically enormous radio dish would be required. Such a large dish
would also be susceptible to gravitational deformations and thermal expansion, which
will introduce significant errors. It is because of the need for better resolution in radio
telescopes that we look to radio interferometry.

2.2 Radio Interferometry

Radio interferometry uses a technique known as aperture synthesis. This involves
the combination of radio signals collected separately from multiple, small, and dis-
tributed single-dish radio telescopes, thus emulating the aperture of a single large
telescope known as a radio interferometer. The distance of separation between any
two single-dish radio telescopes is known as a baseline and the size of the synthesized
aperture is determined by the longest baseline bmax. This baseline thus determines
the interferometer’s resolution. We can consider bmax to be the equivalent of the dish
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diameter D in Eqn. (2.1). The resolution of an interferometer can thus be given by:

θ ∼ λ

bmax
. (2.2)

In comparison to the single-dish telescope, an interferometer’s resolution can be sig-
nificantly improved, since long baselines are considerably easier to implement than
large dishes.
Given a number of antennas Nant, each pair forms its own baseline. The number of
unique baselines Nb of a radio interferometer is given by:

Nb =
Nant(Nant − 1)

2
. (2.3)

To demonstrate the concept of radio interferometry, we will examine an interferom-
eter composed of two antennas, describe what it measures, and how images can be
obtained from the measurements made. We will base this section on a summary of
(Thompson, 1999).

2.2.1 A Two Element Interferometer

Consider the two-element interferometer shown in Fig. 2.2, which consists of two
antennas, p and q, separated by a baseline vector b, both pointing towards a radio-
emitting point source e in the direction s.

Figure 2.2: An interferometer consisting of 2 identical antennas p
and q, separated by a baseline vector b and pointing towards a point
source in direction s. This image was adapted from Essential Radio

Astronomy.

Because EM waves incident on antenna p take a longer path than those arriving at
antenna q, they arrive at antenna p at a time τg later than they arrive at q. This

https://www.cv.nrao.edu/~sransom/web/Ch3.html
https://www.cv.nrao.edu/~sransom/web/Ch3.html
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delay is known as geometric delay which we can describe as:

τg =
b · s
c
, (2.4)

where c is the speed of light in a vacuum. Antennas convert the EM waves to voltages.
Assuming the waves incident on each antenna are quasi-monochromatic (ranging the
same wavelength and frequency), we may describe voltages Vp and Vq as a function
of time t at the terminals of antennas p and q respectively by the sinusoidal wave
equation as:

Vp(t) = vp cos (2πν(t− τg)),
Vq(t) = vq cos (2πνt),

where ν is the frequency of observation. The signals are then multiplied and averaged
over time and frequency in an instrument known as the correlator whose output is
proportional to:

〈Vp(t)Vq(t)〉, (2.5)

with the angle brackets referring to a time and frequency average. The output of the
correlator then becomes:

r(τg) = vpvq cos (2πν(t− τg)) cos (2πνt). (2.6)

Using trigonometric identities:

cos (a+ b) = cos a cos (b)− sin a sin (b),

cos (a− b) = cos a cos (b) + sin a sin (b),

we expand and simplify Eqn. (2.6) to:

r(τg) = vpvq (cos(2πντg)) , (2.7)

where 2πτg represents the geometric delay, while vpvq represents the amplitude of re-
ceived power. The oscillatory part of Eqn. (2.7) represents the motion of the observed
source through what is known as the interferometer’s fringe pattern and is caused by
the variations in τg as the Earth rotates (Thompson, 1999).

We now introduce the notion of intensity I(s) of a source measured in Wm−2Hz−1sr−1.
This is the amount of flux per frequency ν at a collecting area (aperture) A(s), through
a solid angle dΩ in a direction s. Integrating the intensity over the entire solid angle
gives rise to what is is known as flux density, a measurement used for compact sources
which is measured in Jansky (Jy)1. Considering that the power received by a single
antenna in a bandwidth ∆ν from element dΩ is given by A(s)I(s)∆νdΩ, the resulting
output from the correlator for the signal from a solid angle dΩ, excluding the constant
amplitudes, is thus given by:

dr = A(s)I(s)∆νdΩ cos (2πντg). (2.8)

Substituting Eqn. (2.4) in this equation, we rewrite the correlator output in terms of
baseline and source position vectors. Integrating over the celestial sphere’s2 surface s

11 Jansky =10−26Wm−2Hz−1

2Celestial sphere: An arbitrary sphere onto whose surface we assume our astronomical sources to
be located.
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we get:

r = ∆ν

∫
s
A(s)I(s) cos

2πνb · s
c

dΩ. (2.9)

We assume that:

• Bandwidth ν is small enough such that variations in A and I with respect to
∆ν are disregarded.

• The source is in a far-field of the interferometer such that incoming wavefronts
are considered planar.

• Antenna responses from different parts of the source can be independently added
and are thus uncorrelated.

We specify the centre of our synthesised FoV (Field of View); known as the phase
reference position or phase centre as s0, and some distance σ; which is the distance
from s0 during source tracking, such that s = s0 + σ. We then substitute this in
Eqn. (2.9) to obtain:

r = ∆ν cos
2πνb · s0

c

∫
s
A(σ)I(σ) cos

2πνb · σ
c

dΩ

−∆ν sin
2πνb · s0

c

∫
s
A(σ)I(σ) sin

2πνb · σ
c

dΩ.

At this point, we introduce the term visibility, which is a measure of spatial coherence
(Clark, 1999) of the electric field of an EM source. It is a complex quantity, which is
defined as:

V ≡ |V |eiφv =

∫
s
A(σ)I(σ)e

−2πiνb·σ
c dΩ, (2.10)

where A(σ) ≡ A(σ)
A0

is the normalised antenna reception (single beam) pattern and
A0 the response at the beam centre. We introduce a coordinate system whereby the
baseline vector b has coordinates (u, v, w) measured in wavelengths, and w is pointing
in the source direction, i.e. the phase tracking centre. We then define positions in
the sky as having coordinates (l,m, n), which are directional cosines measured with
respect to the formerly defined coordinates. We define some parameters:

νb · s
c

= ul + vm+ wn,

νb · s0
c

= w,

and dΩ =
dldm

n
=

dldlm√
1− l2 −m2

,

which we apply to Eqn. (2.10) to get the complex visibility as:

V (u, v, w) =

∫ ∞
−∞

∫ ∞
−∞
A(l,m)I(l,m)e−2πi[ul+vm+w(

√
1−l2−m2−1)] dldm√

1− l2 −m2
.

(2.11)
It is possible to reduce Eqn. (2.11) to a 2-Dimensional Fourier transform by enforcing
either of 2 conditions:

• We choose w-axis to be in the celestial pole and thus equal to 0, after which we
absorb 1/

√
1− l2 −m2 into I(l,m).
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• We consider |l| and |m| small enough such that we image a small field in the
sky and thus (

√
1− l2 −m2 − 1)w ≈ −1

2(l2 +m2)w ≈ 0.

We then assume the A(l,m) is 1 for simplicity for each condition, after which we
obtain the Van Cittert-Zernike theorem:

V (u, v) =

∫ ∞
−∞

∫ ∞
−∞

I(l,m)e−2πi(ul+vm)dldm, (2.12)

which is a Fourier transform of the sky brightness I(l,m). Conversely, if we knew the
value of the visibility function at each u, v, we could obtain a radio image of our sky
by performing an inverse Fourier transform of Eqn. (2.12):

I(l,m) = F−1{V (u, v)},

I(l,m) =

∫ ∞
−∞

∫ ∞
−∞

V (u, v)e2πi(ul+vm)dudv. (2.13)

2.2.2 The Radio Interferometer Measurement Equation (RIME)

In this section, we use Jones calculus, and the Hamaker, Bregman, and Sault, 1996
measurement equation, taking into account propagation effects, to reformulate the
Van Cittert-Zernike theorem.

While we were able to see from the previous section that a single measurement from
the interferometer corresponds to a 2-D Fourier transform of the sky, we only took
into account the geometric delay effect. However, in real life, signals from the source
are altered due to different types of propagation effects along the paths over which
they propagate. Consequently, an interferometer does not measure an exact depiction
of the sky. The RIME reconstructs the Van Cittert-Zernike theorem (see Eqn. (2.12))
while taking into account propagation effects along the signal path. Estimating these
effects is the business of calibration – while calibration is not in the scope of this
work, we aim to introduce some ideas within this section that have been useful to the
work. This section will be based on a summary of Smirnov, 2011a which draws from
Hamaker, Bregman, and Sault, 1996.

We consider a single source in Fig. 2.2, the EM field from which at a particular point
in time and space can be described using a complex vector e in an orthonormal xyz
coordinate system, where z is the direction of propagation of the signal. Since the
signal propagates in the form of a plane wave, e lacks a z component. Therefore, we
represent e as:

e =

(
ex
ey

)
. (2.14)

We then assume that all corruptions along a signal’s path are linear with respect to
e, and can thus be represented as:

e′ = Je, (2.15)

where J is a complex 2 x 2 Jones matrix (Jones, 1941). Because the signal encounters
multiple effects along its path, each of these effects will be represented by a Jones
matrix. Thus, all the corruptions affecting the signal will be consequently represented
by repetitive matrix multiplications of those matrices, in the order which they occur,
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forming what is known as a Jones chain. Eqn. (2.15),therefore, becomes:

e′ = JnJn−1 . . .J1e = Je. (2.16)

When the signal arrives at an antenna, it is converted to a complex value 3. If there
are 2 feeds a and b at the antenna, we let the voltages at the feeds be va and vb
respectively. Additionally, we treat the process of conversion from the electric field e
to voltage as a linear one, representing it as:

v =

(
va
vb

)
= Je, (2.17)

with J representing the linear transformation. We call the J the total Jones as it
encompasses all the propagation effects. If we have two antennas p and q, their
voltage vectors vp and vq are fed into a correlator, where as earlier intimated, they
are cross-multiplied and averaged over frequency and time. The correlator output can
be expressed as:

〈vpav∗qa〉, 〈vpav∗qb〉, 〈vpbv∗qa〉, 〈vpbv∗qb〉, (2.18)

in which the angle brackets represent the averaging, while the (∗) represents the
complex conjugate operator. We place Eqn. (2.18) in a matrix to get:

Vpq = 2

(
〈vpav∗qa〉 〈vpav∗qb〉
〈vpbv∗qa〉 〈vpbv∗qb〉

)
, (2.19)

which we reduce to:

Vpq = 2
〈(vpq

vpb

)(
v∗qav

∗
qb

) 〉
= 2〈vpvHq 〉, (2.20)

where H is a Hermitian transpose. The factor of 2 is introduced as a matter of
convention, to obtain unity correlations for an I of 1 Jy (Smirnov, 2011a). Because
signals to both these antennas have their independent paths, we define a total Jones
matrix for each signal path. Therefore, substituting the RHS of Eqn. (2.17) into
Eqn. (2.20), we obtain:

Vpq = 2〈Jpe(Jqe)H〉 = 2〈Jp(eeH)JHq 〉, (2.21)

for which we assume that the Jones terms are constant over averaging and thus, can
be taken out of the averaging operator. Hence, Eqn. (2.21) becomes:

Vpq = 2Jp〈eeH〉JHq = 2Jp

(
〈exe∗x〉 〈exe∗y〉
〈eye∗x〉 〈eye∗y〉

)
JHq . (2.22)

The terms in the brackets relate to the Stokes parameters:

I = 〈exe∗x〉+ 〈eye∗y〉,
Q = 〈exe∗x〉 − 〈eye∗y〉,
U = 〈exe∗y〉+ 〈eye∗x〉 = 2<〈exe∗y〉,
V = −ı(〈exe∗y〉 − 〈eye∗x〉) = 2=〈exe∗y〉,

3Technically, the voltage is a real measurement, but it is converted to a complex value by adding
a phase delay of π/2 within the correlator.
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where < and = represent the real and imaginary components respectively, such that:

2

(
〈exe∗x〉 〈exe∗y〉
〈eye∗x〉 〈eye∗y〉

)
=

(
I +Q U + iV
U − iV I −Q

)
= B, (2.23)

where I represents total intensity, Q and U are linear polarisation terms and V is
the circular polarisation term. Eqn. (2.23) is called the brightness matrix, which
henceforth we denote as B. From it, we can formulate the RIME as:

Vpq = JpBJHq . (2.24)

If we expand Eqn. (2.24) to its Jones chain:

Vpq = Jpn(Jpn−1(. . . (Jp1BJHq1) . . .)JHqm−1)JHqm, (2.25)

we get a form of the RIME known as the onion form, where effects with the smallest
values of m and n occur at the source, while effects at the outer ends occur at the
antennas. It is worth pointing out that n 6= m because the paths taken by the signal
to antennas p and q can completely differ (Smirnov, 2011a).

One intrinsic signal propagation effect is that of phase delay due to pathlength dif-
ference, which exists even in the absence of any corrupting factors. Phase delay is
described by a K-Jones scalar diagonal matrix, given by:

Kp = e−iκp = e−2πi(upl+vpm+wp(n−1)), (2.26)

whose derivation can be found in (Smirnov, 2011a). The RIME for a single uncor-
rupted source becomes:

Vpq = KpBKH
q = Xpq, (2.27)

and this is the visibility that an ideal interferometer devoid of corruptions would
measure. Xpq is called the source coherency. Recalling that a signal is corrupted
along its path, we then represent all these other corruptions using a G-Jones matrix
to get:

Vpq = GpXpqG
H
p . (2.28)

For multiple discrete sources, contributions from each source add up linearly as:

Vpq =
∑
s

JspBspqJHsq. (2.29)

If we group Jsp into the source independent Gp term, source dependent Esp term and
the phase term Ksp we end up with:

Vpq = Gp

(∑
s

EspXspqE
H
sq

)
GH
q , (2.30)

the RIME for multiple discrete sources. We recognize that in reality, the sky has a
continuous brightness distribution rather than discrete sources. Therefore, to get the
total visibility measured by an interferometer, brightness from all directions must be
considered.

Following (Smirnov, 2011a), that if we project the celestial sphere onto a plane (l,m)
tangential to a particular field’s centre, and we consider effects on direction w (towards
the field) in the uvw coordinate system as direction-dependent effects, we obtain the
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full sky RIME:

Vpq = Gp

(∫∫
lm
Bpqe−2πi(upq+vpqm)dldm

)
GH
q . (2.31)

This is yet another 2-D transform of the “apparent sky brightness as seen by a baseline
pq” (Smirnov, 2011a). We will refer to this visibility as the observed visibility.

2.3 Calibration

The goal of radio astronomy is to observe objects in the sky through the radio win-
dow as intimated earlier. Nevertheless, signals received by radio interferometers are
marred due to the existence of other external and stronger signals such as those from
communication devices and aeroplanes which emit what is known as Radio Frequency
Interference (RFI), as well as atmospheric and instrumental effects. As a result, an
interferometer samples other unwanted signals in addition to the desired signal, which
is already tainted due to the signal path it takes. Known and anticipated RFI and
alterations due to the instrument may be mitigated during observation time and at
the instrumentation level. However, some noise, as well as instrumental and atmo-
spheric gains, still corrupt the recorded data. We referred to this recorded data as the
observed visibilities (recall Section 2.2.2).

Thus, calibration of data is the process of attempting to estimate the desired (actual)
visibility data, known as true visibilities, from the observed visibilities (Fomalont and
Perley, 1999). We can categorise calibration into 3 regimes (Noordam and Smirnov,
2010) :

• First-generation calibration.

• Second-generation calibration.

• Third-generation calibration.

First and second-generation calibration processes are direction-independent, while
third-generation calibration is direction-dependent. For this work, we shall mostly
focus on the first-generation calibration. More on 2GC and 3GC can be found in
(Smirnov, 2011b; Smirnov, 2011c).

2.3.1 First Generation Calibration [1GC]

1GC is a calibrator-field based calibration, and hence, one needs to observe a source,
known as a calibrator field. This field usually has a known behaviour in frequency,
as well as known flux and shape to enable the tracking of observational parameters
and solve for gains which are eventually transferred and applied to the desired field.
While some calibration parameters may be known a priori, those that are unknown
must be solved for from the calibrator sources. We now discuss some of the quantities
for which we calibrate and whose Jones terms need to be solved.

Delay Calibration

Delay errors in the signal path arise due to a number of things:

• Atmospheric delay,

• Electronic delay,
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• Geometric delay due to separation of antennas in a baseline,

• Errors in delay tracking in the correlator due to inaccurate models for the geo-
metric delay.

Although geometric delay can be accurately determined, small residual delay errors
inevitably remain as a result of the other effects. Delay calibration is thus a measure-
ment of these remaining errors (Fomalont and Perley, 1999). Delays manifest as a
time constant frequency-dependent linear phase slopes in the correlated data for each
baseline.

Delays are represented by a K-Jones scalar diagonal matrix:

K =

(
eiφ 0
0 eiφ

)
,

where eiφ represents the phase delay. This was defined in Eqn. (2.26). Delay calibra-
tion is performed by observing a very bright, invariant point source, and then solving
for the per-antenna φ terms.

Bandpass Calibration

Bandpass calibration is the process of estimating and correcting for the frequency-
dependent aspects of the observing instruments, which may be due to the antenna
electronics or the environment. It involves observation of a bright and invariant point
source whose frequency spectrum is known over the observing frequency band.

Because radio sources of interest may exhibit relatively narrow spectral features (such
as absorption and emission lines), it is necessary to perform observations spanning
multiple adjacent frequency channels. The channels must have enough frequency
resolution to separate emission regions (Fomalont and Perley, 1999). Modern radio
telescopes observe over extremely wide frequency bands (a 2:1 ratio is not unusual)
with many channels. For example, MeerKAT has 1024, 4096 and 32768-channel ob-
serving modes. Bandpass calibration is therefore necessary for accurate detection and
measurement of spectral features. Bandpass is represented by the B-Jones matrix:

B =

(
ba(ν) 0

0 bb(ν)

)
,

where b(ν) is a complex, frequency variable gain and indices a and b represent the
antenna feeds.

Complex Gain Calibration

This entails correcting for the time-dependent part of antenna gains. Observed sig-
nals can be time variable due to environmental and atmospheric factors, which cause
continuous fluctuations in the gain amplitude and phases. Of the two, the phases are
more adversely affected. Gain calibration thus serves the purpose of mitigating the
large fluctuations, thus increasing coherence.

It is performed regularly throughout the observation. It also requires a moderately
bright calibrator source that is close to the target field. This source is additionally
used to monitor atmospheric conditions and hence, is likely to be affected by the
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same environmental effects as the target field. It is described by the G-Jones complex
diagonal matrix:

G =

(
ga(t) 0

0 gb(t)

)
,

where g(t) is a complex, time variable gain, and indices a and b again denoting the
antenna feeds.

Figure 2.3: An example of the CASA calibration workflow. Image
source CASA.

Polarisation Calibration

Antennas have receiver feeds which are orthogonal to each other. Each of these re-
ceivers is sensitive to different types of polarisation. These may be left and right circu-
lar polarisation (L, R) or linear polarisation (X, Y). Ideally, these receivers should be
independent of each other and have no cross-talk. In practice, however, a small frac-
tion of the signal from one feed leaks through to the other, and vice versa (Hamaker,

https://casa.nrao.edu/casadocs/casa-5-1.2/synthesis-calibration/introduction
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Bregman, and Sault, 1996) leading to impurities in the recorded signals. The goal
of polarisation calibration is to measure and correct for these leakages. Leakage val-
ues are small (Hamaker, Bregman, and Sault, 1996) and are denoted by a D-Jones
off-diagonal matrix:

D =

(
1 da
−db 1

)
.

Absolute Flux Calibration

Absolute flux calibration is done to determine the true flux of a source in a target field.
It necessitates a bright, point-like and invariant calibrator source. Flux calibration
enforces correct flux scaling.

Observed visibility data is typically recorded and stored in the Measurement Set (MS)
format (see Section 3.1 for MS). From this point, the data then undergoes the series
of 1GC calibration steps previously highlighted and partly illustrated by Fig. 2.3. At
the end of each of the calibration steps, gain solutions corresponding to the estimated
corrections applicable to the observed data are generated and stored in gain tables
also known as calibration tables. After all the desired calibration steps have been per-
formed, these solutions are then applied to the observed data, resulting in calibrated
data.

2.3.2 Importance of Non-Imaging Data Inspection

Calibration is a time consuming and intricate process that requires attention and care.
This is because applying improper calibration solutions to observed visibilities leads to
flawed calibrated data, which may have significant effects on the science goals. Hence,
it is essential to monitor and examine the quality of calibration solutions beforehand,
to determine their correctness and change calibration strategy if need be. Further-
more, it allows the detection of problems earlier, before imaging the data in order to
examine it and to assess residuals between modelled and calibrated visibilities. These
latter processes may be computationally expensive and time-consuming (Heald et al.,
2018).

Non-imaging data inspection also provides a means of quick identification and excision
of corrupt data. It can be easier to inspect data in the visibility domain rather than
the image domain as errors in the image domain are spread throughout the image.
However, in the visibility domain, they are localized. Moreover, to the trained eye, the
visibility domain can also reveal some basic properties corresponding to the Fourier
transform of the brightness distribution of the observed source (Pearson, 1999). In
particular, calibrator sources, owing to their simple spatial structure, have very simple
signatures in the visibility domain, which make data outliers especially obvious.

2.3.3 Beyond Visibilities

While imaging is not in the scope of this work, we briefly summarise its idea for the
sake of completeness. We showed that images of the sky can be produced by perform-
ing an inverse Fourier transform (see Eqn. (2.12), (2.13) and (2.7)). However, since
an interferometer performs a finite and discrete sampling of the uv-plane, Eqn. (2.13)
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must be modified to include the sampling function S(u, v) becoming:

ID(l,m) =

∫∫
V (u, v)S(u, v)e2πi(ul+vm)dudv, (2.32)

ID(l,m) = F−1{V (u, v)S(u, v)}, (2.33)

ID(l,m) = I(l,m) ∗ P (l,m). (2.34)

Therefore, an image produced at this stage is known as a dirty image ID, because it
is corrupted by the effects of the sampling function, known in the image domain as
the point spread function (PSF) or the dirty beam P (l,m). This effect is described by
Eqn. (2.34), which shows that the dirty image is a convolution (∗) of the “true sky”
and the PSF. Therefore, to remove the effect of the PSF, the deconvolution process
must be performed after which an image of the “true sky” can be obtained.



17

Chapter 3

Tools of the Trade

The goal of this chapter is to introduce the tools we used to accomplish this work.
Data measured by a radio interferometer must first be recorded and stored to allow
for calibration and visualisation. Therefore, we introduce the Measurement Set, a
format that specifies how recorded telescope data is to be stored. It is then followed
by a description of the general structure of Measurement Sets and calibration tables
and the tools that can be used to extract data from them. We then finally describe
the tools chosen for data visualisation.

3.1 Measurement Sets

Data from aperture synthesis telescopes is commonly stored in a table format known as
a Measurement Set (MS). The MS was first developed as part of the AIPS++ project,
which eventually became what is now known as CASA, and is a CTDS (Casacore Table
Data System) table whose layout prescribes how telescope data should be stored
regardless of how the data was recorded (Diepen, 2015; McMullin, Golap, and Myers,
2004; Diepen and Farris, 1994).

3.1.1 Structure of a Measurement Set

A Measurement Set consists of a single main table which contains the measured vis-
ibility data and sub-tables which contain auxiliary metadata about a particular ob-
servation (Kemball and Wieringa, 2000). The main table is linked to the different
sub-tables through foreign keys. These keys, which are row numbers in the sub-
tables, are stored in columns within the main tables. Fig. 3.1 shows an example MS
structure, known as a schema, whereby the items in blue indicate the table names
while the rest show the data columns contained in those specific tables.

Column cells can hold scalar values or N-dimensional arrays. Hence, 2-dimensional
visibility data of shape Nchans × Ncorrs, is stored in the DATA column of the main
table. In this case, the single cell contains data for a single baseline at a specific
time instance. Considering a single observation with multiple baselines, the DATA
column can then be seen to be 3-dimensional with a shape of Nrows×Nchans×Ncorrs.
The Nrows is equivalent to the number of samples recorded by unique baselines (recall
Eqn. (2.3)) throughout the observation, Nchans is the number of frequency channels
used for observation, while Ncorrs is the number of correlations available in the data.
We note that this data shape is not solely limited to the data column. Depending
on factors such as the length of observation, integration time τ , number of spectral
windows, number of frequency channels and the number of baselines, Measurement
Sets can be massive in size (up to terabytes for a single observation). This is because
the amount of recorded visibility points - and other auxiliary data - increases with
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Figure 3.1: An example MS schema showing the structure of the
main table and sub-tables. The blue colour indicates the table name,
while all the items are the contents of that table. This image is adapted

from (Diepen, 2015).

each of those factors. For instance, if we consider that a single visibility point is stored
in an 8-byte memory space, the memory consumed by only the visibility data can be
represented by:

Tobs
τ
×Nspw ×Nbl ×Nchan ×Ncorr × 8 Bytes, (3.1)

where Tobs is the length of the observation τ is the integration time and Tobs
τ ×Nbl ×

Nspw corresponds to Nrows.

Different calibration tools exist and have varying formats for storing calibration so-
lutions. For example, the Lofar Solution Tool (LoSoTo1) (De Gasperin et al., 2019)
stores solutions in what are referred to as solution tables (soltabs), while MeqTrees2

(Noordam and Smirnov, 2010) stores solutions in MEP tables. For this work, we shall
focus on CASA’s calibration tables.

These have a similar structure to MSs. That is, they have a main table – which con-
sists of the calibration solutions, and ancillary tables – consisting of metadata such
as the antennas and fields for which the solutions are available, as well as the type of

1https://support.astron.nl/LOFARImagingCookbook/losoto.html
2http://meqtrees.net/

https://support.astron.nl/LOFARImagingCookbook/losoto.html
http://meqtrees.net/
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Jones’ matrix for which the solutions pertain to. As discussed in Section 2.3, calibra-
tion tables are produced at each calibration step. However, they are much smaller in
size because the solutions are per antenna and per correlation. This means that Nrows

will correspond to the number of antennas available in an array, times the number of
solution intervals.

It is important to note that during the process of calibration using CASA, calibration
solutions are calculated with respect to a reference antenna which is chosen before-
hand. An appropriate choice for a reference antenna is often one that is close to the
centre of the telescope array and preferably stable (with minimal variability) during
the duration of the observation. It’s phase is assumed to be zero.

3.1.2 Accessing Measurement Set Data

Data from MSs and calibration tables can be accessed through the use of CASA, which
provides a Graphical User Interface (GUI), through which a user can browse a ta-
ble. Additionally, CASA provides an enhanced interactive Python shell (IPython3)
interface which may be used to access and perform operations on the desired data,
but whose caveat is that launching the entire CASA application is required. The
Python-Casacore4 package offers an alternative to this.

Python-Casacore is a high-level Python package that provides an interface to Casacore
tables such as MSs and calibration tables. Because cells in Casacore tables can con-
tain array data, columnar data is accessed as N-dimensional NumPy5 arrays which
enables fast and optimised computations on the data. However, NumPy performs im-
mediate evaluation operations. Thus, the result of a user-defined operation on data
is returned almost immediately. Immediate evaluation, therefore, is only suitable in
cases where data can fit comfortably in the Random-Access Memory (RAM), which
temporarily stores data ready to be processed by a Central Processing Unit (CPU).
Python-Casacore offers a way around this problem by providing an interface which
enables users to perform operations such as aggregation and averaging of data, as well
as querying (selecting) only desired or required data from MSs and gain tables before
it is loaded into RAM. This can be achieved via appropriate Table Query Language
(TaQL) (Diepen, 2018) command. This allows data to be loaded into RAM in smaller
chunks, by specifying iterative TaQL commands which will load certain portions of
the data matching the specified criterion. While this is advantageous, immediate eval-
uation of data still occurs and this may prove inefficient as datasets grow in size. With
projects such as the SKA, it is expected that the amounts of retrieved data will only
increase. Thus, an alternate method of data processing is inevitably needed.

The Python package Dask6, offers a suitable solution. While Dask exposes inter-
faces and mechanisms similar to those of NumPy, it performs what are known as lazy
evaluations. This means that operations on data are only performed when they are
explicitly triggered. Therefore, in cases whereby the data to be processed is larger
than the available RAM, behind the scenes that data can be split into smaller chunks
that can comfortably fit into the memory. Given an operation on the data, a single

3https://ipython.org/
4https://github.com/casacore/python-casacore
5https://numpy.org/
6https://dask.org/

https://ipython.org/
https://github.com/casacore/python-casacore
https://numpy.org/
https://dask.org/
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chunk is loaded into the RAM to be processed by the CPU, and an intermediate re-
sult from that operation is computed and stored in memory. This process is repeated
for all available chunks, after which all the intermediate results are combined into a
single result which is then returned (Rocklin, 2015; Dean and Ghemawat, 2008). If
the data chunks are small enough such that multiple chunks can be loaded into RAM
simultaneously, Dask is able to operate on those chunks simultaneously (in parallel).
This parallelism increases the speed of computations.

Dask-ms7 leverages the parallelisation offered by Dask to provide a wrapper around
Python-Casacore. It uses Dask arrays as the back-end rather than Numpy arrays.
Moreover, Dask-ms makes use of TaQL commands from Python-Casacore to organise
how data is read by Dask. Because of its suitability for large data, Dask-ms was chosen
as an interface to access the Measurement Set and calibration table data.

3.2 Visualisation Tools

3.2.1 BokehJS

BokehJS8 is a Python based library that utilises the JavaScript (JS) programming
language to provide high-level, web-based and interactive plots. Interactivity in this
context refers to the ability to modify the information displayed on a plot without
reloading and re-plotting the data.

A BokehJS plot can be thought of as a container for objects such as data sources,
glyphs (lines, circles, rectangles) and widgets. All these are collectively known as
models, which are defined in the Python language but have corresponding implemen-
tations in JS. When a BokehJS plot is defined, it serialises all the Python models into
a format understood by JS known as JavaScript Object Notation (JSON), whereby
the JS counterpart of BokehJS reconstitutes the models into visual objects. Plots
output from BokehJS are then stored in the Hypertext Markup Language (HTML)
format, which can be inspected using a web browser. Therefore, BokehJS represents
each data point availed to it without any form of aggregations, and its plots operate
similarly to interactive web-pages. As a result, the response of the plot to interactive
actions is dependant on the amount of memory resource allocated to the web browser.
Hence, we can comfortably use BokehJS for plotting calibration solutions because, as
intimated in Section 3.1, they are relatively small in size and thus have fewer data
points, and so can be rendered by a typical browser. The acceptable number of points
which permits meaningful interactivity is approximately thirty thousand data points.
In contrast, visibility data, which can range to over billions of points, can not be
represented by BokehJS and thus, we look to Datashader9.

3.2.2 Datashader

Contrary to BokehJS, Datashader does not plot each data point. In Datashader,
2-dimensional data of arbitrary size is projected to a fixed, user-defined 2-dimensional
grid, where each cell corresponds to a pixel and the grid dimensions correspond to
the final image size. Because of this projection, multiple points falling into the same
cell are aggregated by an incremental function, such as addition. The data is then

7https://dask-ms.readthedocs.io/en/latest/readme.html
8https://bokeh.pydata.org/en/latest/
9http://datashader.org/

https://dask-ms.readthedocs.io/en/latest/readme.html
https://bokeh.pydata.org/en/latest/
http://datashader.org/
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mapped to colours, with empty cells having an opacity of 0 (fully transparent) and cells
containing data having an opacity of 1 (fully visible) and a plot, which is an image,
is produced (Bednar, 2016). Datashader also uses Dask parallelisation - performing
computations on different chunks of data simultaneously - and therefore, can be used
to represent an arbitrarily large dataset in an optimised and efficient manner. This
makes it suitable for plotting visibility data. Moreover, it can be linked with BokehJS,
which consequently permits the embedding of interactive features into the resulting
image. Datashader plots can therefore also be saved in the HTML format.

3.3 Pipelines

A data pipeline refers to a series of transformations that a raw dataset undergoes
resulting in a processed dataset. The transformations may be performed by various
software interlinked in such a way that the output of one process becomes the in-
put of another, thus automating the entire data processing procedure. This fosters
a systematic and reproducible process. In radio astronomy, pipelines are becoming
indispensable due to the vast amounts of available data, and the need for its method-
ical exploitation (Ruiz et al., 2012). The procedure from a raw visibility dataset to a
science-ready image typically involves the reduction in the size of the dataset, possi-
bly at each step. Hence, pipelines are typically referred to as data reduction pipelines.
An example of such is the rPICARD pipeline, which uses CASA to perform Very Long
Baseline Interferometry10 (VLBI) data calibration and imaging (Janssen et al., 2019).

However, depending on the specificity of research, data reduction pipelines may re-
quire the installation, co-existence and coordinated use of multiple software within
the same environment. This has been challenging, especially within astronomy. To
address this, an Ubuntu operating system repository known as KERN Suite11 was
developed. Here, scientific software are bundled as Ubuntu packages, thus facilitating
their easy installation and enhancing their interoperability (Molenaar and Smirnov,
2018). This, as well as containerisation technologies such as Docker12, and Singular-
ity13 that provide isolated environments (containers) which house software and their
dependencies allowing them to execute smoothly, have propelled the emergence of au-
tomated data reduction pipelines that use multiple software to achieve science-ready
data products. We describe such a pipeline, CARACal, which is a data reduction
pipeline developed for the MeerKAT telescope, and is the basis on which this work
exists.

3.3.1 A Brief Description of the CARACal pipeline

CARACal (Containerized Automated Radio Astronomy Calibration), is an open-source,
end-to-end data reduction pipeline based on Python programming language. It was
developed specifically for use with data from the MeerKAT telescope (the original
name of the project was MeerKATHI), but has already been applied to data from other
telescopes which use the Measurement Set format (Michałowski et al., 2019; Maccagni
et al., 2019). CARACal performs a range of tasks, including data flagging (removing

10VLBI is a type of interferometry that involves the collection and combination of radio signals
from telescopes separated by long distances across the earth, hence creating long baseline distances.
It is however not in the scope of this work and shall not be discussed further.

11https://kernsuite.info
12https://www.docker.com/
13https://sylabs.io/singularity/

https://kernsuite.info
https://www.docker.com/
https://sylabs.io/singularity/
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bad data), calibration and imaging. At its core is a platform-agnostic radio inter-
ferometry scripting framework - also based on Python and container technologies -
known as Stimela14, which provides an interface to the different software used within
the pipeline for data processing, and manages their execution within their containers
(Makhathini, 2017).

Containers are created from what are known as images. An image is a file that consists
of specifications of the software components and dependencies to be availed inside a
container. When executed, an image spawns into a container. Stimela consists of
two types of images. The first kind are known as base images in which radio astron-
omy software from the KERN project installed. The second kind are cab images;
also container images, which consist of Python scripts that perform specific functions.
A cab image takes in an input file (the file to be operated on), and the parameters
required to perform a specific function, executes the required function on that file,
and produces its output. Different tasks using different software within CARACal such
as calibration, data inspection and imaging are performed via these cab images in an
isolated fashion. Because a container image is executed within a specific, pre-defined
environment, the tasks performed are almost guaranteed15 to execute the same way,
repeatedly, therefore promoting reproducibility. Furthermore, container images can
be executed on different machines and environments, thus making them portable.

To run an end-to-end data reduction with CARACal, a configuration file containing
parameters required for the execution of each task must be defined. The parameters
are then dispatched to the tasks in which they are required during run time, thus
requiring little or no human intervention. However, the reduction process requires an
occasional assessment to verify its quality. This can be done through the inspection
of resulting data products such as calibration tables and calibrated visibility data. In
the next chapter, we introduce Ragavi, a tool used to visualise these products within
the CARACal pipeline.

14https://github.com/SpheMakh/Stimela
15Given sufficient resources such as RAM and disk space

https://github.com/SpheMakh/Stimela
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Chapter 4

Pipeline Visualisation Tools

Calibration is a vital process that allows for minimisation of the errors present in
observed visibility data, thus enabling the reconstruction of a true sky (refer to Sec-
tion 2.3). Therefore, it is crucial to ensure that it is done properly and effectively.
A way to ensure this is by assessing the quality of the calibration products and the
final calibrated visibility data by means of plots. If visualised correctly, these may
provide additional and useful insights on the observed data, in addition to an expe-
dited error identification and resolution process. Plots from which one can directly
trace the origin of a data point with the click or hover of a mouse over that data point
can be beneficial1. Such plots are known as interactive plots, and can be dynamically
modified, giving one control over what is visible within a plot.

Tools such as JPlotter2, Matplotlib3 and CASA (specifically, its plotms and plotcal
tasks) have made interactive visualisation of calibration data products possible. They
are partly Python based, optimised, robust, and reasonably intuitive to use and fairly
well documented. However, the interactivity of these tools is only available in online
mode, that is, it requires an X11 session to be running, and specific applications to
be started up on a host having access to the data. These applications can be time-
consuming to install and set up. Moreover, data must be loaded into the tools each
time interactive plots are required. If the data is being processed on a remote com-
pute cluster (as is increasingly the case in radio astronomy), online plotting becomes
cumbersome or even impossible.

The above tools can also make plots in offline mode, by rendering them into a static
image in a format such as Portable Network Graphics (PNG), Joint Photographic
Experts Group (JPEG) or Scalable Vector Graphics (SVG). This is more practical in
a remote computing environment but sacrifices the element of interactivity.

In this chapter, we present RAGaVI, a Python based visualisation tool that gener-
ates interactive gain and visibility plots that can be viewed offline, by employing the
HTML (Hypertext Markup Language) format, which requires only a standard web
browser (rather than online GUI sessions) to view and interact with.

Note that RAGaVI is the author’s work.
1Origin here can refer to the antenna, baseline, scan, spectral window or any other information

associated with that data point.
2https://github.com/haavee/jiveplot
3https://github.com/matplotlib/matplotlib

https://github.com/haavee/jiveplot
https://github.com/matplotlib/matplotlib
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4.1 RAGaVI

RAGaVI (Radio Astronomy Gains and Visibilities Inspector)4 is an open-source, Python
based tool that generates interactive plots, given inputs as MSs or calibration tables.
We previously defined the interactivity of a plot in Section 3.2.1, as the ability to
dynamically modify its appearance, without the need for repeatedly reloading the
data, or reproducing a new plot. RAGaVI is divided into two parts as suggested by its
name: Ragavi-gains; responsible for plotting calibration solutions and Ragavi-vis;
for plotting visibility data. Henceforth, we shall refer to the plots yielded by these
tools as gain plots and visibility plots respectively. RAGaVI can be easily installed via
the standard Python package installation tool pip as it is available on the Python
repository PyPI5.

4.2 Architecture

RAGaVI depends on a few other packages for its functionality. Fortunately, all the
software is available in the Python ecosystem and easily accessible and installable via
pip. We now discuss the roles of some of the Python packages that feature prominently
in RAGaVI.

4.2.1 Data Access

To access MSs and calibration table data, RAGaVI makes use of the tool Dask-ms6,
which forms a proxy for Python-Casacore while taking advantage of Dask’s lazily
evaluated computations. This is in contrast to Python-Casacore-based applications,
which perform strict computations through NumPy.

4.2.2 Computation

Computations in RAGaVI are performed by Dask7 which provides an interface for fast
and efficient computations over large amounts of data. It does so by dividing the data
into smaller chunks. This allows to both process the chunks in parallel (by fitting
multiple chunks into RAM), increasing the computational speed, while automatically
supporting out-of-memory computation (by loading chunks from disk in an iterative
manner). Dask is particularly well suited for visibility data, which can be enormous
in size (compared to available memory).

4.2.3 Visualisation

BokehJS and Datashader are the visualisation back ends to Ragavi-gains and Ragavi-vis
respectively. BokehJS was chosen because it offers the functionality of producing in-
teractive plots with a reasonable number of data points as HTML files. Furthermore,
it is well integrated with Datashader, whose modus operandi is fundamentally differ-
ent and thus can be used to plot a much larger number of data points as compared
to BokehJS. Nevertheless, its interactivity is conveniently furnished by BokehJS.

4https://ragavi.readthedocs.io/en/latest/
5https://pypi.org/project/ragavi/
6https://xarray-ms.readthedocs.io/en/latest/readme.html
7https://dask.org

https://ragavi.readthedocs.io/en/latest/
https://pypi.org/project/ragavi/
https://xarray-ms.readthedocs.io/en/latest/readme.html
https://dask.org
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4.3 User Interface

Unlike the other aforementioned visualisation tools, RAGaVI has a Command Line In-
terface (CLI) rather than a GUI. Therefore, users can use it by just specifying the
required and desired arguments from the terminal, rather than launch an entire ap-
plication or application suite. Fig. 4.1 and 4.2 show the arguments (options) available
for Ragavi-gains and Ragavi-vis respectively.

Figure 4.1: Command line options for Ragavi-gains.

The mandatory argument for Ragavi-gains is:

• table: the calibration table that is to be plotted.

This may be supplied as a space separated list containing different table names, which
instructs Ragavi-gains to create a single output plots of both tables. The type of
gain table can also be supplied using –gaintype, otherwise, it is inferred from the
gain table’s metadata. An example call to Ragavi-gains is:
$ ragavi -gains --table path/to/table.B0 path/to/table2.G0

Listing 4.1: Instructing Ragavi-gains to plot multiple tables and
store both plots in the same single HTML file.

from which a single HTML file with plots for both the B-Jones tables and the G-Jones
tables will emerge. Besides a CLI, Ragavi-gains can also be used in the Jupyter note-
book environment through a single function call.

The basic arguments required to produce a visibility plot for Ragavi-vis are:

• ms: MS to be plotted.
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• xaxis: The desired x-axis data.

• yaxis: Desired y-axis data.

A simple invocation of Ragavi-vis would then be:
$ ragavi -vis --ms path/to/table.ms --xaxis time --yaxis amplitude

Listing 4.2: A call to plot amplitude vs time Ragavi-vis.

which yields a plot of amplitude against time. In the next section, we discuss some
of the remaining optional arguments and dissect the features of Ragavi-gains and
Ragavi-vis.

Figure 4.2: Command line options for Ragavi-vis.
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4.4 Features

While some features are common between Ragavi-gains and Ragavi-vis, most have
a different implementation or are entirely different.

4.4.1 Data Selection

For Ragavi-gains; ant, field, ddid, t0 and t1 are the arguments that may be
used to select antennas, fields, spectral windows, and time range respectively and con-
sequently reduce the size of the data to be plotted. If supplied, only data associated
with the chosen quantities will be included in the gain plot; otherwise, all the available
data is plotted by default.

Data selection in Ragavi-vis can be achieved by supplying values for arguments chan,
ddid, field, scan, corr, xmin, xmax, ymin and ymax. These serve the purpose
of channel, spectral window, field, scan, correlation, x-axis range and y-axis range
selections respectively. All the data is plotted by default if no selections are made.

Because gain tables and MSs are both CTDS tables (recall Section 3.1), the selection
arguments for both Ragavi-gains and Ragavi-vis are deferred to TAQL (Diepen,
2018) queries. To further reduce the data size, a supplementary argument taql exists
in both the visibility and gain plotter, which allows a user the choice of making
additional selections on the data.

4.4.2 Chunking and Averaging

Chunking, in this context, refers to the process of dividing a large dataset into small
partitions known as chunks, which can fit within some given RAM size, to allow
computations to be performed on them. The enormous size of visibility data neces-
sitates chunking due to constraints on computational resources. Ragavi-vis exposes
a chunking interface through the chunks command-line option, which allows a user
to define the size of chunks that will be loaded into memory at any given time. The
chunking back end is provided by Dask-ms.

Besides chunking, visibility data size can be reduced by averaging over frequency
or over time. The parameters tbin and bin allow for exactly this. A user may
select the number of channels of visibility data to averaged together or a time period
in seconds over which the data will be averaged. Ragavi-vis then relays these to
Codex-Africanus (Perkins, 2018), whose averaging tool is used. We note, however,
that averaging is only performed after data selections have been made if required.
Moreover, for time averaging, only data within the same scan and field are averaged
together.

4.4.3 Computing Resource Allocation

Ragavi-vis exposes the mem-limit and num-cores arguments which give a user con-
trol over the number of CPU cores to be used and the amount of RAM available to
each computation executing in a core. A CPU core is the facility of the CPU that
actually performs computations.
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4.4.4 Layouts

Per gain table, Ragavi-gains produces a pair of plots placed side by side with each
other, whose y-axes correspond to either amplitude and phase (which is the case by
default), or the real and imaginary parts (see Fig 4.3 for a demonstration of this
layout). The option doplot allows a user to chose between the two representations.
Points on the plot are colourised based on antenna number, with colours determined
by the argument cmap.

At the bottom of each generated plot, there is a table containing a summary of the
median values per spectral window, field and correlation. An exception to the dual
plot layout is the output yielded from the delay calibration table, the K-Jones table,
whereby only a single plot is produced since the delays are real quantities. The plot
sizes are not rigid and scale up or down depending on the size of a user’s browser
window. It is important to clarify that given a single gain table, Ragavi-gains will
produce a single output file containing a pair of plots. However, given multiple gain
tables at once, as illustrated in Listing 4.1, the output file will consist of a pair of
plots for each available table. Therefore, a Ragavi-gains output file containing plots
of calibration solutions for the entire calibration process can be generated with a
single call. Currently, gain tables that can be plotted are (i) G-Jones, (ii) B-Jones,
(iii) K-Jones, (iv) D-Jones, (v) F-Jones, all of which have been described in Section
2.3. A summary of supported tables is given in Table 4.1. Refer to Appendix A for
more on Ragavi-gains layouts.

Table type x-axis y1-axis y2-axis
K-Jones (Delay) Antenna / Time Delay (ns)

B-Jones (Bandpass) Frequency (GHz) & Channel A / R P / I
G-Jones (Complex gain) Time A / R P / I

D-Jones (Leakages) Frequency (GHz) & Channel A / R P / I

Table 4.1: A summary of calibration tables currently supported for
plotting by Ragavi-gains and their expected axes quantities. The
x-axis column denotes values found in the x-axes and are common
amongst both pairs of plots, while y1 and y2 columns are the y-axes
values and have been separated as they are different for each plot. The
letter A, P, R, I stand for Amplitude, Phase, Real and Imaginary.
K-Jones tables yield a single plots and hence, there is no value for the

y2-axis column.
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(a) A sample delay calibration solution plot layout.

(b) Sample plot showing gain calibration solutions with amplitude, phase against time. Ragavi-gains
generates a pair of plots for each calibration table, with a summary of median values appended on a

table below the plots.

Figure 4.3: An illustration of layouts for plots generated by
Ragavi-gains. For each delay calibration table, a single plot is pro-
duced as in 4.3a whereas for all the other calibration tables, a pair of
plots is generated with amplitude and phase or real and imaginary on

the y-axes as in 4.3b.

By contrast, Ragavi-vis only yields a single plot per output file, depending on the
users choice of the x and y axes. This plot also scales up and down with the size of
the browser or monitor. Furthermore, an option colour-axis exists, allowing a user
to choose a column in the MS over which to categorise the data to be plotted. These
categories manifest as differently coloured data points on the resultant plot. A colour
bar is also added to the side to aid in identification, as is illustrated in Fig. 4.5. If
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colour-axis is not supplied, the default plot’s colouring scheme is determined by the
density of points at that particular position on the plot. This colour can be changed
by supplying the cmap argument. Axes values supported by Ragavi-vis are shown in
Table 4.2.

xaxis yaxis colour-axis

amplitude real amplitude corr antenna1
antenna1 scan phase scan baseline
antenna2 time real spw
frequency uvdistance imaginary field
phase uvwave chan

Table 4.2: Options supported by the xaxis, yaxis and iterate
arguments of Ragavi-vis.

4.4.5 Interactivity

BokehJS makes use of JavaScript, a scripting language that can execute on the web
browser level, to create interactive plots. Besides, it offers an interface to JavaScript
through which the developer can define and embed custom interactive actions, known
as callbacks, which only execute after certain events, such as button clicks and mouse
scrolls occur. Taking advantage of this interface, Ragavi-gains places a control panel
atop the plots which allow the user to select:

• A group of antennas whose data will be made visible. Each group consists of up
to 16 antennas. In the case of more, additional selection group selection buttons
are generated.

• Fields whose data will be displayed. If there are multiple fields in the MS,
Ragavi-gains plots data for all the fields denoted by different markers. Markers
associated with a field are also displayed here.

• Desired spectral window. All are plotted by default.

• Correlations to be plotted. All correlations are plotted by default.

• Whether or not to show data that is flagged out.

• The opacity and size of the markers.

• Whether plot legends will be visible or not. Legends are hidden by default as
they may take up a lot of screen space.

Moreover, because Ragavi-gains produces a pair of plots for each input gain table,
these plots are linked together in a way that allows some actions performed on one
plot to be replicated on the other. Panning, zooming and data selection on the plot
function in this way. For example, if data is selected in the first plot, the same data
points are selected on the second plot, while those not selected are greyed out. Ad-
ditional information about a point under observation, such as its spectral window
number and scan number may be displayed by hovering the mouse pointer over that
point. This is useful in identifying outliers in the data. Clicking on the legend of a
specific antenna can also make that antenna’s data visible or hidden.
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(a) A zoomed in plot showing amplitude and phase bandpass calibration solutions whereby solutions
of three antennas have been made visible while the rest have been hidden. Solutions of specific

antennas can be made visible by clicking on their corresponding legends.

(b) The same plot as in 4.4a zoomed out, where solutions of all the antennas are shown. Selections
made in the amplitude plot are also selected in the phase plot. This is possible as the x-axes of the
plots are linked. Hover tooltip shown on the amplitude plot provides additional information about a

particular point on the plot.

Figure 4.4: Demonstration of the interactive features of
Ragavi-gains.

Contrary to Ragavi-gains, the tool panel of visibility plots controls only zooming
and panning. This reduction in functionality is due to the fact that while BokehJS
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plots every single data point it is provided with, Datashader aggregates the data and
recasts it onto a user-defined grid, thus forming an image, which becomes the plot(see
Section 3.2.2) (Bednar, 2016). The aggregation enables the plotting of extremely large
datasets (case in point being visibilities) that would otherwise exceed the capabilities
of the browser if rendered as individual points, but it breaks the link to individual
data points, thus making some of the more advanced interactive features offered by
Ragavi-gains difficult to implement.

Figure 4.5: A plot generated by Ragavi-vis of amplitude vs time
colourised by correlations.

4.5 Role of RAGaVI in the CARACal pipeline

CARACal is an automated data reduction pipeline (described in Section 3.3.1). Like
any pipeline, quality assurance requires the ability to examine its data products (both
intermediate and final). It is for this reason that RAGaVI exists. RAGaVI is incor-
porated as a Stimela cab image (recall Stimela cab images in Section 3.3.1) which
performs the task of generating the plots. Arguments required for plot generation are
extracted from the CARACal configuration file. The CLI nature of RAGaVI allows for
straightforward invocation from within the pipeline. Moreover, the plots produced
are interactive, thus enabling the encoding of multiple pieces of useful information in
a single plot document. To this extent, Ragavi-gains allows plots of different cali-
bration solutions to be contained in a single document. However, their interactivity
is not confined to a GUI server.

Interactive plots promote data exploration because functions such as zooming, pan-
ning and filtering of visible information on the plot may help in the identification of
underlying problems or trends within a given dataset. For example, visualised cal-
ibration tables can help determine the quality of calibration solutions, which then
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dictates the calibration strategy. Additionally, visualising visibility datasets before
the reduction process may assist in distinguishing RFI or bad scans thus guiding the
flagging process.

The interactivity of RAGaVI plots is not limited to the machine from which they are
produced. Therefore, portability of the plots means they are widely distributable,
giving collaborators or peers a chance to scrutinise and review the data reduction
products, in addition to the science-ready result. They are also embeddable into
Jupyter notebooks and web pages and thus can be useful in cases where pipeline re-
ports outlining information about the data reduction are generated in notebook form.

It is worth noting that RAGaVI is not restricted for use within the CARACal pipeline,
but is also usable in other pipelines whose calibration tables or visibility datasets
follow the CTDS table system (refer to Section 3.1).

4.6 Example Use-case

Based on the definition of RAGaVI’s role in Section 4.5, we demonstrate the practi-
cality of RAGaVI. For this example, we inspect some visibility data before and after
calibration, as well gain solutions resulting from the calibration process.

It is worth pointing out that the example presented here is not necessarily accurate
and is not meant to present any scientific results. Rather, it only serves to practically
exhibit the usefulness of RAGaVI. It is also based on a calibration and imaging tutorial
demonstrated by B. Hugo and is therefore not my original work.

4.6.1 Before Calibration

One of the first steps towards data calibration is flagging. Therefore, there is a need
to inspect one’s data beforehand so as to determined which sections of data are to
be flagged out. We use Ragavi-vis to first make two plots to aid in this. Note that
the colours chosen in these example plots are not iterations over any of the data in
the MS. Rather, they are indicative of the number of points that fall within a certain
area of the plot. Hence, the colour yellow indicates where the are the most number of
points, while the navy blue indicates where are the least number of points.
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(a) A plot of visibility amplitude against frequency showing some RFI

(b) Amplitude against UV Distance (m) showing the UVdistance in which RFI is visible.

Figure 4.6: MS before flagging

Ragavi-vis’s hover tooltips in Fig. 4.6 indicate that for this dataset areas close to
≈ 1.089 GHz in Fig. 4.6a and around ≈ 105m in Fig. 4.6b may contain some bad
data that needs to be flagged out. This manifests as the higher amplitude values with
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respect to the rest of the data. Knowing approximately which range of frequencies
and UV distance to flag, new plots of the same type were generated in Fig. 4.7.

(a) Amplitude vs Frequency after flagging

(b) Amplitude vs UV Distance (m) after flagging

Figure 4.7: MS after flagging
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Inspection after flagging important as it helps ensure that the process is done appro-
priately and may immediately reveal if too much or too little data has been removed.
Here, it is visible that the bad data has been excluded.

At this point, we examine plots of the raw visibility data for the primary and secondary
calibrators. Ideally, it is expected that the calibrator phases are centred around a
phase angle of 0o because the calibrators are located at the phase centre of the target
field so that their phases can be assumed to be zero. However, because of corruptions
in the data, it is not so as Fig. 4.8 illustrates. Here, we see that the amplitude spreads
widely over phase and thus is not centred around zero degrees. Calibration is thus
required to correct this.

Figure 4.8: Amplitude vs phase for the calibrator fields before cal-
ibration. The primary (bandpass) calibrator is on the left while the

secondary (gain) calibrator is on the right

4.6.2 During Calibration

Delay calibration was performed first, followed by bandpass and complex gain cali-
bration. Flux scaling was performed last. Before calibration solutions are applied to
the data, we examine them to see if there are any irregularities. The delay, bandpass
and flux scales solutions in Fig. 4.98.

8The calibration solutions and visibility data presented in this section are similar to those presented
in Section 4.4.
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(a) Delay calibration solutions showing delays per antenna.

(b) Bandpass calibration solutions. They show some slight odd behaviour at around 1.09GHz for the
amplitude vs channel plot. This could be a result of bad flagging.
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(c) Flux scaled solutions for both the calibrator field. The primary calibrator is marked by the
circular shape, while the secondary calibrator is marked by the diamond shape.

Figure 4.9: K, B and F Calibration solutions.

4.6.3 After Calibration

Generally, the solutions do not show any major deviations. For instance, all the delay
values (Fig. 4.9a) lie within a few nanoseconds for all the antennas, while the bandpass
solutions all surround the value of one (Fig. 4.9b). There is some odd behaviour at
around channel 107 (1.09 GHz) and this could be and indication that flagging was
not done properly. The fluxes where correctly scaled as we see in (Fig. 4.9c) that
the primary and secondary calibrators’ values are almost similar. Seeing as the gains
were proper, they were then applied to the MS to calibrate the data. A look at the
amplitude versus phase plot in Fig. 4.10 for the calibrated data shows that the am-
plitudes are now centred around zero. While there is still some spread, it is reduced
as compared to that shown in Fig. 4.8.

This dataset can be further calibrated and flagged to improve its quality before it is
imaged, but, because calibration is not the purview of this thesis, we shall not go into
the details. Nevertheless, it is evident that visualisation tools such as RAGaVI play a
significant role and are indispensable during the process of flagging and calibration.
It is important that these tools are fast, portable and rich so as to accelerate the
generation of new scientific knowledge.
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Figure 4.10: Amplitude vs phase for the calibrator fields after cali-
bration
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Chapter 5

Ragavi vs CASA Plotms

This chapter compares RAGaVI to Plotms in terms of their interface layout and per-
formance. For performance metrics, we primarily compare Ragavi-vis to Plotms,
owing to the size of visibility data. Metrics used are therefore related to plotting time
and RAM usage and their relationship with increasing MS size. We discuss the test
conditions, test metrics and results, and then interpret them.

Test Benchmarks

We run both RAGaVI and CASA Plotms v.5.4.1-31 on an isolated machine with 512GB of
RAM and one AMD EPYC 7702P CPU with 64 physical cores each clocked at 2.0GHz.
The operating system is Ubuntu 18.04.4 LTS. We first compare the interfaces of both
tools, showing the differences between the plots generated by Plotms and Ragavi-vis.
We then contrast the performance of both tools in terms of the time taken to generate
plots (plotting time) and their peak RAM usage during execution with an increasing
number of data points to be plotted. Time profiling was performed using a simple
timing function (i.e. “wall clock time”). The memory-profiler1 package was used
to profile the RAM. Each test was repeated approximately five times to improve the
accuracy of the results.

5.1 Interface

Fig. 5.1 contrasts between plots produced by Ragavi-gains and Plotms. While
Ragavi-gains generates plots that can be modified as shown in Fig. 5.1b, Plotms
produces static plots which constrain a user to a single view of the plotted data, as
shown in Fig. 5.1a. Plotms does offer recourse to interactivity through the use of
a GUI, as illustrated in Fig. 5.2a, which shows a plot of amplitude against time for
an MS. The GUI supports multiple useful data modification and selection options
which give users control over the visible aspects of data. Although useful, this may be
somewhat prohibitive for use within automated data pipelines as multiple static plots
may be required to capture the different data aspects. Furthermore, these plots are
only interactive for as long as the GUI is active. While Ragavi-vis does not provide
as many options as Plotms, it provides an avenue for data exploration without the
need for re-plotting it. Plots rendered can be stored for later analysis, with the same
interactivity level available offline.

1https://github.com/pythonprofilers/memory_profiler

https://github.com/pythonprofilers/memory_profiler
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(a) Bandpass solutions plotted using Plotms. This is a static plot (PNG format) which is limited to
a single view of the bandpass calibration solutions. To modify the view, the data must be plotted

again.

(b) The same plot as that in Fig. 5.1a generated by Ragavi-gains. Data view can easily be changed
using the interactive buttons atop the plots. Additional information about a specific data point such
as the scan in which it belongs and the spectral window, can be revealed by hovering about that

point.

Figure 5.1: A layout comparison of bandpass calibration solutions
plot from Plotms and Ragavi-gains.
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(a) The Plotms GUI featuring an Amplitude vs Time plot. This GUI exposes numerous options for
selecting and modifying the visible amounts of data points.

(b) A similar plot to Fig. 5.2a, Ragavi-vis does not require a GUI. The plot generated is self
contained and remains interactive.

Figure 5.2: Comparing Plotms and Ragavi-vis.
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5.2 Performance

To quantify the performance of Ragavi-vis, we first establish the combination of plot
axes that:

1. Takes the least amount of time to plot, thus implying a lesser computational
load,

2. Takes the most time consuming and thus, presumably, the most computing
resource-intensive.

This is done using Plotms, as it is the de facto standard visibility data plotting tool.
Our test dataset has a size of ≈ 0.94GB and contains ≈ 45.44 million visibility data
points. No data selections or averaging was done.

Figure 5.3: Average time taken by Plotms to plot visibility data
for various combinations of x and y-axes. For context, we limited the
axes to those available in Ragavi-vis. Plots involving UV distance in
wavelengths appear to take the most time and are thus assumed to be

the most resource intensive.

Based on the results shown in Fig. 5.3, we observe that the most time-consuming
plots are those where the x-axis is UV distance in wavelengths (UVWave) and more
specifically, the plot of phase against UVWave. This is an expected result because the
data being plotted, in this case, must be computed and thus, is not readily available
in the dataset. On the lower end, there are multiple plots that take approximately
the same amount of time to be generated as seen in Fig. 5.3. Our plot of choice here
is that of real vs imaginary data, because it is a fairly common diagnostic plot. More-
over, it is expected to require little computational effort as complex visibility data is
intrinsically stored as a real and imaginary part. Consequently, we based all further
performance tests on these two plot types. Note that we consider “plotting time” as
the time from when the plotting tool is launched until the moment when a PNG or
HTML file containing the plots is generated.
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We utilise the same dataset to investigate and compare the time taken by Ragavi-vis
and Plotms to generate the visibility amplitude, phase, and real data against UV dis-
tance in wavelengths and the imaginary data. This yields the results illustrated in
Fig. 5.4.

Figure 5.4: Comparison of average times taken by Ragavi-vis and
Plotms to generate plots for amplitude, phase, real and imaginary
vs UV Distance in wavelengths, and amplitude, phase and real vs

imaginary data for a single dataset.

We see that Ragavi-vis is consistently faster by a factor of 4 or more. This per-
formance may be attributed to two primary factors directly linked to Ragavi-vis’s
back-ends. Firstly, as discussed in Section 4.2, Ragavi-vis makes use of Dask to
perform computations. Here, data is divided into smaller sizes that can fit in RAM.
Dask, in the case of Ragavi-vis, introduces parallelism through the use of threads,
which allow for the processing of the multiple chunks available in RAM simultane-
ously, thereby improving the speed of execution (see Section 3.1.2). Secondly, the
plotting back-end for Ragavi-vis, Datashader, also utilises Dask to perform parallel
computations (see Section 3.2.2). This allows Ragavi-vis to better exploit the mul-
tiple cores available on our test machine.

A test dataset of 45 million data points is relatively small in comparison to a typical
MeerKAT observation, which may contain billions of visibility points. While aver-
aging or data selection may be performed to reduce the number of data points and
increase the speed at which plots are generated, it may occasionally be desirable to
plot a dataset in its entirety, in order to reveal its structure or problematic aspects.
Hence the need for a visualisation tool that performs such plotting within a reasonable
time frame.

We thus test the scalability of both Ragavi-vis and Plotms with increasing dataset
sizes, i.e. increasing number of visibility data points. For this test, we consider the
plot of the visibility phase versus UV distance in wavelengths as it provides an average
upper limit of the plotting times, and was deemed to be the most time and resource
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consuming due to the amount of computations before the data is ready for plotting
(see Fig. 5.3). We also consider the plot of real versus imaginary visibility data, which
provides an average lower limit of the plotting times and can give an insight into the
actual plotting time without significant computations.

In our testing, we have noted that, if left to its own devices, Ragavi-vis could use
a lot more RAM and CPU cores than Plotms. This behaviour is driven by the Dask
scheduler. In comparison, Plotms’ documentation suggests that it uses only three
major threads for execution: a caching thread, a plotting thread and a plot export
thread. Caching refers to the process of storing data temporarily within the RAM
to improve the throughput of data processing. These threads all operate sequentially
and are thus directly dependent on the output of each other. Plotms also has a max-
imum cache memory storage of 25 GB which causes the limitation on the number
of visibility data points that can be plotted simultaneously (around 4.29 billion). In
other words, Plotms will not exploit more than three cores and 25 GB of RAM, even
if the machine offers considerably more (as our test machine did).

It could be said that Dask, and therefore Ragavi-vis, is simply better at exploiting
RAM and CPU. In most real-life scenarios these resources are very likely to be avail-
able: large visibility datasets tend to live on large machines since small machines are
anyway unable to cope with the standard steps of calibration and imaging at these
data sizes. However, in the interest of a fair comparison, we tried to provide two test
cases for Ragavi-vis. In the first case (“unconstrained”), Ragavi-vis was allowed to
use as much RAM and as many CPU cores as available. In the second case (“con-
strained”), we attempt to constrain Ragavi-vis to the same computational resources
that Plotms uses. For the constrained case, we limit Ragavi-vis to three cores, each
executing a single thread. We also allocate 8 GB to each thread, constituting a total
of 24 GB, which is close to Plotms’ caching memory limit.
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5.2.1 Performance Without MS Averaging

The results in this Section are based on the said test setup without any averaging
being performed on the MS before plotting was done. Table 5.1 shows the details
concerning the datasets used for the scaling tests, as well as results from Plotms and
the unconstrained case of Ragavi-vis. The same results are illustrated by Fig. 5.5.

Tool Dataset Points (B) Plot Plotting time (min)
Ragavi-vis 1 ≈ 0.0454 phase vs uvwave 0.092± 0.000

real vs imag 0.081± 0.001
2 ≈ 0.2164 phase vs uvwave 0.197± 0.001

real vs imag 0.176± 0.001
3 ≈ 1.7769 phase vs uvwave 4.985± 0.022

real vs imag 4.741± 0.004
4 ≈ 3.4340 phase vs uvwave 1.311± 0.117

real vs imag 0.751± 0.005
5 ≈ 4.2134 phase vs uvwave 4.583± 0.160

real vs imag 4.105± 0.005
6 ≈ 4.3104 phase vs uvwave 4.470± 0.020

real vs imag 4.106± 0.025
7 ≈ 4.4181 phase vs uvwave 4.501± 0.008

real vs imag 4.112± 0.013

Plotms 1 ≈ 0.0454 phase vs uvwave 0.424± 0.002
real vs imag 0.347± 0.003

2 ≈ 0.2164 phase vs uvwave 1.438± 0.010
real vs imag 1.182± 0.009

3 ≈ 1.7769 phase vs uvwave 11.319± 0.042
real vs imag 8.410± 0.053

4 ≈ 3.4340 phase vs uvwave 19.090± 0.134
real vs imag 14.224± 0.124

5 ≈ 4.2134 phase vs uvwave 23.544± 0.086
real vs imag 17.096± 0.120

6 ≈ 4.3104 above limits

Table 5.1: Number of visibility data points (in billions) available in
different datasets and the time it takes to plot those points in both

Ragavi-vis and Plotms.

As expected, Fig. 5.5 shows an increase in the plotting times for both tools with
increasing dataset sizes. Additionally, we see that plotting real versus imaginary
data takes a shorter time in comparison to plotting phase against UVWave. How-
ever, Ragavi-vis is faster in all cases. Note that there is a limit to the number of
points that Plotms can plot in a single instance, which is approximately 4.2949 billion
visibility points. We see that Ragavi-vis is well able to plot above this limit (our
testing stopped at ≈ 4.41 billion points), and is still retaining the same plotting speed.

The plotting time of real against imaginary data is lower than that of phase against
UVWave is because visibility data in the former case is readily available in the real
and imaginary form and thus does not need to undergo any processing to arrive at. By
contrast, more computation is required to arrive at the UV Distance in wavelengths, as
it necessitates calculations of the available UV data over all the available frequencies.
This is further escalated by the calculation of the phase angle from visibility data.



Chapter 5. Ragavi vs CASA Plotms 47

Figure 5.5: Comparison of average plotting times in minutes for
Ragavi-vis case one and Plotms with increasing MS size.

Figure 5.6: Representing the same information in Fig. 5.5 and in-
cluding results for the constrained Ragavi-vis (triangle marker), in
which an attempt is made to constrain Ragavi-vis the same compu-
tational resources as Plotms. In this plot, there are more data points
associated with Ragavi-vis than Plotms because Plotms can plot a

maximum of approximately 4.295 billion points.

A further look at the more comprehensive plot including the constrained case for
Ragavi-vis, Fig. 5.6, reveals interesting and unexpected outcomes. To begin with,
the difference between plotting times for the constrained and unconstrained cases for
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Ragavi-vis seems to be very slight. Secondly, plotting a dataset of 2 billion points
takes a longer time than plotting a dataset of 3.5 billion points. We suspect that the
the first outcome may be an effect of increased communication between Dask’s sched-
uler and its workers. This result suggests that having more computational resources
and increased parallelism does not guarantee better performance. The second result
is a consequence of having more chunks in the smaller dataset than in the larger one.
During testing, the same standard chunk size (5000 in the row dimension while the
channel and correlation dimensions remained the same) was used for all the datasets.
However, the smaller dataset had a more rows and fewer channels (8884650 x 100 x
2), while the situation was reversed for the larger dataset (419195 x 4096 x2) (see
Section 3.1 for the structure of MS data columns). Because chunking mainly occurs
in the row axis, the smaller dataset contained a significantly larger number of chunks,
hence, taking more plotting time.

We also speculate that the minimal difference in plotting time between phase against
UVWave and real against imaginary data for Ragavi-vis is because Dask chunks data
in both cases the same way, eventually resulting in the same number of partitions.
The difference in the plotting times between the two plot types could indicative of
computational time.

Figure 5.7: A comparison of the maximum RAM used by both
Plotms and Ragavi-vis for an increasing number of visibility points
(MS size). The line with triangular markers demonstrates the case
where an attempt was made to constrain Ragavi-vis to the same
resources as Plotms while that with circular markers is for the case

where Ragavi-vis has access to all the resources.

On the other hand, an investigation on the RAM usage of Ragavi-vis versus Plotms
also demonstrates some interesting results, as illustrated in Fig. 5.7. We see that
there is an extreme peak in RAM usage for one dataset in the unconstrained case
of Ragavi-vis. This is the same dataset for which there is a dip in plotting time
in Fig 5.6. The reason is that the chunk size in this dataset was larger than that
of its immediate neighbours because it had a greater number of channels (it had
4096 channels while its neighbours had 100 and 400 channels). This peak is also
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visible in the constrained Ragavi-vis, revealing that larger chunk sizes will certainly
result in more utilisation of the available RAM. The constrained case shows lower
RAM consumption (with respect to Plotms and the unconstrained Ragavi-vis) but
demonstrates an almost similar profile to that of the unconstrained case, while Plotms’
RAM usage steadily increases with increasing dataset sizes. This figure depicts that
with some fine-tuning, it is possible with Ragavi-vis to control the amount of RAM
used even for large datasets.

5.2.2 Performance With MS Averaging

The final phase of Ragavi-vis’s assessment entailed testing its performance while
averaging is enabled. Data averaging reduces the data size and thus, a reduction in
plotting time and memory usage can be expected. For this test, all datasets were
averaged over every 100 seconds and every 30 frequency channels.

Figure 5.8: A comparison of the average plotting time for Plotms
and Ragavi-vis (case one and two) when averaging is active for an

increasing number of visibility points.

Fig. 5.8 indicates that in this regime, Ragavi-vis is still faster in comparison to
Plotms, with both the constrained and unconstrained tests showing almost similar
results. Once more, we ascribe this behaviour to the parallelised nature of Dask’s op-
erations. As intimated in Section 4.4, averaging is tasked to Codex-Africanus which
in turn similarly uses Dask to perform its functions. The reason for the dip with the
plots concerning Ragavi-vis in Fig 5.8 is the same as that explained in the unaver-
aged case. It should be mentioned that, as expected in this context, Plotms is capable
of plotting above its data points’ ceiling due to the obvious reduction in data sizes,
hence the availability of data after its limit.

A probe into the memory usage reveals that, despite the rise with increasing MS
sizes, the memory consumption of Ragavi-vis considerably reduces when averaging
is in use. Constraining Ragavi-vis leads to a further decrease in the RAM usage.
Nonetheless, Ragavi-vis’s RAM consumption remains higher than that of Plotms
as demonstrated by Fig. 5.9. We also highlight that the type of plot (phase versus
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uvwave or real versus imaginary) appears to have little to no effect on the RAM usage
for both tools.

Figure 5.9: A comparison of the maximum RAM used by both
Plotms and Ragavi-vis (case one and two) when averaging is active

for an increasing number of visibility points.

5.2.3 Discussion

In general, Ragavi-vis emerges as a significantly faster plotting tool as compared to
Plotms. However the price to pay for the speed so far, and in some cases, has been an
increased RAM utilisation, which is directly linked to the number of cores in use at
any given point. We have demonstrated that in certain instances, increasing compu-
tational resources available to Ragavi-vis does not necessarily result in the intended
speed up, and rather has the opposite effect or no effect at all. Therefore, it is evi-
dent that the combination of the number of cores (thus workers), memory availed to a
CPU core, and data chunk size have a significant influence on the achieved parallelism,
and thus performance, of Ragavi-vis. Therefore, their choices, though tricky, may
require careful consideration from the user in order to achieve the intended efficient
utilisation of resources utilisation, in addition to maintaining a reasonable time frame
for the generation of plots.

While it is true that Ragavi-vis can still be streamlined, we have shown that it is
possible to generate plots faster than the available alternative tools even with exceed-
ingly large datasets. It is also worth noting the size of output files remains constant
regardless of the MS size because the former only depends on the configured canvas
size. Currently, each file is approximately 11.6 MB in size.

5.3 Challenges

A major challenge encountered during the development of Ragavi-vis is that: not
providing explicit x- and y-axis ranges beforehand also increases the time taken to
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generate a plot. This is especially true for large datasets, as Dask will need to per-
form a full additional pass through the data in order to calculate the maximum and
minimum values and thus define the ranges. Ragavi-vis partially alleviates this by
allowing user-defined ranges upfront – the user is encouraged to make use of this fea-
ture for very large datasets.

Furthermore, due to data aggregation, it is challenging to add more interactive features
to stand-alone visibility plots. Implementing additional levels of interactivity may
require running a web server to interact with Datashader. The latter solution would
be somewhat half-way between the offline, self-contained nature of the HTML plots
currently generated by RAGaVI, and the online X11 sessions required by legacy tools
such as Plotms, but may well be worth pursuing in future work.
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Chapter 6

Conclusion and Future Work

Data inspection is an integral aspect of quality assurance in the calibration and imag-
ing process. We discussed in Chapter 2 that EM radiation arriving at a radio interfer-
ometer is corrupted by the electronics of the receiving antennas and the atmosphere.
The calibration process plays a pivotal role in mitigating these effects and enabling
an accurate sky reconstruction. Errors in the calibration process can lead to loss of
data quality, and thus a failure to achieve fundamental science goals. Such errors can
be detected via the inspection of calibration solutions, as well as visibility data before
and after the application of calibration solutions (recall Section 2.3.2).

Chapter 4 therefore presents RAGaVI, a gains and visibilities inspection tool that gen-
erates interactive plots in HTML format, given a target MS or calibration table, while
making use of freely available Python packages (see Chapter 3). Due to the interac-
tive property of the plots it generates, it is possible to embed multiple views to the
same dataset in a single plot, hence reducing the number of static plots required to
expose interesting data features, and reducing the need for frequent plot regeneration.
For example, Ragavi-gains makes it possible to contain all the calibration solutions
from the 1GC calibration process (recall Section 2.3) in a single HTML document.
Moreover, interactive plots promote data exploration, thus hastening the process of
fault detection. RAGaVI is well suited for use within data reduction pipelines, as it has
a command-line interface and thus does not rely on the launch of an X11 session and
a GUI to provide its interactive service. RAGaVI plots can be shared as self-contained
files that retain their interactivity. RAGaVI is already used within the CARACal pipeline
(Section 4.5) to generate plots of calibration solutions.

In Chapter 5, we compared RAGaVI to the CASA Plotms tool and showed Ragavi-vis’s
ability to generate plots of visibility data faster than Plotms. The tests within this
comparison also yielded some interesting aspects of resource usage between the two
tools, clearly showing some trade-offs concerning the speed of execution and comput-
ing resource management. Here, we demonstrated that while Ragavi-vis is capable of
generating plots faster, it can have a significantly larger RAM footprint than Plotms,
which we attributed to the need for Dask to load multiple chunks of data into RAM
simultaneously. We also showed that Ragavi-vis performs better than Plotms if av-
eraging is enabled.

An effort has already been made towards improving Ragavi-vis’s memory and CPU
usage by allowing a user to set the amount of memory associated to each CPU core, the
size of data chunks and the number of CPU cores to use. However, without the right
combination of the three, Ragavi-vis may perform sub-optimally and sometimes,
erratically. Further work on automating these settings is required. We also aim to
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address and optimise the speed of the aggregation of an input dataset onto a regular-
sized grid. Datashader provides a recourse in (Datashader Documentation: Spatial
Indexing 2019), which is yet to be looked into. Finally, it is important to emphasise
that RAGaVI is still under active development1. Hence, we aim to increase interactive
features as well as support a larger number of plots for Ragavi-vis.

1The author is continuing her graduate studies in radio astronomy, and remains an active member
of the CARACal team.
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Appendix A

Notes on Ragavi-gains Layout

Figure A.1: A bandpass plot with multiple SPWs, highlighting of
Ragavi-gains plot interface.
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No Description
1 Table name Name of the plotted gain table.
2 Data selec-

tion panel
Widgets to select data to be made
visible on the plot.

3 Extra axis Contain frequencies corresponding
to the available channels.

4 Plot tools Allow for zooming, panning, selec-
tion highlighting etc on the plot.

5 Clickable
legends

Click to make data for a specific an-
tenna visible or hidden.

6 Median
stats

Some statistics on the median values
for all the antennas per SPW, field
and correlation.

A.0.1 Notes on 2

By default, all correlations, fields and SPWs will be selected on the the widgets here.
However at any given moment, to make a plot visible, there must be a selection made
on each of the three selectors, otherwise, the plotting canvas will remain empty.
The symbol beside the field selectors denote the symbols used in the plot to represent
that field.

To increase the size of the plots, it is recommended to hide the antenna legends on
the plot by selecting None on the showing legends drop-down menu. This is especially
useful in the case of more than 16 antennas, as each legend bar holds a maximum of
16 antennas (See section A.0.4).

A.0.2 Notes on 3

The extra frequency axis only appears in bandpass and leakage solution plots. It
contains frequencies corresponding to the available channels in a spectral window. In
the case of multiple spectral windows, for instance 4 in this case, four frequency axes
are shown with the plot. Axes for a particular spectral window are only made visible
if that spectral window has been selected at the spw check-boxes. Hence, in Figure
A.1, only 2 extra axes appear because two spectral windows have been selected.

A.0.3 Notes on 4

The use of these widgets on one plot induces the same reaction on its twin plot. That
said, those plots are linked via the x-axis and therefore, actions performed here will
be effected with respect to the x-axis. For example, panning over the y-axis in one
plot will not have an effect on the other. Panning over the x-axis will.

Although not recommended, the save widget here can be used to download a PNG
version of the plot. However, the downloaded version will be in a fixed resolution, and
will not contain any of the interactive features. Furthermore, in the case of two plots
on the canvas like in Figure A.1, two plots will be downloaded separately.

A.0.4 Notes on 5

The maximum allowable number of antennas on this legend strip is 16. This means
that, in case of > 16 antennas, more legend strips will be made available. This will
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have a significant effect on the size of the visible plot and as such, it is recommended
to hide all the legend strips if they are not in use. Selecting an antenna from the
legend strip of one plot will lead to a selection of the same antenna on the twin plot.

A.0.5 General notes

When Ragavi-gains first generates a plot, the only data that will be visible will be
that of the first antenna available. This is done to control the amount of elements
visible in case of a large number of antennas. The antenna selection widgets in Section
A.0.1 can then be used to select antenna data to be made visible in batches of 16.

It is also worth noting that zooming on the plots can be done in two ways: i) Zooming
within the plot, which can be achieved by selecting the wheel zoom widget and scrolling
up and down from inside either of the plots. ii) Zooming on the axes (outside the
plot) which can be achieved by moving the mouse pointer to either the x-axis or y-axis
and scrolling up and down. The latter can be especially useful in cases whereby there
are multiple fields within the plot, having values that differ by a factor. If one of the
fields is unselected, the plot does not automatically rescale and therefore, this type of
zooming used to correct that.
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