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Abstract 

This study conducted the first high-resolution investigation of the ichthyofaunal assemblages 

on a high-latitude coral reef in the Western Indian Ocean (WIO). Two-Mile reef, in South 

Africa, is a large, accessible patch-reef, and was selected as a candidate study area. Although 

the effect of season in structuring coral reef fish communities is most-often overlooked, the 

relationship between these fish communities and their habitat structure has been investigated. 

In South Africa, however, neither of these potential community-level drivers has been 

explored. As coral reefs worldwide are faced with high levels of usage pressure, non-

destructive underwater visual census (UVC) techniques were identified as the most 

appropriate survey methods. This study had two primary aims that were; (1) to identify the 

most suitable technique for the UVC of coral reef fishes, and to test variations of the selected 

technique for appropriateness to implementation in long-term monitoring programs, and (2) 

to determine if possible changes to ichthyofaunal community structure could be related to 

trends in season and/or habitat characteristics.  

A review of the literature indicated that the most appropriate UVC method for surveying 

epibenthic coral reef fishes is underwater transecting.  To compare the traditional slate-based 

transects to variations that implement digital image technology, slate transects were 

compared to a first-attempt digital photographic transect technique, and digital videographic 

transects. Videographic transects produced the most favourable species richness, abundance, 

and standard deviations of the three techniques. Diversity was not significantly different 

between transect techniques. The minimum required sample size was lowest for videographic 

transects (17 replicates), intermediate for photographic transects (27 replicates) and highest 

for slate transects (37 replicates). Videographic and photographic transects required greater 

analysis time to generate counts, but required lower observer training time. While 

videographic transects produced the lowest proportion of species considered unidentifiable, 

all three transect techniques showed similar functionality to surveying epibenthic coral reef 

fishes. Videographic transects were therefore identified as the most appropriate UVC 

technique for this study. 

Videographic transects at shallow (6 – 14 m), intermediate (14 – 22 m) and deep (22 – 30 m) 

depths in mid-winter and mid-summer, sampled a total of 41 families consisting of 209 

species and 18172 individuals, dominated by pomacentrids in abundance and labrids in 
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richness. The fish assemblages on Two-Mile Reef were found to be similar in composition to 

lower-latitude WIO reefs. Overall ichthyofaunal abundance and richness was significantly 

higher in summer than in winter, and was higher at shallow sites than at intermediate and 

deep sites. A multivariate approach confirmed differences between seasons at shallow depths 

but not between seasons at intermediate and deep depths. The fish assemblages on Two-Mile 

Reef can therefore be described as being comprised of four relatively distinct communities: a 

shallow, winter community; a shallow, summer community; a year-round intermediate 

community; and a year-round deep community. The distributions of discriminating species 

indicated that high abundances of the algal-feeding pomacentrids are observed only at 

shallow and intermediate sites while high abundances of the zooplanktivorous serranid 

subfamily, the Anthiinae, are observed predominantly at deep sites. Assessment of all 

measured supplementary variables indicated that of all factor combinations, observed patterns 

could be ascribed most strongly to depth. Quantification of reef characteristics indicated that 

as depth increases, habitat complexity decreases, benthic communities shift from dense coral 

domination to sparse sponge domination, and algal biomass and cover decreases. 

The ability of the videographic transect technique to detect changes in community structure 

with season and depth indicates that season and depth  should be accounted for in future high-

latitude ichtyofaunal surveys, and that the videographic transect technique is suitable for 

implementation in long-term monitoring programs on coral reefs. The similarity in fish 

assemblages between Two-Mile Reef and lower latitude regions suggests that the protocol for 

surveying epibenthic coral reef fishes, resulting from this study, is relevant throughout the 

continental WIO. 
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“Nature provides an exception to every rule.” 
 

Margaret Fuller, July 1843, The Dial. 
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Chapter 1:  

General Introduction: The survey of reef fishes 

1.1 The state of coral-reef ecosystems  

Ecosystems worldwide are under advanced stages of anthropogenic pressure (Jackson et al. 

2001; Friedlander and DeMartini 2002; DeMartini et al. 2008). Marine systems in particular, 

which have a consistent history of degradation, are pressured from numerous factors that 

include overfishing, pollution, disease, climate change and ocean acidification (Pandolfi et al. 

2005; Hoegh-Guldberg et al. 2007). Degradation has now reached a point where pristine 

examples of systems such as coral reefs are all but extinct (Harvey et al. 2001b). Recent 

reports on the condition of these biodiversity hot-spots warn of their precarious position 

(Bellwood et al. 2004; Wilkinson 2008). The implementation of management measures 

aimed at conserving and maintaining coral-reef biodiversity, and the sustainable development 

of the activities which depend on coral-reef systems, is therefore urgently required (Pelletier 

et al. 2011). It is critical to describe the ecological structure and function of coral-reef 

systems such that they can be monitored and the effects of disturbances effectively managed 

(Connell 1978; Harvey et al. 2001a).  

 

Fishes contribute significantly to the structure and functioning of coral-reef systems (Hoegh-

Guldberg et al. 2007) and have previously been used to describe reef health status (Jameson 

et al. 1998; Jameson et al. 2001). Reef fishes are uniquely diverse (Connell 1978; Ray 

1988;Choat and Bellwood 1991; Caley 1995) with even small areas of coral reef containing 

hundreds of species that can vary in size, shape and colour (Bell and Galzin 1984; Parrish et 

al. 1986). The description and monitoring of this diverse and variable group are complex 

tasks, and have previously been conducted using both fisheries-dependent and fisheries-

independent survey methods (Samoilys and Gribble 1997; Bennett 2008). 

 

Fisheries-dependent data collection simply requires data from the fishery to be adequately 

collated and provided to researchers (Penney et al. 1999; Bennett 2008). The disadvantage of 

fisheries data are that data are based on destructive collection methods and research is 

restricted to localities where fisheries exist. Fisheries-independent data avoid these 
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limitations as research can be conducted in desired focus localities using methods of choice 

(Samoilys and Gribble 1997). The limitation of fisheries-independent approaches is that 

techniques are significantly more labour-intensive. Regardless of dependence on fisheries 

though, destructive methods such as fishing (Francis 1995), electric shock and explosives 

(Harrington and Losey 1990), or the use of ichthyocides (Willis 2001) are inappropriate for 

the survey of sensitive coral-reef systems (Grigg 1994). Non-destructive fisheries-

independent approaches offer an alternative (Die 1997). 

 

Non-destructive survey methods are preferred for surveying reef fishes because they do not 

disturb the habitat, are minimally disruptive to the marine organisms, are less selective when 

compared to most other sampling methods, and can be replicated (Brock 1954; Harmelin-

Vivien et al. 1985; Bortone and Kimmel 1991; Bortone et al. 2000; Pelletier et al. 2011). 

Non-destructive survey methods include acoustic surveys (Bodholt and Solli 1995; 

Tsimenides et al. 1995), mark-recapture experiments (Attwood and Bennett 2002; Cowley et 

al. 2002; Zeller et al. 2003), mark-resight experiments (Zeller and Russ 1998, 2000; 

Chapman and Kramer 2000), and underwater visual censuses (UVCs) (Brock 1954; Samoilys 

and Carlos 2000; Tessier et al. 2005; Langlois et al. 2010). Of these, UVCs are the most 

appropriate for community-level surveys of highly diverse coral-reef fishes as they can 

provide rapid, cost-effective assessments of abundance, richness, diversity and biomass (Sale 

and Douglas 1981; Jennings and Polunin 1995; Watson and Quinn 1997; Samoilys 1997; 

Kulbicki 1998). UVCs are, however, not without their limitations. 

1.2 A review of underwater visual censuses 

UVCs entail the in situ identification of species and enumeration of individuals in the 

underwater environment, and have been one of the most widely used methods for surveying 

reef fishes worldwide (Kulbicki et al. 2010). A variety of approaches for conducting UVCs 

exist (Langlois et al. 2010). The literature pertaining to various aspects of UVCs is extensive 

(Bortone and Kimmel 1991), but riddled with ambiguous and contradictory definitions 

(Bennett 2008). Reviews of UVCs are either outdated (e.g. Harmelin-Vivien et al. 1985), tied 

up in the grey literature (e.g. Cappo and Brown 1996; Samoilys 1997), or are specific to 

certain circumstances such as the survey of artificial reefs (e.g. Bortone and Kimmel 1991). 

In addition, many publications categorised as reviews are merely comparisons of a limited 

range of UVC techniques (e.g. Bortone et al. 1986, 1991; Francour et al. 1999). Bortone et 
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al. (2000) note that scientists wishing to use UVCs are faced with assimilating a plethora of 

literature, a task that is both time consuming and may not be possible in developing countries 

with limited access to the marine science literature.  

1.2.1 UVC survey techniques 

Since conceptualisation in the 1950s, a variety of UVC survey techniques have been 

developed to estimate ichthyofaunal abundance, richness and community structure 

(Harmelin-Vivien et al. 1985; McCormick and Choat 1987; Halford and Thompson 1994; 

Langlois et al. 2010). Over time these techniques have been adjusted to better suit specific 

research questions. This has, in some cases, lead to vague explanations of techniques and 

mixed definitions (Bortone and Kimmel 1991).  

Roving Diver 

The roving diver technique is a plotless UVC technique that affords a high degree of survey 

flexibility. This technique involves divers randomly meandering through the study locality 

identifying the species that are encountered (Thresher and Gunn 1986). Usually no 

restrictions are placed on factors such as the area surveyed or a preferred observer swimming 

speed. Survey time is limited only by maximum dive time allowing for relatively large areas 

to be easily surveyed. The method is therefore most useful for producing faunal lists. 

Typically more species are observed than any other survey method as divers may pause to 

inspect detailed habitat features for as long as necessary (Schmitt et al. 2002). Thus the 

technique is particularly useful for the survey of rare or cryptic species (Kimmel 1985; 

Bortone et al. 1986, 1989) and is particularly advantageous in situations where study sites are 

small enough to be holistically surveyed, e.g. small patch reefs such as artificial reefs 

(DeMartini and Roberts 1982; Schmitt and Sullivan 1996); in this situation it has been 

referred to as the patch count technique (Molles 1978). Pattengill-Semmens (2001) showed 

that the roving diver technique can be applied in volunteer-based studies. Attempts have also 

been made to incorporate an abundance component by qualitatively estimating relative 

abundances post hoc – in this case the technique is known as the estimated relative 

abundance technique (Smith 1975; Gilligan 1980). The relative abundance technique was 

improved upon by Floros (2010a), who counted all fishes observed using the roving diver 

technique and quantified abundance per unit time. The abundance per unit time variation of 

the technique was incorrectly referred to as a timed point count technique, the results of 
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which cannot be compared to studies which quantify abundance per unit area (Floros 2010a). 

For most research situations, the inability to determine census area when using the roving 

diver technique, a lack of relative abundance information, and the resulting high variability in 

data render the roving diver technique inappropriate for all but baseline assemblage surveys.  

Random Counts 

Also known as species-time random counts (Bortone and Kimmel 1991), rapid visual counts 

(RVC) (Kimmel 1985), or the rapid visual technique (RVT) (Jones and Thompson 1978; 

DeMartini and Roberts 1982), the random counts technique was first developed by Schmidt 

and Thompson (1977). The technique consists of methods similar to those of the roving diver 

technique and therefore has similar applications. The difference between the two is that as 

species are observed they are scored to the appropriate time interval, the underlying 

assumption being that more-abundant species will be observed earlier (Bortone and Kimmel 

1991). A variation of the technique has been implemented that entails divers listing fishes 

sighted in ranking order of initial encounter for each species (Sanderson and Solonsky 1986; 

Thresher and Gunn 1986; Kulbicki 1998; Mapstone and Ayling 1998). Faunal lists produced 

are comparable to those produced by the roving diver technique with the addition of some 

relative abundance information. When comparing the technique to transects, Sanderson and 

Solonsky (1986) found the technique to be more cost effective but statistically less rigorous. 

The disadvantage is that abundances are reduced to scores of the probability of an encounter, 

further complicated by a lack of spatial data (Bortone and Kimmel 1991; Kulbicki 1998; 

Mapstone and Ayling 1998). Comparisons are therefore restricted to within study 

comparisons because density per area cannot be calculated. 

Stationary Point Counts 

Also referred to as instantaneous area counts (Thresher and Gunn 1986), or the quadrat 

technique in smaller-scale applications (Hastings 1979), stationary point counts were first 

developed by Bohnsack and Bannerot (1986). The technique requires divers to remain 

stationary at the centre of a visually estimated cylinder of a known radius counting all species 

visible as quickly as possible (Ward-Paige et al. 2010). Once conspicuous individuals have 

been counted in the survey area, some authors have allowed observers to search the cylinder 

area more thoroughly in an attempt to gain data on shy and/or cryptic species (Lechanteur 

and Griffiths 2002). Point counts are effective in that they can be conducted quickly, allowing 
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for increased replication. As the area surveyed can be calculated, ichthyofaunal densities can 

be extrapolated (Colvocoresses and Acosta 2007). Because divers are stationary during 

surveys, behavioural disturbances are minimised (Colvocoresses and Acosta 2007), although 

Bennett (2008) noted some attraction bias by inquisitive species towards stationary divers. To 

maintain accuracy, the area surveyed per replicate point counts must remain low, and is often 

restricted by visibility. Greenwood (1996) and Samoilys and Carlos (2000) noted that there is 

potential error in the visual estimation of the circular boundary of a point count, and that 

since area is proportional to the square of the radius, any error in distance estimation will be 

squared. Some researchers have mitigated this problem by demarcating cylinder boundaries 

prior to counts (Bortone and Kimmel 1991; Polunin and Roberts 1993). This, however, 

causes an increase in diver disturbance that is difficult to quantify (Fulton et al. 2001). It is 

also inevitable that variability will be introduced as some fishes entering/leaving the survey 

area will not be detected because some part of the survey area is always behind the observer 

(Bennett 2008). Point counts are therefore more appropriate to smaller, heterogenous habitats 

and artificial reefs (Bortone et al. 1991). Floros (2010a) applied this technique successfully 

when surveying only a selected list of species. As observers must remain stationary, the 

stationary point count technique is more useful to restrictive survey modes such as manned 

submersibles. 

Strip Transects 

Strip transects, or tape transects (Dickens et al. 2011), have been used for the survey of 

ichthyofauna since the 1950s (Brock 1954). Strip transects require observers to swim a 

predetermined distance, at a constant speed, identifying and counting all fishes occurring 

within a set transect width. A variation of strip transects are band or belt transects where two 

parallel lines are laid along the reef substrate prior to conducting each replicate (Davis and 

Anderson et al. 1989; Ratikin and Kramer 1996; Barrett and Buxton 2002) thereby mitigating 

the need for visual transect width estimation. The suitability of belt transects is questionable 

as they require increased dive time for the establishment of transect boundaries and are 

associated with increased pre-survey diver disturbance which is difficult to quantify (Fulton 

et al. 2001). Recently Pelletier et al. (2011) compared what they termed I- and S-type 

transects using videographic media, where I-type transects represented traditional strip 

transects and S-type transects were a transect variant allowing observers to alter elevation and 

move the camera from side to side, resulting in the survey of an increased number of fishes. 
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I-type transects were found to be inferior for estimating fish abundances when compared to 

S-type transects. As the S-type transect has not been thoroughly evaluated, research and 

development of the technique, and its possible applications, is recommended. It must be 

noted that Alevizon and Brooks (1975) used pseudo-S-type transects in their early study.  

Strip transects are advantageous in that the technique is easy to implement and constitutes the 

most well-defined survey protocol as transect length, width, and height must be standardised 

prior to study commencement. The comparatively large survey area per replicate afforded by 

strip transects is suitable for assessing large expanses of reef with diverse ichthyofaunal 

assemblages (Sale 1991; Edgar 2004; Colvocoresses and Acosta 2007) and species with non-

random distributions (Kulbicki and Sarramégna 1999). Strip transects have become the most 

widespread UVC technique (Kingsford and Battershill 1998) but, because of the popularity of 

the technique, its application has varied widely among users (Bortone and Kimmel 1991). For 

example, the length of transects conducted has varied from as short as 5 m (Anderson et al. 

1989) to as long as 500 m (Thresher and Gunn 1986). Because the area surveyed can be 

easily calculated, inter-study comparisons of metrics such as density are possible. Gledhill et 

al. (1996) and Francour et al. (1999, as cited by Tessier et al. 2005) suggested that, due to the 

forward-moving nature of transects, the method is likely to reduce the risk of duplicate counts 

of species such as schooling species, a criticism of the point count technique. Disadvantages 

of the transect technique include the behavioural disturbances associated with a moving diver 

and the inability of divers to search specific refuge habitats as swimming speed must remain 

constant (Watson and Quinn 1997; Schmitt et al. 2002). Consequently, the strip transect 

technique is well-suited to the survey of more conspicuous, epibenthic reef fishes. Samoilys 

and Carlos (2000) and Edgar (2004) conclude that despite suffering from limitations likely to 

result in underestimates, strip transects are generally recognised as the most practical method 

for obtaining relative density estimates of fish communities. 

Distance estimates 

Distance estimates, distance sampling, or instantaneous variable distance counts have been 

implemented using survey areas equivalent to point counts (Thresher and Gunn 1986) and 

strip transects (Fowler 1987). Observers conducting either a point count- or strip transect-

type survey must identify individuals and estimate the distance between the individual and 

the observer. The technique is used to estimate density or abundance of species under the 

assumption that a detected individual will be detected with certainty. A detection function, 
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representing the probability of detections as a function of distance from the observer, can 

then be modelled. Appropriate survey design allows the resulting object density estimates to 

be extrapolated to the full survey region, which yields estimates of object abundance 

(Buckland et al. 2001). Distance estimates, originally developed for use by ornithologists, 

were implemented as a method of UVC primarily to mitigate the error associated with the 

visual estimation of survey area (Thresher and Gunn 1986; Harvey et al. 2004). Harvey et al. 

(2004) showed that, although the requirement for survey area estimation is mitigated, the 

error associated with the estimation of distance to enumerated individuals was significant for 

both novice and experienced divers. Harvey et al. (2004) concluded that the technique can 

only be successfully implemented where stereo-video equipment is available. Criticisms of 

the technique include the error associated with the estimation of distance, and high observer 

task loading in particularly diverse areas. The technique is also time consuming and is 

therefore best suited to selected species rather than whole communities. 

Interval Counts 

The interval count, or timed count, technique can be applied to point count (Bortone et al. 

1996; Floros 2010a) or strip transect survey areas (Bortone and Kimmel 1991). The 

difference with the interval counts modification is that, instead of counting all individuals 

observed within the survey boundaries, all individuals moving through the survey area up to a 

predetermined time limit are counted. The first application of the interval count technique 

was demonstrated by Alevizon and Brooks (1975) who used video cameras to film a point 

count area to maximum film exposure time. The advantage of the technique is that the 

process of determining when a count is complete is no longer subjective. Densities are 

calculated assuming that inter-site, temporal and interspecific differences in rates of 

movement are negligible (Thresher and Gunn 1986). Thresher and Gunn (1986) state that 

although the first two assumptions are reasonable, the third rarely holds. The technique is 

thus not suitable for inter-species comparisons of density but can be effective in comparing 

single species densities between areas. 

Spot Mapping 

Spot mapping, or home-range mapping (Edgar 2004), another technique initially developed 

by ornithologists, has been used for surveying fishes by Thresher and Gunn (1986). The 

labour-intensive technique requires detailed mapping of territories and home ranges of 
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selected species at randomly chosen points within the area of interest. Density is estimated 

using mean home-range size and the spacing between home ranges. For a full explanation of 

the technique refer to Thresher and Gunn (1986) who concluded that the method was 

inappropriate for use in highly mobile organisms unless a tagging component was 

incorporated. Since its implementation by Thresher and Gunn (1986), the spot mapping 

method has not been used as a feasible UVC technique. 

Point Diversity 

The point diversity technique is another labour intensive UVC technique for the survey of 

ichthyofauna. Effectively a combination of a pseudo-transect and point counts, the technique 

was designed by Slobodkin and Fishelson (1974) for the survey of ichthyofaunal 

communities associated with specific reef features. Observers swim transects at regular 

intervals on a study reef, where transect length is limited only by the length of the study area. 

When a desired reef feature is encountered, a thorough point count of that feature is 

conducted before observers continue the same transect. Information on the ichthyofaunal 

density of the reef feature is obtained and community structure comparisons between features 

can be made. Slobodkin and Fishelson (1974) used the technique to effectively map and 

investigate the community structure of fishes at „cleaning station‟ areas where the wrasse 

Labroides dimidiatus occurred. It is anticipated that the technique could be used equally 

effectively to investigate ichthyofaunal community structures between different reef 

structures such as pinnacles, caves and crevasses, particularly if the localities of these 

features are not previously known. Information of this kind will be useful in understanding 

determinants of diversity (Bortone et al. 1986). 

1.2.2 UVC survey modes 

UVCs can be conducted using a number of survey modes. Presented here is an explanation 

UVC modes, ranging from those methods that require basic/minimal equipment, training and 

funding, to more complex and expensive methods. These include snorkelling, open-circuit 

SCUBA, closed circuit SCUBA, remote operated vehicles, and manned submersibles. 

Snorkelling 

Snorkelling is a cost-effective, simple method for conducting UVCs in relatively shallow 

waters. First used by Bardach (1959), observers require only a mask, snorkel and swim-fins 
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to conduct the UVC technique of choice. Frias-Torres (2006) and Serafy et al. (2003) 

successfully used snorkelling to conduct 30 m long transects in depths <5 m. At slightly 

deeper depths the technique is referred to as „freediving‟ as observers must carry out in-water 

apnea to reach the sample depths. Lechanteur and Griffiths (2002) successfully used 

freediving, supplemented by SCUBA, to conduct point count surveys of temperate reef fishes 

up to depths of 10 m. A benefit of the technique is that observer noise, and hence disturbance, 

is kept to a minimum as no breathing apparatus is required. Freediving UVCs can only be 

conducted by experienced freedivers and are restricted to comparatively shallow sample 

depths and to UVC techniques that require short survey times per replicate. Other authors that 

have used snorkelling or freediving include Jones and Chase (1975), Stephens et al. (1984) 

and Larson and DeMartini (1984). 

Open circuit SCUBA 

Open circuit self-contained underwater breathing apparatus diving, or SCUBA diving, has 

been used since the inception of UVCs (Brock 1954). SCUBA allows divers to operate to a 

maximum depth of 30 m (South Africa, Department of Labour 2010). Although the technique 

is relatively simple to implement, training in the use of SCUBA equipment is necessary. The 

disadvantage of SCUBA is that, due to the build-up of residual nitrogen in the blood of 

observers, maximum dive time is short, decreases with increasing depth, and requires a 

sufficient off-gassing period for observers between dives. A criticism of SCUBA is that 

bubbles exhaled by divers may affect fish behaviour (Chapman et al. 1974; Cole et al. 2007). 

To date, open circuit SCUBA is the most commonly used mode of conducting UVCs because 

in comparison to other modes equipment is cheap and readily available, many sample reefs 

occur shallower than maximum operating depths, and training time is comparatively short. 

Closed circuit SCUBA 

Although an early version of the technology was first used in biological observations by 

Hanlon et al. (1982), closed circuit SCUBA diving, or rebreather diving, has been developed 

more recently (Pyle 2000; Lobel 2001; Bahuet et al. 2007). Two systems currently exist: 

semi-closed circuit and closed circuit rebreathers. Both methods recycle predetermined 

proportions of exhaled air, which significantly reduce the noise and bubbles associated with 

open circuit SCUBA (Radford et al. 2005). The primary advantages of rebreather diving are 

that, at depths equivalent to those dived using open circuit SCUBA, significantly longer dives 
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can be conducted safely and significantly shorter off-gassing periods are required between 

dives. In addition, closed circuit divers can safely reach depths of over 200 m, but the 

associated in-water decompression and surface off-gassing times increase substantially 

(Parrish and Pyle 2002; Baheut et al. 2007). The disadvantage of the technique is that 

equipment is more costly and the training is extensive. Because the technology is still 

relatively new, the use of closed circuit SCUBA has not been widely implemented. In the 

near future, rebreather diving may entirely replace open-circuit SCUBA for conducting 

UVCs. 

Manned submersibles 

Manned submersibles were the first underwater survey mode for conducting surveys at 

depths greater than those safe for SCUBA diving (Rowe et al. 1975; Shipp et al.1974; Parker 

and Ross 1986; Ralston et al. 1986; Thresher and Colin 1986). Usually two to four observers 

will descend to sample depth within the confines of a submersible. Submersibles are usually 

constructed with viewing windows and often utilise photographic and videographic cameras 

for the observation of aquatic organisms. This relatively cumbersome mode of conducting 

UVCs is usually implemented when depths of over 200 m must be safely sampled for 

extended periods of time. As pressure within the submersible is maintained at 1 ATM, 

maximum dive time is limited only by logistical constraints. Limitations of the technique are 

that training of submersible pilots is lengthy, and the submersible and its associated 

equipment are extremely expensive. Submersibles are generally large and cumbersome and 

must therefore be launched from relatively large vessels (Csepp 2005). Krieger (1993) used a 

submersible to successfully survey fishes at depths ranging from 188 to 290 m. Costello et al. 

(2005) used modern technology and found the technique to be successful for fish 

identification and habitat description purposes. However, Moffit et al. (1989) state that 

manned submersibles are, in many respects, more difficult to implement than other modes of 

UVC and are thus impractical for use at shallower depths. Moffit et al. (1989) also found that 

because manned submersibles are generally not manoeuvrable, they are better suited to 

relatively open areas that require surveying. 

Remotely Operated Vehicles (ROVs) 

The use of ROVs for the assessment of fish assemblages was first described by Thompson et 

al. (1982). ROVs, mounted with videographic equipment, are controlled by surface-based 
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operators who use live video feed, with an overlay of necessary information, to control the 

vehicle at the sample depth. The advantages of using ROVs, depending on make and model, 

are that they can be operated to depths far greater than open- or closed- circuit SCUBA, they 

are not restricted in terms of dive time, and the risk to researchers conducting underwater 

surveys is mitigated (Pacunski et al. 2008). The disadvantages of ROVs are that equipment is 

costly and that vehicles can only be operated by experienced, extensively trained pilots. 

Similar to manned-submersibles, ROVs must be deployed from a large vessel, although the 

operation and deployment of newly developed, smaller ROVs from small boats has been 

explored (Csepp 2005). In an early study conducted by Greene and Alevizon (1989), using 

early ROV technology, the technique was found to result in low accuracy data and was 

relatively inefficient when used in a controlled aquarium environment where actual fish 

assemblage structure was known. Vrana and Schwartz (1989) used an advanced instrument 

sled attached to their ROV to improve ROV performance. Adams et al. (1995) used an ROV 

system equipped with advanced cameras, lenses, lights, and fibre-optic cables to conduct 200 

to 600 m long transects more successfully. Adams et al. (1995) found that their ROV, 

compared to swept area trawls, produced higher estimates of abundance with low coefficients 

of variation. They also considered the ROV to be superior to swept area trawls because 

observers are capable of directly assessing the underwater environment, enabling observed 

patterns to be related to habitat. Although O‟Connell and Carlile (1994) have shown that, due 

to logistical and technical problems, successful deployments of ROVs can be as low as 60%, 

it is possible that with further ROV development they may become the mode of choice for 

conducting UVCs at any depth. Costello et al. (2005) conclude that the use of ROVs offers an 

ideal method by which to link biological observations with precise knowledge of the habitat 

under study. 

1.2.3 UVC survey media 

All UVC techniques, and the modes with which they are conducted, require media based on 

either the in situ recording of data by observers, or the post hoc examination of visual records 

(Edgar 2004). Often the term UVC is used to describe surveys specifically using eyesight to 

directly identify and enumerate fishes (e.g. Samoilys 1997; Colton and Swearer 2010). 

Despite the name underwater „visual‟ census, not all UVCs are conducted by direct visual 

assessment of fish assemblages. The media available for conducting UVCs now range from 
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simple to advanced technology and include: slates, audiotapes, photographic stills, and 

videographic media. 

Slate 

Until the mid 1990s plastic slates of various types were used for almost all transcribing of 

underwater data (Helfman 1983; English et al. 1994). Visually observed data are typically 

written on slates by an observer using a pencil. The advantages of slate media are that the 

technique is inexpensive and fully adaptable to any UVC mode. Disadvantages to using slates 

are that valuable observation time is lost as the diver must look at the slate to record data 

(Brock 1982; Bortone and Kimmel 1991) and there is no reference of each replicate, only the 

raw data. A further disadvantage is that the technique is entirely dependent on the ability of 

the observer to make correct identifications rapidly and in situ, which can be a difficult task 

in highly diverse areas. Identification error resulting from rushed identifications could have 

particularly severe consequences in areas where few ichthyofaunal surveys have been 

previously conducted as the community represented is almost entirely dependent on the 

knowledge of observers, previously gained either from experience or from the literature. 

Despite these disadvantages, slate media are still regularly used for conducting UVCs (e.g. 

Colton and Swearer 2010; Floros 2010a; Dickens et al. 2011; Pelletier et al. 2011; Williams 

et al. 2011). 

Audiotape 

Audiotape was introduced to mitigate diver distraction while recording data (Alevizon et al. 

1985). Observers, equipped with underwater audio recording equipment, log verbal records 

of necessary observations in situ (Bortone et al. 1991). Greene and Alevizon (1989), who 

compared audiotape media to slate and videographic media, found the audiotape methods to 

be more cost effective, efficient, and accurate when estimating ichthyofaunal abundance. 

Bortone et al. (1991), who used larger sample sizes, disagreed with Greene and Alevizon 

(1989) and suggested that audiotape in conjunction with videographic media was a more 

favourable method. As with slate media, however, descriptions of ichthyofaunal communities 

using only audio media are dependent on the ability of the observer to rapidly and accurately 

identify fishes. As audio records are stored, some reference record of each replicate is 

available. 

 



 Chapter 1: General Introduction: The survey of reef fishes 

13 

Traditional slate and audiotape methods are steadily being replaced by image-based media 

because of five primary advantages (Pelletier et al. 2011). First, image-based media do not 

require the presence of fish identification experts in the field as media may be analysed at any 

time (Pelletier et al. 2011). Second, digital-based media can reduce the time required 

underwater allowing time for an increased number of observations. Third, images allow 

scope for the analysis of detailed environmental information such as reef architecture or 

benthic community structure. Environmental information that can be obtained from image 

media includes, but is not limited to, habitat availability, benthic community structure, and 

reef architecture (Simpson 1977; Roberts et al. 2000; Costello et al. 2005). Fourth, images 

may be reviewed multiple times by multiple observers, thus limiting and allowing for 

quantification of observer bias (Preuss et al. 2009). Lastly, image media may be analysed for 

other purposes such as identifying the sex-ratios of sexually dimorphic species (e.g. Platten et 

al. 2002), or assessing the degree of coral-bleaching (e.g. Gates et al. 1992). The 

disadvantage of digital media is that time must be spent transcribing data, which can be 

greater than the time taken to make the initial recording (Bortone and Kimmel 1991). There 

are two types of image-based media: stills photography and videography.  

Stills photography 

The use of stills photography in UVCs provides a permanent database of information stored 

as still images. Stills photography requires that observers are equipped with photographic 

equipment capable of descending to the appropriate sample depth. Lundälv (1971) first used 

stills photography in UVCs to record population information and geographic conditions. He 

noted however, that the technique performed poorly under low visibility conditions. 

Weinberg (1981) used stills photography to create a photographic record of sections of reef, 

but the technique proved only partially successful as supplemental drawings were required. It 

was concluded that, at that stage, stills photography was impractical because of the 

equipment and facilities required for a technique that was not producing the required results. 

Langton and Uzman (1989) conducted photographic surveys of fishes using a submersible in 

conjunction with a roving diver approach. Stills photography was successfully employed by 

Langton and Uzman (1989) as the aim of their study was merely to catalogue the species 

present. Langton and Uzman therefore recommended stills photography as an aid to fish 

identifications, but not as a tool for obtaining relative abundance information. In the mid 

1980s technology improved and Bortone et al. (1986) were the first to use photographs with 
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the statistically more rigorous transect technique. Using strobe-illuminated photographs to 

survey fish assemblages, Bortone et al. (1986) found the photographic transect technique to 

be relatively successful, but noted that one disadvantage to stills images was that the lack of 

movement against a background hindered the identification of fishes. As stills photography 

was proven to be largely unsuccessful in the past, no further studies have investigated its 

applicability to more advanced survey techniques such as transects. With the advancement of 

new digital technology, and associated cost decreases, it is possible that stills photography 

will become a useful media for conducting UVCs.  

Videography 

Videographic equipment has been used in many areas of marine research since the 1960s 

(Barnes 1963; Myrberg 1973, as cited by Potts et al. 1987; Smith and Tyler 1973; Alevizon 

and Brooks 1975). Initially underwater television (Myberg 1973; Smith and Tyler 1977) and 

underwater movie (Ebeling et al. 1980) equipment were cumbersome to operate and required 

advanced, specific alterations to standard land-based video equipment (e.g. Potts et al. 1987). 

In the last two decades, with the advent of digital devices, video recording has become an 

appropriate, simple tool for surveying fish assemblages (Tessier et al. 2005; Langlois et al. 

2010; Pelletier et al. 2011). The benefit of videographic media over photographic media is 

that identifications are made using moving images allowing for factors such as swimming 

behaviour and variable orientations towards the camera to facilitate identifications. There are 

three primary applications of videographic media in UVCs; single-video, stereo-video and 

remote-video.  

Single-video 

Single-video refers to the use of a single, standard video camera in an appropriate underwater 

housing. Standard video media can be used with any UVC techniques and/or mode and 

requires only that observers operate a video camera at the sample depth. Bortone et al. (1986) 

successfully used single videographic media in variations of transects, termed linear 

cinetransect, and point counts, termed cineturrets, or circular cinetransects. Two recent 

studies implementing single-video media were conducted by Harvey et al. (2010) and 

Pelletier et al. (2011). Harvey et al. (2010) compared single digital video to high definition 

digital video and concluded that high definition is the preferred format. Pelletier et al. (2011), 

citing that high definition video is becoming the standard, compared only the high definition 
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format to slate techniques. Pelletier et al. (2011) found that although fewer species and 

individuals were detected using videographic media, results were comparable. 

Stereo-video 

In an attempt to reduce some of the biases associated with traditional UVC methods, stereo-

video systems have recently been introduced as a UVC media (Boland and Lewbell 1986; 

Harvey and Shortis 1996; Harvey et al. 2001a, b). The stereo-video system requires the 

calibration of two single-video cameras, which are mounted together on a portable frame, 

such that length and distance can be measured post hoc using specialised software. Length 

and distance measurements are usually applied to the determination of survey areas for 

density calculations and/ or fish lengths for biomass calculations. In the case of non-mobile 

survey techniques, such as point counts, the stereo-video system frame will rest on the 

seafloor (e.g. Harvey and Shortis 1996; Petrell et al. 1997; Watson et al. 2005) or, in the case 

of transects, is carried by divers (e.g. Watson et al.2005). The primary advantage of stereo-

video is that precise and accurate estimates of sampling area and fish size are arrived at in a 

more objective, unbiased manner. Stereo-video can be similarly implemented to quantify 

diver effects and observer bias in distance and length estimation (Harvey et al. 2004). Stereo 

video is also less restricted by range and subject orientation than standard video and has 

therefore been successfully applied in aquaculture for the estimation of fish density and 

biomass in enclosures (Naiberg et al. 1993). The primary disadvantage of this media is that 

there is more than a two-fold increase in necessary equipment, access to advanced stereo-

video software is required, and divers must operate significantly more equipment at the 

sample depth (Harvey et al. 2001a, b, Harvey et al. 2002a, b; Watson et al. 2005; Cappo et 

al. 2005). Despite the disadvantages, where funding and access to stereo-video technology is 

available, it is recommended that stereo-video systems be selected over standard video media. 

One shortcoming of all UVC media is that, where advanced diving equipment, such as 

closed-circuit SCUBA and ROVs are unavailable, UVCs are restricted to shallow depths and 

a limited number of deployments per diver per day. These depth and replicate limitations can 

be minimised using remote-video media. 

Remote-video 

Remote-video media allow for UVCs to be conducted without in situ observers. Typically 

observers will deploy a video system, attached to an appropriately designed frame and linked 
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to the surface, to the sample depth. Although the applications of remote video media to 

conducting transects on sleds suspended below a survey ship have been investigated (Costello 

et al. 2005), remote-video media are used more commonly in variations of the point count 

technique. Remote-video media can be applied to both single-video (Francour et al. 1999, as 

cited by Tessier et al. 2005) and stereo-video (Watson et al. 2005; Watson et al. 2010) 

applications. Two examples of the remote-video point count technique are baited and non-

baited video stations – the comparative advantages and limitations of which have been 

examined (Watson et al. 2005; Willis et al. 2000; Willis and Babcock 2000; Harvey et al. 

2004; Cappo et al. 2005, 2007; Stobart et al. 2007). The primary advantage of remote video 

is that sample depth is not limited by safe diving for observers (Bortone and Kimmel 1991) 

but rather by logistics such as sea surface conditions, the topographic characteristics of the 

seafloor, and the specific study objectives. Priede et al. (1994) successfully used baited 

remote cameras to sample depths up to 4100 m, but supplemented relative abundance 

estimates with trawl catch data. As no in situ observers are present, the primary limitation of 

the remote-video is that the technique is inflexible and is significantly influenced by visibility 

(Willis and Babcock 2000; Cappo et al. 2005). As the camera is immobile, cryptic species are 

excluded and it is impossible to ascertain if individuals are entering the survey area 

repeatedly (Ellis and DeMartini 1995; Willis and Babcock 2000). The technique is therefore 

better suited to investigating the relative abundance of specific species rather than overall fish 

assemblage structures. 

1.2.4 Techniques for analysing UVC media 

Variations of simply counting all fishes observed in image-based survey media have been 

developed to minimise some of the limitations of UVCs. These include; Standard-counts, 

MaxN and Multiple MaxN techniques. Unfortunately there has been no attempt at comparing 

the appropriateness of each analysis technique to specific applications.  

Standard-counts 

Standard-count analysis refers to the traditional, most simple technique for analysing media: 

simply identifying and counting all individuals observed on images (e.g. Potts et al. 1987). 

Although all traditional slate surveys effectively implement the Standard-count technique, 

Standard-counts were first used for analysing image-based media with the implementation of 

the first video surveys (e.g. Alevizon and Brooks 1975; Potts et al. 1987). The primary 
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advantage of the Standard-count technique is that it provides representation of the entire 

community surveyed. The primary limitation is that there is a possibility of duplicate counts 

if the same individual is counted multiple times. Duplicate counts are of particular concern in 

stationary, attraction-type techniques such as baited underwater video surveys because fishes 

will aggregate at the bait site and re-enter the survey area numerous times. To reduce this 

error the MaxN technique was developed. 

MaxN 

MaxN analysis, also referred to as npeak (Priede et al. 1994), MAXNO (Ellis and DeMartini 

1995) and MAX (Willis and Babcock 2000), was developed specifically to reduce the 

occurrence of double counts using stationary video techniques (Colton and Swearer 2010). 

MaxN requires that only the single frame in a replicate, i.e., a video clip, containing the 

greatest number of individuals for a species is taken as the count for that species (Priede et al. 

1994; Willis and Babcock 2000). MaxN counts are conducted on a per-species basis until all 

species in a replicate are accounted for (Priede et al. 1994). MaxN is appropriate to situations 

where all species exhibit a common grouping behaviour, such as aggregating around a bait 

site. The technique is also useful when conducting UVC video point counts in areas where 

many species exhibit schooling behaviour as it reduces the associated over-representation of 

those species (Gledhill et al.1996, Francour et al.1999, as cited by Tessier et al. 2005). 

Applying the MaxN approach in inappropriate situations, such as circumstances where 

species do not aggregate, can result in „perverse‟ estimates of abundance (Priede and Merrett 

1996). MaxN may have limited use in conjunction with mobile UVC methods, such as 

transects, which are characterised by a forward movement, in a single direction, at a constant 

speed, an action that should reduce the occurrence of duplicate counts and the associated 

error regardless of the media analysis technique employed (Watson et al. 2005, Bennett 

2008).Videographic transects will reduce duplicate counts as it is possible to track 

individuals/schools throughout a video clip such that the large majority of double counts are 

avoided. Watson et al. (2005) noted that while the use of MaxN as a relative density measure 

for remote techniques avoids repeated counts, it can be assumed that transect techniques also 

avoid duplicate counts. Regardless of the UVC technique implemented, MaxN analysis is 

appropriate to investigations comparing the abundance of single species, or species grouped 

by similar behaviour (Stobart et al. 2007). 
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Multiple MaxN 

Bortone et al. (1986) provide the earliest example of implementing a slight variant, Multiple 

MaxN analysis. Bortone et al. (1986), who referred to their approach as a framework 

approach, conducted 100 m long photographic transects consisting of ten stations. Four 

photographs were captured per station and, for each species observed, abundance was 

estimated as the mean of the number of individuals counted in each photo, for each station, 

over the entire transect. More recently, Multiple MaxN has been used as an extension to 

MaxN analysis in an attempt to gain more representative information from each replicate. The 

analysis requires that each clip of footage be divided into equal segments, essentially pseudo-

replicates. The original MaxN approach is then applied to each segment and the mean value 

of species counts over all segments is accepted as the count of each species for that replicate 

(Colton and Swearer 2010; McKinley et al. 2011). 

1.2.5 Shortcomings of UVCs  

No sampling protocol, even if rigorously statistically conceptualised, is perfect. UVCs are no 

different as all methods used to investigate various aspects of ichthyofaunal assemblages 

have shortcomings (Edgar 2004). Besides experimental design flaws, which are reviewed by 

Bennett (2008), the shortcomings of UVCs are generally centralised around error in the form 

of bias and variability. Error, bias and variability are terms often used interchangeably in the 

literature resulting in blurred definitions and unclear explanations (e.g. Colvocoresses and 

Acosta 2007).  

 

Biases usually result from observer error and/or the nature of the UVC technique and are 

associated with: the presence of the observer affecting fish behavioural changes (Sale and 

Sharp 1983; Thresher and Gunn 1986; Lincoln Smith 1988; Cole 1994; Kulbicki 1998; 

Watson et al. 2007), for example, the attraction or repulsion of some species by divers 

(Minte-Vera et al. 2008; Cowley and Naesje 2004); observer experience in conducting a 

UVC (Sale and Sharp 1983; Mumby et al. 1995; Thresher and Gunn 1986; Lincoln Smith 

1988; St John et al. 1990); observer swimming speed (Sale and Sharp 1983; Thresher and 

Gunn 1986; Lincoln Smith 1988 and 1989); the difference between true values and estimates 

based on observations that often manifest as underestimates of highly abundant species 

(Stewart-Oaten et al. 1995; Willis 2001); length estimation of fishes by observers (Harvey et 

al. 2001a, b, 2002a); subjective decision making and underwater behaviour of observers 
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(Edgar 2004), such as site or pass choice and observer swimming patterns (Cheal and 

Thompson 1997; Harvey et al. 2001a); double counts, i.e. individual fish are counted twice 

(Samoilys and Carlos 2000); failure of observers to notice individuals (Brock 1982; Sale and 

Sharp 1983; Watson et al. 1995; Watson and Quinn 1997), which is of particular relevance 

when cryptic, small or nocturnal species are concerned (Brock 1982; Kulbicki 1998; 

Ackerman and Bellwood 2000; Willis 2001; Minte-Vera et al. 2008); incorrect identifications 

(Lincoln Smith 1988; Legg and Nagy 2006), which are of particular concern in highly diverse 

systems such as coral reefs; the estimates of range for determining survey boundaries such as 

transect length or width (Harvey et al. 2004); and species and/or size selectivity of the UVC 

technique being implemented (Thompson and Mapstone 1997; Willis 2001; Edgar 2004). 

 

Sources of variability usually result from natural phenomena and include: temporary, 

localised or small scale shifts in the distribution and abundance of individuals (Sale and 

Douglas 1984; Thompson and Mapstone 1997; Ault and Johnson 1998; Tessier et al. 2005), 

such as the movement of reef fishes linked to tidal or diurnal cycles (Watson et al. 1995); 

permanent shifts in the distribution, abundance and sizes of specimens (Sanderson and 

Solonsky 1986; Thompson and Mapstone 1997; Mapstone and Ayling 1998); natural 

changes, such changes in abundance associated with, for example, environmental, climatic or 

oceanographic change (Samoilys and Carlos 2000; Thompson and Mapstone 2002; Tessier et 

al. 2005); intra-species variability in mobility or detecability (Edgar 2004; Thompson and 

Mapstone 2002), such as changes in detectability resulting in variable species coloration 

depending on particular fish behaviours; fishes moving across boundaries of sampling units 

during the time taken to survey each unit, regardless of whether they move away from the 

sampling site, or respond positively or negatively to divers (Watson et al. 1995; Kulbicki 

1998); and the underwater visibility and structural complexity of the habitat (Edgar 2004). 

 
Several studies have assessed the shortcomings of UVCs relating to bias and variability 

(Harmelin-Vivien et al. 1985; Jennings and Polunin 1995; Watson et al. 1995; Cheal and 

Thompson 1997; Kulbicki 1998; Kulbicki and Sarramegna 1999; Samoilys and Carlos 2000; 

McNeill et al. 2008; Langlois et al. 2010; Ward-Paige 2010; Pelletier et al. 2011). Thresher 

and Gunn (1986) and Edgar (2004), in assessing the effectiveness of UVCs, found that 

although UVCs can be affected by natural variability, such error is generally systematic, 

random, and is probably not as large as is widely perceived. Sources of bias, however, do not 

possess these qualities. The effect of bias is, nevertheless, reducible through a careful, 
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standardised study design that is aimed at reducing statistical noise (Winer et al. 1991; Willis 

et al. 2000). In this situation bias and variability can be statistically separated and quantified. 

Yet some sources of bias cannot be removed in the study design process. An example is the 

species and size selectivity of the UVC technique being implemented. Although Ackerman 

and Bellwood (2000) state that unavoidable bias is an acceptable limitation of UVCs, it is 

important that these limitations are considered when drawing inferences.  

1.3 Study objectives and research plan 

As anthropogenic pressures, whether direct, such as fishing and pollution, or indirect, such as 

climate change, continue to mount on marine environments, baseline information and the 

development of long-term monitoring in appropriate and representative areas is a matter of 

urgency. The south Western Indian Ocean (WIO) is a biodiversity hotspot largely because it 

contains the world‟s southernmost coral reefs in an area considered only marginal for coral 

growth (Schleyer 1999; Schleyer and Celliers 2003a, b) and therefore a unique biogeographic 

subregion. Although corals in the south WIO have been well-documented, information 

pertaining to the fish assemblages of the high-latitude WIO coral reefs is scarce (Floros 

2010a). An area where easily accessible high-latitude coral reefs occur is the iSimangaliso 

Wetland Park in South Africa.  

 

Current trends in climate change have caused warming of South African coastal waters 

resulting in a shift in coral community structure from hard to soft corals – probably the cause 

of an evident increase in coral accretion (Jordan and Samways 2001; Celliers and Schleyer 

2008). Schleyer and Celliers (2005) have warned that sea surface temperatures are already 

approaching the local coral bleaching threshold after Celliers and Schleyer (2002) previously 

reported the occurrence of localised, small-scale bleaching on a cluster of South African coral 

reefs known as the Central Reef Complex.  

 

The potential for future bleaching events on the South African coral reefs indicates that 

continued research and the development of long-term monitoring are critical. Schleyer and 

Celliers (2003b) suggest that changes evident on the marginal coral reefs of South Africa are 

likely to precede changes on typical, non-marginal coral reefs in the greater WIO. Baseline 

research in this unique, biodiversity hot-spot is therefore essential. This study conducted 

extensive ichthyofaunal surveys of the fish assemblages of Two-Mile Reef, a South African 
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coral patch reef, in an attempt to ascertain which factors drive ichthyofaunal community 

structure and dynamics.  

 

The aim of this thesis was to provide baseline spatial and temporal descriptions of high 

latitude WIO coral-reef fish communities using a non-destructive, standardised UVC 

technique suitable for implementation in future long-term monitoring work in the greater 

WIO. Specific objectives included: 

 

1) Provide a critical review of the intricacies of conducting UVCs and the shortcomings 

associated with UVCs. 

2) Review the available physical and biological information pertaining high-latitude 

WIO coral reefs in a South African context using a broad-scale ecological approach.  

3) Provide the information required for developing a standardised protocol for the survey 

of coral-reef fish assemblages based on a meta-analysis of the literature.  

4) Develop a standardised protocol specifically geared towards surveying the epibenthic 

reef fishes of the South African coral reefs. 

5) Develop a method for conducting transects using digital photographic media. 

6) Determine the most appropriate UVC transect technique for surveying the epibenthic 

reef fishes of high-latitude South African coral reefs by comparing slate, 

photographic, and videographic transects. 

7) Determine the most appropriate media analysis technique for analysing footage 

generated by digital photographic and videographic transects. 

8) Provide a first attempt at validating reef fish counts generated from reviewable digital 

imagery. 

9) Describe the ichthyofaunal communities of a large, high-latitude WIO patch reef 

using the most appropriate techniques determined by achieving objectives 1–8. 

10) Georeference possible spatial and temporal variation in univariate fish assemblage 

metrics using geographical information systems. 

11)  Determine if season, a factor largely ignored on low-latitude reefs, has a significant 

effect in structuring high-latitude coral-reef fish assemblages. 

12) Determine if depth and its associated changes in habitat have a significant effect in 

structuring high-latitude coral-reef fish assemblages. 

13) Describe any change in fish community structure, evident from objectives 10–12, in 

an ichthyofaunal functional group context. 
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14) Contexualise this research such that the implications of the conclusions in this study 

are understood in relation to their relevance in the field of UVCs and their relevance 

to surveying high-latitude coral-reef fishes 

15) Provide suggestions for the implementation of a long-term monitoring program 

appropriate to the iSimangaliso Wetland Park marine protected area, KwaZulu-Natal, 

South Africa. 

 

This thesis, therefore, not only describes the fish communities of a high-latitude coral reef, 

but first determines the best approaches to achieving this objective.  

 

In Chapter 1, a brief summary of the pressure facing marine ecosystems, a review of 

underwater visual census survey methods, and the key objectives that this thesis aims to 

address, are provided. 

 

In Chapter 2, a broad-scale ecological review of the literature pertaining to the high-latitude 

coral reefs of the south Western Indian Ocean is contextualised from a South African 

perspective. The motivation for selecting the representative study reef investigated in this 

thesis, Two-Mile Reef at Sodwana Bay, is presented. Biological information relevant to Two-

Mile Reef is discussed. 

 

In Chapter 3, an initial standardised protocol for surveying epibenthic coral-reef fishes, based 

on the best available information in the literature, is presented. Standardised approaches to 

selecting an appropriate UVC technique, experimental design, the establishment of 

appropriate survey parameters, the quantification of supplementary variables, observer-

related standardisation, and transect deployment standardisation are presented. This protocol 

is refined and then implemented in Chapters 4 and 5 respectively. 

 

In Chapter 4, a stratified, random sampling design was used to compare the appropriateness 

of slate, photographic and videographic transecting to surveying high-latitude epibenthic reef 

fishes on Two-Mile Reef. In addition to the design and development of a method for stills-

photography transecting, a preliminary method for validating counts generated from 

reviewable digital imagery is presented. 
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In Chapter 5, using a stratified, random sampling design in conjunction with the conclusions 

of the previous four chapters, a detailed ichthyofaunal survey of Two-Mile Reef was 

conducted. Sampling was stratified by season and by depth such that possible changes in 

ichthyofaunal community structure, and the drivers of those changes, could be determined. In 

addition, the seasonal- and depth-related dynamics of ichthyofaunal functional groups was 

examined. 

 

In Chapter 6, the implications of the research conducted for this thesis is contextualised so 

that conclusions are understood in relation to their relevance in the field of UVCs and their 

relevance to surveying high latitude coral-reef fishes. Lastly, the recommended approaches to 

implementing a long-term monitoring program in the iSimangaliso Wetland Park, which 

contains numerous high-latitude coral reefs, are outlined. 
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Chapter 2:  

Study Area: Physical and biological information relevant to the 

south Western Indian Ocean 

2.1 Introduction 

Almost all the accessible, high-latitude coral reefs of the Western Indian Ocean (WIO) fall 

into an area known as the iSimangaliso Wetland Park situated on the KwaZulu-Natal Coast, 

South Africa (Fig. 2.1) (Schleyer 1999). Formerly the Greater St Lucia Wetland Park 

(GSWP) until 2007, the iSimangaliso Wetland Park is a World Heritage Site (South Africa, 

Department of Environmental Affairs and Tourism 2000) and is considered to be one of 

South Africa‟s most valuable national parks (iSimangaliso Wetland Park Authority 2009).  

 

The north-eastern park boundary lies on the Mozambique border. The south-western park 

boundary is situated 160 km north-east of Durban. The marine sector of the iSimangaliso 

Wetland Park, first protected under the Natal Nature Conservation Ordinance of 1974, is 155 

km long (26° 51‟26‟‟S, 32° 06‟25‟‟E to 28° 29‟07‟‟S, 32° 56‟46‟‟E) and 5 km wide, and 

comprises two adjacent marine protected areas (MPAs) - the Maputaland MPA (Notice GN 

404/86, 1986) and the St Lucia MPA (Notice P 35/79, 1979). The Maputaland MPA, situated 

in the north-east, has an area of 39 740 ha while the St Lucia MPA, situated in the south-

west, is 44 280 ha (iSimangaliso Wetland Park Authority 2009). Physically the coastline 

within the park is sandy, relatively linear and receives little sediment input from non-marine 

and terrestrial sources due to the low numbers of rivers in the area (Cooper 1991; Riegl and 

Branch 1995; Schleyer 2000). The shoreline consists of numerous zeta-bays which have 

resulted from littoral drift dominating towards the north-east (Cooper 1991). The continental 

shelf along this section of the South African coast is narrow, 2–4 kms in width, and consists 

of a shelf break between depths of 45 m and 70 m (Roberts et al. 2006).  
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Figure 2.1: The Central Reef Complex of the iSimangaliso Wetland Park, KwaZulu-Natal, South 
Africa. Bathymetric data were obtained from the Marine Geoscience Unit of the Council for Geoscience, 
South Africa. Spatial reference system: Transverse Mercator (Central Meridian +27.00)  
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2.2 Climatology 

The iSimangaliso Wetland Park falls between the tropical and subtropical climatic zones of 

Southern Africa resulting in a terrestrial region consisting of diverse woodland/ savanna 

biogeography (iSimangaliso Wetland Park Authority 2009). 

 

Climatologically, the woodland/ savanna biogeographical zone is characterised by warm, 

moist summers and mild dry winters (iSimangaliso Wetland Park Authority 2009). Mean 

annual air temperature in the area exceeds 21°C with the coastal areas receiving relatively 

high precipitation of approximately 1300 mm per annum. Of the total rainfall, 60% falls 

during the Austral summer from December to March. The prevailing winds of the coastal 

region run parallel to the coast in either a south-westerly or north-easterly direction 

(iSimangaliso Wetland Park Authority 2009). During this study the prevailing wind force was 

from the south-west, attaining mean monthly velocities from 9.6 kts in August to 11.0 kts in 

November, and the north-east, attaining mean monthly velocities from 5.7 kts in February to 

8.9 kts in July (Fig. 2.2). For the purposes of this study, wind data for the period June 2010 to 

June 2011 were extracted from the voluntary observing ships (VOS) database of the South 

African Data Centre for Oceanography (SADCO) for the area 27ºS–30ºS and 31ºE–34ºE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Mean monthly wind speed for the area 27ºS–30ºS and 31ºE–34ºE. Arrows depict 
modal wind direction for that month. Numbers within bars depict the number of observations for that 
month. Data are courtesy of South African Data Centre for Oceanography. 
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2.3 Oceanography 

The most influential, large-scale oceanographic feature in the marine sector of the 

iSimangaliso Wetland Park is the Agulhas Current (Schumann 1988; Jury et al. 1993; 

Roberts et al. 2006). The Agulhas Current flows parallel to the coast from the north-east, 

originating off the Mozambique coast from a confluence of warm tropical waters passing into 

the Mozambique Channel. Attaining an offshore velocity of up to 3 m.s-1, the current 

markedly affects the waters on the continental shelf with a reported shelf velocity of up to 1.4 

m.s-1(Ramsay 1994) and mean surface velocity of 0.27 m.s-1 (Morris 2009). Although the 

Agulhas Current flows in a south-westerly direction, the shelf currents can be variable as a 

result of anti-cyclonic wind-driven circulation (Lutjeharms 2006). Acoustic Doppler Current 

Profiler data, from the continental shelf at the iSimangaliso Wetland Park, showed that 

southerly currents predominate while northerly flowing counter-currents can occur during 

periods of strong southerly winds (Morris 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Mean monthly sea surface temperatures for the area 27ºS–30ºS and 31ºE–34ºE. 
Numbers within bars depict the number of observations for that month. Data are courtesy of South 
African Data Centre for Oceanography. 
 

Mean seasonal sea surface temperature (SST) largely determined by the Agulhas Current has 

been reported to range from 22˚C in winter to 27˚C in summer (Smith et al. 1996). During 

this study mean monthly sea surface temperature was lowest during November, 20.4ºC, and 
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highest during April, 27.0ºC (Fig. 2.3). For the purposes of this study temperature data for the 

period June 2010 to June 2011 were extracted from the voluntary observing ships (VOS) 

database of the South African Data Centre for Oceanography (SADCO) for the area 27ºS–

30ºS and 31ºE–34ºE. 

 

Salinity in the region is reported to range from 35.0 to 35.5‰ (Schumann 1988) and the tidal 

range in the area averages approximately 2 m during spring tides and approximately 1 m 

during neap tides (SA Navy 2010).  

 

 
Figure 2.4: Mean monthly swell height for the area 27ºS–30ºS and 31ºE–34ºE. Arrows depict 
modal swell direction for that month. Numbers within bars depict the number of observations for that 
month. Data are courtesy of South African Data Centre for Oceanography. 
 

Persistent high-energy waves and large-amplitude swells approach the coastline 

predominantly from the south-east as a result of strong southerly winds (Schleyer 2000). 

During this study modal swell direction was variable between months but occurred most 

frequently out of the south-east, attaining a maximum mean monthly swell height of 2.7 m 

during March, and the north-east, attaining a maximum mean monthly swell height of 3.3 m 

during December (Fig. 2.4). For the purposes of this study, swell data for the period June 

2010 to June 2011 were extracted from the VOS database of SADCO for the area 27ºS–30ºS 

and 31ºE - 34ºE. 
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2.4 Subtidal geology  

Two unique late-Pleistocene geological structures, sand dunes and river canyons, facilitate 

the establishment, and continued growth, of the iSimangaliso Wetland Park high-latitude 

coral reefs.  

 

During the late-Pleistocene the glacial maximum low sea level was at least 100 m below the 

present level (Roberts et al. 2006). Prehistoric sand dunes, terrestrially exposed during glacial 

maximum lows, developed into large sandstone structures which now provide the sub-tidal 

substratum for the establishment of corals on the continental shelf (Ramsay 1994; Riegl and 

Branch 1995). Although the beachrock and aeolianite substrate enables coral establishment, 

continued growth is made possible by the presence of submarine canyons in the area which 

are a product of paleo-river outlets. 

 

Seven submarine canyons intersect the continental shelf in the vicinity of the iSimangaliso 

Wetland Park. These canyons prevent the siltation of the shallow-water corals by capturing, 

and directing seaward, any sediment transported by the Agulhas Current (Ramsay 1994; 

Ramsay 1996). Shallower corals are therefore maintained free of sediment and subsequent 

siltation, enabling unhindered establishment and growth. These uniquely high-latitude coral 

reefs are associated with highly diverse biota from a wide range of taxa. 

2.5 Marine biology 

The iSimangaliso Wetland Park is South Africa‟s biggest marine protected area. Ocean-based 

research was initiated in the 1950s through preliminary collection and exploration (Heydorn 

1972; Ballard 1973). Even at that early stage, Heydorn (1972, pg 20) referred to the coral 

reefs, of the then Tongaland, as an „endangered heritage‟. In 1980 the first directed, broad-

scale investigations were conducted that included specific sections devoted to corals and 

marine fishes (Bruton and Cooper 1980). Awareness of to the great biodiversity of the region 

grew steadily and recreational SCUBA diving became increasingly popular. By 1987, 20 070 

SCUBA dives were conducted from the primary launch site at Sodwana Bay (Ezemvelo KZN 

wildlife, as cited by Schleyer and Celliers 2003b). Diving intensity now fluctuates between 

60 000 and 110 000 dives from the Sodwana Bay launch site anually (Chater et al. 1995; 

Floros 2010a). Despite its recreational popularity, it was not until the late 1980s and early 
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1990s that directed biological research commenced. Initial efforts in the 1990s were largely 

devoted to the study of the unique corals of the iSimangaliso Wetland Park (Ramsay and 

Mason 1990a, b; Riegl and Branch 1995; Riegl et al. 1995; Riegl 1996; Riegl and Riegl 

1996; Benayahu and Schleyer 1998; Kruger et al. 1998). 

2.5.1 Coral reefs 

The coral reefs of the iSimangaliso Wetland Park constitute the southernmost coral reefs on 

the east African coast (Ramsay and Mason 1990b). These reefs occur in shallower, more 

photic waters at depths of 8 to 35 m and occur up to 155 km south from the Mozambique 

border (Schleyer 1999). Coral growth is determined by the variables: salinity, the nutrients 

NO3 and PO4, light penetration, temperature, and aragonite saturation. Because the South 

African reefs occur at a relatively high latitude, growth conditions, particularly in terms of the 

latter three variables, are considered only marginal (Schleyer 1999; Schleyer and Celliers 

2003a, b). Colonisable substrate is patchy resulting in numerous small patch reefs which 

range from up to two kilometres in length and one kilometre in width and which do not form 

massive, accretive carbonate structures, but rather cover the sandstone substrate with 

approximately 30–40 cm coral cover (Ramsay and Mason 1990a; Schleyer 1999). 

Topography is largely governed by the shape of the prehistoric sand-dune substrate and any 

erosion that has occurred. Besides a few small, infrequent patches of reef, the total coral reef 

area within the iSimangaliso Wetland Park falls into one of three major reef complexes; the 

Northern Complex, the Central Complex, and the Southern Complex (Schleyer 1999). 

Despite their marginal nature, however, corals on these reefs provide up to 70% of living 

benthic cover. Soft corals, Alcyonacea (11 genera) comprising relatively few species, cover 

the majority of the available substrate, while the highly diverse hard corals, Scleractinia (46 

genera), cover the remaining substrate (Jordan and Samways 2001; Schleyer and Celliers 

2003b). Coral communities are predominantly Indo-Pacific and represent 133 known species 

(Pereira 2003; Celliers and Schleyer 2008). For a detailed community structure analysis of 

the South African coral reefs refer to Celliers and Schleyer (2008).  

2.5.2 Ichthyofauna 

The ichthyofauna of the iSimangaliso Wetland Park has been surveyed over three periods 

roughly 15 years apart, by Smith (1980), Chater et al. (1993, 1995) and Floros (2010a). 
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Between 1976 and 1979, Smith (1980) conducted three investigations into the ichthyofauna 

of the area. Collections during these expeditions were focussed on Two-Mile Reef at 

Sodwana Bay (Fig. 2.1), but ranged from Kosi Bay mouth in the north to Leadsman Shoal 

Reef, north of Leven Point, in the South, and were made from the intertidal zone, using 

snorkelling gear, to depths of 30 m using SCUBA. A large array of habitats was sampled, 

including estuary mouths, the surf zone, sand substrate, rock substrate and coral-reef 

substrate. Recreational angler catches were also included in the collection process. Fishes 

were found to be abundant in every niche except the midwater zone. Smith (1980) concluded 

that the clear, nutrient deficient waters resulted in small numbers of numerous species that are 

primarily dependent on the coral reefs for food and shelter. In total, the resulting paper lists 

1198 species from 573 genera, and 150 families were listed that included many non-reef 

associated and pelagic species. Preliminary information on the biology of some of these 

species was conducted by van der Elst (1982). The important, exploratory surveys of Smith 

(1980) and van der Elst (1982), while providing check-lists of species occurring in the area, 

lacked the sampling design or replication required for the estimation of community dynamics 

such as richness and abundance.  

 

Chater et al. (1993) used SCUBA surveys to visually sample the reef-associated fishes 

throughout the extent of the iSimangaliso Wetland Park. Sampling was unstructured and 

dives were conducted haphazardly without standardisation. Identifications were not recorded 

in situ but were recorded at post-dive debriefings. Their check-list included 73 families 

containing 25 elasmobranch species and 374 teleost species. The best represented family was 

the Labridae (wrasses) while other well represented families included the Serranidae (rock 

cods and goldies), Lutjanidae (snappers), Chaetodontidae (butterflyfishes), Carangidae 

(kingfishes), Pomacentridae (damselfishes) and Acanthuridae (surgeonfishes). Of the species 

recorded, 75% had Indo-Pacific distribution ranges, 21% were known only from the Indian 

Ocean, and 4% (7 species) were endemic to South Africa. Circum-African and circum-global 

species comprised species of sharks, billfishes, and tunas. Chater et al. (1993) made an 

attempt to quantify relative abundances using the categories rare, present, common, or 

shoaling. Chater et al. (1993) stated that they observed just over half of the species they 

expected to find based on the work of Smith (1980). The reason given for this difference was 

the diverse habitats sampled by Smith (1980) who did not restrict his research to offshore 

coral reef areas. Chater et al. (1993) further stated that 70 of the species found in their study 

were not recorded by Smith (1980). Chater et al. (1993) concluded that their list was 
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comparable to lists from other tropical Indian Ocean areas such as the Seychelles Islands, 

although they noted that overall fish assemblage structures differed. 

 

Chater et al. (1995) susbsequently conducted a more specific study, with a focus on 

replicated SCUBA surveys on Two-Mile Reef, in the Central Complex, and Leadsman Shoal 

Reef, in the Southern Complex, in an attempt to provide the first quantitative estimates of fish 

abundance. The work of Chater et al. (1995) was carried out on a selected list of 13 families 

of fishes, which were identified as being typical, representative species. Their study must be 

interpreted with some level of caution, however, as there are errors in their survey design 

which would have caused pseudoreplication and temporal autocorrelation. Chater et al. 

(1995) constructed permanent transect start and end points at the Leadsman Shoal and Two-

Mile Reef. Each study location therefore consisted of only one true replicate. Furthermore the 

same transects were resampled in subsequent trips leading to temporal autocorrelation. Prior 

to each SCUBA transect, a transect line was fixed between permanent poles marking the 

transect start and end points. This could have disturbed the fish community, particularly in 

the case of shy or inquisitive species. Four to six divers would then, simultaneously, conduct 

each transect. Large numbers of divers are almost certain to have disturbed the ichthyofaunal 

community. The transects of Chater et al. (1995) also lacked adequate standardisation. 

Variable swimming speed, and hence transect time, could have resulted in increased data 

variability.  

 

Survey design criticisms aside, Chater et al. (1995) noted that counts of muraenids, large 

serranids, sparids, lethrinids, carangids, sphyraenids and scombrids were low. They found 

that the wrasse Thalassoma hebraicum was the most abundant species on both reefs at a 

mean abundance of 40.1 fish.1000 m-2 on Leadsman Shoal and 24.2 fish.1000 m-2 on Two-

Mile Reef. Other regularly recorded species included Chaetodon madagaskariensis, C. 

unimaculatus, Forcipiger flavissimus, Bodianus diana, B. bilunulatus, Lutjanus bohar, L. 

russelli, Amphiprion allardi, and Acanthurus leucosternon. Differences in mean abundance 

between Two-Mile Reef and Leadsman Shoal Reef were observed; however, there were no 

apparent reasons for these differences. The authors recommended detailed investigation into 

the habitat complexity of each reef and species specific requirements in terms of habitat. 

Chater et al. (1995) finally concluded that the diving activity on Two-Mile Reef (105 267 

dives in 1992), at that stage had no effect on fish abundances when compared with Leadsman 
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Shoal. Some 15 years later, Floros (2010a) undertook a more holistic, truly replicated 

investigation of the ichthyofaunal community dynamics in the region. 

 

Floros (2010a) used a stratified, random sampling design to conduct replicated 60 minute 

roving diver surveys. Floros (2010a) conducted a mean of 11 replicates per study site, but 

restricted replicates to the dominant benthic community type at a depth range of between 10 

and 16 m. A total of 284 species belonging to 50 families were recorded on South African 

and nearby Mozambican coral reefs. Floros (2010a) concluded that the species richness 

observed in South Africa was comparable to other reefs in the Western Indian Ocean. Six 

families contributed more than 50% towards fish community composition. These were the 

Labridae, Acanthuridae, Chaetodontidae, Lutjanidae, Pomacentridae and Serranidae. Floros 

(2010a) constructed a list of indicator species for which biomass was quantified for 

comparison between reefs. 

 

Ichthyofaunal research in the iSimangaliso Wetland Park has therefore been staggered and 

non-continuous. The work of Floros (2010a), although initiated in 2007, provides the only 

non-seasonal, baseline information on the fish assemblages of the region associated with only 

a narrow depth range and a single benthic community.  

2.6 Reef protection status and usage 

The adjacent MPAs of the iSimangaliso Wetland Park are managed by dual authorities: 

Ezemvelo KwaZulu-Natal Wildlife (EKZNW) and the iSimangaliso Wetland Park authority 

(Lemm and Attwood 2003). Legislatively, management conducted by these authorities must 

adhere to the South African Marine Living Resources Act (MLRA, Act 1998). 

 

Various reefs in the marine sector of the iSimangaliso Wetland Park have been zoned into 

either restricted-use or sanctuary zones. Under the MLRA, restricted-use zones permit 

unrestricted shore-based angling and restricted boat-based angling for a selected list of 

pelagic fishes (MLRA Section 3.1 (G) Regulation R1429). Restricted zones also allow 

recreational SCUBA diving, provided a code of conduct is adhered to by all divers and dive 

concession holders. Sanctuary zones prohibit all human activities and are considered strict 

no-take zones. 
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Figure 2.5:  Two-Mile Reef in the Central Reef Complex. Inset (a) is a cross-section of the reef 
along line a–b. Depth contour and geological data were obtained from the Marine Geoscience Unit of 
the Council for Geoscience, South Africa. Spatial reference system: Transverse Mercator (Central 
Meridian +27.00). 
 

The majority of reefs in the northern complex and all reefs in the southern complex have been 

zoned as sanctuary areas (Table 2.1). The remaining areas, including all reefs in the central 

complex, form a restricted zone. Two-Mile Reef (Fig. 2.5), in the central reef complex, is an 
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exception to this in that only recreational SCUBA diving is permitted on the reef while 

restricted fishing may occur only at depths >30 m (Table 2.1).  

 

Of restricted-use reefs, the Central Reef Complex is the most accessible via access points at 

Sodwana Bay. All other reefs in restricted-use zones are only accessible via private access 

points or lengthy boat-based journeys and therefore receive comparatively low usage 

pressure. The easily accessible Central Reef Complex receives the greatest anthropogenic 

usage in the form of recreational fishing, spearfishing and SCUBA diving (Schleyer 1999). 

 

Table 2.1: Marine Protected Area zonation of the major coral reefs in the iSimangaliso Wetland Park 
marine sector (Table compiled from information supplied by Schleyer (1999) and KwaZulu-Natal 
Wildlife Nature Conservation Services marine zone management plan (2003)). Terminology is in 
accordance with the South African Marine Living Resources Act 1998.  

Reef Complex Reef Permitted activities 

Northern North of Saxon Rocks None 
   

 South of Saxon Rocks Recreational angling/spearfishing, 
SCUBA diving 

   

Central 9-Mile Reef Recreational angling/spearfishing, 
SCUBA diving 

   

 7-Mile Reef Recreational angling/spearfishing, 
SCUBA diving 

   

 5-Mile Reef Recreational angling/spearfishing, 
SCUBA diving 

   

 2-Mile Reef SCUBA diving, recreational 
angling/spearfishing at depth >30 m 

   

Southern Red Sands Reef None 
   

 Leadsman Shoal None 

 

2.7 Study site  

Biological information on the Central Reef Complex is of immediate importance to inform 

management through monitoring anthropogenic usage. The Central Reef Complex was 

therefore selected as the focus area for this thesis. The complex lies adjacent to Lake Sibaya 

in the north and extends south to Jesser Point, an aeolianite shelf at Sodwana Bay (Anderson 

et al. 2005) (Fig. 2.1). The central complex consists of five major reefs either semi-detached 

from, or adjacent to, each other. From the north these reefs are Nine-Mile Reef, Seven-Mile 



 Chapter 2: Study Area: Physical and biological information 

36 

Reef, Five-Mile Reef, Two-Mile Reef and Quarter-Mile Reef – all named after their distance 

from the boat launch site at Jesser Point. The smallest discrete reef in the complex is Seven-

Mile Reef, while the largest reef, semi-detached from Quarter-Mile and Five-Mile Reefs, is 

Two-Mile Reef. Although semi-detached from one another, each reef within the Central 

Complex is a discrete reef structure possessing unique physical features (Schleyer 2000, 

Floros 2010a). As ichthyofaunal assemblage structure across depths and habitats was a study 

objective, a single representative reef had to be selected for investigation. To be 

representative of the Central Reef Complex, and to ensure consistent coral recruitment, the 

selected reef could not be small and isolated (Ault and Johnson 1998). The largest discrete 

patch reef within the Central Reef Complex, Two-Mile Reef, was therefore selected as the 

study site. 

Table 2.2: Summary of Ramsay and Mason’s (1990a) zonation of Two-Mile Reef in terms of 
physiographic and biological criteria.  

Zone Physical Criteria Coral Biological Criteria 

1 Leeward slope: Landward margin of reef with 
occasional spur and groove formations; depth 
15–21 m 

Poor coral growth, the genus 
Pocillopora being the most abundant 
hard coral. 

   

2 Leeward reef: Flat, low-relief zone on the 
landward side; depth12–14 m 

Mixed coral community of low cover 
(10%) in most of the zone 

   

3 Reef crest: The shallow, high energy reef top of 
high-relief with gullies, pinnacles and overhangs; 
depth 9–13 m 

Abundant coral growth, particularly soft 
corals of the genera Lobophytum and 
Sinularia 

   

4 Gully zone: offshore of zone 3 and 20–50m wide. 
Depth 13 m 

None 

   

5 Fore reef: Flat, low relief fore reef with regular 
narrow, sediment-filled gullies. Depth 13–20 m. 

Mixed coral community in which the 
genus Sarcophyton is conspicuous. 

   

6 Fore reef: 80–100 m wide with longshore, 
sediment-filled gullies. 

None 

   

7 Fore-reef zone of moderate relief (1.5 m) but 
with no true inter-reef gullies; depth 21–28m 

Mixed coral community which includes 
the genera Lobophyllia and Leptogorgia 

   

8 Flat, deep reef-front grading into sediment; 
depth 29–34 m 

Numerous sponges and gorgonians with 
few corals 

 

Two-Mile Reef (27˚ 30.5‟ S; 32˚ 42.2‟ E) is the largest discrete patch reef in the Central Reef 

Complex. Spanning 2.1 km in length and 0.9 km in width, the reef lies approximately 1 km 

offshore and runs parallel to the coast. Depth on the reef ranges between 6 m and 34 m and 
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consists of a wide range of habitats such as shallow pinnacles (6–10 m), extensive deep 

subtidal reef flats (14–18 m) and a gently sloping seaward edge (24–27 m) (Ramsay and 

Mason 1990a; Schleyer and Celliers 2005; Celliers and Schleyer 2008; Floros 2010a) (Table 

2.2, Fig. 2.5). The reef has a short, gentle leeward-reef slope, a flat reef top, atypical of a reef 

crest, and a large, gradual fore-reef slope (Table 2.2, Fig. 2.5). The euphotic zone along this 

section of coast has been reported to occur at a depth of approximately 30 m (Ramsay and 

Mason 1990a. Full coral cover on Two-Mile Reef extends to approximately 25 m after which 

gorgonian and sponge communities exist, interspersed with only scattered coral colonies 

(Ramsay and Mason 1990a) (Table 2.2, Fig. 2.2).  
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Chapter 3:  

Designing a suitable, standardised Underwater Visual Census 

protocol for surveying epibenthic coral reef fishes in the Western 

Indian Ocean 

3.1 Introduction 

Coral-reef fish assemblages are abundant, rich, diverse, and variable in comparison to other 

vertebrates (Hughes 1994). It is widely accepted that the most appropriate way to survey 

coral-reef fishes is by fisheries-independent, non-destructive, in situ underwater visual census 

(UVC) (Samoilys and Carlos 2000; Langlois et al. 2010; Pelletier et al. 2011). Under ideal 

circumstances, if the study area is known and there are clear objectives, it should be straight 

forward to select an appropriate, well-defined, rigorously-tested underwater UVC sampling 

protocol. In reality, no standardised protocols have been recommended.  

 

Despite six decades of conducting UVCs, no guidelines and/or protocols exist that outline the 

most appropriate approaches to implementing general UVCs, or which outline the most 

appropriate techniques to specific research circumstances. The choice of which technique to 

employ, and the design of the survey protocol to implement, has therefore been researcher-

specific (Bortone and Kimmel 1991). It is known that different techniques applied to the 

same community can yield quite different results (Branden et al. 1986; Davis and Anderson 

1989; Connell and Kingsford 1998; Kulbicki and Sarramégna 1999; Willis et al. 2000) as 

variations in techniques, such as different survey dimensions and observer behaviour, can 

greatly affect counts (Sale and Sharp 1983; Lincoln Smith 1988). Reduced intra- and inter-

study comparability is therefore a common criticism of UVCs (Watson et al. 2005). While 

flexibility of implementation is a strength of UVCs, directly comparing data obtained by 

different and/ or variable methods is difficult, if not impossible (Bortone and Kimmel 1991; 

Colvocoresses and Acosta 2007) because biases associated with different UVC methods 

remain poorly understood (Edgar 2004). An urgent need for the standardisation of techniques 

and approaches to conducting UVCs, both between and within studies, has been identified 

(Samoilys and Carlos 2000; Bennett 2008; Currie 2005). One approach would be to 

implement regulatory measures at two levels. These include (1) the standardisation of 
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approaches to UVCs in general resulting in greater inter-study comparability, and (2) the 

development and testing of specific protocols to decide what techniques and methods are best 

suited to specific research questions, resulting in greater intra-study comparability. 

 

This chapter aims to directly address the issue of inter- and intra-study standardisation. While 

focus is placed on developing a protocol specific to this study‟s aims, the protocol is general 

and applicable across all UVCs. The objectives of the present chapter, therefore, were to (1) 

provide an example of strict within-study standardisation, based on meta-analysis of the 

literature, for implementation as a specific standardised protocol, (2) provide sufficient 

background information such that future between-study standardisation and the development 

of future protocols is facilitated, and (3) provide clarity on a number of definitions and terms 

pertaining to UVCs which were not addressed in Chapter 1. The standardised protocol 

outlined here forms the general materials and methods for this thesis, but some additional, 

chapter-specific materials and methods are outlined where necessary. 

3.2 Survey technique 

Selecting appropriate survey methods and an appropriate study site are not mutually 

independent decisions. Most often, suitable survey techniques must be based on the 

characteristics of the study site and the ichthyofaunal community under investigation. It is 

therefore necessary to identify suitable methods a priori, so that sampling is standardised for 

the duration of a short-term study, or a long-term monitoring program (Sutherland 1996; 

ICES 2006). 

 

The most appropriate UVC technique for efficiently surveying epibenthic reef fishes is the 

strip transect technique because a relatively large area can be easily surveyed, transects are 

easily implemented and replicated, transect parameters can be clearly defined, and the 

limitations of the technique are well understood. The measures of standardisation described 

below are therefore in the context of surveying epibenthic reef fishes using the strip 

transecting. 
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3.3 Standardisation 

Failure to standardise is failure to hold study conditions constant and should, at all costs, be 

avoided (Winer et al. 1991) in an effort to limit the error resulting from bias and variability 

(Harvey et al. 2002b). Despite the obvious reasons for requiring UVC standardisation, 

standardisation amongst studies is uncommon. Bortone and Kimmel (1991) have assigned 

guidelines for a „bare minimum‟ level of standardisation where (1) each technique must be 

described clearly and referenced so that it can be duplicated to aid future research and 

facilitate evaluation of appropriateness, (2) the assumptions associated with data collection 

should be clearly stated, and (3) the perceived beneficial and detrimental features of the 

techniques used, and recommendations for their modification, should be identified. 

3.3.1 Survey design 

Survey research is most often associated with a wide range of potential sources of error 

(Winer et al. 1991) all of which have the potential to discredit entire research programs 

(Chater et al. 1995). UVC surveys are no different as surveys are conducted in an aquatic 

medium often many kilometres from land, requiring extensive logistical planning. In UVC 

survey design, researchers must be cognisant of sampling bias, environmental variability and 

biotic and abiotic interactions (Ludwig and Reynolds 1988). As biotic and abiotic factors are 

complex, and often interrelated, it is impossible for a researcher to control all the attributes 

that may influence the study outcome (Cox 1958). Prior to conducting a study, it is necessary 

to decide which factors are to be accounted for in the study design process, i.e. stratification, 

which factors can be „neutralised‟ by varying at random, i.e. replication and randomisation, 

and which factors will be measured as supplementary variables (Kempthorne 1952). 

Stratification 

Stratification refers to the spatial and/or temporal subdivision of sampling according to 

physical and/or biological characteristics (Vos et al. 2000). In UVC surveys the stratification 

of reefs into sampling units/strata with similar characteristics assists in removing spatial and 

temporal irregularities, as the variability within each stratum is likely to be lower than the 

study area as a whole (Green 1979; Bortone and Kimmel 1991). Stratification also provides 

better information on which causal factors may be structuring reef communities, and allows 
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some scope for the extrapolation of conclusions to similar strata in other areas (Green 1979; 

Lohr 1999).  

 

Coral reefs usually comprise a variety of natural materials including living material (hard 

corals, soft corals, sponges, invertebrates and algae) and non-living materials (rocks, sand and 

other geological formations). All these features contribute to reef substrate heterogeneity and 

physical reef relief (Bortone and Kimmel 1991) and can drive structural changes to reef fish 

communities (Choat and Bellwood 1991). Stratification must therefore be implemented at 

both spatial and temporal levels. Within a coral-reef perspective, spatial characteristics are 

stratified by reefs, reef zones, depth and substrate while temporal characteristics are stratified 

by season and time of day.  

Reefs 

Floros (2010a), conducting a more generalised study on a number of reefs in Mozambique 

and South Africa, showed that different ichthyofaunal communities can exist on different 

discrete reefs. To avoid these differences a single, large and representative patch reef in the 

area, Two-Mile Reef, was selected for investigation.  

Reef zones 

Fish community structures differ between different reef zones such as the fore- and leeward-

reef slopes, and the reef crest (Choat and Bellwood 1991). Specifically for Two-Mile Reef, 

the fore- and leeward-reef zones comprise different benthic communities (Ramsay and 

Mason 1990a), a factor which could also affect fish community structures (Bell and Galzin 

1984; Carpenter et al. 1981; Chabanet et al. 1997; Feary et al. 2007). To avoid confounding 

in this regard, sampling was conducted on the reef crest and leeward-reef slope only. 

Depth 

Depth has been shown to be a major factor influencing the fish community structures 

(Thresher 1983; Friedlander et al. 2003). On Two-Mile Reef, increasing depth has previously 

been associated with a change in benthic community structure (Celliers and Schleyer 2008) 

and decreasing algal cover (Anderson et al. 2005). Stratification must therefore be within a 

narrow depth range, or between contrasting depth ranges to address specific hypotheses. 



 Chapter 3: Designing a suitable, standardised Underwater Visual Census protocol 

42 

Substrate 

Substrate is a factor which has been associated with changes to fish community structures 

(Guidetti 2000; Gratwicke and Speight 2005). As this study investigated reef-associated 

species, only purely reef substrate was sampled. 

Season 

The effect of season has been ignored in studies investigating low-latitude coral reef 

investigations, possibly because it is widely accepted that the negligible seasonal fluctuations 

in physical and biological variables at equatorial latitudes are unlikely to drive change 

(Freeman 2005). One of the aims of the present study, however, was to determine if seasonal 

changes to fish assemblages occurred on high-latitude reefs. Seasons should therefore be 

discrete and contrasting. This study was therefore conducted in mid-winter and mid-summer.  

Time of day 

Colton and Alevizon (1981) and Götz (2006) showed that the time of day at which surveys 

are conducted can influence the fish community surveyed. The South African coast is 

exposed and variable, and typically has rougher sea conditions in the afternoon. The time of 

day that surveys were conducted was therefore restricted to a narrow, mid-morning to mid-

day time window (09:00–13:00). It was envisaged that this time window was late enough to 

ensure sufficient ambient light, early enough to avoid the rough afternoon sea conditions, and 

narrow enough to reduce variability in fish behaviour associated with crepuscular activity 

(Davis and Anderson 1989). 

Replication 

Bortone and Kimmel (1991) note that due to the complex nature of environmental 

parameters, their inherent natural variability and the large number of potential interactions, 

the data obtained from surveys that have not been carefully designed and adequately 

replicated should be interpreted with caution. There are two primary benefits to replication. It 

provides both an estimate of error and increases the statistical power with which effects can 

be detected (Bros and Cowell 1987; Thompson and Mapstone 2002; Cohen 1973). In general 

the frequency of independent replications is proportional to the precision with which 

dependent variable effects can be estimated (Winer et al. 1991). There is, however, a point 
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where the cost of conducting more replicates outweighs the value of minor improvements to 

precision (Samoilys and Carlos 2000). It is important to first determine the minimum sample 

size necessary for achieving a desired level of statistical power such that resources are not 

wasted on over-sampling (Samoilys and Carlos 2000). 

 

Where studies have not previously been conducted, statistical methods such as power 

analysis cannot be employed to determine the minimum recommended replication. Bortone 

and Kimmel (1991) note that, when conducting UVC studies, a large number of samples 

measuring the variables of interest must be collected, such that variability can be statistically 

accounted for. This is an inefficient approach. It is perhaps more appropriate to examine the 

literature of studies conducted on similarly diverse systems such that a „best guess‟ of the 

appropriate sample size for a study can be determined. From the results obtained using a „best 

guess‟ sample size, the actual sample size required to achieve a desired power level can be 

determined. 

 

Several studies have determined the appropriate number of samples that should be conducted 

in conducting coral-reef fish surveys (Table 3.1).  

 

Table 3.1: Summary of studies that determined the minimum number of replicates appropriate for 
surveying coral-reef fishes. Studies are ordered by the number of replicates recommended. RSA = 
Republic of South Africa. 

Authors Locality Survey technique 
Recommended 
replicates 

Sale and Douglas (1981) E. Australia Roving Diver 4 

Bortone et al. (1986); Jones and 
Thompson (1978); Kimmel 
(1985) 

Various Various <8 

Floros (2010b) Mozambique & RSA Roving diver 10 

Harmelin-Vivien et al. (1985) Various Various 12 

Samoilys and Carlos (2000) E. Australia & Fiji 
Strip-transects & 

Point counts 
10–15 

Floros (2010c) Mozambique & RSA Point counts 18 

Bortone et al. (1989) Puerto-Rico Various 16–32 

 

Andrew and Mapstone (1987) state that the number of samples required is often specific to 

each situation and will probably vary between situations. If variation in the factor of interest 
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is low, as few as three to ten samples may be required, but if variation is high, as many as 50 

may be necessary (Bortone and Kimmel 1991). Despite variation in the literature, Samoilys 

and Carlos (2000) recommended 10–15 replicates when conducting transects and point 

counts on coral-reef fishes. Based on these findings, and the large variability in minimum 

sample sizes recommended in the literature, it was decided that the present study would 

implement the maximum number of replicates logistically feasible, 15 replicates per stratum, 

in the first phase of the study. 

Randomisation and sample site allocation 

Fisher (1951) was the first to suggest that randomisation could be used as a method of 

experimental control. Adequate randomisation is not only important for the avoidance of 

experimental design flaws such as pseudo-replication and autocorrelation (Bennett 2008), but 

is important for neutralising those factors which cannot be stratified. A truly random sample 

must have two characteristics. The sample must be drawn in such a way that all elements in 

the population have an equal and constant chance of being drawn on all draws, and all 

possible samples have an equal, i.e. fixed and determinable, chance of being drawn (Winer et 

al. 1991). In UVC this applies to the selection of sites to be sampled from a list of all 

appropriate sites. 

 

Sampling was therefore conducted using a stratified-random sampling design (Colvocoresses 

and Acosta 2007) without replacement (Bennett 2008). Bathymetric and geological data 

which had been digitally georeferenced, using Geographical Information Systems (GIS), 

were obtained from the Marine Geoscience Unit of the Council for Geoscience (Durban, 

South Africa). Using the appropriate stratification prerequisites in ArcGIS 10 (© 

Environmental Systems Research Institute), a grid overlay with cells 50 m × 50 m was used 

to identify all possible sampling sites meeting the necessary criteria, where cell size was 

based on transect length. Sampling sites were chosen by randomly drawing geographic 

coordinate pairs. Sites were drawn without replacement within and between all levels of 

stratification such that pseudoreplication, temporal autocorrelation, and the possible effects of 

divers repeatedly sampling individual sites, were avoided (Thompson and Mapstone 2002; 

Fowler 1987; Kulbicki 1998). To avoid spatial autocorrelation, no adjacent sites were 

sampled in any phase of the study (Bennett 2008). Additional co-ordinate pairs were 

generated as a contingency against incomplete samples or particular sites not falling within 
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the required depth range. Post-site selection, coordinates were entered into a handheld Global 

Positioning System (GPS) (etrex, © Garmin) and their depths ground-truthed using a boat-

based echo-sounder. 

Supplementary variables  

To understand and ultimately manage a dynamic and variable environmental system, it is 

important to understand the specific controlling or influencing factors (Patton et al.1985). 

Abiotic and biotic parameters were quanitified as supplementary variables, in situ, at the 

completion of a dive to minimise pre-transect diver disturbance to fishes. To prevent longer-

term changes in supplementary variables confounding the primary comparisons of interest 

(Underwood 1993), each sampling event was conducted within a 6-day period; this was the 

shortest time period possible based on the number of available divers and the required 

replication. 

 

Topographic complexity, substrate type, and current, were determined by each diver 

conducting transects, and the mean value for each transect calculated. Visibility, water 

temperature and turbidity were measured, and the time of day and tide recorded.  

Topographic complexity 

Clua et al. (2006) stated that reef topographic characteristics, referred to here as topographic 

complexity, are usually interrelated and contribute towards general habitat heterogeneity of 

reef. The topographic characteristics of a reef have been referred to using a number of terms, 

including habitat complexity (Grigg 1994; Caley and St John 1996; Beukers and Jones 1998), 

shelter availability (Connell and Kingsford 1998; Friedlander and Parrish 1998) rugosity 

(Floros 2010a), and profile (Bennett 2008). These terms are used interchangeably between 

studies and are often quantified using unrelated techniques. For example, compare „rugosity‟ 

as defined by Luckhurst and Luckhurst (1978), Chandler et al. (1985), McClanahan (1994), 

Bennett (2008), and Floros (2010a). As no current metrics of topographic complexity can 

provide all the information a researcher requires regarding the structural architecture of a 

survey reef (Clua et al. 2006), three pertinent metrics of topographic complexity were 

selected for use in this study. Two of these metrics, profile and rugosity, were selected 

because they are simple and can be efficiently to quantified in comparison to techniques such 

as the chain-link method (e.g. Almany 2004), and each provides slightly different information 
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on reef structure. The third metric, termed habitat complexity, is a qualitative metric for 

which a specific set of definitions was developed in this study. 

 

To calculate profile and rugosity, the depth of each transect was recorded at the start of that 

transect and at each 10 m interval. Profile was calculated as the sum of squares of the 

differences between consecutive depth readings (McCormick 1994). Differences between 

consecutive depth readings were calculated as x1-x0, x2-x1, …, xmax -  xmax-1 . This method was 

able to distinguish between a level sea floor and one that deviates from level, thus providing 

information on the angle of the average slope. The limitation of profile is that the metric does 

not enable a distinction between a sloping seafloor with even surface and an equally sloping 

seafloor with uneven surface. Therefore rugosity was used as a second measure of 

topographic complexity. 

 

Rugosity was calculated as the absolute value of the standard deviation of the differences 

between consecutive depth readings (Bennett 2008). Differences between consecutive depths 

were calculated as indicated for profile. Using this metric, an even seafloor of any slope will 

provide a lower rugosity value than an uneven, level seafloor. The magnitude of unevenness 

is reflected in the calculated value. Neither rugosity nor profile, however, provides 

information on the texture or detail of the reef substrate and/or benthic community. 

 

An area which produces high values of profile and rugosity can in reality provide 

homogenous habitat. For example, a reef with a steep reef slope and the presence of large, 

rounded boulders will produce high profile and rugosity values, but will provide less surface 

area and habitat than a reef with equally high profile and rugosity, but comprised of jagged 

boulders and detailed coral heads. The qualitative metric „habitat complexity‟ was therefore 

developed as an easily implementable description of the structural detail of the sites surveyed. 

Although a coarse version of the metric has been implemented by Polunin and Roberts 

(1993), the habitat complexity metric is essentially a visual index of the intricacy and detail 

of a particular site, independent of profile or rugosity. Habitat complexity for this study was 

categorised qualitatively as either highly complex, complex, semi-complex, homogenous, or 

highly homogenous. These categories are summarised in Table 3.2. Photographic examples 

are provided in Appendix 1. 
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Table 3.2: Categories for the assessment of habitat complexity and substrate type at each study site 

Substrate 

Substrate type was assessed qualitatively. Visual assessment of the substrate present at each 

site was made by assigning the observed substrate to one of five categories; Reef, Reef-Sand, 

Reef/Sand, Sand-Reef or Sand (Table 3.2). Photographic examples are provided in Appendix 

1.  

Current 

Current speed was estimated by each diver. Divers noted the time taken for the current to 

transport the diver a distance of 1 m. The mean of both stop-watch based estimates was 

accepted as the current speed for that sample and extrapolated to m.s-1. Current direction at 

the sampling depth was determined visually by each diver. 

Level Profile: Habitat complexity Substrate type 

1 Highly complex: Habitat highly intricate; 
many nooks, crannies, caves and crevasses. 
Deep in structural detail. Structurally 
complex corals abundant. 

Reef:  
Entirely rock/ coral 
reef. 

2 Complex: Many nooks, crannies, caves and 
crevasses. Moderately deep in structural 
detail. Structurally complex corals 
abundant, but interspersed with less 
complex patches. 

Reef-Sand: 
Predominantly of 
rock/ coral reef 
interspersed with 
sandy areas. 

3 Semi-complex: A detailed area interspersed 
with large homogenous substrate or barren 
areas. Nooks, crannies, caves and crevasses 
shallow. Habitat refuge for fishes still 
abundant. 

Reef/Sand: 
Approximately 50% 
rock/ coral and 
50% sand. 

4 Homogenous: Area flat, barren, and almost 
void of complex coral structures. 
Rocks/corals smooth and rounded, 
regardless of rugosity, providing only low 
levels of habitat refuge for fishes. 

Sand-Reef:  
Sand interspersed 
with rock/ coral 
reef areas. 

5 Highly homogenous: Area flat, barren, and 
void of complex coral structures. If area has 
a high rugosity, rocks/corals smooth and 
rounded providing almost no habitat 
refuge for fishes. Generally interspersed 
with large dead/ sandy patches. 

Sand:  
Entirely sand. 



 Chapter 3: Designing a suitable, standardised Underwater Visual Census protocol 

48 

Visibility 

Horizontal visibility was measured by divers at the sampling depth. Each diver pair would 

swim away from each other along the extended transect line and note the distance at which 

the divers could no longer visually distinguish one another.  

Water temperature 

Water temperature at the sampling depth was measured with Gekko Dive Computers (Suunto 

©). 

Turbidity 

A water sample for each transect was collected in an 80 ml plastic jar at the sample depth. 

Water samples were frozen as soon as possible for later laboratory analysis. Samples were 

defrosted and turbidity measured using an H198703 portable turbidity meter (Hanna 

Instruments ©). 

Time of day 

Although the time of day for conducting surveys was restricted to a narrow time window, the 

time at which each transect was conducted was recorded to confirm that any observed 

differences were not a product of changes in time. The start time of each transect was 

recorded by divers once the transect start point had been established.  

3.3.2 Survey technique and fish assemblage parameters 

Survey technique parameters 

Transect length 

Stewart-Oaten et al. (1996) states that the spatial scale of sampling should be related to the 

range of movement of the study species. To minimise spatial and temporal variability, 

particularly when relying on visual distance estimates, it is preferable that replicates are 

spatially reasonable (Tessier et al. 2005). Reef fishes are resident, with home ranges varying 

from <10 m2 to >100 m2 (Allen 1991). Large areas cannot be accurately surveyed using 

visual transects. Transect length was therefore set to 50 m as, after reconnaissance diving, it 

was envisaged that 50 m would be large enough to capture most species, but small enough to 
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enable manageable sampling. Standardisation of transect length was achieved by divers 

carrying a 50 m shot line that was extended from the transect start point. Extending a shot 

line while conducting a transect would exclude diver disturbance effects which could have 

been generated if a transect line were constructed prior to conducting each replicate (Edgar  

2004). 

Swimming speed 

Lincoln Smith (1988), Samoilys and Carlos (2000), Lacour et al. (2001) and Tessier et al. 

(2005) have each recommended a swimming speed appropriate for underwater transects, 

noting that slower swimming speeds enable more accurate and precise visual counts and that 

swimming speed is a factor that should be standardised across studies. In contrast, swimming 

speed should not be so slow that dive time is extended beyond reasonable efficiency thereby 

decreasing the number of replicates divers can conduct in a given day due to residual nitrogen 

loading (Watson et al. 1995). In line with the conclusions of Lincoln Smith (1988), Samoilys 

and Carlos (2000), Lacour et al. (2001); Tessier et al. (2005) and Watson et al.(1995), 

swimming speed was set to 6.25 m.min-1 translating into a total time of 8 min.transect-1. 

Reconnaissance diving confirmed that this speed was slow enough to incorporate sedentary 

species, but fast enough to ensure observations of more mobile species. Swimming speed was 

standardised in that divers monitored the time relative to the distance covered along the 

transect, on dive watches.  

Fish assemblage parameters 

Fish assemblage parameters must be established to suit the research objectives of a study and 

to reduce any unnecessary data variability (Samoilys and Carlos 2000). This study 

established standardised fish assemblage parameters by excluding cryptic species, setting a 

minimum fish size, assigning species groups, reducing double counts, and by temporally 

stratifying counts. 

Cryptic species 

Brock (1982), Ackerman and Bellwood (2000), Willis (2001), and Lechanteur and Griffiths 

(2002) state that even when meticulous searches of small areas are implemented, cryptic 

fishes can be underestimated by up to an order of magnitude. As the focus of the present 
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study was on epibenthic reef fishes, cryptic species, which are commonly benthic species 

(Lechanteur and Griffiths 2002), were excluded. 

Minimum size 

The difficulties associated with identifying and counting small fishes could dramatically 

increase variability. It is therefore necessary to set a minimum size limit to the fishes 

observed (Samoilys and Carlos 2000). To prevent excluding important species, the size limit 

should not exclude species which only grow to small sizes. Based on observations made 

during reconnaissance dives, minimum fish size for the present study was set to 4 cm – small 

enough to reduce variability, but large enough to include families such as the Apogonidae 

and the Pomacentridae, which do not attain large sizes (Smith and Heemstra 2003). 

Assignment of species groups 

Some species require detailed taxonomic assessment for identification to species level. As 

detailed taxonomic assessment is not possible when conducting UVCs, morphologically 

similar species were assigned to species groups (Alevizon and Brooks 1975). These groups 

were assigned either because species were indistinguishable during visual transect 

identifications, which needed to occur instantaneously, or their defining characteristics were 

indistinguishable during photographic and video identifications. A total of eight species 

groups consisting of 24 species were assigned. All species in all groups were observed in the 

study area in varying proportions at some point during reconnaissance dives or during the 

study. The same species groups were applied to all transect types. Species groups were 

treated as species in subsequent analyses (Alevizon and Brooks 1975; Samoilys and Carlos 

2000). 

Reduction of double counts 

The problems associated with enumerating individuals more than once have been 

documented (DeMartini 1993; Colton and Swearer 2010). To reduce the occurrence of 

double counts, fishes passing from behind divers were excluded from the counts of all 

transect techniques (Mapstone and Ayling 1998).  
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Temporal stratification of counts 

Fishes entering and leaving a survey area once counts have commenced produce a potential 

source of variability in UVCs (Mapstone and Ayling 1998). To reduce this effect, counts 

were temporally stratified to capture those species most likely to leave the sampling area first, 

either because of mobility or because of their tendency to move away from approaching 

divers (Samoilys and Carlos 2000). Fishes entering a survey area once counting had 

commenced were excluded (Mapstone and Ayling 1998; Samoilys and Carlos 2000). 

Other fish assemblage parameters 

Other standardised fish assemblage parameters were set during this study. If an individual is 

nearby but does not enter the survey zone then that individual is not counted. Once an 

individual is counted it is not recounted. Fishes swimming behind the observer are never 

counted, species clearly attracted to the area due to diver activity should not be counted, and 

the distance and angle of the observable field should be kept constant to maintain a consistent 

level of detectability for all fishes (Bortone and Kimmel 1991; Brock 1954; Harmelin-Vivien 

et al. 1985; Keast and Harker 1977). 

3.3.3 Observer-related standardisation 

Several observer-related standardisation measures were taken in this study that include 

establishing criteria for the selection of divers, conducting reconnaissance dives, 

standardising the equipment carried by divers, and conducting thorough observer training. 

Observer and diver selection 

To conduct research up to a depth of 30 m, South African underwater research regulations 

require that, at a minimum, all divers are commercial Class-IV or higher certified (South 

Africa, Department of Labour 2010). A total of eight Class-IV or higher certified divers, 

excluding non-diving dive supervisors, were used. 

 

Certified divers were categorised as either observers or divers. The term observer refers to 

those divers who have a duty that has an observational nature, such as fish identification or 

camera operation, while the term diver refers to any person conducting underwater work in 

this study and can include observers. 
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To reduce variability in visual counts only a single observer, Reece Wartenberg (RW), was 

used for all slate transects. Three other observers were restricted to camera work and the 

remaining four divers restricted to the buddy-diver role. After selecting divers, a 

reconnaissance diving phase was initiated. 

Reconnaissance diving 

Reconnaissance dives served as the pilot phase for the study. A total of four reconnaissance 

dives were carried out on Two-Mile Reef before transect type, survey technique, and fish 

assemblage parameters were established. Reconnaissance dives were conducted at random 

dive sites using the flexible, parameter-free roving diver technique. Dives were to maximum 

depths of 11 m, 14 m, 18 m and 24 m, with total dive times of 55 min, 45 min, 38 min and 32 

min respectively. During reconnaissance dives, each diver was equipped with a double-sided 

A4 dive slate. One diver was provided with a photographic camera and one diver was 

provided with a video camera. Information and footage were analysed in a group discussion 

after each dive. Only one reconnaissance dive took place on a given day with two to four 

days between dives. Reconnaissance dives afforded an opportunity to trial run transects for 

the purpose of fine tuning parameters, such as transect length and minimum fish size, to 

practice fish identifications, to gather footage for fish identification and site parameter 

training, and to determine which camera settings would be the most appropriate. 

Reconnaissance diving also afforded an opportunity to determine what equipment divers 

would need during transects. 

Diver equipment 

The equipment carried by divers was provided to divers prior to deployment and did not 

change throughout the study. 

 

All divers carried slates to record site parameter information in situ. Dive slates consisted of a 

table with cells for recording depth readings, habitat complexity, substrate type, visibility, 

water temperature, current speed and direction, and time of day. 

The single visual count observer was provided with a double-sided A4 dive slate divided into 

columns for „common name‟ and „number observed‟ so that abundance and richness 

information could be recorded.  
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Other equipment that was necessary for conducting transects included an 80 ml plastic jar for 

collecting water samples, a 50 m dive reel with a dive weight attached to the tag end enabling 

fixation of the transect start point, and primary and secondary pencils for recording 

information. 

Diver training 

Edgar (2004) state that, in the case of studies conducting spatial analyses, extensive diver 

training is less necessary as any confounding associated with diver variability can be 

removed using a balanced sampling design with the same combination of divers at different 

sites. Mapstone and Ayling (1998) and Langlois et al. (2010) further stress that the 

importance of diver calibration will be greatest in studies where temporal rather than spatial 

comparisons are of interest. Two temporal scales are of interest in the present study: directly 

between seasons and indirectly in the development of a long-term monitoring program. The 

diver training (Appendix 2) was conducted in terms of fish identification, transect width 

estimation, diver swimming speed, and the measurement and/or estimation of supplementary 

variables. 

 

Once diver training was completed, the in-field survey phase of the study could commence 

under a standardised transect deployment protocol. 

3.3.4 Standardised transect deployment 

All diving operations were conducted from a rigid-inflatable boat. Upon arrival at randomly 

selected co-ordinates, two divers were deployed using the negative entry technique.  

 

Once at the bottom, and maintaining neutral buoyancy 1 m above the reef to prevent diver 

damage, divers swam 10 m away from the drop zone, into the current, along the depth 

contour. This 10 m buffer zone was implemented to reduce the effect of diver disturbance on 

fish behaviour. As the effect of depth was of interest in the present study, transects were 

conducted along the depth contour. To minimise visibility disturbance and to facilitate easier 

swimming speed control, transects were conducted into the current. Each diver within a 

buddy team, referred to as Diver I and Diver II, was assigned specific duties for each transect 

type (Appendix 1).  
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The duties of Diver I for all transects was to swim a straight line transect that tracked the 

depth contour as closely as possible (Fig. 3.1), while maintaining swimming speed at 6.25 

m.min-1 (Appendix 1). A straight strip transect, opposed to S-type strip transects (Pelletier et 

al. 2011), was chosen as it was anticipated that straight transects would allow for decreased 

variability in transect width estimates by observers conducting slate transects.  

 

Diver II swam next to Diver I while extending the transect line. The line was marked at 10 m 

intervals which served to alert diver II as to when to record depth and when to terminate the 

transect (Mapstone and Ayling 1998; Zeller and Russ 2000) (Appendix 1). The tag end of the 

transect line, effectively the start of the transect, was connected to a 1 kg lead weight which 

was placed haphazardly on the substrate at the start of the transect without damaging corals. 

 

 
Figure 3.1: Theoretical example of three 50 m straight strip transects conducted along respective 
depth contours. 
 

Depending on the transect technique being conducted, the identification and enumeration of 

fishes or camera operation commenced as soon as the dive weight marking the start of the 

transect had been placed and the stop watches of both divers had been simultaneously started.  

All site parameter information was recorded in situ, after completion of each transect, at the 

sample depth. 

 

 - 6 m 
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Transect 
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Chapter 4:  

Comparing underwater visual census transect and analysis 

techniques applicable to surveying epibenthic coral reef fish 

assemblages in the Western Indian Ocean 

4.1 Introduction 

Coral reef ecosystems are amongst the world‟s most complex and anthropogenically 

threatened marine systems (Connell 1978; Ray 1988; Wilkinson 2004; Wilson et al. 2008; 

Pelletier et al. 2011). If coral-reef biodiversity is to be conserved, they need to be surveyed. 

Underwater visual censuses (UVCs) of various forms have been implemented, with varying 

degrees of success, to estimate fish assemblage metrics such as abundance, richness, diversity 

and biomass (Bortone et al. 1991; Tessier 2005). Understanding spatial and temporal patterns 

in these metrics is essential for within- and between-study comparisons (Clarke and Gorley 

2006; Kremen 1992). Although unconfounded comparisons can only be made with data that 

are sufficiently accurate, precise, and representative of the community in question (Bower et 

al. 2011), the survey technique implemented must be appropriate to the goals of a study, 

efficient and cost effective (Langlois et al. 2010). The most crucial consideration in any 

ecological study is the choice of sampling method (Thomas 1996; Rotherham et al. 2007). Of 

the many UVC techniques available, the strip transect technique is one of the most widely 

used because it is easy to implement, possesses fixed area parameters, and it is suitable to the 

survey of epibenthic reef fishes (Schmitt et al. 2002; Colvocorresses and Acosta 2007; 

Dickens et al. 2011). Traditionally all UVC techniques have been conducted by observers 

who record observations on dive slates, but digital technology, such as videographic media, 

has become readily available and affordable.  

 

The slate transect technique has been used since the 1950s (Brock 1954) and is now one of 

the most common methods of surveying reef fishes (English et al. 1994). Provided trained 

observers are available, all UVC survey techniques conducted using slates are simple to 

implement. The use of slates has been shown to possess limitations though, which include the 

subjective estimation of survey area, a lack of reference images, inter-observer variability, 

and observer task-loading (Brock 1982; Bortone and Kimmel 1991). The use of digital 
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recording media can mitigate these limitations in that survey area is standardised, reference 

images can be stored, inter-observer variability is minimised, and because digital media can 

be reviewed at any speed, observer task-loading is omitted (Watson et al. 2005; Langlois et 

al. 2010; Watson et al. 2010). Additional benefits to conducting surveys using digital image 

media are that no fish identification experts are required in the field for conducting surveys, 

images allow scope for the analysis of additional environmental information such as reef 

architecture, and images may be reviewed multiple times by multiple observers (Chapter 1). 

Traditional slate surveys are therefore beginning to become replaced by surveys conducted 

using digital image media (e.g. Naiberg et al. 1993; Pettrell et al. 1997; Watson et al. 2005; 

2010; Pelletier et al. 2011). 

 

Digital videographic media for use with traditional strip transects has been assessed (e.g. 

Watson et al. 2010; Pelletier et al. 2011), but its applicability to a variety of systems is not 

fully understood. Three variations of the strip transect technique were therefore selected for 

in situ assessment in this study; traditional slate, photographic, and videographic transects. As 

the identification and enumeration of fishes observed using digital photography and 

videography does not need to occur instantaneously, footage from these digital images of 

transects can be analysed using a number of techniques. 

 

There are three different approaches to analysing ichthyofaunal abundance and richness from 

digital footage. These are Standard-count, MaxN, and Multiple MaxN techniques (Chapter 1). 

The Standard-count or MaxN techniques are more commonly used for the analysis of digital 

media and have been applied to a variety of UVC scenarios. Multiple MaxN analysis is 

essentially an extension of the original MaxN technique that is less commonly applied. 

Although previous investigations have used Standard-count and MaxN techniques for 

different within-study applications (e.g. Watson et al. 2005; Becker et al. 2010), no previous 

study has directly compared these two techniques. This study therefore compared the 

suitability of Standard-count and MaxN media analysis techniques to generating fish 

assemblage data obtained by photographic and videographic transects by reviewing footage 

on multiple occasions.  

 

Despite the ability to re-review photographic and videographic footage (Watson et al. 2005; 

Pelletier et al. 2011), no previous studies have suggested a method for validating counts 

generated by digital image UVCs. Although it is not possible to validate counts generated by 



 Chapter 4: Comparing underwater visual census transect and analysis techniques 

57 

a transect technique against true community values, known as true validation, it is possible to 

validate the counts of observers against the true count generated by a digital transect 

technique. Observer count validation would effectively remove, or at least minimise, observer 

count bias and variability, one of the fundamental criticisms of UVCs.  

 

The aim of this chapter was to compare and contrast three transect techniques (slate, 

photographic and videographic) and two media analysis techniques (Standard-counts and 

MaxN) to determine which technique-analysis combination is the most appropriate for 

surveying epibenthic coral reef fish communities. The five transect-analysis combinations 

investigated were: slate transects, photographic transects with Standard-count analysis, 

videographic transects with Standard-count analysis, photographic transects with MaxN 

analysis, and videographic transects with MaxN analysis. For each combination, overall 

abundance, community richness and community diversity were estimated. In addition, the 

sample size required to achieve sufficient statistical power, the implementation efficiency, 

and the ecological groups surveyed by each technique were assessed. Lastly, a preliminary 

method for validating counts generated from digital media is presented. Comparisons were 

conducted on a poorly studied, highly diverse, high-latitude coral reef in the Western Indian 

Ocean.  

4.2 Materials and Methods 

4.2.1 Study area and sampling design 

The study was conducted on Two-Mile Reef in the iSimangaliso Wetland Park, South Africa. 

Motivation for the selection of Two-Mile reef is provided in Chapter 2, while additional 

details pertaining to the randomised allocation of sample sites, quantification of sample site 

parameters, observer and diver selection, reconnaissance dives, transect and community 

parameters, transect deployment protocol and diver training are provided in Chapter 3. 

Parker et al. (1994) and Clua et al. (2006) note that of the various physical and biological 

factors structuring fish communities, the most influential are substrate type and the associated 

benthic community. A random stratified sampling design therefore was employed by 

sampling predominantly non-sandy, reef substrate areas, and only one similar and 

comparable benthic community was sampled.  
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Figure 4.1: Transect start points for slate, photographic and videographic transects conducted 
between -10 m and -16 m on Two-Mile Reef in the Central Reef Complex in the iSimangaliso Wetland 
Park, South Africa. Depth contour and geological data were obtained from the Marine Geoscience Unit 
of the Council for Geoscience, South Africa. Spatial reference system: Transverse Mercator (Central 
Meridian +27.00). 
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Celliers and Schleyer (2008), who conducted a detailed assessment of the benthic 

communities of South African coral reefs including Two-Mile Reef, showed that 16 discrete 

coral communities exist. Of these 16 communities, the dominant community occurs on Two-

Mile Reef at a depth ranging from 10 m to 16 m. This community consists of hard and soft 

corals forming most of the living benthic cover (Celliers and Schleyer 2008). Sampling for 

this work was restricted to this narrow 10–16 m depth range on the reef flat and fore-reef 

slope of Two-Mile Reef under the assumption that a only a single benthic invertebrate 

community, and it‟s associated coral-reef ichthyofauna, would be surveyed (Fig. 4.1). Using 

ArcGIS 10 (© Environmental Systems Research Institute), a grid overlay with 50 m × 50 m 

cells was georeferenced over the reef area meeting the necessary survey criteria. Sample sites 

were then randomly selected without replacement (Chapter 3).  

 

The most suitable sampling design maximises the number of replicates logistically feasible, 

while taking into account the time and funding available such that there is a realistic trade-off 

between accuracy and precision (Winer et al. 1991). To meet these criteria, Samoilys and 

Carlos (2000) showed that for counts of typical reef fish, which tend to be highly variable, a 

minimum of 10 replicates should be conducted. This study conducted 15 replicates of each 

transect technique resulting in a total of 45 successful transect deployments.  

 

Table 4.1: Sampling dates and design for the comparison of slate (S), photographic (P), and 
videographic (V) transects. 

Date Transects/day Sampling structure 

09/06/2010 4 P,V,S,P 
10/06/2010 9 V,S,P,V,S,P,V,S,P 
11/06/2010 9 V,S,P,V,S,P,V,S,P 
12/06/2010 9 V,S,P,V,S,P*,V,S,P 
13/06/2010 9 V,S,P,V,S,P,V,S,P 
14/06/2010 6 V,S,P,V,S,P 

Total 46 S & V (n = 15); P (n = 16 ) 

* Indicates a failed transect 

 

The dive plan for each transect deployment was standardised prior to study commencement. 

Planned total dive time was 21 minutes which, within the depth range, allowed for each diver 

to conduct three dives per day while remaining within acceptable residual nitrogen levels 

under South African Department of Labour regulations (South Africa, Department of Labour 
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2010). A team of six divers, comprising three buddy pairs, conducted a maximum of nine 

transects per day. Buddy pairs were permanently assigned to each transect type to ensure 

consistency in sampling and reduced intra-transect type variability. 

Sampling occurred over six days from the 09 June 2010 to 14 June 2010 (Table 4.1). To 

minimise the effects of short-term shifts in environmental conditions (e.g. wind, tide, moon 

phase etc.), a single replicate per transect technique was conducted and repeated until all 45 

transects were completed (Table 4.1). 

4.2.2 Transect techniques 

Different transect techniques have specific characteristics. To reduce intra-transect type 

variability, divers were permanently assigned to specific duties for each transect type 

(Chapter 3). Only the additional duties for Diver I varied between transect type. The specific 

parameters of slate, photographic and videographic transects are summarised in Table 4.2. 

 

Table 4.2: Slate, photographic (Photo) and videographic (Video) transect parameters. 

Characteristic Slate Photo Video 

Length (meters) 50 50 50 
Time (minutes) 8 8 8 
Width (meters) 6.00 8.66 4.79 
Area (meters2) 300 433 239.5 
Camera N/A SEA&SEA DX1200 HD SEA&SEA DX1200 HD 
Camera lens N/A Wide angle Standard 
Camera settings N/A Mode: SEA&SEA 

Size: 4344 x 3258 
Quality: S. Fine 
Metering: Multi 

Mode: HD 
Size: 1280 x 720 30 FPS 
Quality: S. Fine 
Metering: Multi 

Slate transects 

Diver I was responsible for visually identifying, counting and recording all individuals 

present within the transect dimensions. Transect width was set to 6 m by visually estimating a 

3 m distance either side of the transect line (Table 4.2) (Chapter 3). This modest transect 

width was selected a priori because it reduced observer task loading thereby increasing 

accuracy and precision (Zeller and Russ 2000) and is below the minimum reported visibility 

of the area ensuring that fish could be easily identified and enumerated (Schleyer 2000). All 

observations falling within the 300 m2 transect area were noted by Diver I on an A4 Perspex 

dive slate. Instances where large monospecific groups (>50 individuals) were observed, sets 
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of 20 individuals were used to form a visual image of a proportion of the group. These figures 

were then multiplied by the area of the group to form an estimate of the total group size 

(Harmelin-Vivien et al. 1985, Bortone et al. 2000). The same method was used for mixed 

species groups but differed in that an estimate of the proportion of each species was used to 

estimate species specific counts for the entire group (Bortone and Kimmel 1991; Bortone et 

al. 2000). 

Photographic transects 

Photographic transects were conducted using a DX 1200 HD Camera (© SEA&SEA 

SUNPAK Co., Ltd.), set to underwater stills mode. A TTL SEA&SEA YS-17 strobe and 

wide angle conversion lens were externally attached. Transect width was therefore 8.66 m – 

the width of the camera‟s field of view at a distance of 5 m. Total photographic transect area 

was therefore 433 m2 (Table 4.2). Diver I was responsible for the camera rig while taking 

photographs at 1m intervals resulting in 50 photographs per transect. 

Video transects 

Video transects were conducted using a DX 1200 HD Camera (© SEA&SEA SUNPAK Co., 

Ltd.) in its SEA&SEA underwater housing set to underwater video mode. The external wide 

angle conversion lens was not used during video transects as it was determined, during 

reconnaissance dives (Chapter 3), that video quality was not satisfactory to facilitate accurate 

fish identifications. Transect width was therefore 4.79 m – the width of the camera‟s field of 

view at a distance of 5 m. Total transect area was 239.5 m2 (Table 4.2). Diver I was 

responsible for the camera rig while recording a single, continuous video clip of the 50 m 

transect resulting in approximately eight minutes of video per transect. The distance and 

angle of the observable field should be kept constant to maintain a consistent level of 

detectability for all fishes (Keast and Harker 1977). All photographs and video footage were 

captured at a 1 m elevation on a plane parallel to the slope of the reef. 

4.2.3 Digital media analysis 

Transects were randomly selected for analysis such that the observer was unable to relate 

individual transects to particular localities. Fishes that could not be accurately identified 

because they were too far away, moved through the census area too rapidly, or were obscured 
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due to poor lighting, camera angle, individual orientation or other factors were categorised as 

„unidentifiable‟ (Alevizon and Brooks 1975).  

 

Photographs were analysed using Adobe Photoshop CS3 (© Adobe Systems Incorporated). 

Simple image adjustments were made to brightness, temperature, tint and saturation of 

photographs to facilitate easier identifications as required. High picture quality allowed for up 

to 300% image enlargement.  

 

Videos were analysed using VLC media player 1.0.5 Goldeneye (© VideoLAN) software at 

0.33× playback speed. Multiple pauses, rewinds, and repeated playbacks were used as and 

when required. 

Standard-counts 

Photographs 

During photographic Standard-counts, all fishes appearing in each photo were counted unless 

it was clear that they had been counted in a previous photograph. If it was unclear whether or 

not an individual had been counted that individual was excluded from the count. 

Video  

During video Standard-counts all fishes appearing on the screen during a transect (an entire 

video clip) were identified and counted. In the case of species occurring at higher 

abundances, i.e. >10 individuals per transect, transects were analysed on a per species basis 

such that full transect playback occurred for each species. Species occurring at lower 

densities, i.e. <10 individuals per transect, were counted simultaneously thereafter. Short 

portions of the video were analysed multiple times where necessary with numerous pauses, 

rewinds and playbacks. 

MaxN 

The methods of MaxN analysis are based on methods outlined by Priede et al. (1994) and 

Willis and Babcock (2000). 
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Photographs 

During photographic MaxN counts each transect was analysed on a per species basis. For 

each species in each transect only the photograph displaying the greatest number of 

individuals was used as the count for that species. For example, within a set of 50 

photographs species x occurs in three photographs. Each of these photographs is separated 

sufficiently in space, i.e. distance along the transect, and time to suggest that, in each of the 

three photographs, new individuals are being observed. It is not the sum of the individuals 

counted in all three photographs, as is the case for Standard-count analysis, but rather the 

single photo with the greatest number of individuals of species x that is counted. The 

resulting value is then accepted as the total count for that species for the entire transect. 

Video  

During video MaxN counts, each video was analysed on a per species basis. For each transect 

only the single video frame which displayed the greatest number of individuals per species 

was taken as the total count for that species. This was conducted in a manner similar to that 

of photographic MaxN analysis except individual video frames were used instead of 

photographs. 

 

The total time taken to complete the analysis process for each photographic and videographic 

transect using both Standard-counts and MaxN was noted for all analyses. 

4.2.4 Ecological group affinity  

Previous studies have assigned species to ecological groups to obtain information on factors 

such as community trophic structure (Floros 2010b), the influence of particular groups on 

results (Tessier et al. 2005) and the colonisation of particular groups on artificial reefs 

(Nakamura 1985). This study assigned species groups to all individuals observed in 

photographic and videographic transects (Standard-counts and MaxN) to determine if 

different groups were favoured by different transect/media analysis techniques. An individual 

was assigned to these groups based on the position and movement of that individual in the 

water column and its position relative to the reef (Nakamura 1985; Tessier et al. 2005). 

Ecological groups were similar to those outlined by Tessier et al. (2005) and consisted of 

three groups. The benthic fishes, which included individuals that tend to have direct contact 

with the reef structure and often occupy crevices, holes or gaps within the reef. Benthic 
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individuals may leave the reef surface if disturbed but settle back down soon after. Epibenthic 

fishes, which included individuals swimming just above the reef surface. Epibenthic 

individuals may come into direct contact with the reef intermittently for shelter, to forage, or 

for other activities but only for short periods. Pelagic fishes, which included individuals 

which are found above the reef in mid-water or in the pelagic zone. Pelagic individuals are 

constantly roaming. Slate transects were excluded from this comparison as the assignment of 

individuals to species groups during transects would have resulted in observer task over 

loading. It must be noted that while analysing photographic transects the assignment of 

species to species groups required some subjectivity. 

4.2.5 Validation of photographic and videographic counts 

Observer count validation was achieved by analysing photographic and videographic digital 

media multiple times using the same observer, the underlying assumption being that if two 

stages of analysis generate sufficiently similar counts, then those counts are probably similar 

to the true count generated by the technique. This yields an estimate with reduced observer 

error. 

 

Analyses were conducted two weeks apart with transects analysed in a new random order 

(Chapter 3). Percentage agreement between the first two stages of analysis for each technique 

was used as the proxy to determine whether or not a third analysis was required. Two aspects 

of percentage agreement were implemented for all transects. These were diversity agreement 

and species-specific abundance agreement. Percentage diversity agreement, i.e. species 

presence/absence in a transect, was set to 100% as a species is either present or absent on a 

photograph or in video footage. Species-specific abundance agreement was set to >95% for 

all species observed in each transect. This level of agreement was considered acceptable 

because of the difficulties associated with counting highly abundant or shoaling species, and 

because a 5% count will not greatly bias results. For example, when a particularly abundant 

species is counted, with say >200 individuals per transect, an error of <10 individuals is 

unlikely to bias community-level analyses over many replicates. Alternatively, an error of 

just one or two individuals is also unlikely to bias community-level analyses of species 

occurring at very low abundances over many replicates. In cases where species-specific 

abundances were between 95% and 100% agreement, the mean of the two abundance 

estimates was accepted as the final value. In cases where more than two stages of analyses 
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were required, the percentage agreement rules applied to the two most recent stages of 

analysis. The same >95% agreement rule was also applied to the number of fishes deemed 

„unidentifiable‟ thereby accounting for all observed individuals in the validation process.  

Once all transects had been analysed, all individuals assigned to ecological groups, and the 

percentage agreement requirements met, additional statistical analyses were conducted. 

4.2.6 Statistical analyses 

Site parameters 

Site parameters were grouped as either measured quantitatively or categorised qualitatively. 

All quantitative parameters were tested for normality using Shapiro–Wilk‟s normality test 

within each transect type and for homoscedacity, i.e. equality of variances, using Levene‟s 

test between transect types. In instances where these assumptions were violated, data were 

ln(x + 1) transformed. Time of day, wind direction and current direction were converted to 

their periodic equivalents as described by Jammalamadaka et al. (2006) prior to testing. The 

qualitative site parameters, habitat complexity and substrate type, could not be statistically 

analysed and were assessed visually.  

Transect type comparison 

Richness and Abundance 

UVC has been shown to underestimate richness and abundance because of the innate 

difficulties in non-destructively detecting all fishes present in a population (Chapter 1). When 

comparing UVC techniques, therefore, the technique which provides the highest estimates of 

richness and abundance is considered to be the most appropriate (Underwood and Chapman 

2003). As each transect technique consists of a different transect area (Table 4.2) all metrics 

were area standardised for a total abundance or richness per 100 m2.  

 

All area standardised estimates of the three transect techniques and two media analysis types 

were tested for normality using Shapiro–Wilk‟s normality test within each technique and for 

homoscedacity using Levene‟s test between techniques. Where parametric assumptions were 

met, a one-way ANOVA was used to test the hypothesis that there was no difference in 

abundance or richness between transects using each media analysis method. Where 
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parametric assumptions were violated, data were root-root transformed. Tukey‟s HSD test 

was used for pairwise comparisons. 

Variability  

Variability provides a reasonable proxy for the quality of data produced by a transect 

technique, because the technique that produces the lowest variability is assumed to provide 

the best quality data (Underwood and Chapman 2003; Winer et al. 1991). Rosner (2000) 

provides an explanation of a wide range of measures potentially suitable for quantifying 

variability. McArdle et al. (1990) suggest that, of the available measures of variability, the 

most appropriate are those that are independent of mean population estimates and sample 

size, and should utilise the data with the highest resolution. Bennett (2008) states that the two 

most commonly used, appropriate measures of variability that meet these criteria are the 

standard deviation of the natural logarithms of successive population estimates and the 

Coefficient of Variation. The standard deviation of the natural logarithms of successive 

population estimates              (Connell and Sousa 1983) is approximately equal to the 

Coefficient of Variation (Rosner 2000). The present study therefore only used the standard 

deviation of the natural logarithms of successive population estimates as a measure of data 

variability.  

Diversity 

The diversity captured by each transect technique, and by Standard-counts and MaxN 

analysis, was compared using the Shannon–Wiener diversity index, Shannon‟s H’ (Shannon 

and Weaver 1949) that takes into account the relative proportions of each species. Only a 

single diversity index was employed for this phase of the project as the aim was not to 

investigate the dynamics of fish communities, but rather to conduct an intra-transect type 

comparison (Magurran 1988). Shannon‟s H’ is calculated as 

 

                

 

where    = (ni/N), the proportional abundance of the ith species, ni is the abundance of that 

species i, and N =     the total abundance for the sample (Shannon and Weaver 1949). All 

diversity estimates were tested for using Shapiro–Wilk‟s normality test within each 
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technique, and for homoscedacity using Levene‟s test between techniques. One-way ANOVA 

was used to test the hypothesis that there was no difference in Shannon‟s H’ between transect 

techniques within each analysis technique. 

 

In addition to H’, a proportional list of the five most common species detected by each 

transect technique was compiled to enable fine scale assessment of possible differences in the 

most common species surveyed by each technique. 

Sample size 

Determining the correct number of replicates, or sample size, is an essential component of the 

experimental design of any sampling program (Samoilys and Carlos 2000). From the species 

richness data obtained for the three transect techniques it is possible to calculate the statistical 

power (Kapadia et al. 2005). Similarly, when planning for future research, one can calculate 

the required sampling effort required using a particular transect technique based on a 

predetermined level of statistical power (Utts and Heckard 2007). When comparing transect 

techniques, therefore, the most appropriate technique for future implementation will be the 

technique requiring the lowest number of replicates to achieve the predetermined power 

level. 

 

The sample size,  , required to detect a 10% change in the mean estimate of species richness, 

   (Kapadia et al. 2005), at a significance criterion of        (Rosner 2000; Bausell and 

Li 2002) with a power of 80% , such that        (Fairweather 1991, Rosner 2000, Lenth 

2001, Utts and Heckard 2007) was calculated as 

 

    
       

  
   

 

 

 

where    is the z-statistic corresponding to a probability of *, and   is the standard deviation 

of the estimates. 

Efficiency 

The efficiency of the three transect and two media analysis techniques was assessed in three 

ways. These were the time required to train observers, the time required for analysis of the 
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different transect techniques, and the proportion of individual fish rendered unidentifiable by 

each technique. The technique displaying the greatest efficiency would be the most 

appropriate for future implementation.  

 

Time taken to train observers was quantified by the product of the number of days it took to 

train the single visual observer (Chapter 4) and the number of visual observers that would 

have been required to implement this study.  

 

Total analysis time for each transect technique was calculated as the sum of the two stages of 

analysis meeting the percentage agreement criteria summed over all transects for that 

technique. The mean time required for the analysis of slate transects, i.e. data capture, was 

standardised to 15 minutes per transect.  

 

The proportion of individuals rendered unidentifiable was calculated by dividing the number 

of unidentifiable individuals by the total number of individuals in a transect, i.e. number 

unidentifiable / (number unidentifiable + number identified), for each transect and media 

analysis technique. As it was impossible to determine the proportion of individuals 

unidentifiable using the slate transect technique, the worst case scenario in this comparison of 

efficiency, this value was set to 1.0 for all transects to aid in visual assessment.  

 

The open source statistical environment in R 2.11.0 (© R development core team 2010) was 

used for all analyses. 



 Chapter 4: Comparing underwater visual census transect and analysis techniques 

69 

4.3 Results  

4.3.1 Site parameters 

Depth, visibility, turbidity, temperature, time of day, current speed, current direction, wind 

speed, wind direction and transect duration data were all normally distributed for each 

transect type and homoscedastic between transect types (p>0.05). Profile and rugosity data 

had to be ln(x + 1) transformed (p>0.05 post transformation). The results of parametric one-

way ANOVA indicate that there was no significant difference in parameters between transect 

types (p>0.05; Table 4.3).  

 

Visual assessment of habitat complexity and substrate type shows that there were no 

significant differences in these parameters between transect type (Fig. 4.2). No replicates 

were conducted on a purely sandy substrate (Fig. 4.2). 

4.3.2 Transect type comparison 

A total of 184 species from 35 families were identified using all three transect techniques. A 

total of 12 681 individuals were counted using the Standard-counts technique (slate, 

photographic and videographic transects), and a total of 3 694 individuals were counted using 

MaxN analysis (photographic and videographic transects only). Data specific to each transect 

technique are summarised in Table 4.4. Richness data for the Standard-counts and MaxN 

media analysis techniques are identical. Full lists of species observed using each technique is 

appended (Appendix 3).
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Table 4.3: Summary of supplementary variables recorded for the comparison of Slate, Photographic (Photo), and Videographic (Video) transects. 
Supplementary variable means (± SD). Values are for untransformed data. Time of Day, Current Direction and Wind Direction data are for circular equivalents. 
n = 15 for all parameters recorded for Slate, Photo, and Video transects. 

Parameter # Parameter Slate Photo Video Statistical results 

1 Depth (m) 
   = 12.01,  
SD = 01.51 

   = 11.37,  
SD = 01.07 

   = 11.22,  
SD = 1.03 

F2,42 = 1.76,  
P = 0.19 

2 Visibility (m) 
   = 11.50,  
SD = 02.00 

   = 12.25,  
SD = 01.21 

   = 12.77,  
SD = 1.82 

F2,42 = 2.08,  
 P = 0.14 

3 Turbidity (NTU) 
   = 0.37,  

SD = 00.11 
   = 0.34,  

SD = 00.09 
   = 0.38,  
SD = 0.13 

F2,42 = 0.53,  
 P = 0.59 

4 Temperature (˚C) 
   = 22.80,  
SD = 00.41 

   = 22.80,  
SD = 00.41 

   = 22.80,  
SD = 0.41 

F2,42 <0.01,  
P = 1.00 

5 Current Speed (s/m) 
   = 12.13,  
SD = 08.83 

   = 13.40,  
SD = 06.65 

   = 13.15,  
SD = 8.11 

F2,42 = 0.11,  
 P = 0.90 

6 Wind Speed (kts) 
   = 8.73,  

SD = 04.45 
   = 8.60,  

SD = 04.52 
   = 9.12,  
SD = 4.53 

F2,42 = 0.06,  
P = 0.95 

7 
Transect Duration 

(mins) 
   = 8.83,  

SD = 00.96 
   = 8.37,  

SD = 01.22 
   = 8.58,  
SD = 1.05 

F2,42 = 0.70,  
 P = 0.50 

8 Profile (index) 
   = 1.74,  

SD = 01.57 
   = 2.33,  

SD = 01.72 
   = 2.74,  
SD = 2.97 

F2,42 = 0.70,  
 P = 0.57 

9 Rugosity (index) 
   = 0.57,  

SD = 00.26 
   = 0.64,  

SD = 00.03 
   = 0.70,  
SD = 0.41 

F2,42 = 0.47,  
P = 0.63 

10 Time of Day (hh:mm) 
   = 00.42,  
ρ = 0.99 

   =0.43,  
ρ = 0.99  

   = 0.39,  
ρ = 0.99  

F2,42 = 2.14,  
P = 0.13  

11 Current Direction 
   =0.52,  
ρ = 0.31 

   =0.23,  
ρ = 0.37 

   =0.52,  
ρ = 0.31 

F2,42 = 1.0,  
P = 0.98  

12 Wind Direction 
   =1.85,  
ρ = 1.0  

   =1.85,  
ρ = 1.0  

   =1.85,  
ρ = 1.0  

F2,42 = 0.02,  
P = 0.38  
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Figure 4.2: Categorical frequencies for the site parameters for habitat complexity (HC = highly 
complex, C = complex, SC = semi-complex, H = Homogenous, HH = highly homogenous) and 
substrate type (R = reef, R-S = reef-sand, R/S = reef/sand, S-R = sand-reef, S = sand) as estimated by 
divers. 
 

Table 4.4: Summary data of non-standardised richness (number of species) and abundance (number 
of individuals) for Slate, Photographic (Photo), and Videographic (Video) transects. Standard-counts (S-
C) and MaxN (MN) media analysis data are displayed for photographic and videographic transects.  

 Slate 
Photo  
(S-C) 

Video  
(S-C) 

Photo  
(MN) 

Video 
(MN) 

Transect area (m2) 300 433 239.5 433 239.5 
      

Total richness 140 118 137 118 137 
Minimum richness 22 28 34 28 34 
Maximum richness 51 52 56 52 56 
Mean richness 35.4 38.93 42.47 38.93 42.47 

      

Total abundance 3853 4492 4336 2027 1667 
Minimum abundance 114 126 154 64 71 
Maximum abundance 413 582 499 234 181 
Mean abundance 256.87 299.47 288.47 135.13 110.53 

0

2

4

6

8

10

HC C SC H HH

Fr
e

q
u

e
n

cy

Habitat complexity
Slate

Photo

Video

0

2

4

6

8

10

R R-S R/S S-R S

Fr
e

q
u

e
n

cy

Category

Substrate



 Chapter 4: Comparing underwater visual census transect and analysis techniques 

72 

Richness and Abundance 

Area standardised richness and abundance data for slate, photographic (Standard-count) and 

videographic (Standard-count) transects were found to be normally distributed for each 

transect type and homoscedastic between transect types (p>0.05, Table 4.5). Videographic 

Standard-count estimates of richness were significantly higher than the the other two 

techniques (F2,42 = 58.50, p<0.01; Fig. 4.3, Table 4.5). All estimates of abundance estimated 

using the Standard-count technique were significantly different from one another with 

videographic transects providing the highest estimate of area standardised abundance (F2,42 = 

7.92, p < 0.01; Fig. 4.3, Table 4.5). Area standardised MaxN richness and abundance data, 

which can only be determined for photographic and videographic transects by re-analysing 

digital media, was root-root transformed before the parametric assumptions of normality and 

homoscedacity were met (p>0.05,Table 4.5). Videographic transects analysed using the 

MaxN technique provided significantly higher estimates of abundance (F1,28 = 22.40, p<0.01; 

Fig. 4.3, Table 4.5). 

 

Table 4.5: Summary of area standardised richness and abundance data for Slate, Photographic 
(Photo) and Videographic (Video) transect techniques and analysis type (Standard-count and MaxN). 

Mean (   ) ± standard deviations (SD) are for untransformed data. Common superscripts denote 
statistically homogenous groups at the 0.05 significance level as determined using Tukey’s HSD test 
within each analysis technique. 

Transect 
technique 

Analysis technique 
Area standardised 

metric 
        

Root-root 
transformed  

Slate Standard-count Richness 11.80 ± 02.56a False 
Photo Standard-count Richness 8.99 ± 01.63a False 
Video Standard-count Richness 17.73 ± 02.47b False 

     

Photo MaxN Richness 8.99 ± 01.63a False 
Video MaxN Richness 17.73 ± 02.47b False 

     

Slate Standard-count Abundance 85.62 ± 30.86c False 
Photo Standard-count Abundance 69.16 ± 31.31d False 
Video Standard-count Abundance 120.45 ± 44.34e False 

     

Photo MaxN Abundance 31.32 ± 23.46f True 
Video MaxN Abundance 46.15 ± 13.58g True 
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Figure 4.3: Area standardised richness and abundance for the Standard-count analysis 
techniques, and root-root transformed area standardised abundance for the MaxN analysis technique. 
Common superscripts denote statistically homogenous groups at α = 0.05 determined using Tukey’s 
HSD test. As richness data for Standard-count and MaxN analysis techniques are identical, MaxN 
richness results are omitted. 

A
b

u
n

d
an

ce

MaxN abundance

Transect technique

3.0

2.5

2.0

1.5

a

b

Photo Video

Standard-count richness

Slate Photo Video

0

10

5

20

15

25

R
ic

h
n

es
s

a

a

b

Standard-count abundance

Slate Photo Video

100

50

0

200

250

150

A
b

u
n

d
an

ce

a b

c

B~. U 
, ~ , , ' 
, ~ 

I I I I 



 Chapter 4: Comparing underwater visual census transect and analysis techniques 

74 

Variability 

Variability in richness and abundance was lowest for videographic transects using both the 
Standard-count and MaxN media analysis techniques (Fig. 4.4). 
 
 

 
 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.4: Slate, Photographic (Photo) and Videographic (Video) transect variability. S-C = 
Standard-count analysis, MaxN = MaxN analysis. As richness data for S-C and MaxN analysis 
techniques are identical, MaxN richness results are omitted. 
 

Diversity 

Shannons H’ was estimated between 2.48 ± 0.44 and 3.13 ± 0.26 for all transect and media 

analysis technique combinations (Table 4.6). There was no significant difference in Shannon 

H’ between transect techniques for either Standard-count (F2,42 = 2.39, p = 0.10) or MaxN 

(F2,42 = 3.58, p = 0.06) analyses. 

 

Table 4.6: Summary statistics of Shannon’s H’ data for Slate, Photographic (Photo) and Videographic 
(Video) transect techniques and analysis type (Standard-count and MaxN). Common superscripts 
denote statistically homogenous groups at the 0.05 significance level as determined using Tukey’s HSD 
test. 
 

Transect technique Analysis technique         

Slate Standard-counts 2.48 ± 0.44a 

Photo Standard-counts 2.57 ± 0.23a 

Video Standard-counts 2.73 ± 0.21a 

   

Photo MaxN 2.95 ± 0.26b 

Video MaxN 3.13 ± 0.26b 
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For Standard-count and MaxN analysis techniques Chromis dimidiata and Chromis weberi 

were the most common species, respectively accounting for 45% and 31% of the total 

abundance for the five most commonly observed species (Table 4.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Fish identification training time for observers, mean analysis time for each transect, 
and the proportion of fishes that could not be identified (Unidentifiable individuals). As the proportion of 
unidentifiable individuals could not be determined, data are omitted. S-C = Standard-count and MaxN = 
MaxN analysis techniques. 
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Table 4.7: Summary of the five most commonly observed species. Data include the total number of individuals (n) detected for each species using Standard-
count and MaxN media analysis techniques, the proportional contribution of total abundance for the five most commonly observed species (Prop. top 5), the 
rank of the species in overall counts (Overall) and specific slate (Slate), photographic (Photo) and videographic (Video) ranks for each analysis method. 
 

  Standard-counts  MaxN 

Species Family n 
Prop.  
top 5 

Overall Slate Photo Video  
 

n 
Prop.  
top 5 

Overall Photo Video 

Chromis dimidiata Pomacentridae 3136 0.45 1 1 1 1  472 0.30 2 1 2 

Chromis weberi Pomacentridae 1542 0.22 2 8 2 2  476 0.31 1 2 1 

Anthiinae Serranidae 976 0.14 3 3 3 4  274 0.18 3 3 4 

Ctenochaetus binotatus Acanthurdae 706 0.10 4 6 5 3  132 0.08 7 8 5 

Chromis nigrura Pomacentridae 628 0.09 5 5 6 5  198 0.13 4 6 3 
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Sample size 

Power analysis of transects using Standard-count analysis indicated that, in order to detect a 

10% change in mean richness with a statistical power of 80%, the number of replicates 

required for slate, photographic and videographic transects would be 37, 27, and 17, 

respectively. For photographic and videographic transects, the required number of replicates 

using the MaxN analysis technique are identical to the Standard-count technique because 

species richness results are the same 

Efficiency 

It took 30 days to train an observer to identify fish using the slate technique and 10 days for 

the other techniques (Fig. 4.5). Total analysis time was 03 h 45 m, 49 h 32 m, 64 h 13 m, 56 h 

12 m and 63 h 51 m for the Slate, Photographic (Standard-counts), Videographic (Standard-

counts), Photographic (MaxN) and Videographic (MaxN), transects respectively (Fig. 4.5). 

Total and mean analysis time was longest for videographic transects (Standard-counts and 

MaxN) and shortest for slate transects. The proportion of individuals rendered unidentifiable 

was higher for photographic transects (Standard-counts and MaxN) than for videographic 

transects (Fig. 4.5). Slate transects displayed the least efficient characteristic in this regard in 

that one cannot determine the proportion of fish unidentifiable. 

Ecological group affinity 

All transect and media analysis techniques showed similar proportions of benthic, epibenthic 

and pelagic individuals (Fig. 4.6). Epibenthic species constituted the majority of counts for all 

transects with the lowest proportion of epibenthic individuals occurring in photographic 

(MaxN) transects at 0.72 (Fig. 4.6). 
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Figure 4.6: Proportional abundance of individuals categorised as Benthic, Epibenthic and Pelagic 
as defined in the present study for each transect and analysis technique. S-C = Standard-counts and 
MaxN = MaxN media analysis techniques. 

Count validation 

The majority of transects required only two stages of analysis, and a maximum of three stages 

of analysis to meet percentage agreement requirements (Table 4.8). The number of stages of 

analysis required to meet percentage agreement requirements did not differ between transect 

or analysis techniques (Table 4.8). Instances where percentage agreements were not met in 

the first two stages of analysis were a result of no more than 12% error in abundance 

estimates. 

 

Table 4.8: Summary of the number of transects requiring two and three stages of analysis for 
Standard-count and MaxN analysis techniques.  
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Transect technique Analysis technique Two  Three  

Photo Standard-count 13 2 

Video Standard-count 14 1 
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4.4 Discussion  

The most appropriate transect technique is that which produces the highest estimates of 

richness and abundance (Samoilys and Carlos 2000), exhibits the lowest variability (Sale 

1991, Bennett 2008), is representative of community diversity (Magurran 1988, Watson et al. 

2005), requires the least replication (Samoilys 1997, Watson et al. 2005), is the most efficient 

(Pelletier et al. 2011) and also surveys the intended ecological group within a community 

(Tessier et al. 2005). This study found that videographic transects outperformed slate and 

photographic transects in all criteria. Assessment of the Standard-count and MaxN techniques 

for analysing digital footage showed that the Standard-count technique was more appropriate 

to analysing footage from transects.  

 

Videographic transects estimated the largest area standardised estimates of richness and 

abundance for both standard-counts and MaxN techniques. Both Buxton (1987) and Samoilys 

and Carlos (2000) note that UVC methods can either under- or over-estimate density (e.g. 

Watson et al. 1995), but overall, generally underestimate abundance (e.g. Brock 1982; Sale 

and Sharp 1983; Sale 1991). Sale and Sharp (1983) further deduce that in assessing the 

relative accuracy of various UVC methods it can be assumed that higher estimates of density 

imply greater accuracy. Based on these conclusions, therefore, videographic transects are the 

most appropriate transect technique for achieving the best estimates of richness and 

abundance. Richness and abundance estimates do, however, possess an associated level of 

variability, which must also be compared. 

 

Samoilys and Carlos (2000), Langlois et al. (2010), Chater et al. (1995), and this study have 

all reported similarly high estimates of variability. Sale (1991) and Williams (1991) propose 

that high variability usually evident in reef fish communities is possibly a result of the 

contiguous nature of data distributions for the many species sampled. It has been shown for 

UVC studies that as richness and abundance increase so too does the variability (Thresher 

and Gunn 1986, McArdle et al. 1990, Underwood 1992). Despite producing the highest area 

standardised richness and abundance estimates, videographic transects (standard-counts and 

MaxN) were the least variable in estimating richness and abundance. The variability in 

videographic transect data is more favourable than that from either the slate or photographic 

transect techniques. When comparing videographic transects analysed by Standard-counts or 

MaxN, transects analysed by MaxN produced lower estimates of variability. Because of the 
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linear relationship between the size of estimates and its variability (Thresher and Gunn 1986, 

McArdle et al. 1990, Underwood 1992), and because MaxN analyses will always produce 

significantly more conservative estimates of richness and abundance, one cannot determine 

which of the two analysis methods is more appropriate based on variability alone. Therefore, 

with all other factors considered equal, it is preferable to reduce error by selecting the least 

variable estimate (Winer et al. 1991). Videographic transects are therefore recommended as 

the most suitable transect technique. 

 

Transects analysed using the standard-count approach (slate, photographic and videographic) 

showed no difference in diversity between one another but produced significantly lower 

estimates than transects analysed using the MaxN technique. Shannon‟s H’, one possible 

proportional abundance metric, takes into account both species richness, and evenness 

(Magurran 1988). The maximum diversity (Hmax) would occur in a situation where all the 

species in a community are equally abundant (Traas 2009). Therefore H’ for a community of 

x species will be lower if that community possesses a few dominant and rare species than if 

that same community consisted of only evenly represented species (Magurran 1988). When 

comparing techniques, therefore, differences in H’ values do not necessarily reflect that one 

technique is more appropriate than the other but can provide information on the way a 

particular technique is representing the community in question.  

 

The lower H’ estimates of slate and standard-count transects indicate a lower evenness, while 

the higher H’ estimates of MaxN transects indicate the converse. These trends are evident 

when one examines the list of the five most common species sampled. Using the standard-

counts technique C. dimidiata, a usually non-aggregating and evenly distributed species 

(Kuiter and Tonozuka 2001), is shown to be the most common species. MaxN analysis 

showed that C. dimidiata is replaced by C. weberi, which usually occurrs in large 

aggregations in specific areas (Allen 1991). Using the MaxN technique, both C. weberi and 

C. dimidiata dominated counts. The reason for this discrepancy between Standard-count and 

MaxN results can be explained by the MaxN technique that selects a single frame as the total 

count for each species in each replicate. By conducting counts in this manner, it is inevitable 

that aggregating or shoaling species, such as C. weberi, will be more strongly represented 

because it is almost certain that when the species is detected in a transect, it is detected in 

large numbers. By contrast, non-aggregating and evenly distributed species, such as C. 

dimidiata, will almost always be represented in low numbers. Similar results were found by 
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Floros (2010a) who, using the slate roving diver method, found C. dimidiata to be more 

abundant than C. weberi on Two-Mile Reef. Counts using the MaxN technique will therefore 

always be biased towards shoaling species in comparison to non-shoaling species when used 

in conjunction with the transect technique.  

 

When using the MaxN technique for the purpose it was developed – conducting fish counts 

using footage from stationary, usually baited underwater video stations – it is unbiased 

towards species with particular aggregating/non-aggregating behaviours as even non-

aggregating species will aggregate at the bait zone (Priede et al. 1994; Willis and Babcock 

2000). The technique has also been shown to be successful when conducting UVC video 

point counts as it reduces the risk of duplicate counts of schooling fishes that may repeatedly 

enter the stationary survey area (Gledhill et al.1996; Francour et al.1999, as cited by Tessier 

et al. 2005). Transect surveying requires the observer to move forwards in a single direction 

at a constant speed to reduce the occurrence of duplicate counts and the associated error 

(Watson et al. 2005; Bennett 2008). Videographic transects in particular afford further 

reduction of this error as it is possible to track individuals/shoals throughout a video clip such 

that the large majority of double counts are avoided. Watson et al.(2005) used this approach 

in their UVC study stating that while the use of MaxN as a relative density measure for 

remote techniques avoids repeated counts, it can be assumed that the transect technique 

avoids duplicate counts.  

 

Based on the differences in H’ diversity, the representation of the five most common species 

by Standard-count and MaxN analysis techniques, and the theoretical considerations drawn 

for the applicability of the benefits of MaxN analysis to transecting, it can be concluded that 

the standard-count technique is the most appropriate, representative method for analysing 

digital transect footage of diverse reef fishes. 

 

The number of replicates required to achieve an acceptable level of statistical power of results 

is an essential component to any study design (Samoilys 1997, Utts and Heckard 2007). UVC 

methods are innately field intensive thus amplifying the trade off between statistical rigour 

and the maximum number of samples that can be reasonably collected within financial and 

logistical constraints (Green 1979; Samoilys 1997). When comparing transect techniques the 

most appropriate technique for future implementation will therefore be the technique 

requiring the lowest number of replicates to achieve the predetermined power level. This 
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study found that to achieve a statistical power of 80%, videographic transects required the 

most favourable sample size of 17 replicates, as opposed to 37 and 27 replicates required for 

slate and photographic transects, respectively. Based on the required sample size to achieve 

80% power it is therefore recommended that future studies investigating coral reef fish 

communities in the iSimangaliso Wetland Park use videographic transects. These studies 

should attempt to conduct at least 17, but more conservatively 20, replicates at each level of 

stratification. Sample size is, however, not the only factor determining the time and cost 

involved in conducting a UVC, as not all techniques will exhibit equal efficiency per 

replicate. The efficiency of each transect technique was therefore compared. 

 

Many authors have shown that survey time is one of the most important considerations when 

implementing a UVC study (Bortone et al. 1986; 1989). This is relevant to this study both in 

terms of training time and the time taken to analyse the media. Observer training time for 

slate transects was triple that of other two transect techniques based on six available divers – 

3 buddy pairs. Future research expeditions will likely require adjusted sampling designs 

based on available field time. The number of dives a diver can safely conduct in a day is 

limited by residual nitrogen accumulation. Because of this constraint, as available field days 

decrease the number of divers required to conduct sufficient replicates increases. When 

conducting slate transects, this trend is associated with an increase in the required number of 

trained fish identification observers and hence an increase in training time. Transects which 

record digital footage, such as photographic and videographic transects, are not restricted in 

the same way as only a single fish identification observer is required to analyse footage. 

Based on observer training time, photographic or videographic transects are recommended 

for use in future reef fish transect surveys. 

 

Total analysis time was lowest for slate transects and longest for videographic transects. The 

low analysis time for slate transects is because no further counts are conducted; once 

transects are complete, data are simply captured. Digitally-based photographic and 

videographic footage must be analysed and re-analysed. Total analysis time for photographic 

transects was shorter than for video transects (standard-counts and MaxN) as the time taken 

to analyse still images is shorter than the time taken to analyse continuous video. Based 

purely on analysis time, slate transects are the most favourable technique while photographic 

transects are the most favourable digital transect technique. 

 



 Chapter 4: Comparing underwater visual census transect and analysis techniques 

83 

The ability to identify fishes is a contentious UVC techniques issue (Pelletier et al. 2011). 

The proportion of detected individuals that cannot be identified provides a good proxy for the 

ability of a digital transect technique to successfully count fishes. A technique that has a 

larger proportion of individuals that cannot be identified is less efficient than a technique with 

a lower proportion (Bortone et al. 1991, Samoilys and Carlos 2000, Pelletier et al. 2011). One 

of the shortcomings of the slate transect technique is that transects cannot be reviewed 

(Langlois 2010, Pelletier 2011). Slate transects are therefore the least favourable technique 

because one cannot estimate the magnitude of identification error and therefore cannot 

account for it. Of the digital media transect types videographic transects (standard-counts and 

MaxN) exhibit a lower proportion of unidentifiable species than photographic transects. This 

difference is probably due to the continuous nature of video footage which allows the image 

of a fish to be viewed through a number of frames and also allows for closer inspection of 

behavioural aspects such as swimming (Watson et al. 2005). Photographs do not afford this 

flexibility and are hindered by obstructions such as reef topography or large fishes/shoals of 

fishes permanently obscuring other individuals from photos. Videographic transects are 

therefore the most efficient sampling technique for successfully identifying fishes as they can 

be reviewed repeatedly and allow greater identification flexibility.  

 

All digital transect techniques used in this study show similar proportions of each ecological 

group. Epibenthic species dominated either because the transects were best suited to the 

epibenthic species group or because the fish communities on Two-Mile Reef are dominated 

by the epibenthic species. Regardless of the reason, no single technique is different from the 

others indicating that all transects techniques are equally favourable in terms of their affinity 

for particular ecological groups.  

 

Although the percent agreement approach has been scrutinised as a method of validation in 

ichthyofaunal ageing studies (Campana 2001), the technique can provide a simple, rapid 

method of validating richness and abundance estimates from digital UVC media. The results 

of the present study indicate that, provided a sufficiently experienced observer is available, 

doubling the time required to analyse digital media for the sake of validation is perhaps not 

necessary because original estimates of richness and abundance are, for the most part, 

sufficiently accurate. Where observers analysing digital media are inexperienced, however, 

validation as implemented in the present study could be in a training and/or quality control 

component to any study to confirm the probability of accurate estimates. 
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4.5 Conclusions 

To conclude, this study was the first to: compare slate, photographic and videographic 

techniques for UVC transecting; directly compare Standard-count and MaxN media analysis 

techniques propose a method for validating estimates of richness and abundance estimates 

generated by reviewing digital imagery.  

 

Photographic transects required less replication than slate transects but more replication than 

videographic transects. In terms of time taken to analyse digital media, photographic transects 

outperformed videographic transects. The photographic transect technique produced lower 

abundance and richness estimates, higher variability of estimates and a higher proportion of 

unidentifiable individuals when compared to videographic transects. The photographic 

transect technique as implemented in this study is therefore not recommended for future 

studies. It is, however, recommended that further research be undertaken to develop 

photographic-based transect methods as the techniques may be valuable in volunteer 

observer-based monitoring programs where observers are more likely to own photographic 

cameras than sufficient resolution video cameras. 

 

Videographic transects were shown to outperform the other two techniques in nearly all 

aspects of the six criteria assessed. The only criterion in which videographic transects under-

performed was in the time taken to analyse videographic media. This was outweighed by the 

benefits of better richness and abundance data, low estimates of variability, the representative 

diversity observed, and the lower minimum required sample size. 

 

It is recommended that for all future studies investigating the epibenthic coral-reef fishes of 

high-latitude WIO coral reefs, videographic transects be employed. It is anticipated that this 

technique will be equally applicable to low-latitude WIO reefs. The most representative 

description of fish communities was achieved using the Standard-count media analysis 

technique, which it is recommended as the most appropriate analysis approach. 
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Chapter 5:  

Seasonal- and depth-related community dynamics of fish 

assemblages on a large, high latitude coral reef in the Western 

Indian Ocean 

5.1 Introduction 

Many organisms have been shown to exhibit predictable spatial distributions associated with 

the proximate biotic and physical structure of their habitat (Sebens 1990; Sale 1991; Garpe 

and Öhman 2003). Coral reef fishes are no different. Distinct fish assemblages have been 

found between different spatial and temporal zones such as various depths or years (Öhman 

et al. 1997; Wilson et al. 2003), or, associated with specific habitat features such as the 

structural architecture of a reef and the type of benthic community (Bergman et al. 2000; 

Munday 2000). These assemblages can be altered by a complex suite of often species-specific 

external factors and by phenomena such as ontogenetic- or metamorphosis-related processes 

(Fulton et al. 2001; Feary et al. 2007; Lecchini et al. 2007). 

 

While the distribution of coral-reef fishes and their relationship to habitat structure have been 

thoroughly investigated in areas such as the western Pacific Ocean and the Caribbean, fish 

assemblages in many biogeographic regions still remain poorly studied (Garpe and Öhman 

2003). An area yet to be thoroughly investigated is the biogeographic subregion known as the 

Western Indian Ocean (WIO) which possesses a large variety of reef environments (Sheppard 

1987). While the coral-reef fish assemblages of the WIO island states have been 

quantitatively described (Table 5.1), the assemblages of the East African Coast have, for the 

most part, been only superficially surveyed (Garpe and Öhman 2003). 

 

One poorly studied area is the north-eastern coast of South Africa that contains the highest 

latitude coral-reefs in the southern hemisphere (Schleyer 1999). As anthropogenic influences 

on the marine environment continue to escalate, pristine systems, unaltered by human 

impacts, are becoming rare (Jackson et al. 2001; Friedlander and DeMartini 2002; DeMartini 

et al. 2008). South Africa is fortunate in that many of the coral reefs of the north-east coast 

have long histories of protection. These relatively undisturbed areas may be considered to be 
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baseline areas for comparison with similar reefs in the region that are unprotected and are 

exposed to anthropogenic resource pressures (Floros 2010a). While the high-latitude South 

African reefs are marginal, they are, for all intensive purposes, similar to reefs in lower-

latitude WIO areas (Schleyer 1999; Schleyer and Celliers 2003a, b). Given their high-latitude 

location and their position on the continental shelf, however, ichthyofaunal species 

compositions could differ from lower-latitude continental areas and WIO island state reefs 

(Schleyer 1999; Garpe and Öhman 2003). 

 

Table 5.1: Summary of all studies outside of South Africa investigating the full community dynamics 
of coral reef fishes in the Western Indian Ocean. Studies presented only at symposia are not included. 
 

Study Study type 
Country/ 

Island 
Site 

description 
Depths 

(m) 
Survey method Families Species 

Letourneur 
(1996) 

Community 
dynamics 

Réunion 
Multiple reef 

flats 
<2 m 

Roving diver 
and strip 
transects 

44 217 

        

Chabanet 
(2002) 

Community 
dynamics 

Comoros 
Multiple 

fringing and 
barrier reefs 

<6 m Strip transects 35 225 

        

Garpe and 
Öhman 
(2003) 

Community 
dynamics 

Mafia Island 
Multiple 
reefs of 

various sizes 
3–10 Strip transects 56 394 

        

Durville et 
al. (2003) 

Community 
dynamics 

Glorieuses 
Islands 

Fragmented 
fringing reef 

0–15 Roving diver 57 332 

        

Gillibrand 
et al. 

(2007) 

Community 
dynamics 

Madagascar 

Single 
fringing reef, 

Single 
barrier reef 
and single 
patch reef 

10–30 
Roving diver 
and timed 

counts 
58 334 

        

Floros 
(2010a)* 

Community 
dynamics 

Mozambique 
& South 

Africa 

Multiple 
reefs of 

various sizes 
12–15 

Slate roving 
diver 

50 284 

* Some aspects of study conducted in South Africa 
 

It has been hypothesised that the high-latitude nature of the South African coral reefs makes 

them excellent candidates as early-warning systems of climate change trends. Events 

apparent on the South African coral reefs could precede similar events in lower-latitude areas 

(Schleyer 1999). Already Schleyer and Celliers (2005) note that temperatures are fast 

approaching the local coral bleaching threshold, an event which could have significant effects 

on their ichthyofaunal assemblages (Chabanet 2002). Previous ichthyofaunal surveys on the 
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north-east South African coast have compiled only species checklists (Smith et al. 1980; 

Chater et al. 1993; Polack 2007), investigated the dynamics of selected taxa (Chater et al. 

1995; Currie 2005; Floros 2010c) (Table 5.2), or investigated ichthyofaunal community 

structure and dynamics in a single depth/ habitat zone (Floros 2010b).  

 

Table 5.2: Summary of all studies investigating fish communities, or aspects of fish communities, on 
South African coral reefs. 
 

Study Study type Site description Depths Survey method Families Species 

Smith et 
al. (1980) 

Community 
checklist 

Haphazard 
sampling of 

multiple marine 
habitats 

Intertidal–
30 m 

Various 
destructive and 
non-destructive 

methods 

150 732 

       

Chater et 
al. (1993) 

Community 
checklist 

Multiple reefs of 
various sizes 

8–45 m 
Roving diver and 

angling 
73 399 

       

Chater et 
al. (1995) 

Selected 
species 

dynamics 

Multiple reefs of 
various sizes 

10–40 m 
Slate strip 
transects 

13 43 

       

Currie 
(2005) 

Selected 
taxa 

dynamics 

Multiple patch 
reefs 

10–16 m Slate point counts 24**  

       

Polack 
(2007) 

Community 
checklist 

Haphazard 
sampling of 

multiple marine 
habitats 

Intertidal–
200 m 

Various 
destructive and 
non-destructive 

methods 

- 1257 

       

Floros 
(2010a)* 

Community 
dynamics 

Multiple reefs of 
various sizes 

12–15 m Slate roving diver 50 284 

       

Floros 
(2010b)* 

Selected 
species 

dynamics 

Multiple reefs of 
various sizes 

12–15 m Slate point counts 12 25 

       

This study 
Community 
dynamicls 

Single, large patch 
reef 

6–30 m 
Videographic strip 

transects 
41 209 

* Some aspects of study conducted in adjacent Mozambique, ** Data are for study-defined taxa 
 

The aim of this chapter was to survey the coral reef assemblages of the area using non-

destructive underwater visual census (UVC). As coral reefs generally occur at lower 

equatorial latitudes, the effect of season in structuring the ichthyofaunal communities of these 

systems has largely been overlooked. The possible effects of season in structuring high-

latitude coral-reef fish communties was examined. As previous replicated research in the area 

excluded the effect of depth in structuring fish communities by sampling only a narrow depth 

range (Floros 2010b), depth-related drivers to changes in community structure were 
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investigated. This study examined the relationship between depth, its associated habitat and 

benthic community characteristics, and the structure of coral reef fish assemblages by 

categorising the complex reef system into smaller, strongly interacting subsystems based 

primarily on depth, and secondarily on habitat and benthic community variables. In addition 

to the assessment of ichthyofaunal communities as a whole, all species were categorised into 

functional groups to allow for an explanation of group-specific patterns.  

5.2 Materials and Methods 

5.2.1 Study site 

Epibenthic coral reef fish surveys were conducted on Two-Mile Reef in the iSimangaliso 

Wetland Park, on the north-eastern South African coast (Chapter 2). Two-Mile Reef is a 

large, accessible, high-latitude patch reef which spans a wide depth range (approximately 6–

30 m, Fig. 5.1) and possesses a wide variety of intricate habitats. Two-Mile Reef was selected 

because its characteristics suggest it can be considered representative of other high-latitude 

WIO coral reefs (Ault and Johnson 1998).  

5.2.2 Sampling methodology 

Videographic transecting was accomplished using a DX 1200 HD Camera (© SEA&SEA 

SUNPAK Co., Ltd.). Transect width was 4.79 m, the width of the camera‟s field of view at a 

distance of 5 m. Video transects, 50 m in length, were captured at an elevation of 1 m above 

the reef and using a swimming speed of 6.25 m.min-1 that translates into a total time of 8 

min.transect-1. Total transect area was therefore 239.5 m2. Planned total dive time was a 

maximum of 21 minutes for all dives. Video footage was analysed using the Standard-count 

technique. Further transect and fish assemblage details are outlined in Chapter 3.  
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Figure 5.1: Transect start points for shallow (6–14 m), intermediate (14–22 m) and deep (22–30 
m) transects conducted during winter and summer on Two-Mile Reef in the Central Reef Complex in 
the iSimangaliso Wetland Park, South Africa. Depth countour and geological data were obtained from 
the Marine Geoscience Unit of the Council for Geoscience, South Africa. Spatial reference system: 
Transverse Mercator (Central Meridian +27.00). 
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5.2.3 Sampling design 

The most suitable sampling design maximises the number of replicates logistically feasible, 

taking into consideration both the time and funding available, such that there is a realistic 

trade-off between accuracy and precision (Winer et al. 1991). Although it has been shown 

that 17 videographic transects are required at each level of stratification to achieve a 

statistical power of 80% (Chapter 4), the maximum number of replicates that were 

logistically feasible, 15 per stratum, would have resulted in a statistical power of 

approximately 76% (Chapter 4). This was considered adequate for the present study as 

Samoilys and Carlos (2000) note that for typical reef fish, which tend to be highly variable, a 

minimum of ten replicates should be conducted. 

 

A total of 90 videographic transects were conducted over winter and summer and across three 

depth categories – shallow (6–14 m), intermediate (14–22 m), and deep (22–30 m) – using a 

balanced sampling design (Table 5.3). Depth categories were selected a priori based on 

dividing the depth extent of Two-Mile Reef into equal categories. Categories were assigned 

to test the null hypotheses that (1) there is no change in epibenthic coral reef fish community 

structure from winter to summer, and (2) there is no change in epibenthic coral reef fish 

community structure from shallow, to intermediate, to deep depths.  

 
Table 5.3: Outline of the balanced sampling design for 90 videographic transects conducted over two 
seasons and three depth categories on Two-Mile Reef. 
 

Seasons Seasonal samples Depths Depth samples 

Winter 45 

Shallow 6–14 m 15 

Intermediate 14–22 m 15 

Deep 22–30 m 15 
     

Summer 45 
Shallow 6–14 m 15 

Intermediate 14–22 m 15 
Deep 22–30 m 15 

 
 

Sampling occurred over six days in winter from the 31 July 2010 to 05 August 2010 and over 

six days in summer from 01 March 2011 to 06 March 2011 (Table 5.4). To minimise the 

effects of short-term shifts in environmental conditions (e.g. wind, tide, moon phase), a single 

replicate per depth category was conducted and repeated until all 45 transects were completed 
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(Table 5.4). Due to diving regulations and the number of divers available, sampling was 

optimised by devoting one day in each season to sampling only deep sites (Table 5.4). 

 

The randomised allocation of sample sites, quantification of supplementary variables, 

establishment of trasect dimension and fish assemblage parameters, standardisation 

pertaining to observers, and transect deployment protocol are described in Chapter 3. 

 

Table 5.4: Sampling dates and study design for transects at Shallow (Sh), Intermediate (I), and Deep 
(D) in winter and summer on Two-Mile Reef as conducted in this study. 

Season Date Transects/day Sampling structure 

Winter 

31/07/2010 8 I,Sh,D,I,Sh,D,I,Sh 
01/08/2010 8 I,Sh,D,I,Sh,D,I,Sh 
02/08/2010 8 I,Sh,D,I,Sh,D,I*,Sh 
03/08/2010 8 I,Sh,D,I,Sh,D,I,Sh 
04/08/2010 8 I,Sh,D,I,Sh,D,I,Sh 
05/08/2010 6 D,D,D,D,D,I 

    

Summer 

01/03/2011 5 D,D,D,D,D 
02/03/2011 8 I,Sh,D,I,Sh,D,I,Sh 
03/03/2011 8 I,Sh,D,I,Sh,D,I,Sh 
04/03/2011 8 I,Sh,D,I,Sh,D,I,Sh 
05/03/2011 8 I,Sh,D,I,Sh,D,I,Sh 
06/03/2011 8 I,Sh,D,I,Sh,D,I,Sh 

Total  90 Sh & D (n = 30); I (n = 31 ) 
* Indicates a failed transect 

 

5.2.4 Accounting for supplementary variables 

Depth, profile, rugosity, habitat complexity, substrate, current speed and direction, visibility, 

water temperature, turbidity and time of day were measured, estimated, and/ or categorised 

for each transect according to the methods outlined in Chapter 3.  

 

To avoid statistical over-fitting, the qualitative variables in habitat complexity and substrate 

were reduced from five categories to three (Götz 2006).  

 

Although precise transect start times were recorded, time was organised into three categories 

to determine whether or not time affected any observed patterns. These categories were 

Category 1 (09:00–10:20), Category 2 (10:20–11:40), and Category 3 (11:40–13:00). 
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As sampling was conducted by depth across different benthic community types, the benthic 

community of each transect was qualitatively assessed by methods described by Götz et al. 

(2009). Benthic community categories were assigned by categorising the descriptions of 

Celliers and Schleyer (2008), and in-field observations from reconnaissance dives, into three 

categories – coral 1, coral 2 and sponge (Table 5.5). 

 
To assign each transect to a benthic community category, five still-frames were randomly 

selected from each transect video. Each frame was then assigned a benthic community 

category. For each transect the benthic community category observed at the highest 

frequency was selected as the category for that transect. In instances where an even frequency 

distribution of benthic communities was observed, that transect was re-analysed by adding 

five more randomly selected frames to the original set until the appropriate benthic 

community could be determined.  

5.2.5 Functional groups 

To investigate the community dynamics of different functional groups, species were placed 

into one of six functional groups based on their diet and feeding behaviour (Pratchet 2005; 

Wilson et al. 2006; Wilson et al. 2008; Floros 2010b; Froese and Pauly 2011). Species 

known to have strong associations with live coral, including obligate coral feeders but 

excluding facultative coral feeders, were categorised as coral-dependent. The other functional 

groups were territorial and roving feeders of the epilithic algal matrix (EAM feeders), 

planktivores, invertivores, piscivores. 

5.2.6 Statistical analyses 

Identification of suitable predictive factors 

As UVC surveys typically have relatively low sample sizes, it is usually necessary to reduce 

the number of predictor variables where appropriate (Clarke and Gorley 2006). Categorical 

variables from all 90 transects were therefore ordinated using Principal Component Analysis 

(PCA), where clustered variables in the 2D ordination space show a strong relationship to one 

another.  
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Table 5.5: Revised characteristics of shallow, intermediate and deep depth categories for Two-Mile Reef in terms of their associated habitat complexity, 
benthic community (Celliers and Schleyer 2008) and algal cover (Anderson et al. 2005). For reference images of habitat complexity categories see Appendix 1. 
 

Depth category Depth range Habitat complexity Benthic community Algal community characteristics 

Shallow 6–14 m 

Highly complex: detailed 
habitat structure. Refuge 

habitat extensively available - 
nooks and crannies within 

and between caves and 
crevasses extensive. 

Coral 1: Extensive, diverse coral 
cover. High abundance of 

Scleractinia and Alcyonacea. 
Characteristic species = e.g. 

Pocillopora, Acropora, Porites 
and Sacrophyton spp. 

Highest diversity, biomass and 
percent cover*. Extensive 

patches of algal turf and few 
foliose algal species. 

     

Intermediate 14–22 m 

Moderately complex: detailed 
habitat structure. Refuge 
habitat readily available. 

Large complex areas 
interspersed with lower 

complexity areas. 

Coral 2: Moderately extensive 
and diverse coral cover. 

Abundant Scleractinia and 
Alcyonacea. Same characteristic 

species as Coral 1 but 
Pachyseris, Sinularia and 
Sarcophyton spp. more 

frequent. 

Intermediate diversity, biomass 
and percent cover*. Biotic cover 

dominated by algal turfs. 

     

Deep 22–30 m 

Homogenous: Undetailed 
habitat structure. 

Comparatively flat and barren 
with minimal refuge habitat 

for fishes. Large areas of 
rubble present. 

Sponge: Sparse living benthic 
community. Only Infrequent 

corals such as Porites and 
Pachyseris spp. .Living cover 

dominated by gorgonians and 
sponges. 

Lowest diversity, biomass and 
percent cover*. Bare substrate 

present with patches of turf 
algae interspersed with 

occasional foliose individuals. 

* For specific data see Anderson et al. (2005) 
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Bray–Curtis similarity matrices were calculated using root-root transformed fish assemblage 

data (Bray and Curtis 1957). The matrices were ordinated using non-metric Multi-

Dimensional Scaling (MDS) (Shepard 1962; Kruskal 1964; Field et al. 1982) to determine if 

fish assemblages showed patterns relating to the variable in question. If no relationship was 

evident, the categorical variable was dropped as a factor. Where possible relationships were 

evident, the representative variable was retained for further examination and stratified for 

subsequent analyses. 

General community characteristics 

Proportional family abundances were graphically displayed as pie graphs and associated with 

total and within-family richness data for visual comparison at all levels of stratification. 

Ranked species abundance (dominance) curves were produced by ranking the abundance of 

each species and expressing ranked abundance as a percentage of the total abundance of all 

taxa. To facilitate better visualisation of dominant species, species ranks were log-

transformed (Clarke and Warwick 2001). 

Identification of fish communities 

The total abundance for transect i was calculated as the sum of all individuals j:  

 

        

 

 

 

Richness for each transect was calculated as the total number of observed species in each 

transect. 

 

Diversity of each transetc was calculated using Shannon‟s diversity index, Shannon‟s  H’ 

(Shannon and Weaver 1949), calculated as 

 

  
             

 

 

 

where    = (   /  ), the proportional abundance of the jth species in transect ij, with     being 

the abundance of species i in transect j and where   .  
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Univariate assessment of fish assemblages 

Univariate analyses of fish assemblage data were conducted at all levels of stratification. 

Abundance, richness and diversity data required root-root transformation at certain levels of 

stratification before the assumptions of normality and homoscedacity were met. Normality 

and homoscedacity of residuals was tested using Shapiro-Wilk‟s normality test and Levene‟s 

test respectively. Treatment and interaction effects of season and depth on abundance, 

richness and diversity were assessed using a two-way ANOVA. Tukey‟s HSD test was used 

for post hoc pairwise comparisons if a significant difference was noted.  

Multivariate assessment of fish assemblages 

Multivariate analyses of fish assemblage data were conducted at all levels of stratification. 

Bray–Curtis similarity matrices were constructed for transect-specific abundance, richness 

and diversity data. Matrices were ordinated using MDS and an analysis of similarity 

(ANOSIM) (Clarke and Green 1988) was used to test for differences in community structure 

between categories at all levels of stratification. The MDS visualised the samples while 

ANOSIM, a non-parametric permutation procedure, was used to test differences in (rank) 

similarities underlying the similarity data (Clarke and Warwick 2001). 

 

Observable differences evident using both the univariate and multivariate approaches was 

used as the proxy to identify discrete community structures within the fish assemblage data 

from all 90 transects.  

Multivariate dynamics of fish communities 

The similarity percentages (SIMPER) routine, described by Clarke and Warwick (2001), was 

used to determine the relative contribution of individual species to within-community similarity 

and between-community dissimilarity to ascertain which species were the dominant contributors 

to the observed clusters. An extension of the SIMPER routine was used to determine those 

species responsible for discriminating between community structures at all levels of stratification. 

All 209 species were included in analyses. 

 

No species or groups of species exhibited disproportionately large contributions to between-

category dissimilarity. The two most appropriate discriminating species were therefore 

selected for each pairwise comparison according to the criteria outlined by Clarke and Gorley 
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(2006). These were (1) a low standard deviation resulting in a favourable average 

contribution: standard deviation ratio, and (2) a comparatively high contribution to between-

category dissimilarities.  

 

To assess which combination of environmental variables best explained patterns in fish 

communities, Spearman‟s rank correlations (ρs) between environmental and fish community 

matrices were calculated using the BEST analysis with the BIOENV algorithm (Clarke and 

Warwick 2001). BIOENV permutation tests were used to test the null hypothesis that there was 

no agreement in observed multivariate patterns. 

Dynamics of functional groups 

The contribution of functional groups to observed temporal and spatial differences between 

communities was assessed using the SIMPER routine and calculated as the summed 

contribution of each species to overall functional group contribution. 

 

Treatment and interaction effects of season and depth on all functional groups were assessed 

using Two-Way ANOVA of root-root transformed abundance data for each functional group. 

Significant differences were investigated post hoc using a Tukey‟s HSD test. 

 

The open source statistical environment in R 2.11.0 (© R development core team 2010), 

Excel 2007 (© Microsoft Office), or PRIMER V6.0 (© Plymouth Marine Laboratory) were 

used to conduct all analyses.  

5.3 Results  

5.3.1 Identification of suitable predictive factors 

Principal Component Analysis (PCA) of all categorical variables accounted for 56% of the 

cumulative variation in the first two principal components (PCs). Factor loadings indicated 

that there was a relationship between categorical depth, habitat complexity and benthic 

community data. Season, time, divers, and substrate categories showed no relationship to any 

other categorical factor. 
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As the effect of season on ichthyofaunal communities was of interest, season was retained as 

a factor in all analyses. 

 

Due to the relationship between depth, habitat complexity and benthic community, the ease 

of conducting balanced sampling by depth categories, and the availability of continuous 

depth data, analyses were stratified by categorical depth to holistically represent the three 

categorical factors depth, habitat complexity and benthic community. A revised summary of 

the characteristics of each depth category is presented in Table 5.5. 

 

Divers and time categories were implicitly accounted for within the sampling design of the 

study by systematically rotating pairs of divers conducting transects in each depth category 

during a narrow, mid-morning time window (Chapter 3).  MDS ordination confirmed that 

divers, time and substrate could not be associated with any observed patterns in fish 

assemblages (Fig. 5.2). As divers were sufficiently randomised, and time sufficiently 

restricted, these categories were excluded from analyses. 

 

 
Figure 5.2: MDS ordination of 90 videographic transects, conducted on Two-Mile Reeef, with 
superimposed divers and time categories. 
 

Although algal cover was not quantified during the present study, the algal communities of 

Two-Mile Reef have been previously examined (Anderson et al. 2005). Anderson et al. 

(2005) found that from the shallowest sections of the reef to 26 m the algal communities on 

Two-Mile reef are dominated by small red turf algae interspersed with larger, upright 

individuals from other taxa. Diversity, biomass and percentage algal cover on Two-Mile Reef 

decreases significantly with depth, possibly due to lower light penetration or different grazing 

patterns (Anderson et al. 2005). As algal cover shows a gradient with depth, the factor can be 
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included in the description of depth categories in the present study as shallow sites have been 

shown to possess the greatest algal biomass and cover followed by intermediate and then 

deep sites (Anderson et al. 2005) (Table 5.5).  

 

Only Category 1 substrate was encountered for all replicates. Substrate was therefore 

excluded from analyses. 

 

All analyses were stratified by season and by depth resulting in eight levels of comparison, 

specifically; season (all depths pooled), depth (seasons pooled), shallow depths in winter, 

shallow depths in summer, intermediate depths in winter, intermediate depths in summer, 

deep depths in winter, and deep depths in summer. 

5.3.2 General community characteristics 

Family groups 

A total of 18172 fish from 209 species and 41 families were identified from the videographic 

transects (Fig. 5.3a).  

 

No biogeographic trends were evident in number of families from winter to summer (Fig. 

5.3b-g).  

 

All depth categories in both seasons were dominated by pomacentrids except for the deep 

depth category in winter when the serranids dominated (Fig. 5.3f). Five families contributed 

to >3% abundance at all levels of stratification. These were the Pomacentridae, Acanthuridae, 

Serranidae, Labridae and Chaetodontidae (Fig. 5.3).The Labridae consistently displayed the 

highest species richness in both seasons over all depths with a total of 37 species encountered 

during the study and twice as many as the two next most rich families, the Acanthuridae and 

Chaetodontidae, with 17 species each (Fig. 5.3a). 
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Figure 5.3: Families contributing >3% to total abundance on Two-Mile Reef. The remaining 
species are categorised as ‘other’ and may vary between charts. Percentages refer to  % abundance for 
respective families. 
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Figure 5.4: Ranked species abundance, or dominance, plots of fishes occurring on Two-Mile Reef indicating the five most dominant species by log-
transformed rank in both seasons for all depths. Species ranks are log-transformed and truncated at 1.6 for visual interpretation. Only those species contributing 
at least 4% to total abundance at one or more levels of stratification are named in the legend. 
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Species dominance 

Dominance plots indicate that at all levels of stratification only five species exhibited >4% 

dominance indicating no biogeographic shifts to a disproportionately dominant species in a 

particular season or at a particular depth. Chromis weberi, C. dimidiata, C. nigrura, and the 

Anthiinae consistently comprised the most dominant species while, Ctenochaetus binotatus 

and Caesio xanthonata comprised the remainder of those species frequently exhibiting >4% 

dominance (Fig. 5.4a-h). Thalassoma herbaicum appears only once as the fifth most 

dominant species at intermediate depths in summer (Fig. 5.4h). 

 

Trends within seasonal data were that shallow and intermediate depths exhibited similar rank-

dominance curves for pooled seasons and during summer (Fig. 5.4c, d), but intermediate and 

deep depths were similar during winter (Fig. 5.4h). 

Shallow and intermediate depths were dominated by pomacentrids during both seasons but 

showed a change in the dominant species; C. nigrura dominated during winter while C. 

weberi dominated during summer (Fig. 5.4e, f). Deep depths were dominated by the 

Anthiinae and showed no change in species dominance between seasons. 

5.3.3 Identification of fish communities 

Univariate analysis of abundance, richness and diversity 

Abundance 

Spatial representation of the relative abundances of fishes for each transect conducted during 

the study are displayed in Fig. 5.6. 

 

The effect of season had a significant effect on abundance (F1,84 = 14.60,  p<0.01, Fig. 5.5a, 

Table 5.6) with abundance higher during summer at shallow and intermediate depths, but not 

at deep depths (Tukey‟s HSD test, p<0.05). 

 

Overall depth did not have a significant effect on abundance (F2,84 = 1.27,  p = 0.29, Fig. 5.5a, 

Table 5.6) despite abundance being significantly higher at shallow depths than at deep depths 

during summer (Tukey‟s HSD test, p<0.05). 
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Although only marginally, the interaction between season and depth on abundance was 

significant (F2,84 = 3.24,  p = 0.045, Fig. 5.5a, Table 5.6). 

Richness 

Spatial representation of the relative richness‟s of fishes for each transect conducted during 

the study are displayed in Fig. 7. 

 

The effect of season had a significant effect on richness (F1,84 = 13.39,  p<0.01, Fig. 5.5b, 

Table 5.6) with abundance higher during summer at shallow depths but not at intermediate 

and deep depths (Tukey‟s HSD test, p<0.05). 

 

Overall depth did not have a significant effect richness (F2,84 = 1.27,  p = 0.29, Fig. 5.5b, 

Table 5.6), despite richness being significantly higher at shallow depths than at deep depths 

during summer (Tukey‟s HSD test, p<0.05). 

 

The interaction between season and depth on richness was not significant (F2,84 = 1.64,  p = 

0.20, Fig. 5.5b, Table 5.6) 

Diversity 

Spatial representation of the relative diversity of fishes for each transect conducted during the 

study are displayed in Fig. 5.8. 

 

Neither season (F2,84 = 2.67,  p = 0.12, Fig. 5.6c, Table 5.6), depth (F2,84 = 0.78,  p = 0.46, 

Fig. 5.5c, Table 5.6), nor the interaction between season and depth (F2,84 = 0.10,  p = 0.90, 

Fig. 5.5c, Table 5.6) had a significant effect on diversity. 
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Figure 5.5: Abundance, richness and diversity of reef fishes for each level of stratification on Two-
Mile Reef as a function of season and depth. Statistical results from Two-way Analysis of Variance 
presented in Table 5.6. Common superscripts depict statistically homogenous groups (p>0.05). 
Untransformed data are displayed while the analysis of abundance and richness was conducted using 
root-root transformed data. 
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Table 5.6: Results from Two-way Analysis of Variance on abundance, richness and diversity as a function of season and depth on Two-Mile Reef. Post hoc 
pairwise comparisons were conducted using Tukey’s HSD test. Significant differences (p<0.05) are indicated with bold text.  
 

 Season 
 

Depth 
 

Season × Depth 
 

Pairwise comparisons 

 F1,84 p 
 

F2,84 p 
 

F2,84 p 
 Depth  

pooled 
Season  
pooled 

Winter 
(W) 

Summer 
(S) 

Shallow 
(Sh) 

Intermediate 
(I) 

Deep 
(D) 

Abundance 14.60 <0.01 
 

1.27 0.29 
 

3.24 0.03 
 

W<S D=I=Sh D=I=Sh D=I,I=Sh,D<Sh W<S W<S W=S 

Richness 13.39 <0.01 
 

0.78 0.46 
 

1.64 0.2 
 

W<S D=I=Sh D=I=Sh D=I,I=Sh,D<Sh W<S W=S W=S 

Diversity 2.67 0.12 
 

0.54 0.58 
 

0.10 0.90 
 

W=S D=I=Sh D=I=Sh D=I=Sh W=S W=S W=S 
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Figure 5.6:  Ichthyofaunal abundance observed at shallow (6–14 m), intermediate (14–22 m) and 
deep (22–30 m) transects conducted during winter and summer on Two-Mile Reef in the Central Reef 
Complex in the iSimangaliso Wetland Park, South Africa. Bubble size is proportional to observed 
abundance for each transect. Depth contour and geological data were obtained from the Marine 
Geoscience Unit of the Council for Geoscience, South Africa. Spatial reference system: Transverse 
Mercator (Central Meridian +27.00). 
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Figure 5.7:  Ichthyofaunal richness observed at shallow (6–14 m), intermediate (14–22 m) and 
deep (22–30 m) transects conducted during winter and summer on Two-Mile Reef in the Central Reef 
Complex in the iSimangaliso Wetland Park, South Africa. Bubble size is proportional to observed 
richness for each transect. Depth contour and geological data were obtained from the Marine 
Geoscience Unit of the Council for Geoscience, South Africa. Spatial reference system: Transverse 
Mercator (Central Meridian +27.00). 
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Figure 5.8: Ichthyofaunal diversity, Shannons H’, observed at shallow (6–14 m), intermediate (14–
22 m) and deep (22–30 m) transects conducted during winter and summer on Two-Mile Reef in the 
Central Reef Complex in the iSimangaliso Wetland Park, South Africa. Bubble size is proportional to 
observed diversity for each transect. Depth contour and geological data were obtained from the Marine 
Geoscience Unit of the Council for Geoscience, South Africa. Spatial reference system: Transverse 
Mercator (Central Meridian +27.00). 
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Figure 5.9: MDS ordination of the Bray–Curtis similarity matrices illustrating relationships between 
depth and season. ANOSIM summary statistics for fish assemblages on Two-Mile Reef provided for 
each depth-season combination.  
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Multivariate assessment of fish assemblages 

MDS ordination revealed that there were differences in fish assemblage structure between 

seasons and depths that were confirmed using ANOSIM. There were significant differences 

in fish assemblages between seasons and depths at all levels comparison (ANOSIM, R >0. 2, 

p<0.05) except between seasons at deep depths (Fig. 5.9). 

5.3.4 Multivariate dynamics of fish communities 

Within-community similarity 

Seasonal similarity was high for both winter and summer at all levels of stratification (Table 

5.7). A trend of decreasing within-category similarity with increasing depth was evident in 

that shallow depths that had the greatest within-category similarity (48.65% and 52. 37% for 

winter and summer, respectively), while deep depths exhibited the lowest within-category 

similarity (39.48% and 37.74%, respectively) (Table 5.7). 

 

Depth similarity was high for both shallow and intermediate depths (always >46% similarity) 

but lower for deep depths (<40% similarity) in both seasons (Table 5.7). 

 

No species showed >13% contribution to the within-category similarity and no species 

showed a disproportionately large contribution to within-category similarity. 

Between-community dissimilarity 

Dissimilarity for shallow and intermediate depths was high between seasons (52.97%) and 

deep depths (60.66%) between seasons (Table 5.8). 

 

Depth dissimilarity was smallest when comparing shallow and intermediate depths (54.42% 

and 51.45% in winter and summer, respectively) and greatest when comparing shallow and 

deep depths (63.34% and 61.93% in winter and summer, respectively) suggesting a trend of 

increasing dissimilarity with increasing difference in depth (Table 5.8). 
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Table 5.7: Similarity summary statistics from the SIMPER analysis for all levels of stratification on 
Two-Mile Reef. The two taxa with the highest percentage contribution to within-category similarity for 
each category are presented. Seasons = Winter (W) and Summer (S), Depths = Shallow (Sh), 
Intermediate (I) and Deep (D).  

 

Stratification category 
Within-category 

similarity 
 Similarity species 

% 
Contribution 

Season – depth 
pooled 

W = 42.34 
S = 44.01 

W: 
 

S: 
 

Ctenochaetus binotatus 
Chromis weberi 
Ctenochaetus binotatus 
Chromis dimidiata 

9.15 
7.96 
7.26 
7.17 

    

 

Depth – season 
pooled 

Sh = 48.71 
I = 47.68 
D = 38.99 

Sh: 
 

I: 
 

D: 
 

Chromis weberi 
Ctenochaetus binotatus 
Chromis weberi 
Ctenochaetus binotatus 
Anthiinae 
Sufflamen chrysopterus 

9.11 
8.50 
9.01 
8.81 

10.32 
7.87 

     

Season – Winter 
Sh = 48.65 
I = 46.85 
D = 39.48 

Sh: 
 

I: 
 

D: 
 

Chromis weberi 
Ctenochaetus binotatus 
Ctenochaetus binotatus 
Chromis weberi 
Anthiinae 
Sufflamen chrysopterus 

10.58 
10.21 
9.55 
9.39 

12.46 
7.40 

     

Season – Summer 
Sh = 52.37 
I = 49.88 
D = 37.74 

Sh: 
 

I: 
 

D: 
 

Chromis weberi 
Chromis nigrura 
Chromis dimidiata 
Chromis weberi 
Sufflamen chrysopterus 
Anthiinae 

7.39 
7.10 
8.57 
8.35 
8.44 
8.42 

     

Depth – Shallow 
W = 48.65 
S = 52.37 

W: 
 

S: 
 

Chromis weberi 
Ctenochaetus binotatus 
Chromis weberi 
Chromis nigrura 

10.58 
10.21 
7.39 
7.10 

     

Depth – Intermediate 
W = 46.85 
S = 49.88 

W: 
 

S: 
 

Ctenochaetus binotatus 
Chromis weberi 
Chromis dimidiata 
Chromis weberi 

9.55 
9.39 
8.57 
8.35 

     

Depth – Deep 
W = 39.48 
S = 37.74 

W: 
 

S: 
 

Anthiinae 
Sufflamen chrysopterus 
Sufflamen chrysopterus 
Anthiinae 

12.46 
7.40 
8.44 
8.42 
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Table 5.8: Dissimilarity summary statistics for the SIMPER analysis for all levels of stratification on 
Two-Mile Reef. Two primary discriminating species (or taxa), as determined by the SIMPER routine, 
are presented with dissimilarity contribution (Diss): standard deviation (SD) ratio and percentage 
contribution to dissimilarity results.  

 

  Discriminating Species 

Stratification 
category 

Between-
category 

dissimilarity 
Species Diss:SD 

% 
contribution 

Between season 
– depth pooled 

W – S = 58.9  
Chromis dimidiata 
Anthiinae 

1.05 
1.04 

2.35 
2.26 

      

Between depth – 
season pooled 

S – I = 53.83 
S –D = 63.20 
I – D = 59.1 

S-I: 
 

S-D: 
 

I-D: 
 

Chromis nigrura   
Achanthurus leucosternon 
Chromis nigrura 
Acanthurus leucosternon 
Chromis weberi 
Chromis dimidiata 

1.32 
1.38 
1.34 
1.49 
1.17 
1.07 

3.12 
1.99 
2.95 
1.97 
2.82 
2.71 

      

Season – Winter 
Sh – I = 54.42 
Sh – D = 63.34 
I – D = 58.91 

S-I: 
 

S-D: 
 

I-D: 
 

Anthiinae 
Achanthurus leucosternon 
Anthiinae 
Acanthurus leucosternon 
Chromis weberi 
Chromis dimidiata 

1.26 
1.43 
1.30 
1.49 
1.18 
1.20 

3.13 
2.17 
2.83 
1.97 
3.24 
1.77 

      

Season – 
Summer 

Sh – I = 51.45 
Sh – D = 61.93 
I – D = 58.28 

S-I: 
 

S-D: 
 

I-D: 
 

Chromis nigrura 
Acanthurus leucosternon 
Chromis nigrura 
Acanthurus leucosternon 
Chromis weberi 
Achanthurus tennenti 

1.83 
1.59 
2.11 
1.61 
1.17 
1.20 

3.72 
1.91 
3.93 
1.84 
2.44 
1.71 

      

Depth – Shallow W – S = 52.97  
Chromis nigrura 
Anthiinae 

1.70 
1.24 

4.01 
2.36 

      

Depth – 
Intermediate 

W – S = 52.97  
Anthiinae 
Ctenochaetus strigosus 

1.05 
1.28 

2.46 
2.02 

      

Depth – Deep W – S = 60.66  
Chromis dimidiata 
Chromis weberi 

1.12 
1.21 

2.71 
2.58 
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Figure 5.10: MDS ordination of 90 videographic transects with superimposed relative abundances 
of seven discriminating species for Two-Mile Reef as determined by SIMPER analysis (Table 5.8). 
Sizes of bubbles indicate relative abundance for that particular species, but are not comparable 
between species, while empty bubbles represent the ordinated position of transects with 
inconsequential abundance for that species. An overlay of all depth categories to the spatial distribution 
of transects within the plot is also illustrated. 
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Discriminating taxa 

Although no single taxa contributed >3% to spatial and temporal differences, a total of seven 

taxa comprised the top two discriminating species (or taxa) for all between-category 

comparisons. These were Acanthurus leucosternon, A. tennenti, Anthiinae, C. dimidiata, C. 

nigrura, C. weberi and Ctenochaetus strigosus (Table 5.8). MDS plots of these seven taxa 

show that areas of higher counts are variable but for the most part occur to the central-right of 

the ordination space (Fig. 5.11a–f). Acanthurus tennenti and the Anthiinae exhibited the 

greatest spatial variation in counts within plots, with relatively large counts occurring 

throughout the ordination space. An overlay of depth categories applied to the ordinated 

spatial distribution of transects shows deep transects are to the left, while shallow and 

intermediate transects are clustered to the central-right (Fig. 5.10e). This pattern shows that 

for the seven discriminating species depth is the variable responsible for structuring. High A. 

leucosternon, C. dimidiata, C. nigrura, C. weberi and C. strigosus counts are clustered 

around shallow and intermediate depth transects (Fig. 5.10a, d–g). A. tennenti and Anthiinae 

abundance, however, did not appear to differ between depth categories (Fig. 5.10b, c). 

5.3.5 Relating community-level trends to environmental variables 

Profile and rugosity were strongly correlated (R2 = 0.86, p <0.01). Bennett (2008) found a 

similar result and concluded that of the two measures rugosity provided more desirable 

information. Profile was therefore excluded from the BIO-ENV procedures (Clarke and 

Gorley 2006). 

 

Of all possible combinations of the six remaining continuous environmental variables (depth, 

current speed, visibility, temperature, rugosity and turbidity), depth alone correlated strongest 

with the observed pattern in fish community structure, albeit weakly (    0.31, p<0.01, 

Table 5.9). 

 

Initial analyses for pooled data indicated that temperature was not a component of any 

parsimonious combination of environmental variables (Table 5.9). Temperature in winter 

ranged from 19 ˚C–21 ˚C in winter and 25˚C–26 ˚C in summer. Temperature was thus 

removed as a factor by stratifying the BIO-ENV procedure by season. BIO-ENV analysis 

stratified by season did not result in any improved relationships indicating that temperature 

has little influence on fish community structure of fish (Table 5.9).  
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For pooled and seasonally stratified BIO-ENV results, depth formed a component of all 

combinations that all displayed weak, but significant, correlations (Table 5.9). 

 

Table 5.9: Results from BEST analysis within the BIO-ENV algorithm, run for the fish assemblages 
on Two-Mile Reef, yielding the five most parsimonious combinations of abiotic and biotic variables for 
each k, as determined by the Spearmans rank correlation   . 
 

Stratification k Best variables    
Overall  
p-value 

Season pooled 

1 Depth 0.314 p<0.01 
2 Depth, Current Speed 0.307 p<0.01 
3 Depth, Current Speed, Visibility 0.279 p<0.01 
3 Depth, Current Speed, Rugosity 0.273 p<0.01 
2 Depth, Rugosity 0.270 p<0.01 

     

Winter 

1 Depth 0.325 p<0.01 
2 Depth, Current Speed 0.307 p<0.01 
3 Depth, Current Speed, Turbidity 0.283 p<0.01 
2 Depth, Turbidity 0.274 p<0.01 
2 Depth, Rugosity 0.252 p<0.01 

     

Summer 

1 Depth 0.307 p = 0.02 
2 Depth, Visibility 0.289 p = 0.02 
3 Depth, Visibility, Rugosity 0.281 p = 0.02 
2 Depth, Rugosity 0.279 p = 0.02 
4 Depth, Visibility, Rugosity, Turbidity 0.236 p = 0.02 

 

5.3.6 Dynamics of functional groups 

Of the 209 species sampled, coral dependents and EAM territorials had the lowest species 

abundance and richness with 0.6 and 0.5% total abundance, respectively, and 9 species each 

(Fig. 5.11). Piscivores occurred at low abundance (4%) despite the presence of a high number 

of species (46 spp.) (Fig. 5.11). EAM Rovers consisted of 26 species that comprised 15% of 

the total abundance. The richest functional group was the invertivores (82 spp.) which 

occurred at relatively low abundance (22%) (Fig. 5.11) but still consistently contributed the 

highest proportion to between-category dissimilarity (Fig. 5.12). The planktivores occurred at 

the greatest abundance (58%) and consisted of 37 species (Fig. 5.11).  
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Figure 5.11: Percent contribution of each functional group to overall abundance on Two-Mile Reef. 
 

Seasonal trends of functional groups  

Seasonal trends in functional group abundance revealed that over all depths all functional 

groups are more abundant during summer (F1,84 >4.3,  p<0.05, Table 5.10). This appears to be 

amplified at shallow depths in that planktivores, EAM rovers, EAM territorials and 

invertivores (p<0.05) were in significantly greater abundances at shallow depths in summer 

(Fig. 5.13 b-e , Table 5.10).  

 

 

Planktivores 
37 spp.

58%
Invertivores 

82 spp.
22%

EAM rovers 
26 spp.

15%

Piscivores 
46 spp.

4%

Coral-dependents 
9 spp.
0.6%

EAM territorials 
9 spp.
0.4%

Functional groups
Total groups = 6

Total richness = 209
Total abundance = 18172



 Chapter 5: Seasonal- and depth-related community dynamics of fish assemblages 

116 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.12: Percent contribution of functional fish groups to temporal and spatial differences in fish 
assemblages on Two-Mile Reef based on values from SIMPER analysis and calculated as the summed 
contribution of each species to overall functional group contribution. 
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Figure 5.13: Spatial and temporal variation in abundance estimates (average + one standard 
deviation) of functional fish groups for all three depth categories. Common superscripts depict 
statistically homogenous groups. Untransformed data are displayed while analyses were conducted on 
root-root transformed abundance data. 
 

Depth trends of functional groups  

Each functional group showed different depth-related patterns (Fig. 5.12 and Fig. 5.13). 

 

Coral-dependents are significantly affected by depth (F2,84 = 6.60,  p<0.01, Table 5.10), 

declining in abundance with depth in summer. Intermediate depths in winter had lower 

abundances (p<0.05) but in summer shallow and intermediate depths had significantly greater 

(p<0.05) abundances than deep depths.  
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Planktivores and invertivores are not significantly affected by depth (Table 5.10). 

 

EAM rovers, are significantly affected by depth (F2,84 = 5.4,  p = 0.01,  Table 5.10), 

exhibiting higher abundances at shallow depths in summer (Tukey‟s HSD test, p<0.05).  

 

EAM territorials, are not significantly affected by depth overall (Table 5.10). Shallow depths 

in summer, however, exhibit significantly greater abundances than intermediate and deep 

depths (Tukey‟s HSD test, p<0.05). 

 

EAM territorials, are not significantly affected by depth overall (Table 5.10). Shallow and 

intermediate depths in summer, however, exhibit significantly greater abundances than deep 

depths (Tukey‟s HSD test, p<0.05). 

Interaction trends (season × depth) of functional groups 

The interaction effect of season and depth had a significant effect on the planktivores (F2,84 = 

3.51,  p = 0.04) and on the piscivores (F2,84 = 3.50,  p = 0.04) but did not significantly affect 

any other group (Table 5.13). 

 

 

 

 



 Chapter 5: Seasonal- and depth-related community dynamics of fish assemblages 

119 

 

Table 5.10: Statistical results from Two-way Analysis of Variance for each functional fish group. Post hoc pairwise comparisons were conducted using Tukey’s 
HSD test. Significant differences (p<0.05) are indicated with bold text. 
 

 Season  Depth  Season × Depth  Pairwise comparisons 

 F1,84 p 
 

F2,84 p 
 

F2,84 p 
 

Depth 
pooled 

Season 
pooled 

Winter 
(W) 

Summer 
(S) 

Shallow 
(Sh) 

Inter-
mediate 

(I) 

Deep 
(D) 

Coral 
dependents 

10.82 <0.01 
 

6.63 <0.01 
 

0.54 0.58 
 

W<S D<I,I=Sh,D<Sh D>I,I<Sh,D=Sh D<I,I=Sh,D<Sh W=S W<S W=S 
                 

Planktivores 6.51 0.01  2.07 0.13  3.51 0.04  W<S D=I=Sh D=I=Sh D=I=Sh W<S W=S W=S 
                 

EAM Rovers 6.13 0.02  5.41 <0.01  0.64 0.58  W<S D=I,I=Sh,D<Sh D=I=Sh D=I=Sh W<S W=S W=S 
                 

EAM Territorials 4.32 0.04  1.52 0.22  2.01 0.15  W<S D=I=Sh D=I=Sh D=I,I<Sh,D<Sh W<S W=S W=S 
                 

Invertivores 8.72 <0.01  1.61 0.22  1.73 0.33  W<S D=I=Sh D=I=Sh D=I=Sh W<S W=S W=S 
                 

Piscivores 17.71 <0.01  0.23 0.84  3.41 0.04  W<S D=I=Sh D=I=Sh D=I=Sh W=S W=S W=S 
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5.4 Discussion 

This study represents the first holistic, replicated survey of the community structure of South 

African coral reef fishes between seasons and across depths, habitats, and benthic 

communities. A total of 18172 individuals from 209 species and 41 families were surveyed 

on Two-Mile Reef. While both abundance and richness were structured by both season and 

depth, no structure in diversity was evident. Higher abundance and richness was observed in 

summer but only at shallow depths. Distinct community structures were noted between 

season and depth. At shallow depths, winter and summer communities were distinct, and the 

communities of each depth category were different. Specific drivers of structural changes to 

community assemblages could not, however, be determined, but it is likely a product of a 

combination of abiotic (e.g. environmental variables) and biotic (e.g. reef benthic 

community) factors acting at different seasonal and depth scales. Assessment of the 

functional species groups present on the reef indicated that more diverse groups contributed 

more to between-community dissimilarities regardless of abundance. The distribution of 

abundances within each functional group was not uniform suggesting niche partitioning. This 

high-latitude system was found to be comparable to other low latitude coral reefs in the WIO.  

5.4.1 General fish assemblage characteristics  

The observed ichthyofaunal family richness was comparable to previous studies investigating 

full coral-reef fish community dynamics in the WIO. Previous studies have reported 

observing between 35 (Chabanet 2002) and 58 (Gillibrand et al. 2007) families at various 

WIO locations. Across all these studies, including this study, labrids dominated species 

richness followed by the Acanthuridae, Chaetodontidae, Pomacentrida and Serranidae 

(Letourneur 1996; Chabanet 2002; Garpe and Öhman 2003; Durville et al. 2003; Gillibrand 

et al. 2007; Floros 2010b). While scarids may have been cited as one of the species-rich 

families in other areas (Durville et al. 2003; Gillibrand et al. 2007), on Two-Mile Reef this 

family was represented by relatively low species numbers and abundance.  

 

The 209 species observed on Two-Mile Reef was lower than, but comparable to, other WIO 

(Letourneur 1996; Chabaneet 2002; Garpe and Öhman 2003; Durville et al. 2003; Gillibrand 

et al. 2007) and South African (Floros 2010a) studies (Table 5.1). These studies span 

approximately 20 degrees of latitude and 18 degrees of longitude which would allow for 
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biogeographic influences. Bellwood and Wainwright (2002) and Wilkinson (2008) 

investigated the influence of biogeography on the community structure of fishes, these 

studies along with Hobson (1994) all noted that species richness decreases with increasing 

latitude. This has been attributed to many interrelated factors such as ocean currents and reef 

structure, but deviations are often observed (Floros 2010a). Although the role of latitude in 

structuring WIO fish communities has not been adequately addressed, latitude is a possible 

explanation for the present study observing lower species numbers than other studies. There 

are three other factors which, along with biogeography, could contribute to observed 

differences. These are survey site characteristics, survey techniques employed and level of 

replication. 

 

The survey sites for all previous WIO studies were spread over multiple reefs with a 

comparatively large spatial distribution often including various reef types. In concordance 

with island biogeography theory (MacArthur and Wilson 1967; Freeman 2005), the survey of 

a single reef and its associated habitats will almost certainly produce lower species counts 

than an assortment reefs, reef types and the associated plethora of habitats. Floros (2010 b) 

reported a total of 284 species observed over a number of South African and Southern 

Mozambican coral reefs. Although this is greater than the present study, Floros (2010 b) 

reported observations of only 189 species on Two-Mile Reef – 20 species less than observed 

in this study. This difference can be accounted for by survey site characteristics in that Floros 

(2010) only surveyed a narrow depth range. In contrast to Floros (2010b), this study surveyed 

the complete depth extent of Two-Mile Reef that included numerous benthic communities 

(Celliers and Schleyer 2008) and therefore comprised higher species numbers.  

 

UVC studies of full coral-reef fish community dynamics in the WIO have generally used one 

of two techniques; roving diver or strip transects. Letourneur (1996), Durville et al. (2003), 

Gillibrand et al. (2007) and Floros (2010b) all used the roving diver technique - flexible in 

survey area and not particularly species selective – that probably partly accounts for the 

higher number of observed species richness. The strip transect protocol implemented by 

Chabanet (2002), Garpe and Öhman (2003) and this study strongly favours the epibenthic 

reef fish group and has been shown to select against cryptic and benthic fishes (Chapter 1). 

Chabanet (2002), using similar techniques to this study in the Comoros, observed six less 

families but 16 more species. In contrast, the study of Garpe and Öhman (2003) at Mafia 

Island observed vastly greater numbers of fish taxa - 56 families and 394 species. Although 
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biogeography probably plays a role in these differences, as Mafia Island and Two-Mile reef 

are separated by almost 20 degrees of latitude, differences in the level of replication could be 

a factor. Garpe and Öhman (2003), who conducted 110 strip transects - the highest level of 

replication of all studies in the WIO region, observed greater species numbers at Mafia Island 

than any other WIO area. In comparison to the present study, the 22% more replicates 

conducted by Garpe and Öhman (2003) probably contributed to the greater number of 

observed species.  

 

This study found lower species numbers in comparison to other studies as only a single patch 

reef was surveyed, the more selective strip transect technique was implemented, and despite 

replication being adequate, fewer replicates were conducted. Floros (2010b) estimates that 

the number of reef-associated fishes, including cryptic species, on the South African coral 

reefs is likely somewhere between the 399 species observed by Chater et al. (1993) and 1000. 

Although the initial estimate of 399–1000 species proposed by Floros (2010b) is probably 

valid, intensive, destructive survey methods would be required to ascertain an approximation 

of total richness on high-latitude WIO coral reefs. The similarities in the general 

characteristics of Two-Mile Reef compared to other WIO areas are also evident in species 

dominance characteristics.  

 

This study, together with Letourneur (1996), Chabanet (2002), Garpe and Öhman (2003) and 

Floros (2010b), found that the Pomacentridae and Serranidae (Subfamily Anthiinae) 

dominated (Table 5.11). Only Letourneur (1996) and Floros (2010b) reported dominance of 

species unique at the family level. Letourneur (1996),working in Reunion, reported 

dominance of Thalassoma purpureum (Labridae) which is a species that was not observed in 

the present study but has been identified in South African waters (Smith and Heemstra 2003). 

Floros (2010b), working on a small patch reef in Mozambique, reported the dominance of 

Parapriacanthus ransonneti (Pempheridae). Although P. ransonneti was not observed in 

transects in this study, photographic records (Wartenberg pers. obs. 2010) confirm that this 

species currently occurs on Two-Mile Reef, but only at moderate to low abundances. The 

ommision of P. ransonneti from the observations of the present study is probably because 

strip transects select against this shoaling, but cave-dwelling reef fish (Heemstra and 

Heemstra 2003). In agreement with the findings of Floros (2010b), the patterns of species 

dominance on Two-Mile Reef therefore appear similar to other, lower latitude, WIO coral 

reefs. 
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Table 5.11: Summary of studies investigating community dynamics in the WIO which have reported 
family or species dominance as either relative or absolute abundance.  
 

Study Country/ Island Reef type Dominant taxa: Species and/or (Family) 

Chater et al. 
(1995) 

South Africa Patch reefs Thalassoma herbraicum* 

    

Letourneur 
(1996) 

R’eunion Outer reef flat 

Chrysiptera unimaculata (Pomacentridae) 
Plectroglyphidodon imparipennis 

(Pomacentridae) 
Plectroglyphidodon leucozonus 

(Pomacentridae) 
Thalassoma purpureum (Labridae) 

    

Chabanet (2002) Comoros Barrier reef 

Chromis dimidiata (Pomacentridae) 
Chromis nigrura (Pomacentridae) 
Pseudanthias cooperi (Anthiinae) 

Pseudanthias squamipinnis (Anthiinae) 
    

Garpe and 
Öhman (2003) 

Mafia Island 
Patch, channel 

and fringing 
reefs 

(Pomacentridae) 

    

Floros (2010b) 
South Africa and 

Mozambique 
Patch reefs 

Chromis dimidiata (Pomacentridae) 
Chromis weberi (Pomacentridae) 
Nemanthias carberryi (Anthiinae) 

Parapriacanthus ransonneti(Pemphiridae) 
Pseudanthias squamipinnis (Anthiinae) 

    

This study South Africa Patch reef 

Chromis dimidiata (Pomacentridae) 
Chromis nigrura(Pomacentridae) 
Chromis weberi (Pomacentridae) 

(Anthiinae) 

 

5.4.2 Identification of fish communities 

Factors that influence the abundance and composition of fish assemblages include, but are not 

restricted to, season (Götz 2006), depth (Bell 1983; Shpigel and Fishelson 1989; Friedlander 

and Parrish 1998; Sherman et al. 1999; Garpe and Öhman 2003; Durville et al. 2003), habitat 

complexity (Öhman et al. 1997; Friedlander and Parrish 1998; Jones and Syms 1998; Öhman 

and Rajasuriya 1998) and benthic community (Galzin et al. 1994, Jennings et al. 1996; Garpe 

and Öhman 2003; Wilson et al. 2009). Of these, it is not usually possible to determine a 

single predictor variable as most variables measured to determine community structure tend 
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to be correlated (Götz 2006). In this study, fish assemblages showed substantial variation 

among sites categorised by season and depth – depth being a proxy for habitat complexity 

and benthic community. Significant trends in univariate and multivariate approaches, with a 

meta-analysis of previously published literature, were used to determine where community 

differences are most likely to occur. 

 

Seasonal trends were evident in abundance, richness, diversity and multivariate metrics 

particularly at shallow depths. Although the effect of season on coral reef fish assemblages 

has been poorly studied, the influence of this factor has been investigated in other aquatic 

ecosystems. Grossman et al. (1982) noted that season had a significant effect in structuring 

ichthyofaunal assemblages of freshwater stream fishes in Indiana, USA, over a 12 year 

period. These authors attributed this effect to the reproductive cycles of fishes and variable 

flooding events. The study was unable to predict seasonal shifts in assemblages between 

years as the variability and frequency of flooding events aided/ inhibited the reproductive 

success of different species each year. Patterns in freshwater systems such as streams are of 

little relevance to the marine environment, but the study of Grossman et al. (1982) highlights 

the variability and interrelatedness of possible predictive factors associated with season. The 

effect of season on structuring temperate marine fish assemblages has been studied.  

Aburto-Oropeza and Balart (2001) and Pérez-Espãna et al. (1996) both investigated rocky 

reefs in the Gulf of California. These studies found that fish assemblages differed 

significantly with season and that species numbers were significantly higher during warmer 

seasons. In agreement with this Robinson (1973), Alvarez-Borrego and Schwartzlose (1979), 

Roden and Emilsson (1980), Maluf (1983) and Aburto-Oropeza and Balart (2001) all found 

that the biggest differences in fish assemblages with season were observed between winter 

and summer seasons. Although these authors did not determine which factors associated with 

season were responsible, they concluded that high seasonality observed in a host of abiotic 

and biotic variables were likely to drive change over similarly structured reefs. This northern 

hemisphere example is in agreement with a study conducted by Götz (2006) investigating 

temperate reef fishes in a South African MPA. 

 

Götz (2006) noted that season had a significant effect on the abundance of selected species, 

diversity (Shannon‟s H’, Margalef‟s richness index, and the Taxonomic diversity index), and, 

overall community structure. Although Götz (2006) described the fish assemblage of that 

area as a typical, temperate South African reef fish community, the factors driving seasonal 
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changes in fish assemblages could not be determined. A seasonal change in fish behaviour 

was however speculated as a possible driver. The study of Götz (2006) was conducted in the 

Goukama MPA in the Western Cape – approximately seven degrees of latitude further south 

from Two-Mile reef. It is possible that seasonal trends in abiotic and biotic factors, or the 

drivers of those trends, are similar for Goukama MPA and Two-Mile Reef. This would 

account for the similar patterns with season observed between these studies despite fish 

assemblages from different bioregions having been investigated.  

 

Despite noting seasonal changes is it still unclear why there is a detectable difference in 

community structure between seasons and why, within this difference, one season will 

consistently produce higher community metrics such as richness and abundance even though 

highly resident coral reef fishes are unlikely to migrate with season (Götz 2006). Harmelin-

Vivien et al. (1985) suggest that this is relevant to the seasonal observations of the present 

study, as well as previous studies, because although fish might not be leaving the reefs in 

winter, a significant decrease in ichthyofaunal activity, and therefore UVC visibility, can 

result in the survey of less individuals and species. 

 

Seasonal change has been shown to determine the community structure of fish assemblages 

(Thomson and Lehner ,1976; Thomson and Gilligan 1983; Castro-Agruirre et al. 1995; 

Aburto-Oropeza and Balart 2001; Götz 2006) while Thomson and Lehner (1976), Thomson 

and Gilligan (1983), Castro-Agruirre et al. (1995) have shown that abiotic and biotic cycles 

related to season are the main sources of variability in reef fish assemblages. Changes of 

seasons are associated with annual ecosystem scale cycles in a host of potential predictive 

factors such as temperature, photoperiod, currents, swell, plankton densities, and fish 

behaviour (Bertram et al. 2001).  

 

No trends in abundance, richness and diversity were evident during winter but all these 

metrics decreased with increasing depth in summer. Multivariate analyses indicated that the 

fish assemblages surveyed at each depth in this study show separation between each depth in 

winter and summer. Friedlander and Parrish (1998) noted that depth seems to be an important 

habitat variable affecting abundance and distribution of fishes. Although „depth‟ is often the 

overriding term used in the literature, increasing depth is most often associated with trends in 

other factors. This highlights the difficulty in separating out the effects of environmental 

factors (McCoy and Bell 1991; Parker et al. 1994). Several factors cannot be acceptably 
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measured within reasonable logistical constraints and must therefore be qualitatively 

assessed, such as habitat complexity. As the qualitative descriptions of habitat complexity 

and benthic community typically change with depth, no attempt was made in this study to 

separate out the individual effects of these variables by further stratification of analyses. 

„Depth‟ was therefore selected a proxy representing specific depth, habitat complexity and 

benthic community traits.  

 

Bell (1983), comparing protected and fished rocky reefs in the north-western Mediterranean, 

investigated the effect of depth on fish assemblages and found that the occurrence and 

relative abundance of species was greater at shallow (7–10 m) than at deep (15–20 m) sites. 

Bell (1983) found that although habitat complexity could explain differences between fished 

and reserve sites within depth categories, differences between depths were likely due to 

increased algal cover at shallow sites. Anderson et al. (2005) surveyed algae up to a depth of 

26 m on Two-Mile Reef and found that as algal cover decreases with depth. It is therefore 

possible that algal cover affects the ichthyofaunal communities on Two-Mile Reef.  

 
Using methods similar to  this study, Friedlander and Parrish (1998), investigating Hawaiian 

coral reefs, assigned depth categories associated with specific reef-structure characteristics to 

describe depth trends in fish assemblages. In contrast to this study, Friedlander and Parrish 

(1998) noted, at five depth categories between two and 15 m – a much shallower depth range 

than the present study (6–30 m), greater abundance and richness at shallow sites. They 

ascribed lower abundance and richness at shallower sites to severe wave-action and ascribed 

higher abundance at deep sites to more complex habitat types. Garpe and Öhman (2003) 

compared two discrete depth categories (3–5 m and 7–10 m) on exposed and sheltered reefs 

that exhibited unclear benthic zonation patterns and found that although differences in fish 

assemblages between the two depth categories were clear, these differences could probably 

be attributed to habitat structure, including substrate compositions, architecture and the 

presence of live coral cover. The ultimate drivers of changes in community structure were not 

clear. On Two-Mile Reef as more complex habitats occur at shallower depth –higher 

abundance and richness was observed. This suggests that habitat complexity is an important 

factor structuring reef fish communities and is in agreement with Bell (1983), Öhman et al. 

(1997), Friedlander and Parrish (1998), Jones and Syms (1998), and Garpe and Öhman 

(2003). A lack of clear trends in diversity is similar to Bell (1983) and Friedlander and 

Parrish (1998). It is anticipated that the inability to detect differences in diversity between 
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categories is a result of the choice of the index used which provides only low-resolution 

information for highly diverse areas, and the relatively low sample sizes innate in most UVC 

surveys (Magurran 1998).  

 

Sherman et al. (1999) and Kruer and Causey (1992), working in southeast Florida in the 

USA, attempted to partition those factors influencing fish community structure with depth by 

placing identical artificial reefs at different depths – 7 m and 21 m (Sherman et al. 1999), 14 

m and 24 m (Kruer and Causey 1992). Although Sherman et al. (1999) observed higher 

abundance and richness of fishes at deeper sites, Kruer and Causey (1992) observed the 

opposite, i.e. higher abundance and richness at shallow sites. Sherman et al. (1999) concluded 

that although depth clearly had an effect on fish communities, the factors driving differences 

might be linked to the flow dynamics of the area, while Kruer and Causey (1992) concluded 

that the creation of microhabitats resulting from increased scouring at shallow sites accounted 

for differences. Both these studies emphasise that although differences in fish communities 

can occur between depth categories, „depth‟ is most often associated with other unmeasured 

factors. This is relevant to this study in that as depth increases on Two-Mile Reef, habitat 

complexity decreases, benthic coral communities shift from dense coral domination to more 

sparse sponge domination, and benthic algal community biomass and cover decreases. 

 

Habitat complexity, or the degree of structural architecture, may, buffer the effects of 

physical stress, inhibit foraging predators and interfering competitors, and/or alter the 

availability of resources and their rate of acquisition (Safriel and Ben-Eliahu 1991; Sherman 

et al. 1999; Aburto-Oropeza and Balart 2001). Furthermore, habitat complexity provides 

refuges and barriers that fragment a reef, resulting in more heterogeneous fish assemblages 

(Sebens 1991). Although the correlation between habitat complexity and fish communities is 

not always consistent (Roberts and Ormond 1987), it is generally accepted that community 

abundance on different reefs increases with habitat complexity (Gladfelter and Gladfelter 

1978; Callum and Ormond 1987; Reñones et al.1997). The influence of habitat complexity 

on fish assemblages is therefore often contributed to by the dominant benthic community 

(Beukers and Jones 1998). 

 

Benthic coral communities can contribute to the structural architecture of a reef. As small 

changes in the coverage of live coral may produce significant changes in the abundance, 

richness and community structure of fish (Bell and Galzin 1984; Carpenter et al. 1981 
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Chabanet et al. 1997; Feary et al. 2007). Where coral cover is high, structural complexity is 

also generally high, resulting in abundant shelter for resident reef fishes (Sano et al. 1987; 

Beukers and Jones 1997; Lewis 1997; Lirman 1999; Feary et al. 2007), particularly smaller 

species such as the pomacentrids (Garpe and Öhman 2003). On smaller scales, certain 

species, such as the hawkfish Cirrhitichthys oxycepalus, are closely related with different 

sizes of coral heads (Aburto-Oropeza and Balart 2001) a behaviour displayed on Two-Mile 

Reef (pers. obs). Besides adding to the structural complexity of a reef, coral and/or algal 

communities can influence fish assemblages by attracting grazing corallivores. For example, 

coral-dominated benthos can attract species such as obligate corallivores such as some 

chaetodontids, while algal-dominated benthos can attract grazing herbivores such that some 

acanthurids, which will in turn attract predators (Bell 1983; Pratchet 2005). Currie (2005), 

who specifically assessed the effect of benthic community in structuring fish assemblages on 

a number of reef sites in the same area as Two-Mile Reef, noted that the type of benthic 

community had a significant effect on fish assemblages. Currie (2005) showed that coral-

dominated sites were different to sites dominated by foliose algae, sponges or turf algae. This 

is a possible explanation for why shallow and intermediate depths, comprising of coral 

benthic communities, show similar community structures but deep depths, comprising of 

sponge and gorgonian benthic communities, differ. 

 

Based on these findings the fish assemblages on Two-Mile Reef can therefore be described 

by four relatively distinct communities; a shallow-winter community, a shallow-summer 

community, a year-round intermediate community and a year-round deep community.  

5.4.3 Multivariate dynamics of Two-Mile Reef fish communities 

Each of the four communities are characterised by unique species dominance and 

multivariate dynamics in terms of within-category similarity, between-category dissimilarity, 

and those species that can be considered discriminating species. Although there is no change 

in the dominant species from shallow to intermediate depths, which were pomocentrid 

dominated, deep depths exhibited a dominance of the anthiines. Finding a similar pattern, 

Aburto-Oropeza and Balart (2001) showed that the deepest, most homogenous habitats 

harbour fewer species but that these species are highly characteristic of these habitats. 

Aburto-Oropeza and Balart (2001), in agreement with Larson and DeMartini (1984), 

Holbrook and Schmitt (1989) and Harmelin (1990), concluded that this pattern was probably 
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a result of certain species being more selective of various habitats, ecological processes such 

as resource competition, and trophic considerations. Both the anthiines and pomacentrids 

feed primarily on zooplankton and occupy similar habitats (Smith and Heemstra 2003; Froese 

and Pauly 2011). Although pomacentrids occur in high abundance at deep depths, the change 

to the anthiine dominance indicates that factors related to niche partitioning such as 

reproductive requirements or predation pressure, could be driving change (Shpigel and 

Fishelson 1989). 

 

This study observed that all species contributed only low proportions to within-category 

similarity and between-category dissimilarity, and that no species exhibited a 

disproportionately large contribution to overall similarity and dissimilarity. This trend has 

been previously observed for WIO (Garpe et al. 2006) and South African (Floros 2010b) 

coral reef fish assemblages and is likely a product of high species, habitat and resource 

diversity (Clarke and Gorley 2006). 

 

Discriminating species are often used as a guide for determining which species can be 

considered good indicator species of factors such as anthropogenic pressure or reef health 

(Bennett 2008; Floros 2010b). Information on selected species may provide insight into 

changes in community structure as a result of these factors when information on the whole 

community is not available or difficult to obtain (Pajak 2000). Not all species which are 

dominant, or which exhibit high proportional contributions to community similarities and 

dissimilarities, constitute good discriminating species (Clarke and Gorley 2006).  

Floros (2010b) identified 26 discriminating species over a number of South African and 

Southern Mozambican coral reefs for a narrow depth range comprising a single benthic 

community. Barring A. leucosternon, the Anthiinae, and C. dimidiata, none of the species 

identified as discriminating species using stricter criteria appeared there. Discriminating 

species are partly determined by their contribution to between-category dissimilarity (Clarke 

and Gorley 2006). Floros (2010b) determined discriminating species for different reefs and 

protection regimes. In contrast, this study found discriminating species for different seasons 

and depths. The reason for these differences is probably the different factors that were 

compared.  

 

Floros (2010c) proposes a list of 25 indicator species based on an initial baseline survey, the 

trends observed in MDS plots, species appropriateness to diving and fishing usage, subjective 
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assessment of the impact of each species to the ecosystem, and ease of identification. Floros 

(2010c) proposed that this list of 25 indicator species be incorporated into a long-term 

monitoring program for the WIO high latitude coral reefs. Suitable indicator species for long-

term monitoring are easier, cheaper or more accurate to measure, show an earlier response to 

an impact, or changes in environmental variables (Vos 2000). Floros‟ (2010c) list is proposed 

purely for the monitoring of usage while the discriminating species determined in the present 

study could indicate changes to environmental variables associated with season and depth. It 

is therefore proposed that the list of 25 species proposed by Floros (2010c) be expanded to 

incorporate A. tennentii, C. nigrura, C. weberi, and C. strigosus. It must be noted though that 

choice of which indicator variables or species to measure is not a simple one (Keough and 

Quinn 1991; Degnbol and Jarre 2004) and often requires relatively uneducated subjectivity. 

Indicator species should ideally convey as much information as possible with respect to the 

effects of anthropogenic impacts and environmental change on the health of coral reef 

communities (Green 1979; Hodgson 1999). A balance needs to be found between the 

efficiency of surveying less species, and the information that can be obtained from tracking 

shifts in more species (Pajak 2000; Thompson and Mapstone 2002). A cost-effective, 

accurate and efficient method for surveying the whole community of an area, such as the 

videographic transect technique, would therefore be more appropriate than the survey of a 

selected list of species. This is especially true for areas such as the iSimangaliso Wetland 

Park for which only sparse baseline information exists.  

5.4.5 Relating community-level trends to environmental variables 

The potential driving pathways of coral reef ecosystems are complex (Wilson et al. 2008). In 

this study every effort was made to keep variation in environmental factors random. Any 

relationships between the seven variables depth, profile, rugosity, temperature, visibility, 

currents speed and turbidity can therefore be considered real. Depth, as an abiotic factor, 

accounted for the greatest contribution to observed patterns in fish assemblages. Rugosity, 

temperature, visibility, current speed and turbidity showed only a weak relationship to 

observed patterns and did not aid in improving BEST results. 

Based on the assessment of continuous factors using BEST analysis, it is unclear which 

continuous factors might also be contributing to observed changes in the ichthyofaunal 

communities. The high complexity inherent in diverse ecosystems such as coral reefs means 

that a wide array of factors from climatic to behavioural changes has the potential to 
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influence coral reef community structures in any combination of ways (Wilson et al. 2008). 

Aburto-Oropeza and Balart (2001) and Pérez-Espãna et al. (1996) noted significant changes 

with season but were also unable to determine which factors were drivers of change and 

conluded that seasonal changes were probably a result of seasonal cycles in a hose of 

environmental and biotic variables. This study was also unable to determine the 

direct/indirect influences of environmental variables. Information in this regard would prove 

useful to the implementation of a long-term monitoring program and to the provision of 

management. Further research in this regard is therefore recommended. 

5.4.6 Dynamics of functional groups 

It has been proposed that habitat can have a bottom-up cascade effects on the abundance of 

higher trophic groups (Garpe et al. 2006; Wilson et al. 2008). In general, species at lower 

trophic levels are directly affected by resources such as habitat availability and structural 

complexity (Garpe et al. 2006). Bell (1983) noted that samples from the same depth were 

similar because the majority of species showed a preference for either deep or shallow areas, 

and that the biology of several species indicated that feeding requirements dictated depth 

preferences. This is a logical assumption as the abundance of a specialist‟s food source would 

have considerable influence on its distribution (Öhman et al. 1997). This hypothesis has 

however been disputed, as reef fish species are not all specialists and can vary from small 

species that may be associated with single coral species to those that may be found 

ubiquitously(Williams 1991; Munday et al. 1997; Munday 2000). To clarify which 

hypothesis applies to the fish communities of Two-Mile Reef, the contribution of each 

functional group to between category dissimilarity and overall trends in abundance were 

assessed. 

 

The abundance of species within the same functional group is often controlled by different 

drivers, effectively reducing the overall strength of the response at the functional level 

(Wilson et al. 2008). Community level responses to change in habitat are therefore likely to 

be attenuated when there is high diversity within a functional group (Schmitz et al. 2000). 

This is supported by the finding that despite exhibiting relatively low abundance, the highly 

diverse invertivore group (82 spp.) accounted for more the greatest (>35%) between category 

dissimilarity at all levels of stratification.  
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The presence of important functional groups of reef fishes is important for coral reef health 

(Harmelin-Vivien 1979). Tracking their changes can provide information on possible reef 

degredation or recovery (Harmelin-Vivien 1979). All functional groups showed increased 

abundances during summer, although in most cases this was only significant at shallow 

depths. Each functional group showed unique patterns with depth. 

 

Declines in fish that either feed or shelter within live coral can be directly attributed to coral 

loss, a result that has been widely reported in the literature (Wilson et al. 2006). Garpe and 

Öhman (2003) and Findley and Findley (2001) found that the majority of the variation in 

obligate corallivores was explained by live coral cover. Subtle shifts in the benthic coral 

community can favour some species over others, influencing the composition of coral-

dependent fish communities (Berumen and Pratchett 2006). Decreasing coral cover and a 

change in the coral community with increasing depth are therefore likely to account for 

decreasing abundance of coral-dependent species with depth. The abundance of a number of 

other families and feeding categories were also determined by the amount of live coral cover, 

a finding observed by Garpe and Öhman (2003) at Mafia Island also in the WIO. 

 

Garpe and Öhman (2003) have suggested that hydrodynamic factors may regulate fish 

community composition particulary for plankton feeders which rely on exposure and surges 

to replenish resources. Hobson (1991) observed greater planktivore abundance along more 

exposed reef edges and in deeper water. This study found that planktivore abundance is 

significantly affected by the interaction of season and depth, and their associated factors. It is 

therefore possible that this interaction stems from factors that determine the abundance of 

plankton in the water column generating increased plankton densities at deeper depths in 

winter and the converse in summer. To understand this relationship, it is recommended that 

future work also investigates plankton density.  

 

Complex habitats are essential for the survival of many small-bodied reef fish (Graham et al. 

2006). On Two-Mile reef, the greatest habitat complexity is observed at shallower depths. 

Wilson et al. (2008) showed that EAM-feeding pomacentrids also show a preference for 

habitats with skeletons of branching corals (Wilson et al. 2008). This may explain why the 

generally small, resident EAM territorials are observed at significantly higher abundances at 

shallow sites. The abundance of the generally large bodied EAM rovers showed no 

significant pattern with depth suggesting the utilisation of more diverse habitats (Graham et 
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al. 2006). Food availability could also play a role in the distribution of these algal feeders as 

algal cover and biomass is higher in shallower depths (Anderson et al. 2005). The lack of 

observable patterns in invertebrate-feeding fish indicates that the distribution of this group on 

Two-Mile reef was not related to depth and its associated habitat characteristics. The even 

distribution of invertivore abundance may partially relate to the greater mobility of these fish 

compared with similar-sized species from other trophic groups (Wilson et al. 2008). For 

example, Ceccarelli et al. (2005) showed that EAM-feeding pomacentrids have territories 

that are 1 m2 while Jones (2005) showed that invertebrate-feeding wrasses of similar size 

forage in areas between 30 m2 and 150 m2 that often include areas of low complexity such as 

coral rubble. The lack of observable pattern in the abundance of invertivores can therefore be 

explained in that this group are habitat generalists (Vazquez and Simberloff 2002).  

 

Predators such as piscivores are important species in coral reef ecosystems because of their 

role in regulating fish abundance (Steele et al. 1998; Pala 2007). Although top-level predators 

are the focus of fishing effort, and therefore receive most of the attention in the literature, it is 

important to understand the dynamics of all predators (Hixon 1991). This study found that 

piscivore abundance decreased with depth and was influenced significantly by the interaction 

of season and depth. Hixon and Beets (1993) state that a pleuralistic approach to explaining 

the distribution of predator abundances must be taken as abundances are not only related to 

prey availability but also prey refuges and predator habitat. The interaction of piscivores with 

season and depth could therefore be a product of a combination of these factors.  

 

The distribution of functional groups on coral reefs is complex (Williams 1991; Munday et 

al. 1997; Munday 2000). Garpe et al. (2006) states that with decreasing habitat availability all 

taxa and functional groups are likely to decrease in total abundance and taxonomic richness. 

This claim has been generally accepted as fishes are viewed as being versatile and 

opportunistic in their use of available resources (Pratchett et al. 2001; Bellwood et al. 2003). 

More recent research does not, however, support this view as it has been suggested that some 

functional groups are highly specialised in their use of certain prey and/or habitat types 

(Munday 2004; Prachett 2005; Gardiner and Jones 2005). For example, the distribution and 

abundance of more specialised functional groups on Two-Mile Reef, such as the coral-

dependants or EAM territorials, appears constrained by the availability of specific resources. 

More versatile species, such as the EAM rovers, do not mimic this pattern as abundances 

appear more evenly distributed – a finding also observed by MacNally (1995). Despite 
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previous claims that the distribution of abundances of reef fishes is directly related to habitat 

availability, the present study indicates that the application of this rule is dependent on how 

specialised/generalist each functional group is. 

5.5 Conclusions 

This study is the first to have documented the fish assemblages of a high-latitude WIO coral 

reef across seasonal and depth-related scales. 

 

The fish assemblages on Two-Mile Reef are a highly diverse community comparable to 

other, lower latitude WIO areas in terms of family abundance and species richness. Season 

had a significant effect on structuring fish communities. The effect of season was strongest at 

shallow depths and decreased in magnitude with increasing depth. Depth also had a 

significant influence in structuring fish communities and the magnitude of this effect was 

highest between shallow and deep sites. Each distinct community was dominated by a 

different species. The shallow-winter community was dominated by C. nigrura, shallow-

summer community by C. weberi, intermediate community by C. dimidiata, and the deep 

community by the subfamily Anthiinae.  

 

The factors season and depth were found to be good predictor variables for changes in 

community structure but the actual drivers of change could, unfortunately, not be determined. 

It is likely that changes in community structure with depth are primarily structured by a 

combination of depth, habitat complexity, and benthic community type, and secondarily 

shaped by a combination of environmental and behavioural factors.  

 

Of the six functional ichthyofaunal groups investigated, the relatively low abundance but 

disproportionately high diversity invertivores accounted for the largest proportion of 

between-community differences. Variation in the abundances of functional groups indicates 

that the importance of various habitats is unique to each group. It is likely that spatial and 

temporal areas of high abundance for each group are a product of factors such as habitat 

complexity, food availability, competition, predation, environmental variables and the 

complex interaction between these factors.  
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Chapter 6:  

Implications, recommendations and conclusions for the 

underwater visual census of epibenthic coral reef fishes in the 

Western Indian Ocean 

6.1 Research implications 

Marine ecosystems are complex and dynamic natural units which provide goods and services 

beyond those specific to fisheries (Food and Agriculture Organization (FAO 2003). Coral 

reefs, for example, are amongst the most productive and biologically diverse ecosystems on 

earth and supply vast numbers of people with food, recreational possibilities, coastal 

protection, and aesthetic and cultural benefits (Moberg and Folke 1999). Despite the value of 

these systems, most coral reefs are characterised by long histories of degradation that is a 

direct result of anthropogenic influences or an indirect result of climate change (Hughes 

1994; Pandolfi et al. 2005). Biological information on the fauna and flora of coral reefs is 

critical if management measures, particularly those necessary for coral-reef conservation, 

maintenance and restoration, are to be efficiently implemented. One group of organisms 

which is known to contribute significantly to the structure and function of coral reefs, and one 

that is of high commercial value, is the fishes (Friedlander et al. 1998).  

 

The literature has identified two major concerns regarding the survey of coral-reef fishes. 

First, it is widely accepted that the most appropriate means of surveying these fishes is by 

non-destructive underwater visual census (UVC). Over many years a wide array of UVC 

techniques has developed, which are unfortunately most-often implemented interchangeably. 

UVCs now lack sufficient coherence, and common design and analysis protocols (Langlois et 

al. 2010). Long-term and between-study comparisons are therefore difficult and often entirely 

confounded. Standardised protocols are therefore required. Second, while coral reef fishes in 

some parts of the world have been relatively well-documented, coral reef fish assemblages in 

some biogeographic regions remain inadequately studied (Garpe and Öhman 2003). To 

address these two concerns, this thesis adopted a four-phase approach that was logically 

divided into separate chapters. 

 



 Chapter 6: Implications, recommendations and conclusions for the underwater visual census 

136 

The first phase, presented in Chapter 1, reviews the multiple facets of UVCs. The chapter 

reviewed available methodological and analysis techniques, the available modes with which 

UVCs can be conducted, the media technology with which UVCs can be conducted, and the 

shortcomings of UVCs. While this review was not study-specific, the advantages and 

limitations of the various methods were discussed such that researchers wishing to conduct 

UVCs in the future can assess the most appropriate methods for their study based on 

available resources and logistical constraints.  

 

Chapters 2 and 3 constituted the second phase and adopted a study-specific approach to 

addressing the more pertinent shortcomings of UVCs that may confound studies. It was 

identified that the biogeographic subregion, the continental south Western Indian Ocean 

(WIO), was a unique biodiversity hotspot for which the ichthyofauna have only been 

superficially surveyed. A broad-scale review of the available physical and biological 

literature pertaining to the high-latitude coral reefs of the south WIO in a South African 

context was provided. Based on accessibility and reef characteristics, it was decided that 

Two-Mile Reef on the north-eastern South African coast was an appropriate, representative, 

high-latitude coral reef on which to conduct the field work for this study. The importance of, 

and requirement for, implementing standardised approaches to conducting UVCs was 

emphasised. Building on the physical and biological information, presented in Chapter 2, and 

based on suitability to long-term monitoring, it was identified that high-resolution 

information pertaining to epibenthic coral reef fishes on high-latitude coral reefs was of 

greatest immediate importance. In accordance with this requirement, a standardised protocol 

for surveying high-latitude epibenthic reef fishes by transecting was proposed. Although strip 

transects were identified as the most appropriate technique for conducting UVCs, it was 

envisaged that use of digital photographic and videographic media could further assist 

refining the strip transect technique such that it is feasible for long-term monitoring. 

 

Phase 3 of this thesis, presented in Chapter 4, refined underwater transecting such that these 

techniques can be used to provide a high resolution survey of the ichthyofauna of Two-Mile 

Reef and used in future long-term monitoring programs. Although numerous techniques for 

the survey of reef fishes have been compared, and further comparisons may seem redundant, 

technological advancements afford an opportunity to refine previously successful techniques. 

Comparing transects conducted using digital photographic and videographic technology to 

traditional slate methods, it was shown that digital technology can be used to improve the 
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accuracy and precision of the data collected and therefore the implementation efficiency of 

UVCs. It was shown that for the survey of high-latitude epibenthic coral reef fishes, strip 

transects making use of digital videographic media not only produce better quality data, but 

are the most efficient to conduct and analyse. Two analysis techniques for analysing digital 

footage were compared. It was found that the MaxN technique was not suitable for analysing 

footage generated from transects, and that the Standard-count technique provided data that 

was more representative of actual ichthyofaunal community composition. In addition, a 

simple approach to validating counts from digital footage was proposed. It was found that 

when sufficiently trained and/or experienced observers are used to conduct counts, validation 

is perhaps unnecessary. This first attempt at a method of validation could, however, have 

applications in training inexperienced observers.  

 

The last phase, presented in Chapter 5, aimed to directly address the concern that coral reefs 

in some biogeographic regions remain poorly studied, resulting in a lack of understanding of 

their structure and function. This chapter presented high-resolution videographic transect 

surveys of a large, high-latitude WIO ocean patch reef that was stratified by seasons and 

depths. General community characteristics indicate that coral-reef fish communities on Two-

Mile Reef are not only similar to those of lower-latitude WIO coral reefs in terms of family 

and species numbers, but are also dominated by similar, and often the same, species. This 

trend mirrors that of the high-latitude benthic coral communities that represent a biodiversity 

peak south of the equator (Benayahu and Schleyer 1995; 1998). Although season is generally 

overlooked as a driver of changes to coral-reef fish assemblages, this study found that on 

high-latitude reefs season had a significant effect on the ichthyofaunal community structure at 

shallow depths. Furthermore, within each season, fish community structure was shown to 

differ significantly with depth, particularly during summer. Meta-analysis of the literature 

confirmed that depth-related shifts are likely the result of changes in available habitat, the 

dominant benthic community and algal cover, but specific driving pathways associated with 

both season and depth could not be determined.  

 

Although the specific drivers of seasonal and depth-related shifts to ichthyofaunal community 

structure could not be determined, the obvious changes in community structure associated 

with these factors have significant implications for the design of future UVCs and application 

of management. It is essential that future ichthyofaunal studies and long-term monitoring 

programs on high-latitude coral reefs are stratified by these factors to ensure unconfounded 
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results. The consistency of the results achieved in this study, using both univariate and 

multivariate community analyses, discriminating species, and functional groups, underlines 

the potential of this experimental design and videographic transects to detect relatively small 

changes to community structure. It can therefore be concluded that the protocol outlined in 

Phases 2 and 3, and implemented in Phase 4 of this study, was well-suited to surveying high-

latitude epibenthic reef fishes. Because the univariate and community-level metrics of the 

fish assemblages on Two-Mile Reef are similar to those of lower latitude areas, it is likely 

that this protocol is relevant to other WIO reef complexes that exhibit similar ichthyofaunal 

diversity. As the protocol proposed in this study is based on reviewable digital media, and 

provides a means for rapidly and holistically assessing epibenthic ichthyofaunal community 

structure, it would probably be appropriate to efficiently compare the health and status of 

reefs under different usage regimes or to assess longer term changes in community structure 

between years. This is of immediate applicability to monitoring recovery of degraded WIO 

coral reefs of Kenya and Tanzania (Watson and Ormond 1994; McClanahan et al. 1999) and 

the implementation of other long-term monitoring programs. 

6.2 Management recommendations and conclusions 

It is becoming widely accepted that an ecosystem-based approach is the most appropriate 

means of obtaining biological information for management of marine systems (Shannon et al. 

2006). Data need to be collected over the necessary spatial and temporal scales. The 

establishment of long-term monitoring sites in predetermined key areas is therefore critical so 

that the effects of anthropogenic usage can be quantified and hopefully understood (van 

Jaarsveld and Biggs 2000). The iSimangaliso Wetland Park is inscribed as a world heritage 

site primarily because of its unique biodiversity (iSimangaliso Wetland Park Authority 2009). 

The marine sector of the park contains diverse high-latitude coral reefs that have different 

protection regimes: sanctuary reefs, SCUBA diving only reefs, and restricted usage reefs. The 

sanctuary reefs are impacted only by environmental changes, the SCUBA diving reefs are 

impacted by disproportionately high levels of SCUBA diving, and the restricted usage reefs 

are impacted by recreational fishing and some SCUBA diving (Schleyer 1999). These 

characteristics indicate that the coral reefs of the iSimangaliso Wetland Park are not only 

valuable because of their high biodiversity, but are appropriate study sites for determining the 

impacts of usage. The SCUBA diving and restricted usage reefs are already known to face 

direct pressure from a rapidly expanding recreational diving and fishing industry (Schleyer 
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1999), while all reefs, including the sanctuary reefs, could soon face large-scale bleaching 

events as the sea surface temperature approaches the local coral bleaching threshold 

(Schleyer et al. 2008). The coral reefs in the park are excellent candidates for quantifying the 

long-term effects of different usage regimes, but also for the collection of baseline data such 

that the impacts of potential disturbance events can be quantified. 

 

In the past, UVC survey techniques utilising videographic technology were seen as 

inappropriate because equipment was not readily available, the techniques were expensive, 

and trained operators were required (Bennett 2008). Long-term monitoring with UVCs has 

therefore been developed around survey techniques using traditional slate methods. Based on 

slate techniques, Floros (2010c) suggests a selected list of species for monitoring reefs of 

different protection regimes in the park. The primary benefits of monitoring only a selected 

list of species include reduced bias and variability due to increased simplicity of survey (Vos 

2000). Although criteria for the selection of indicator species, such as percent contribution to 

community-level differences, appropriateness to usage, and ease of identification, are usually 

outlined, the ultimate decision of which species are to be considered „indicator species‟ is 

largely subjective (Kremen 1992). The selection of indicator species for long-term 

monitoring has therefore been widely criticised, because trends in relatively few subjectively 

selected species are often extrapolated to whole communities (Kremen 1992; Noss 1990). 

Indicator species should ideally convey as much information as possible with respect to the 

effects of anthropogenic impacts, and environmental change, on the health of coral-reef 

communities (Green 1979; Hodgson 1999). If a long-term monitoring program based on 

indicator species is to be successful, a balance needs to be found between the efficiency of 

surveying fewer species, and the information that can be obtained from tracking shifts in 

more species (Pajak 2000; Thompson and Mapstone 2002). One solution to this trade-off is, 

instead of reducing the number of species surveyed, to optimise the survey techniques used to 

survey more species.  

 

In recent years videographic technology has become readily available, is cheaper, and easier 

to operate. While slate and videographic techniques possess many of the same limitations, the 

innate standardisation afforded by video removes much of the variability associated with 

UVCs as survey conditions remain constant through time and do not change with observers 

and skill-levels (Pelletier et al. 2011). Watson et al. (1995) states that, in terms of long-term 
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monitoring, bias associated with the descriptions of fish communities is not necessarily 

problematic if biases remain constant over time.  

 

The primary applications of any ichthyofaunal long-term monitoring program are either to 

determine if there are long-term shifts in the structure of fish assemblages, to compare 

protected and unprotected areas, to compare data from a locality previously unprotected but 

that is now protected, or to compare data from before and after a disturbance event, such as 

pollution or coral bleaching. All of these applications could be relevant to various aspects of 

long-term monitoring in the park, require baseline information, and require the 

implementation of standardised methods to ensure spatial and temporal comparability. It is 

proposed that the videographic transect technique, as implemented in this study, be applied 

under the proposed protocol presented in Appendix 4, for the immediate development and 

implementation as a long-term monitoring program of the coral-reef fishes of the 

iSimangaliso Wetland Park. While the proposed videographic transect-based long-term 

monitoring program should continue to monitor the elements investigated in this study, it is 

recommended that a comparison of reefs under different protection regimes also be included.  
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Appendix 1 -  

Dive Logistics 

Dive planning 

All dive planning, outlined in Table A1.1, was conducted in accordance with the diving 

regulations outlined by the South African Occupational Health and Safety Act (85/1993; 

Government Gazette 32907). A conservative approach to planning was implemented by 

taking the maximum sampling depth of 30 m as the planned depth for all dives in the study. 

 

Table A1.1: The General dive plan and estimated dive time for all transects conducted during the study 

Activity Description Estimated time (hh:mm:ss) 

Descent 10 m.min-1 to 30 m. 00:03:00 

Create buffer zone Swim 10 m from drop zone. Establish 

transect start point. Deploy transect line. 

00:02:00 

Swim transect 50 m distance at 6.25 m.min-1. 00:08:00 

Gather site parameters See Chapter 3 00:05:00 

Safety stop Decompression stop at 5 m. 00:03:00 

 Total dive time 00:21:00 
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Diver duties and equipment 

Table A1.2: Summary of standardised diver duties and the necessary diver equipment for all dives conducted in this study. Regular SCUBA diving equipment is 
not included. 

Chapter Duty Diver one duties Diver one equipment Diver two duties Diver two equipment 

All  Standard - Swim straight line 
transect along single 
contour 

- Maintain transect 
swimming speed at 
6.25 m.min-1 

- Record necessary site 
parameters upon 
transect completion* 

- Collect water sample 
upon transect 
completion 

- Dive computer 
- Site parameter slate  
- Water sample jar (80 ml) 

- Establish transect start point 
- Follow diver one 
- Release transect line as 

transect length increases 
- Record depth at each 10 m 

interval 
- Notify Diver One when 50 m 

transect is complete 
- Record necessary site 

parameters upon transect 
completion* 

- Transect line with shot 
attached to tag end  

- Dive computer 
- Site parameter slate  

 

      

4 Visual 
Transect Duty 

- Identify and count all 
species encountered 

- Species identification 
slate  

- None - None 

      

4 Photo 
Transect Duty 

- Take photograph at  
1 m intervals 

- Camera - None - None 

      

4 Video 
Transect Duty 

- Record transect video 
- Camera - None - None 

      

5 Video 
Transect Duty 

- Record transect video 
- Camera - None - None 

* See Chapter 3 for explanation
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Reference images 

Fig. A1.1 and Fig. A1.2 provide visual examples of each of the habitat complexity and 

substrate categories outlined in Table 3.2 (Chapter 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.1: Representative examples of the five habitat complexity categories, as outlined in Table 
3.2 (Chapter 3), used to quantify the substrate of each sample site. All photographs were taken on 
Two-Mile Reef.  
 

 

(a) Highly homogenous (b) Homogenous

(c) Semi-complex (d) Complex

(e) Highly complex
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Figure A1.2: Representative examples of the five substrate categories, as outlined in Table 3.2 
(Chapter 3), used to quantify the substrate of each sample site. All photographs were taken on Two-
Mile Reef.  
 

(a) Sand

(c) Sand/Reef

(b) Sand-Reef

(d) Reef-Sand

(e) Reef
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Appendix 2 -  

Reducing observer-related bias and improving study 

standardisation by observer training 

Introduction 

Underwater survey research involves large amounts of fieldwork, over great geographic 

ranges, often over long periods of time. It is therefore inevitable that there will be inter- and 

intra-observer disparity and shifts in methodology, which can cause significant errors in the 

data obtained (Thompson and Mapstone 1997). Observer-related error in underwater surveys 

have been previously noted (Christensen and Winterbottom 1981, Sale and Sharp 1983, 

Sanderson and Solonsky 1986, Mapstone and Ayling 1998, Samoilys and Carlos 2000, Edgar 

2004, Colvocoresses and Acosta 2007) and results in data variability from from  observer/ 

methodological bias more often than random variability (Andrew and Mapstone 1987, Marsh 

and Sinclair 1989). 

 

Despite a general acceptance that observer-related bias is a reality of UVC surveys, few 

authors attempt to reduce the problem. Thompson and Mapstone (1997) state that if the 

correct interpretation of results from UVCs is to be assumed, then observer-related error 

must, at a minimum, be documented and minimised wherever possible. Although Edgar 

(2004) states that time spent in the field with experienced observers is generally better spent 

collecting usable data, comprehensive diver training to minimise observer-related bias is an 

effective way to significantly improve the quality of data obtained by UVCs (English et al. 

1994; Harvey et al. 2001b). This is particularly relevant to situations where only 

inexperienced observers are available, or new localities are being investigated. Mapstone and 

Ayling (1998) and Langlois et al. (2010) note that diver calibration will be of greatest 

importance in studies where temporal rather than spatial comparisons are of interest, such as 

long-term monitoring programs. Observer-training to ensure within- and between-study 

standardisation to reduce observer-related bias and to improve spatial and temporal 

comparability of data were therefore implemented in the present study. 

 

The most common example of diver training is in the estimation of fish length, which aims at 

improving the quality of biomass data (e.g. Bell et al. 1985; Samoilys 1997; Kulbicki 1998; 
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Harvey et al. 2001a; Kadison et al. 2002; Edgar 2004; Colvocoresses and Acosta 2007). In 

this baseline thesis, however, no biomass component was incorporated as it was decided that 

sampling effort was more appropriately spent on obtaining higher-resolution ichthyofaunal 

assemblage data. This study, therefore, proposes simple, cost-effective approaches for 

training observers in terms of fish identification, the estimation of survey technique 

dimensions, observer swimming speed, and the quantification of some site-specific 

supplementary variables, all of which are aimed at decreasing data noise. 

Materials and methods 

Fish identification 

Fish identification training was carried out for the single visual count observer (RW). 

The visual count observer first familiarised himself on the optical properties of fish coloration 

with increasing depth, and the ability of many fishes to change their coloration to relation to 

particular behaviours. Fish species images appearing on the video footage obtained during the 

reconnaissance dives, without the use of artificial light, were compared to photographs of 

those species taken using a strobe. Strobe-illuminated photographs were supplied by Mr 

Kobus Els, a recreational SCUBA instructor and photographer (Triton Dive Lodge 2010). All 

photographs obtained were captured no longer than 12 months prior to the commencement of 

this work. Familiarisation with the variability in fish coloration would have facilitated more 

efficient in-water identification during transects, thereby reducing observer task-loading. 

Once training in terms of the optical properties of fish coloration was complete, training in 

terms of species specific identification was conducted. 

 

A list of all fishes known to occur, previously observed to occur, or which could possibly 

occur on the reefs of the study area was compiled from published scientific work and popular 

literature (Smith 1980; Chater et al. 1993; 1995; van der Elst 1993; King 1996; King and 

Fraser 2002; Smith and Heemstra 2003; Heemstra and Heemstra 2004; Compagno et al.2005; 

Van der Elst and King 2006; Floros 2010a) (Appendix 3, Table A3.1). All species occurring 

on the list were accompanied by photographs obtained from the same literature, Mr Kobus 

Els (Triton Dive Lodge 2010), or Froese and Pauly (2010). Wherever possible, images of all 

forms of each species, e.g. male form, female form, juvenile form, or intra-specific variations 

in coloration, were included. Where images of all forms of a species were not available, 
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descriptive notes were annotated. The visual count observer was allowed time to study the list 

of 32 Chondrichthyes from 11 families and 541 Teleosts from 85 families.  

 

The ability of the visual count observer to identify the fishes occurring on the list was then 

tested. Each test consisted of 50 randomly selected species, either in video or photographic 

image format, which had to be correctly identified. To ensure proficiency for sufficiently 

rapid identifications, a maximum time limit of 1 minute 5 seconds was placed on all tests. 

Only once the visual count observer was able to identify all 50 species correctly on three 

consecutive, independent tests, was the study commenced. To ensure the observer did not 

learn specific images, new images and video footage were used in testing wherever possible. 

Transect width estimation  

As the dimensions of photographic and videographic transects are predetermined by the field 

of view of the camera lens, only the visual count observer (RW) was required to undertake 

in-water transect width estimate training. A predetermined list of 30 transect widths, ranging 

from 2 m to 10 m was marked on a dive slate. Two divers used a fibre-glass tape measure to 

display the transect widths for the trainee estimate, each diver marking the outer edge of the 

transect. Randomisation was achieved by using a random number table to select the order of 

transect widths presented to the trainee. The distance of trainees to the model transect widths 

was kept variable and random at a distance of 1–6 m, the maximum distance that fishes were 

likely to be enumerated at. To ensure sufficient precision and accuracy in the estimation of 

actual transect widths, the visual count observer had to estimate the width of mock transects 

correct to within 0.1 m. Regression analysis was used to explain the variation between 

expected and observed transect widths. A coefficient of variation (R2) >0.95 between 

expected and observed width estimates for the visual count observer was considered 

acceptable. Training was repeated until this minimum acceptable R2 value was obtained. In 

instances where the minimum acceptable R2 values were not achieved, data were reviewed 

such that the observer understood where biases were occurring. 

Swimming speed 

Unlike estimates of size and distance, the perception of speed will not change in an aquatic 

medium. Swimming speed training for all divers was therefore first carried out on dry land, 

and then continued in the water, in a 3-phase training regime. Only five of the divers used for 
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this work were available for swimming speed training. Buddy pairs for this thesis were 

therefore assigned such that at least one diver in a buddy pair had undertaken swimming 

speed training. All trainees were trained independently to prevent trainees influencing one 

another during the learning phase. 

 

During the first phase of training trainees were equipped with a countdown timer set to eight 

minutes and were required to walk a mock 50 m transect line at a constant speed of 6.25 

m.min-1, or eight minutes per transect (Chapter 3). Mock transects were conducted such that 

trainees could regulate speed according to the distance covered and the time elapsed. This 

phase of swimming speed training was repeated for each trainee until the task could be 

completed at an approximately constant speed. After this initial phase of land-based training 

the second land-based training phase commenced. 

 

The second phase of land-based training was identical to the first except that trainees were 

denied access to a countdown timer. Instead trainees were required to walk the 50 m distance 

at a constant speed, reaching the finish in 8 minutes ± 24 seconds. This error of 24 seconds, 

5% of the total eight minute transect time, can be considered an acceptable margin of error if 

variable current and surge are taken into account. Once all trainees completed the land based 

transects within the required time frame, the in-water phase of the training commenced.  

The third phase of swimming speed training, in-water training, occurred in an area with sandy 

substrate to prevent divers having land marks as references of distance. In-water training was 

carried out in the same manner as the land-based second phase of training. Although divers 

would be equipped with stop watches and a transect line during actual transect deployments, 

it was anticipated that their heightened perception of the correct swimming speed gained 

from more restricted training would improve the ability of divers to conduct necessary 

activities without needing to constantly verify elapsed time and distance. Each diver was 

considered to have passed swimming speed training only after 3 consecutive in-water 50 m 

transects of 480 ± 24 seconds were completed. 

Supplementary variables 

Of the site parameters measured at each site (Chapter 3), habitat complexity, substrate, and 

current speed had the potential to possess subjectivity and were hence susceptible to bias. In 

an attempt to reduce potential bias, training in the estimation of these parameters was 
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conducted in a discussion format. Training in the quantification of supplementary variables 

was conducted for all observers. 

Habitat complexity and substrate categorisation 

Training pertaining to the categorisation of habitat complexity and substrate was carried out 

using video footage obtained from reconnaissance dives. 

 

Footage pertaining to each category of habitat complexity and substrate type (Chapter 3) was 

gathered during reconnaissance dives (Appendix 3, Fig. A1.1 and A1.2). Trainees were taken 

through the footage and the characteristics of each category discussed. This would have 

reduced the need for individual tuition and the subjectivity associated with the allocation of 

appropriate habitat complexity and substrate categories for each transect deployment. 

Current speed estimation 

Although estimations of current speed have the potential to be subjective, specific training in 

terms of current speed estimation is difficult. In an attempt to reduce inter- and intra-diver 

variability, the characteristics of current speed (Chapter 3) were demonstrated and discussed 

prior to commencement of the study. 

As no formal scoring was assigned to supplementary variable training, training in this regard 

is not discussed further. Upon successful completion of all facets of diver training, the field 

work for the study was initiated. 

Results and discussion 

The inevitable error associated with observers working in an unnatural, aquatic medium, 

while conducting studies which are spatially and temporally variable, can be minimised by 

observer training (Thompson and Mapstone 1997, English et al. 1994, Harvey et al. 2002a, 

b). Improvements in observer ability were evident in all aspects of observer training 

conducted in this study; fish identification, transect width estimation and swimming speed 

regulation. 
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Fish identification 

The single visual count observer for the study required six rounds of testing to achieve three 

consecutive scores of 100% (Table A2.1) for 50 randomly selected species from the full 

species list (Appendix 1, Table A1.1).  

 

Table A2.1: Test scores for the single visual count observer. Each test was based on 50 randomly 
selected species from the full species list (Appendix 1, Table A1.1). 

Test no. Test score (%) 

1 94 
2 88 
3 96 
4 100 
5 100 
6 100 

 
 
Thompson and Mapstone (1997) state that proficiency in the accurate and rapid identification 

of the full list of species to be surveyed in an area can be achieved by referencing the 

numerous photographic texts available. None of the studies which mention implementing this 

approach, however, provide a means of testing the ability of an observer to rapidly identify 

and obtain accurate data (e.g. Thompson and Mapstone 1997; Samoilys and Carlos 2000). 

The current study was therefore the first to conduct formal testing of the ability of an 

observer to successfully identify fishes. The results of testing conducted here indicate that, 

despite ample time for the observer to refer to the literature prior to testing, more than one 

round of testing, and hence re-learning, was required to achieve consecutive scores of 100%. 

This suggests that relying on observer „experience‟ gained by reviewing the appropriate 

literature is not sufficient to ensure correct identifications. Although the present results are 

based on only a single observer, it is recommended that fish identification training be 

implemented as a form of „quality control‟ in all UVC studies. Consecutive scores of 100% 

for the lists or randomly selected images of fishes, within a restricted time-limit, suggest that 

the single visual count observer was adequately proficient in fish identification in terms of the 

species likely to be encountered in this thesis.
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Figure A2.1: Linear regressions of expected vs. observed transect widths for tests 1–3 conducted 
using the single visual count observer. The solid line depicts the expected vs. observed relationship. 
Dashed line depicts a 1-1 relationship. 
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Transect width estimation 

Several authors have examined the error associated with the estimation of the shape and 

dimension of sampling units (Sale and Sharp 1983, Fowler 1987, McCormick and Choat 

1987, Mapstone 1988, Buckley and Hueckel 1989, Mapstone and Ayling 1998; Samoilys and 

Carlos 2000). These authors note that there is potential for observers to incorrectly estimate 

survey area boundaries which can have significant influences on density estimates. Strip 

transects, as used in this study, are subject to boundary estimation error because observers 

have to visually estimate transect boundaries at variable distances during a progressing 

transect (Samoilys and Carlos 2000). Bohnsack and Bannerot (1986) showed that without 

practice, an observer could estimate a distance of 7.5 m to within 0.5 m. Nolan and Taylor 

(1980) found similar results in that divers were able to estimate a 5 m distance to within 0.5 

m without training and that with training divers could be accurate to within 0.2 m. Observer 

training was therefore the method of choice implemented in the present study to reduce the 

error associated with transect width estimation. The observer undertaking transect width 

estimate training required three rounds of testing to achieve an R2 >0.95 (Fig. A2.1) which 

confirms that, using this observer, training improved the estimates of transect width 

estimation. Harvey et al. (2004), who investigated the ability of observers to estimate 

distance, found that both inexperienced and experienced observers tended to underestimate 

distance initially, but that these underestimates were significantly reduced by training. It is 

therefore anticipated that all transect width estimates conducted for the present study are 

sufficiently standardised and are within an acceptable level of accuracy to ensure unbiased 

estimates of density. It is recommended that future studies using visually-based UVC 

techniques first incorporate survey dimension estimate training to ensure within- and 

between-study standardisation. 

Swimming speed 

The speed of an underwater census may bias visual estimates due to the efficiency and 

presence of the observer (Lincoln Smith 1988; Thresher and Gunn 1986; Fowler 1987) or due 

to the change in time of the survey (Bortone et al. 1988; 1989; Watson et al. 1995). The 

effects of different observer swimming speeds on observed fish density has previously been 

examined by Lincoln Smith (1988) who found that divers were able to accurately regulate 

swimming speed without training. However, the high accuracy of the swimming speeds 
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obtained by Lincoln Smith (1988) were achieved by constructing transect lines on the reef 

substrate prior to conducting transects and then regulating swimming speed by gauging the 

distance swum along transect against elapsed time, while simultaneously counting and 

identifying fishes. As this approach is destructive, increases diver disturbance prior to 

conducting surveys, and adds to the task-loading of divers, the methods of Lincoln Smith 

(1988) were deemed inappropriate for use in the present study. Other studies which use a 

predetermined swimming speed to improve study standardisation provide no explanation of 

how swimming speed was controlled (e.g. DeMartini et al. 1989; Samoilys and Carlos 2000). 

The present study is therefore the first to have implemented some form of swimming speed 

training in an attempt to standardise a constant swimming speed.  

 

The five observers who undertook swimming speed training required a minimum of four (n = 

2) and a maximum of five (n = 3) attempts to achieve 3 consecutive transects within the 

predetermined 480 ± 24 seconds interval during in-water training (Table A2.2). The trend of 

improved results with increased training, evident in Table A2.2, indicates that even if training 

is conducted within the variable survey environment, variation in observer swimming speed 

can be reduced with repeated practice.  

 

Table A2.2: Transect times for the in-water phase of swimming speed training. Only five observers 
were available to undertake swimming speed training. (-) depicts no further testing was necessary. The 
mean (  ) and standard deviation (s) are calculated using the last three transect times only. 

 Transect Time (Seconds)   

Observer 1 2 3 4 5    s 

1 391 425 471 502 466 479.67 19.50 

2 414 422 492 477 488 485.67 7.77 

3 421 474 492 500 - 488.67 13.32 

4 453 502 483 465 - 483.33 18.50 

5 485 451 492 496 498 495.33 3.06 

 

Conclusions 

Laborious training of observers can carry substantial cost, which equates to additional time in 

the field or, more usually, less replication leading to reduced statistical power (Thompson and 

Mapstone 1997, Edgar 2004). A balance between the benefits of extensive training and the 

benefits of greater sample sizes must therefore be established (English et al. 1994). The 



Appendix 2 

182 

training techniques presented here are quick, simple to implement, and effective and, as a 

result, do not jeopardise resources that would otherwise allow for increased replication. It is 

therefore recommended that future studies in the iSimangaliso Wetland Park, or the greater 

Western Indian Ocean, implement similar methods of training in terms of fish identification, 

transect width estimation, swimming speed and the quantification of supplementary variables 

such that standardised approaches to conducting UVCs are ensured. If a long-term 

monitoring program is to be implemented, then continuous retraining of observers every six 

months, as suggested by Samoilys and Carlos (2000) and Harvey et al. (2004), is 

recommended. 
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Appendix 3:  

Species lists 

The full list of fishes known to occur, previously observed to occur, or which could possibly 

occur in the iSimangaliso Wetland Park (Table A3.1) was compiled from published scientific 

work and popular literature (Smith 1980; Chater et al. 1993; 1995; van der Elst 1993; King 

1996; King and Fraser 2002; Smith and Heemstra 2003; Heemstra and Heemstra 2004; 

Compagno et al. 2005; van der Elst and King 2006; Floros 2010a). 

 

Table A3.1: List of 573 species of fishes from 96 families known to occur, previously observed to 
occur, or which could possibly occur, in the iSimangaliso Wetland Park. SSF = Family number assigned 
in Heemstra and Heemstra (2004). Families listed by SSF number while species within families are 
listed alphabetically. 

SSF FAMILY Species Common name 

7 ORECTOLOBIDAE  Stegostoma fasciatum Leopard/ Zebra shark 
8 RHINCODONTIDAE Rhincodon typus Whale shark 
9 CARCHARHINIDAE Carcharhinus leucas Zambezi/ Bull Shark 

  
Carcharhinus obscurus Dusky shark 

  
Carcharhinus wheeleri Shortnose blacktail reef shark 

  
Galeocerdo cuvier Tiger Shark 

  
Triaenodon obesus Whitetip reef/ blunthead shark 

13 SPHYRNIDAE Sphyrna lewini Scalloped hammerhead 

  
Sphyrna zygaena Smooth Hammerhead 

19 ODONTASPIDIDAE Carcharias taurus Spotted ragged-tooth shark/ Grey Nurse Shark 
22 PRISTIDAE Pristis microdon Largetooth Sawfish 
23 TORPEDINIDAE Torpedo sinuspersici Marbled electric ray 
27 RHINOBATIDAE Rhidobatos leucospilus Greyspot guitarfish/ sandshark 

  
Rhina ancylostoma Bowmouth shark 

  
Rhinobatos annulatus Lesser Guitarfish 

  
Rhynchobatus djiddensis Giant guitarfish 

28 MYLIOBATIDAE Aetobatus narinari Spotted eagleray 

  
Myliobatis aquila Eagleray 

  
Pteromylaeus bovinus Bull Ray 

30 DASYATIDAE Dasyatis chrysonata Blue stingray 

  
Dasyatis kuhlii Bluespotted stingray 

  
Gymnura natalensis Diamond butterfly ray 

  
Himantura gerrardi Sharpnose/ brown stingray 

  
Himantura uarnak Honeycomb stingray 

  
 

Taeniura lymma Bluespotted ribbontail ray 

  
Taeniura melansopilos Round ribbontail/ Giant reef ray 
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Table A3.1 (Cont.):  List of 573 species of fishes, from 96 families, known to occur, previously observed to 
occur, or which could possibly occur in the iSimangaliso Wetland Park. SSF = Family number assigned in 
Heemstra and Heemstra (2004). Families listed by SSF number while species within families are listed 
alphabetically. 

SSF FAMILY Species Common name 
29 MOBULIDAE Manta birostris Manta 

  
Mobula eregoodootenkee Longhorned mobula 

  
Mobula japanica Spinetail mobula 

  
Mobula kuhlii Devil Ray 

  
Mobula tarapacana Spiny mobula 

  
Mobula thurstoni Smoothtail mobula 

40 CONGRIDAE Heteroconger hassi Spotted garden-eel 
41 MURAENIDAE Echidna nebulosa Floral moray 

  
Gymnomuraena zebra Zebra moray 

  
Gymnothorax breedeni Blackcheek moray/ Masked moray 

  
Gymnothorax eurostus Salt and pepper moray 

  
Gymnothorax favagineus Honeycomb moray 

  
Gymnothorax flavimarginatus Yellow-edged moray 

  
Gymnothorax javanicus Giant moray 

  
Gymnothorax johnsoni White-spotted moray 

  
Gymnothorax meleagris Guineafowl moray 

  
Gymnothorax nudivomer Starry moray 

  
Gymnothorax permistis Riticulated moray 

  
Gymnothorax undulatus Leopard moray 

  
Rhinomuraena quaesita Ribbon eel 

  
Siderea grisea Geometric moray 

42 OPICHTHIDAE Myrichthys maculosus Ocellated/Spotted snake-eel 
58 CHANIDAE Chanos chanos Milkfish 
59 ARIIDAE Galeichthys sp. Natal seacatfish 
60 PLOTOSIDAE Plotosus lineatus Striped ell-catfish 
79 SYNODONTIDAE Saurida undosquamis Largescale lizardfish 

  
Synodus dermatogenys Variagated lizardfish/ Reef lizardfish 

  
Synodus jaculum Blacktail lizardfish 

97 CARAPIDAE Encheliophis borabornesi Pineapple pearlfish 
102 ANTENNARIIDAE  Antennarius commerson Giant anglerfish 

  
Antennarius pictus Painted anglerfish 

  
Histrio histrio Sargassumfish 

111 ATHERINIDAE Atherinomorus lacunosus Hardyhead silverside 
113 BELONIDAE Ablennes hians Barred needlefish 

  
Strongylura leiura leiura Banded/Yellowfin needlefish 

  
Tylosurus crococilus crocodilis Crocodile needlefish 

115 HEMIRAMPHIDAE Hemiramphus far Spotted halfbeak 

  
Hyporhamphus affinis Tropical halfbeak/ Insular halfbeak 

116 EXOCOETIDAE Exocoetus sp. Flying fish 

  
Exocoetus volitans Two-wing flying fish 

126 BERYCIDAE Centroberyx spinosus Short alfonsino 
128 MONOCENTRIDAE Monocentris japonicus Pineapplefish 
132 HOLOCENTRIDAE Myripristis chryseres Yellowfin soldier 

  
Myripristis kuntee Epaulette/pearly soldierfish 

  
Myripristis melanostica Pale Soldier/ Finspot soldier 

  
Myripristis murdjan Blotcheye soldier/ Red soldierfish 

  
Myripristis violacea Lattice/violet soldier 

  
Myripristis vittata Immaculate/ white-tipped soldier 

  
 

Myripristris berndti Bigscale soldier 

  
Neoniphon argenteus Silver squirrelfish/ Clearfin squirrelfish 

    Neoniphon sammara Spotfin/ Bloodspot squirrelfish 
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Table A3.1 (Cont.): List of 573 species of fishes, from 96 families, known to occur, previously observed to 
occur, or which could possibly occur in the iSimangaliso Wetland Park. SSF = Family number assigned in 
Heemstra and Heemstra (2004). Families listed by SSF number while species within families are listed 
alphabetically. 

SSF FAMILY Species Common name 

132 HOLOCENTRIDAE (Cont.) Sargocentron caudimaculatum Tailspot squirrelfish 

  
Sargocentron diadema Crown squirrelfish 

  
Sargocentron spiniferum Sabre/ long-jawed squirrelfish 

143 AULOSTOMIDAE Aulostomus chinensis Trumpetfish 
144 FISTULARIIDAE Fistularia commersonii Smooth flutemouth/ Cornetfish 
148 CENTRISCIDAE Aeoliscus punctulatus Speckled razorfish/ Shrimpfish 
145 SYGNATHIDAE Corythoichthys sp. Red-scribbled pipefish 

  
Dunckerocampus boylei Banded pipefish 

146 SOLENOSTOMIIDAE Solenostomus cyanospterus Ghost pipefish 
149 SCORPAENIDAE Pterois antennata Broadbarred firefish/ Spotfin lionfish 

  
Pterois miles Devil firefish/ Lionfish 

  
Pterois rediata Clearfin firefish/ Radial lionfish 

  
Rhinopias eschmeyeri Mauritius scorpionfish 

  
Rhinopias frondosa Popeye scorpionfish 

  
Scorpaenopsis diabolus False stonefish 

  
Scorpaenopsis gibbosa Humpback scorpionfish 

  
Scorpaenopsis oxycephala Tassled scorpionfish 

  
Scorpaenopsis venosa Raggy scorpionfish 

  
Synanceia verrucosa Stonefish 

  
Taenianotus triacanthus Paperfish/ Leaf fish 

153 CARACANTHIDAE Caracanthus madagascariensis Spotted croucher 

  
Caracanthus unipinna Coral croucher 

155 PLATYCEPHALIDAE Cociella crocodila Crocodile flathead 

  
Papilloculiceps longiceps Longhead flathead 

  
Platycephalus indicus Bartail flathead 

157 TRIGLIDAE Chelidonichthys kumu Bluefin gurnard 

  
Chelidonichthys sp. Bluewing gurnard 

159 DACTYLOPTERIDAE Dactyloptena orientalis Helmut gurnard 
163 AMBASSIDAE Ambassis natalensis Slender glassy 
164 KUHLIIDAE Kuhlia mugil Barred flagtail 
166 SERRANIDAE, Subfam. GRAMMISTIDAE Aulacocephalus temmincki Goldribbon soapfish 

  
Grammistes sexlineatus Sixstripe soapfish 

166 SERRANIDAE, Subfam. ANTHIINAE  Nemanthias carberryi Threadfin goldie/ Threadfin anthias 

  
Pseudanthias connelli Harlequin goldie 

  
Pseudanthias cooperi Silverstreak goldie/Red-bar anthias 

  
Pseudanthias evansi Yellowtail goldie/ Yellowback anthias 

  
Pseudanthias fasciatus Onestripe anthias 

  
Pseudanthias squamipinnis Sea goldie/ Goldie/ Lyretail anthias 

166 SERRANIDAE, Subfam.EPINEPHALINAE  Acanthistius sebastoides Koester (Check subfamily) 

  
Aethaloperca rogaa Redmouth rockcod 

  
Anyperodon leucogrammicus Slender rockcod 

  
Cephalopholis argus Peacock rockcod 

  
Cephalopholis miniata Coral rockcod/ coral hind 

  
Cephalopholis sonnerati Tomato rockcod  

  

Cephalopholis urodeta/ 
nigripinnis Duskyfin rockcod 

  
Epinephalus caeruleopunctatus Whitespotted rockcod 

  
Epinephalus chlorostigma Brownspotted rockcod 

  
Epinephalus malabaricus Malabar rockcod 

  
Epinephalus merra Honeycomb rockcod 

  
Epinephalus multinotatus White blotched rockcod 

 
  Epinephalus suillus Orangespotted rockcod 
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Table A3.1 (Cont.): List of 573 species of fishes, from 96 families, known to occur, previously observed to 

occur, or which could possibly occur in the iSimangaliso Wetland Park. SSF = Family number assigned in 

Heemstra and Heemstra (2004). Families listed by SSF number while species within families are listed 

alphabetically. 

SSF FAMILY Species Common name 
166 SERRANIDAE, Subfam. EPINEPHALINAE Epinephelus andersoni Catface rockcod 

 
(Cont.) Epinephelus fasciatus Redbarred rockcod/ Blacktip grouper 

  
Epinephelus flavocaeruleus Yellowtail rockcod 

  
Epinephelus lanceolatus Brindle bass/ Giant grouper 

  
Epinephelus longispinis Streakyspot rockcod 

  
Epinephelus macrospilos Bigspot rockcod (Snubnose grouper) 

  
Epinephelus marginatus Yellowbelly rockcod 

  
Epinephelus poecilonotus Dot-dash rockcod 

  
Epinephelus polyphekadion Marbled rockcod 

  
Epinephelus posteli Tiger rockcod/ Striped fin rockcod 

  
Epinephelus rivulatus Halfmoon rockcod 

  
Epinephelus tauvina Greasy rockcod 

  
Epinephelus tukula Potato bass 

  
Plectropomus punctatus Marbled leopardgrouper 

  
Variola louti Swallowtail rockcod 

166 SERRANIDAE, Subfam. SERRANINAE  Serranus cabrilla Comber 
169 PSEUDOCHROMIDAE Pseudochromis dutoiti Dutoiti 

  
Pseudochromis melas Dark dottyback 

  
Pseudochromis natalensis Natal dottyback 

173 TERAPONIDAE Terapon jarbua Thornfish 
174 PRIACANTHIDAE Priacanthus cruentatus Glass bigeye 

  
Priacanthus hamrur Crescent-tail bigeye 

175 APOGONIDAE Apogon angustatus Broadstriped cardinalfish 

  
Apogon apogonides Short-tooth/ Goldbelly cardinal 

  
Apogon aureus Bandtail/ Ringtailed cardinal 

  
Apogon cookii Blackbanded cardinal 

  
Apogon kallopterus Spinyhead/ Irridescent cardinal 

  
Apogon taeniophorus Ninestripe cardinal 

  
Archamia bleekeri Golden capped cardinalfish 

  
Archamia fucata Redbarred/ Orange-lined cardinalfish 

  
Archamia mozambicuensis Mozambique cardinal 

  
Cheilodipterus artus Wolf cardinal 

  
Cheilodipterus lineatus Tiger cardinal 

  
Cheilodipterus quinquelineatus Five-lined/sharptooth cardinalfish 

178 POMOTOMIDAE Pomatomus saltatrix Elf/ Shad 
179 HAEMULIDAE Plectorhinchus chubbi Dusky rubberlips 

  
Plectorhinchus flavomaculatus Lemon rubberlip 

  
Plectorhinchus gaterinus Blackspotted sweetlips 

  
Plectorhinchus gibbosus Harry hotlips/ Gibbus sweetlips 

  
Plectorhinchus plagiodesmus Barred rubberlips 

  
Plectorhinchus playfairi Whitebarred rubberlip 

  
Plectorhinchus sordidus Redlip rubberlips 

  
Plectorhinchus vittatus  Oriental sweetlips 

  
Pomadasys commersonni Spotted grunter 

  
Pomadasys furcatum Grey grunter 

  
Pomadasys kaakan Javelin grunter 

  
Pomadasys maculatum Saddle grunter 

  
Pomadasys multimaculatum Cock grunter 

  
Pomadasys olivaceum Piggy/ Pinky 

  
Pomadasys striatus Striped grunter 

180 DINOPERCIDAE Dinoperca petersi Cavebass 
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Table A3.1 (Cont.): List of 573 species of fishes, from 96 families, known to occur, previously 
observed to occur, or which could possibly occur in the iSimangaliso Wetland Park. SSF = Family 
number assigned in Heemstra and Heemstra (2004). Families listed by SSF number while species 
within families are listed alphabetically. 

SSF FAMILY Species Common name 
181 LUTJANIDAE Aphareus furca Blue Smoothtooth/ Smalltooth jobfish 

  
Aphareus rutilans Red Smoothtooth/ Smalltooth jobfish 

  
Aprion virescens Green Jobfish/ Kaakap 

  
Etelis coruscans Ruby snapper 

  
Lutjanus argentimaculatus River snapper 

  
Lutjanus bengalensis Bluestriped/ Bluebanded snapper 

  
Lutjanus bohar Twinspot snapper 

  
Lutjanus fulviflamma Dory/ Blackspot snapper 

  
Lutjanus fulvus Yellow-striped snapper 

  
Lutjanus gibbus Humpback snapper 

  
Lutjanus kasmira Bluestriped/ Bluebanded snapper 

  
Lutjanus lemniscatus Sweetlip snapper 

  
Lutjanus lutjanus Yellow/ Bigeye snapper 

  
Lutjanus monostigma Onespot snapper 

  
Lutjanus notatus Blue striped snapper 

  
Lutjanus rivulatus Speckled snapper  

  
Lutjanus russelli Russels snapper 

  
Lutjanus sanguineus Blood/Humphead snapper 

  
Lutjanus sebae Emperor snapper 

  
Macolor niger Black beauty/ Black snapper 

  
Paracaesio sordidus False fusilier snapper/ Fusilier snapper 

  
Paracaesio xanthura Yellowtail false fusilier/ Protea beam 

  
Pristipomoides filamentosus Rosy jobfish 

182 CAESIONIDAE Caesio caerulaurea Blue and gold/ Scissor-tailed fusilier 

  
Caesio lunaris Lunar fusilier 

  
Caesio varilineata Yellowstriped fusilier 

  
Caesio xanthonota Yellowback fusilier 

  
Pterocaesio sp. Fusilier 

  
Pterocaesio tile Neon/ Bluestreak fusilier 

183 SPARIDAE Acanthopagrus bifasciatus Twobar seabream 

  
Argyrops filamentosus Sodierbream 

  
Argyrops spinifer King soldierbream 

  
Cheimerius nufer Santer/Soldier 

  
Chrysoblephus anglicus Englishman 

  
Chrysoblephus lophus False englishman 

  
Chrysoblephus puniceus Slinger 

  
Credidens crenidens Karanteen 

  
Diplodus hottentotus Zebra 

  
Diplodus sargus capensis Blacktail 

  
Lithognathus mormyrus Sand steenbras 

  
Pachymetopon aeneum Blue hottentot 

  
Pengellus bellottii natalensis Red Tjor-tjor 

  
Petrus rupestris Red steenbras 

  
Polyamblyodon germanum German 

  
Polyamblyodon gibbosum Cristie 

  
Polysteganus curuleopuntatus Blueskin 

  
Polysteganus praeorbitalis Scotsman 

  
Polysteganus undulosus Seventyfour 

  
Porcostoma denata Dane 

  
Rhabdosargus holubi Cape stumpnose 

  
Rhabdosargus sarba Natal stumpnose 
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Table A3.1 (Cont.): List of 573 species of fishes, from 96 families, known to occur, previously 
observed to occur, or which could possibly occur in the iSimangaliso Wetland Park. SSF = Family 
number assigned in Heemstra and Heemstra (2004). Families listed by SSF number while species 
within families are listed alphabetically. 

SSF FAMILY Species Common name 
183 SPARIDAE (Cont.) Rhabdosargus thorpei Bigeye stumpnose 

  
Sarpa salpa Strepie/ Karanteen 

185 LETHRINIDAE Gnathodentex aureolineatus Glowfish 

  
Gymnocranius grandoculis Bigeye emperor/ Rippled barenose 

  
Gymnocranius griseus Grey barenose 

  
Lethrinus borbonicus Snubnose emperor 

  
Lethrinus concyliatus Redaxil emperor 

  
Lethrinus crocineus Yellowfin emperor 

  
Lethrinus harak Blackspot emperor 

  
Lethrinus mahsena Cutthroat emperor 

  
Lethrinus microdon Longnose emperor 

  
Lethrinus nebulosus Blue/Spangled emperor 

  
Lethrinus rubrioperculatus Spotcheek/ Redgill emperor 

  
Lethrinus variegatus Variegated emperor 

  
Monotaxis grandoculis Bigeye barenose 

186 NEMIPTERIDAE Scolopsis ghanam Silverflash/ Arabian spinecheek 

  
Scolopsis vosmeri Paleband spinecheek/ White monocle bream 

187 
CORACINIDAE/ 
DICHISTIIDAE Coracinus/ Dichistius capensis Galjoen/ Damba 

  
Coracinus/ Dichistius multifasciatus Banded Galjoen 

189 KYPHOSIDAE Khyphosus bigibbus Grey chub 

  
Kyphosus cinerascens Blue chub/ Highfin rudderfish 

  
Kyphosus vaigiensis Brassy chub/ Lowfin rudderfish 

190 SCORPIDIDAE Neoscorpis lithophilus Stonebream  
192 EPHIPPIDAE Platax orbicularis Orbicular batfish/ Circular spadefish 

  
Platax pinnatus Dusky batfish 

192 EPHIPPIDAE (Cont.) Platax teira Longfin batfish 

  
Tripterodon orbis Spadefish 

193 MONODACTYLIDAE Monodactylus argenteus Natal moony 
194 GERREIDAE Gerres longirostris Smallscale pursemouth/ Pouter 

  
Gerres macracanthus Longspine pursemouht/ Pouter 

195 DREPANIDAE Drepane longimana Concertina fish 
196 MULLIDAE Mulloidichthys flavolineatus Yellowstripe goatfish 

  
Mulloidichthys vanicolensis Yellowfin/ Flame goatfish 

  
Parupeneus bifasciatus Twosaddle/ Two-barred goatfish 

  
Parupeneus cinnabarinus Redspot goatfish 

  
Parupeneus cyclostomus Goldsaddle/yellowsaddle  

  
Parupeneus indicus Indian goatfish 

  
Parupeneus macronemus Banddot goatfish/ Longbarbel  

  
Parupeneus pleurostigma Blackspot/sidespot goatfish 

  
Parupeneus rubescens Blacksaddle/ Rosy Goatfish 

197 MALACANTHIDAE Malacanthus brevirostris Stripetail tilefish/ Quakerfish 

  
Malacanthus latovittatus Sand tilefish/ Striped blanquillo 

198 SILLAGANIDAE Sillago sihama Silver sillago/Smelt 
199 SCIAENIDAE Umbrina ronchus/robinsoni Slender Baardman/ Tasslefish 
204 POMACANTHIDAE Apolemichthys kingi Tiger angelfish 

  
Apolemichthys trimaculatus Threespot angelfish 

  
Centropyge acanthops Jumping bean/ African pygmy angelfish 

  
Centropyge bispinosus Coral beauty/ Two-spined angelfish 

  
Centropyge multispinis Dusky cherub/ Many-spined angelfish 

  
Genicanthus caudovittatus Swallowtail/ zebra angelfish 

  
Pomacanthus chrysurus Goldtail/African angelfish 
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Table A3.1 (Cont.): List of 573 species of fishes, from 96 families, known to occur, previously 
observed to occur, or which could possibly occur in the iSimangaliso Wetland Park. SSF = Family 
number assigned in Heemstra and Heemstra (2004). Families listed by SSF number while species 
within families are listed alphabetically. 

SSF FAMILY Species Common name 
204 POMACANTHIDAE  Pomacanthus imperator Emperor angelfish 

 
(Cont.) Pomacanthus maculosus Yellowbar/ Arabian angelfish 

  
Pomacanthus rhomboides Old woman angelfish 

  
Pomacanthus semicirculatus Semicircle angelfish 

  
Pygoplites diacanthus Royal angelfish/ Regal angelfish 

205 CHAETODONTIDAE Chaetodon auriga Threadfin butterflyfish 

  
Chaetodon bennetti Archer/Bennetts butterflyfish 

  
Chaetodon blackburnii Brownburnie/ Chocolate butterflyfish 

  
Chaetodon dolosus Black-edged/African butterflyfish  

  
Chaetodon falcula Saddled/Saddleback butterflyfish 

  
Chaetodon guttatissumus Gorgeous gussy/ Spotted butterflyfish 

  
Chaetodon kleini Whitespotted/Klein's butterflyfish 

  
Chaetodon lineolatus Lined butterflyfish 

  
Chaetodon lunula Raccoon/ Halfmoon butterflyfish 

  
Chaetodon madagascariensis Pearly/Chevron butterflyfish 

  
Chaetodon marleyi Doublesash butterflyfish 

  
Chaetodon melannotus Blackback butterflyfish 

  
Chaetodon meyeri Maypole/ Meyer's butterflyfish 

  
Chaetodon trifascialis Rightangle/ Chevroned butterflyfish 

  
Chaetodon trifasciatus Purple/ Redfin butterflyfish 

  
Chaetodon unimaculatus Limespot/Teardrop butterflyfish 

  
Chaetodon vagabundus Vagabond butterflyfish 

  
Chaetodon xanthocephalus Yellowhead butterflyfish 

  
Chaetodon zanzibarensis Zanzibar butterflyfish 

  
Forcipiger flavissimus Longnose butterflyfish 

  
Hemitaurichthys zoster Brushtooth/black pyramid butterflyfish 

  
Heniochus acuminatus Coachman/ Threadback/ Longfin bannerfish 

  
Heniochus diphreutes Schooling coachman/Schooling bannerfish 

  
Heniochus monoceros Masked coachman/ Masked bannerfish 

206 OPLEGNATHIDAE Oplegnathus robinsoni Natal knifejaw/ Cuckoo bass 
210 CARANGIDAE Alectis indicus Indian mirrorfish/ Threadfin 

  
Alepes djedaba Shrimp scad 

  
Carangoides armatus Longfin kingfish 

  
Carangoides caeruleopinnatus Coastal kingfish 

  
Carangoides crysophrys Longnose kingfish 

  
Carangoides ferdau Blue kingfish 

  
Carangoides fulvoguttatus Yellowspotted kingfish 

  
Carangoides gymnostethus Bludger kingfish 

  
Carangoides malabaricus Malabar kingfish 

  
Caranx ignobilis Giant kingsih 

  
Caranx melampygus Bluefin kingfish 

  
Caranx papuensis Brassy kingfish 

  
Caranx sem/ heberi Blacktip kingfish 

  
Caranx sexfaciatus Bigeye kingfish 

  
Decapturus russelli Indian scad 

  
Elangatis bipinnulata Rainbow runner 

  
Gnathonodon speciosus Golden kingfish 

  
Megalaspis cordyla Torpedo scad 

  
Naucrates ductor Pilotfish 

  
Pseudocaranx dentex White kingfish/ Silver trevally 

  

Scomberoides 
commersonianus 

Largemouth queenfish/ Talang 
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Table A3.1 (Cont.): List of 573 species of fishes, from 96 families, known to occur, previously 
observed to occur, or which could possibly occur in the iSimangaliso Wetland Park. SSF = Family 
number assigned in Heemstra and Heemstra (2004). Families listed by SSF number while species 
within families are listed alphabetically. 

SSF FAMILY Species Common name 
210 CARANGIDAE Scomberoides tol Needlescale queenfish 

  
Seriola rivoliana Longfin yellowtail 

  
Seriolina negrofasciata  Blackbanded kingfish 

  
Trachinotus africanus African/Southern pompano 

  
Trachinotus blochii Snubnose/Silver pompano 

  
Trachinotus botla Largespot popano/ Wave garrick 

  
Trachurus trachurus Maasbanker/Jack/Horse Mackerel 

211 CORYPHAENIDAE Coryphaena hippuris Dorado/ Dolphinfish 
212 RACHYCENTRIDAE Rachycentron canadium Cobia/Prodigal son 
213 ECHENEIDAE Echeneis naucrates Shark remora 
214 CIRRHITIDAE Cirrhitichthys oxycephalus Spotted hawkfish 

  
Cirrhitus pinnulatus Marbled/Stocky hawkfish 

  
Cyprinocirrhites polyactis Swallowtail hawkfish 

  
Oxycirrhites typus Longnose Hawkfish 

  
Paracirrhites arcatus Arc-eye/ Horseshoe hawkfish 

  
Paracirrhites forsteri Freckled/ Pixy hawkfish 

215 CHEILODACTYLIDAE Cheilodactylus pixi Barred fingerfin 

  
Chirodactylus brachydactylus Twotone fingerfin 

  
Chirodactylus fasciatus Redfingers 

  
Chirodactylus jessicalenorum Natal fingerfin 

216 PEMPHERIDAE Parapriacanthus ransonneti Slender sweepers 

  
Pempheris adusta Dusky sweepers 

219 POMACENTRIDAE Abudefduf notatus Dusky damsel/ Yellow-tail sergeant 

  
Abudefduf septemfasciatus Banded sergeant/Sevenbar damsel 

  
Abudefduf sordidus Spot damsel/ Black-spot sergeant 

  
Abudefduf sparoides False-eye damsel 

  
Abudefduf vaigiensis Sergeant major/ Indo-pacific sergeant 

  
Abundefduf natalensis Fourbar damsel/ Natal sergeant 

  
Amphiprion akallopisos Nosestripe anemonefish/ Skunk clown 

  
Amphiprion allardi Twobar anemonefish/ Clownfish 

  
Chromis analis Yellow chromis 

  
Chromis dasygenys Bluespotted chromis 

  
Chromis dimidiata Chocolate dip/ Twotone chromis 

  
Chromis lepidolepis Brown/scaly chromis 

  
Chromis nigrura Blacktail chromis 

  
Chromis opercularis Doublebar chromis 

  
Chromis ternatensis Golden chromis/ Ternate chromis 

  
Chromis viridis Blue puller/ Blue-green chromis 

  
Chromis weberi Darkbar damsel/ Weber's chromis 

  
Chrysiptera unimaculata Onespot damsel/ Onespot chromis 

  
Dascyllus aruanus Zebra humbug/ Humbug dascyllus 

  
Dascyllus carneus Twobar humbug/ Indian dascyllys 

  
Dascyllus melanurus Black-tailed dascyllus 

  
Dascyllus trimaculatus Domino/ Threespot dascyllus 

  
Lepidozygus tapeinosoma Redwing coral damsel/ Fusilier damsel 

  
Neopomacentrus cyanomos Crescent damsel/ Regal demoiselle 

  
Plectroglyphidodon dickii Narrowbar damsel 

  
Plectroglyphidodon johnstonianus Widebar/ Johnston damsel 

  
Plectroglyphidodon lacrymatus Jewel damsel 

  
Plectroglyphidodon leucozonus Sash damsel 

  
Pomacentrus caeruleus Blue pete/ Caerulean damsel 
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Table A3.1 (Cont.): List of 573 species of fishes, from 96 families, known to occur, previously 
observed to occur, or which could possibly occur in the iSimangaliso Wetland Park. SSF = Family 
number assigned in Heemstra and Heemstra (2004). Families listed by SSF number while species 
within families are listed alphabetically. 

SSF FAMILY Species Common name 
219 POMACENTRIDAE Pomacentrus pavo Saphire/ blue/ azure damsel 

  
Pomacentrus sulfureus Sulphur/ lemon damsel 

  
Pomacentrus trichourus Yellowtail damsel 

220 LABRIDAE Anampses caeruleopunctatus Bluespotted tamarin 

  
Anampses meleagrides 

Yellowtail tamarin/ Yellowtail/ Spotted 
wrasse 

  
Anampses twistii Yellowbreasted wrasse 

  
Anapses lineatus Lined wrasse 

  
Anchichoerops natalensis Natal wrasse 

  
Bodianus axillaris Axilspot hogfish/ Turncoat 

  
Bodianus bilunulatus Saddleback hogfish/ wrasse 

  
Bodianus bimaculatus Twospot/Twospot-slender hogfish 

  
Bodianus diana Diana's hogfish 

  
Bodianus leucosticus Lined hogfish 

  
Bodianus perditio Goldsaddle hogfish 

  
Bodianus trilineatus Lined hogfish 

  
Bodinus anthioides Lyretail hogfish 

  
Cheilinus/ Oxycheilinus bimaculatus Twospot wrasse 

  
Cheilinus chlorourus Floral wrasse 

  
Cheilinus/ Oxycheilinus digramma Cheeklined wrasse 

  
Cheilinus fasciatus 

Red-banded wrasse/ Red breasted splendour 
wrasse 

  
Cheilinus trilobatus Tripletail wrasse 

  
Cheilinus undulatus Humphead/ Napolean wrasse 

  
Chelio inermis Cigar wrasse 

  
Cirrhilabrus exquisitus Exquisite wrasse  

  
Coris aygula Clown coris/ Clown Wrasse 

  
Coris caudimacula Spottail coris 

  
Coris formosa/ ferei Queen coris 

  
Coris giamard africana/ cuvieri African coris 

  
Epibulus insidiator Slingjaw wrasse 

  
Gomphosus caeruleus Birdfish/ Bird wrasse 

  
Halichoeres cosmetus Adorned wrasse 

  
Halichoeres hortulanus Checkboard wrasse 

  
Halichoeres iridis Rainbow wrasse 

  
Halichoeres nebulosus Picture wrasse/ Nebulous wrasse 

  
Halichoeres scalpularis Zigzag sandwrasse 

  
Hemigymnus fasciatus Barred thicklip wrasse 

  
Hologymnosus annulatus Barred ringwrasse 

  
Hologymnosus doliatus Pastel-ring/ Ringed/ longface wrasse  

  
Labroides bicolor Bicolour cleaner wrasse 

  
Labroides dimidiatus Bluestreak cleaner wrasse/ Cleaner wrasse 

  
Labroides xanthonata V-tail wrasse 

  
Macropharyngodon bipartitua Divided/Vermiculate wrasse 

  
Macropharyngodon cyanoguttatus Bluespotted wrasse 

  
Macropharyngodon vivienae Madagascar wrasse 

  
Novaculichthys taeniourus Rockmover wrasse 

  
Psedodax moluccanus Chiseltooth wrasse 

  
Pseudocheilinus evanidus Striated wrasse 

  
Pseudocheilinus hexataenia Sixstripe wrasse 

  
Pseudojuloides cersinus Smalltail wrasse 

  
Stethojulis albovittata Bluelined wrasse 

 
  Stethojulis interrupta Cutribbon wrasse 
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Table A3.1 (Cont.): List of 573 species of fishes, from 96 families, known to occur, previously observed 
to occur, or which could possibly occur in the iSimangaliso Wetland Park. SSF = Family number 
assigned in Heemstra and Heemstra (2004). Families listed by SSF number while species within 
families are listed alphabetically. 

SSF FAMILY Species Common name 
220 LABRIDAE (Cont.) Stethojulis strigiventer Threeribbon wrasse 

  
Thalassoma amblycephalum Twotone wrasse 

  
Thalassoma genivittatum Redcheek/ Blueneck wrasse 

  
Thalassoma hardwicke Sixbar wrasse  

  
Thalassoma hebraicum Goldbar wrasse 

  
Thalassoma lunare Crescent-tail wrasse 

  
Thalassoma pupureum Surge wrasse 

  
Thalassoma trilobatum Ladder wrasse 

  
Xyrichthys pavo Peacock wrasse 

  
Xyrichthys pentadactylus Fivefinger wrasse 

221 SCARIDAE Calotomus carolinus Christmas parrotfish/ Star-eye  

  
Cetoscarus bicolor Bicolour parrotfish 

  
Hipposcarus harid Longnose parrotfish 

  
Scarus atrilunula Blue moon/ black crescent parrotfish 

  
Scarus cyanescens Blue humphead/ saddled parrotfish 

  
Scarus frenatus Bridled parrotfish 

  
Scarus ghobban Bluebarred parrotfish 

  
Scarus psittacus Palenose parrotfish 

  
Scarus rubroviolaceus Ember/redlip parrotfish 

  
Scarus scaber Fivesaddle/ Dusky-capped parrotfish 

  
Scarus sordidus Bullethead parrotfish 

  
Scarus tricolor Tricolour parrothfish 

224 SPHYRAENIDAE Sphyraena barracuda Great barracuda  

  
Sphyraena flavicauda Yellowtail barracuda 

  
Sphyraena jello Pickhandle barracuda 

  
Sphyraena putnamiae Sawtooth barracuda/ Seapike 

  
Sphyraena qenie Blackfin barracuda 

225 OPISTOGNATHIDAE Opistognathus muscatenis Robust jawfish 

234 
PINGUIPEDIDAE/ 
MUGILOIDIDAE Parapercis hexophtalma Blacktail/speckled sandsmelt 

  
Parapercis punctulata Spotted sandsmelt 

  
Parapercis robinsoni Smallscale sandsmelt 

  
Parapercis schauinslandi Rosy sandsmelt/ Redspotted sandperch 

  
Parapercis xanthozona Blotchlip/ Yellowbar sandsmelt 

235 BLENNIIDAE Aspidontus dussumieri Floating/ Lance blenny 

  
Aspidontus taeniatus tractus Mimic blenny 

  
Cirripectes auritus Blacktip/ Eared/ Earspot blenny 

  
Cirripectes stigmaticus Redstreaked/ Scarlet-spotted blenny 

  
Ecsenius midas Golden/ Midas blenny 

  
Ecsenius nalolo Nalolo blenny 

  
Exallias brevis Leopard rockskipper 

  
Parablennius pilicornis Ringneck blenny 

  
Plagiotremus rhinorhynchos Twostripe blenny/ Sabretooth blenny 

  
Plagiotremus tapeinosoma Piano blenny/ Scale-eating fang blenny 

  
Scartella emarginatus Maned blenny 

236 TRYPTERYGIIDAE Helcogramma obtusirostre Hotlips tripplefin 
240 GOBIIDAE Amblyeleotris steinizi Steinitz's shrimp goby 

  
Amblygobius semicinctus White-barred reef goby 

  
Bathygobius coalitus Whitespotted goby 

  
Bryaninops yongei Seawhip goby 

  
Fusigobius inframaculatus Inner-spot goby 

  
Istigobius decoratus Decorated goby 
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Table A3.1 (Cont.): List of 573 species of fishes, from 96 families, known to occur, previously observed 
to occur, or which could possibly occur in the iSimangaliso Wetland Park. SSF = Family number 
assigned in Heemstra and Heemstra (2004). Families listed by SSF number while species within 
families are listed alphabetically. 

SSF FAMILY Species Common name 
240 GOBIIDAE (Cont.) Nemateleotris magnifica Firegoby/Fire dartfish 

  
Ptereleostris heteroptera Blacktail/Spot-tail goby 

  
Ptereleotris evides Scissortail/Cocord/Blackfin dartfish 

  
Ptereleotris heteroptera Blacktail goby 

  
Ptereleotris zebra Zebra goby 

  
Valencienea sexguttata Bluespotted sleeper goby/ Six-spot goby 

  
Valenciennea helsdingenii Railway glider/Two stripe sleeper goby 

  
Valenciennea strigata Pennant glider/ Golden headed jawfish 

243 ACANTHURIDAE Acanthurus dussumieri Pencilled surgeon/ Eyestripe surgeonfish 

  
Acanthurus leucosteron Powder-blue surgeonfish 

  
Acanthurus lineatus Bluebanded surgeon/ Striped surgeonfish 

  
Acanthurus mata Elongate surgeon 

  
Acanthurus nigrofuscus Brown surgeon/ Dusky surgeonfish 

  
Acanthurus tennenti Lieutenant/ double-band surgeonfish 

  
Acanthurus thompsoni Chocolate/ Thompson's surgeon 

  
Acanthurus triostegus Convict/banded surgeon 

  
Acanthurus xanthopterus Yellowfin surgeon 

  
Ctenochaetus binotatus Twospot bristletooth 

  
Ctenochaetus striatus Striped/ lined bristletooth 

  
Ctenochaetus strigosus Spotted bristletooth/ Goldring bristletooth 

  
Naso brevirostris Spotted unicornfish 

  
Naso hexacanthus Blacktounge unicornfish/ Sleek unicornfish 

  
Naso lituratus Orange-spine unicorn 

  
Naso tuberosus Humpnose unicorn 

  
Naso unicornis Bluespine unicornfish 

  
Naso vlamingii Bignose unicornfish  

  
Paracanthurus hepatus Palette surgeonfish/ Blue tang 

  
Zebrasoma gemmatum Spotted tang/ Gem surgeonfish 

  
Zebrasoma scopas Twotone tang/Brushtail tang 

  
Zebrasoma veliferum Sailfin tang 

244 ZANCLIDAE Zanclus canescens Moorish idol 
245 SIGANIDAE Siganus luridus Dusky rabitfish/ Squaretail  

  
Siganus stellatus Starspotted/ Stellate rabbitfish 

  
Siganus sutor Whitespotted/ Bluespotted rabbitfish 

249 SCOMBRIDAE Acanthocybium solandri Wahoo 

  
Auxis thazard Frigate Tuna 

  
Euthynnis affinis Eastern little tuna 

  
Katsuwonus pelamis Skipjack tuna 

  
Scomberomorus commerson King mackeral 

  
Scomberomorus plurilineatus Queen mackerl 

  
Thunnus albacares Yellowfin Tuna 

252 ISTIOPHORIDAE Istiophorus platypterus Sailfish 

  
Makaira indica Black marlin 

  
Makaira nigricans Blue marlin 

  
Tetrapturus audax Striped marlin 

259 BOTHIDAE Bothus mancus Tropical flounder 
263 BALISTIDAE Balistapus undulatus Orangestriped triggerfish 

  
Balistoides conspicillum Clown/ waistcoat triggerfish 

  
Balistoides viridescens Titan/ moustache triggerfish 

  
Melichthys indicus Indian triggerfish 

  
Odonus niger Redfang/blue triggerfish 
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Table A3.1 (Cont.): List of 573 species of fishes, from 96 families, known to occur, previously observed to occur, 
or which could possibly occur in the iSimangaliso Wetland Park. SSF = Family number assigned in Heemstra 
and Heemstra (2004). Families listed by SSF number while species within families are listed alphabetically. 

SSF FAMILY Species Common name 
263 BALISTIDAE (Cont.) Pseudobalistes fuscus Rippled/ Yellowspotted triggerfish 

  
Rhinecanthus aculeatus Picasso/ Blackbar triggerfish 

  
Rhinecanthus rectangulus Rectangular/ Patchy triggerfish 

  
Sufflamen bursa Boomerang triggerfish 

  
Sufflamen chrysopterus Halfmoon triggerfish 

  
Sufflamen fraenatus Bridled triggerfish 

  
Xanthichthys auromarginatus Gilded triggerfish 

  
Xanthichthys lineopunctatus Striped/lined triggerfish 

264 MONACANTHIDAE Aluteres monoceros Unicorn leatherjacket 

  
Aluteres scriptus Scribbled filefish 

  
Cantherhines dumerillii Barred filefish/ Yellow eye leatherjacket 

  
Cantherhines pardalis Honeycomb filefish/Wire-net filefish 

  
Oxymoncanthus longirostris Longnose filefish/ harlequin filefish 

  
Paraluteres prionurus Blacksaddle mimic/ mimic filefish 

  
Pervagor janthinosoma Redtail / Blackbar filefish 

  
Stephanolepis auratus Porky 

266 OSTRACIIDAE Lactoria cornuta Longhorn cowfish 

  
Lactoria fornasinis Thornspine/ Backspine cowfish 

  
Ostracion cubiscus Boxy 

  
Ostracion meleagris Whitespotted boxfish 

268 TETRAODONTIDAE Amblyrhynchotes honckenii Evileye pufferfish 

  
Arothron hispidus Whitespotted blaasop 

  
Arothron immaculatus Blackedged/ immaculate pufferfish 

  
Arothron mappa Map blassop/ Mappa pufferfish 

  
Arothron meleagris Guineafowl blaasop 

  
Arothron nigropunctatus Blackspotted blaasop 

  
Arothron stellatus Star blassop/ Star puffer 

  
Canthigaster amboinensis Spotted/ambon toby 

  
Canthigaster bennetti Exquisite/ bennett's toby 

  
Canthigaster janthinoptera Honeycomb tony 

  
Canthigaster rivulata Doublelined toby (Rivulated toby) 

  
Canthigaster smithae Bi-coloured toby/ puffer 

  
Canthigaster solandri False-eye toby 

  
Canthigaster valentini Model toby/ black-saddled toby 

269 DIODONTIDAE Diodon holocanthus Balloon/ Longspined porcupinefish 

  
Diodon hystrix Blackspotted/ common porcupinefish 

  
Diodon liturosus Shortspine/black blotched porcupinefish 

 

The predetermined species groups displayed in Table A2.3 were assigned to those species 

which were too morphologically similar to distinguish to species level using slate, 

photographic and videographic techniques. 
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Table A3.2: List of 24 species of fishes assigned to 8 species groups due to difficult species-level 
identifications during visual, photographic, or videographic transects. Species groups were treated as species in 
subsequent analyses. Species listed in alphabetical order. 

Species Common name Group Name Other species in group 

Aspidontus taeniatus 
tractus 

Mimic blenny Bluestreak cleaners Labroides dimidiatus  

Bodianus leucosticus Lined hogfish Lined hogfishes Bodianus trilineatus 
Bodianus trilineatus Lined hogfish Lined hogfishes Bodianus leucosticus 
Labroides dimidiatus Bluestreak cleaner wrasse/ 

Cleaner wrasse 
Bluestreak cleaners Aspidontus taeniatus tractus 

Lutjanus fulviflamma Dory/ Blackspot snapper Dory/Russels Snappers Lutjanus russelli 

Lutjanus kasmira Bluestriped/ Bluebanded/ 
Bluelined snapper 

Bluestriped snappers Lutjanus bengalensis and L. notatus 

Lutjanus bengalensis Bluestriped/ Bluebanded/ 
Bluelined snapper 

Bluestriped snappers Lutjanus kasmira and L. notatus 

Lutjanus notatus Blue striped snapper Bluestriped snappers Lutjanus kasmira and L. bengalensis  

Lutjanus russelli Russell’s snapper Dory/Russell’s 
Snappers 

Lutjanus fulviflamma and L. russelli 

Myripristis kuntee Epaulette/pearly soldierfish Blotcheye Soldiers Myripristis murdjan 
Myripristis violacea Lattice/violet soldier Pale soldiers Myripristis melanostica 
Myripristis melanostica Pale Soldier/ Finspot soldier Pale soldiers Myripristis violacea  
Myripristis murdjan Blotcheye soldier/ Red 

soldierfish 
Blotcheye Soldiers 
 

Myripristis kuntee  
 

Mobula kuhlii Devil ray Devil rays Mobula kuhlii, M. 
eregoodootenkee, M. japonica, M. 
tarapacana, M. thurstoni 

Mobula 
eregoodootenkee 

Longhorned mobula Devil rays Mobula eregoodootenkee, M. 
japonica, M. tarapacana, M. 
thurstoni 

Mobula japanica Spinetail mobula Devil rays Mobula kuhlii, M. 
eregoodootenkee, M. tarapacana, 
M. thurstoni 

Mobula tarapacana Spiny mobula Devil rays Mobula kuhlii, M. 
eregoodootenkee, M. japonica, M. 
thurstoni 

Mobula thurstoni Smoothtail mobula Devil rays Mobula kuhlii, M. 
eregoodootenkee, M. japonica, M. 
tarapacana 

    

Nemanthias carberryi Threadfin goldie/ Threadfin 
anthias 

Sea Goldies Pseudanthias connelli, P. cooperi, P. 
evansi, P. fasciatus, and P. 
squamipinnis 

Pseudanthias connelli 
 

Harlequin goldie 
 

Sea Goldies 
 

Nemanthias carberryi, 
Pseudanthias cooperi, P. evansi, P. 
fasciatus, and P. squamipinnis 

Pseudanthias cooperi Silverstreak goldie/Red-bar 
anthias 

Sea Goldies Nemanthias carberryi, 
Pseudanthias connelli, P. evansi, P. 
fasciatus, and P. squamipinnis 

Pseudanthias evansi Yellowtail goldie/ 
Yellowback anthias 

Sea Goldies Nemanthias carberryi, 
Pseudanthias connelli, P. cooperi, P. 
fasciatus, and P. squamipinnis 

Pseudanthias fasciatus Onestripe anthias Sea Goldies Nemanthias carberryi, 
Pseudanthias connelli, P. cooperi, P. 
evansi, and P. squamipinnis 

Pseudanthias 
squamipinni 

Sea goldie/ Goldie/ Lyretail 
anthias 

Sea Goldies 
 

Nemanthias carberryi, 
Pseudanthias connelli, P. cooperi, P. 
evansi, and P. fasciatus 
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Table A3.3: Area standardised abundance (individuals/100 m 2) of species observed using (Slate), 
photographic (Photo) and videographic (Video) transects on Two-Mile Reef. Families and species 
within families are listed alphabetically. X = Species was not observed. 

FAMILY Species Slate Photo Video 
ACANTHURIDAE Acanthurus dussumierii 0.07 0.03 X 

 
Acanthurus leucosteron 0.64 1.31 0.78 

 
Acanthurus lineatus X 0.06 0.11 

 
Acanthurus mata 0.02 X X 

 
Acanthurus nigrofuscus 1.16 0.28 1.28 

 
Acanthurus tennenti 0.67 0.71 1.36 

 
Acanthurus thompsoni 0.40 0.57 0.97 

 
Acanthurus xanthopterus X X 0.08 

 
Ctenochaetus binotatus 3.18 3.70 8.99 

 
Ctenochaetus striatus 0.04 0.03 0.19 

 
Ctenochaetus strigosus 4.51 0.34 1.25 

 
Naso brevirostris 0.07 X X 

 
Naso hexacanthus X 0.05 0.06 

 
Naso lituratus 0.18 0.43 0.50 

 
Naso unicornis 0.09 0.02 0.06 

 
Paracanthurus hepatus X 0.02 X 

 
Zebrasoma scopas 0.40 0.12 0.11 

APOGONIDAE Apogon kallopterus 0.04 X 0.03 
AULOSTOMIDAE Aulostomus chinensis X 0.02 X 
BALISTIDAE Balistapus undulatus 0.31 0.26 0.50 

 
Balistoides conspicillum 0.02 0.03 X 

 
Balistoides viridescens X 0.02 X 

 
Melichthys indicus 0.22 0.31 0.39 

 
Odonus niger 2.67 1.49 1.00 

 
Sufflamen bursa 0.16 0.12 0.19 

 
Sufflamen chrysopterus 0.20 0.55 1.28 

 
Sufflamen fraenatus 0.13 0.08 0.11 

BLENNIIDAE Aspidontus dussumieri X 0.62 0.39 

 
Ecsenius midas X 0.02 X 

 
Exallias brevis 0.02 X 0.03 

 
Plagiotremus rhinorhynchos 0.02 0.02 0.06 

 
Plagiotremus tapeinosoma 0.02 0.09 0.03 

CAESIONIDAE Caesio lunaris X 0.86 X 

 
Caesio xanthonota 1.78 2.11 1.67 

 
Paracaesio xanthura X X 0.14 

 
Pterocaesio tile X 1.25 0.58 

CARANGIDAE Carangoides fulvoguttatus 0.33 X X 

 
Caranx melampygus 0.04 0.11 0.06 

CHAETODONTIDAE Chaetodon auriga 0.02 0.08 0.28 

 
Chaetodon blackburnii 0.11 0.02 0.06 

 
Chaetodon guttatissumus 0.62 0.20 0.50 

 
Chaetodon kleini 1.22 0.69 1.34 

 
Chaetodon lunula 0.07 0.05 0.22 

 
Chaetodon madagascariensis 0.62 0.18 0.84 

 
Chaetodon meyeri 0.36 0.14 0.36 

 
Chaetodon unimaculatus 1.47 0.75 1.45 

 
Chaetodon vagabundus 0.04 X 0.28 

 
Forcipiger flavissimus 0.44 0.32 0.64 

 
Hemitaurichthys zoster 0.27 0.54 0.08 

 
Heniochus diphreutes 0.02 X 0.03 

 
Heniochus monoceros 0.02 0.03 X 
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Table A3.3 (Cont.) Area standardised abundance (individuals/100 m2) of species observed using (Slate), 

photographic (Photo) and videographic (Video) transects on Two-Mile Reef. Families and species within families 

are listed alphabetically. X = Species was not observed. 

FAMILY Species Slate Photo Video 
CIRRHITIDAE Cirrhitichthys oxycephalus 0.22 0.15 0.33 

 
Paracirrhites arcatus 0.27 0.23 0.42 

 
Paracirrhites forsteri 0.27 0.11 0.47 

DINOPERCIDAE Dinoperca petersi 0.07 X X 
DIODONTIDAE Diodon liturosus 0.02 X X 
GOBIIDAE Nemateleotris magnifica 0.09 0.02 0.06 

 
Ptereleotris evides 0.09 0.09 0.06 

 
Ptereleotris heteroptera 0.04 X 0.03 

 
Valenciennea strigata 0.16 0.06 0.11 

HAEMULIDAE Plectorhinchus flavomaculatus 0.02 0.02 0.08 

 
Plectorhinchus playfairi X 0.14 X 

HOLOCENTRIDAE Myripristis berndti 0.13 X 0.03 

 
Myripristis kuntee X 0.20 0.45 

 
Myripristis melanostica 0.09 0.05 0.03 

 
Myripristis murdjan 0.13 0.12 0.03 

 
Myripristis vittata 0.02 X X 

 
Sargocentron caudimaculatum X 0.05 0.06 

 
Sargocentron diadema 0.07 X X 

 
Sargocentron spiniferum 0.11 X X 

KYPHOSIDAE Kyphosus cinerascens X 0.02 0.06 
LABRIDAE Anampses caeruleopunctatus 0.04 0.03 0.25 

 
Anampses lineatus 0.31 0.40 1.06 

 
Anampses meleagrides 0.11 0.14 0.33 

 
Anampses twistii 0.02 X 0.06 

 
Bodianus axillaris 0.02 0.02 X 

 
Bodianus bilunulatus 0.07 X 0.03 

 
Bodianus diana 0.20 0.06 0.19 

 
Bodianus perditio 0.09 X X 

 
Cheilinus fasciatus 0.02 X 0.03 

 
Cheilinus trilobatus 0.02 0.02 X 

 
Cirrhilabrus exquisitus X X 0.03 

 
Coris aygula X 0.06 0.06 

 
Coris caudimacula 0.09 0.35 1.06 

 
Coris formosa/ ferei X X 0.03 

 
Coris giamard africana/ cuvieri X 0.02 0.11 

 
Gomphosus caeruleus 0.36 0.28 1.34 

 
Halichoeres hortulanus 0.31 0.28 0.42 

 
Halichoeres nebulosus 0.02 0.02 0.03 

 
Hemigymnus fasciatus 0.04 0.03 0.11 

 
Hologymnosus annulatus X X 0.03 

 
Hologymnosus doliatus 0.13 X 0.03 

 
Labroides bicolor 0.02 X 0.06 

 
Labroides dimidiatus 0.76 0.54 0.78 

 
Macropharyngodon bipartitus 0.11 0.02 0.11 

 
Macropharyngodon cyanoguttatus 0.02 X 0.17 

 
Pseudocheilinus evanidus 0.07 X X 

 
Pseudocheilinus hexataenia 0.04 X 0.03 

 
Pseudodax moluccanus 0.04 0.02 0.03 

 
Pseudojuloides cersinus X X 0.03 

 
Stethojulis interrupta 0.04 X 0.03 

 
Stethojulis strigiventer X X 0.14 
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Table A3.3 (Cont.): Area standardised abundance (individuals/100 m 2) of species observed using 

(Slate), photographic (Photo) and videographic (Video) transects on Two-Mile Reef. Families and 

species within families are listed alphabetically. X = Species was not observed. 

FAMILY Species Slate Photo Video 
LABRIDAE (Cont.) Thalassoma amblycephalum 0.24 0.14 0.31 

 
Thalassoma genivittatum 0.02 X 0.03 

 
Thalassoma hardwicke 0.33 X 0.03 

 
Thalassoma hebraicum 1.00 0.60 2.73 

 
Thalassoma lunare 0.04 0.09 0.06 

LETHRINIDAE Gymnocranius griseus 0.02 0.03 0.08 

 
Lethrinus crocineus X 0.03 X 

 
Lethrinus rubrioperculatus X X 0.06 

 
Monotaxis grandoculis X X X 

LUTJANIDAE Aphareus furca 0.02 0.02 0.06 

 
Aprion virescens X 0.02 X 

 
Lutjanus fulviflamma 0.89 1.11 0.72 

 
Lutjanus gibbus 0.27 0.06 0.81 

 
Lutjanus kasmira 0.58 0.42 0.25 

 
Lutjanus lemniscatus X X 0.03 

MALACANTHIDAE Malacanthus brevirostris 0.29 X 0.03 
MONACANTHIDAE Cantherhines dumerillii 0.04 0.11 0.11 

 
Cantherhines pardalis 0.07 0.03 0.06 

 
Paraluteres prionurus 0.04 X X 

MUGILOIDIDAE Parapercis punctulata 0.04 X X 

 
Parapercis schauinslandi X 0.02 X 

 
Parapercis xanthozona X X 0.03 

MULLIDAE Mulloidichthys vanicolensis X 4.33 0.06 

 
Parupeneus bifasciatus X X 0.06 

 
Parupeneus cyclostomus 0.16 0.06 0.22 

 
Parupeneus indicus 0.07 X X 

 
Parupeneus macronema 0.60 0.26 1.25 

 
Parupeneus pleurostigma 0.04 X 0.08 

 
Parupeneus rubescens 0.29 X 0.47 

MURAENIDAE Gymnothorax eurostus 0.02 0.02 X 

 
Gymnothorax favagineus 0.02 X X 

 
Siderea grisea X X 0.03 

OPLEGNATHIDAE Oplegnathus robinsoni 0.16 0.03 0.06 
OSTRACIDAE Ostracion cubicus 0.02 0.03 0.06 

 
Ostracion meleagris 0.04 X X 

POMACANTHIDAE Abudefduf natalensis 0.44 1.23 1.50 

 
Abudefduf vaigiensis X X 0.11 

 
Amphiprion akallopisos 0.04 X X 

 
Amphiprion allardi 0.11 0.12 0.17 

 
Apolemichthys trimaculatus 0.02 0.06 0.06 

 
Centropyge acanthops 0.36 0.02 0.17 

 
Centropyge bispinosus 0.02 X X 

 
Centropyge multispinis 1.49 0.40 2.45 

 
Chromis dimidiata 23.02 16.74 28.20 

 
Chromis lepidolepis 0.02 X X 

 
Chromis nigrura 3.98 2.86 7.32 

 
Chromis opercularis 8.18 0.69 1.61 

 
Chromis weberi 2.20 9.82 22.41 

 
Dascyllus trimaculatus X 0.02 0.11 

 
Neopomacentrus cyanomos 1.00 X X 

 
Plectroglyphidodon dickii 1.31 0.20 0.92 



Appendix 3 

199 

Table A3.3 (Cont.): Area standardised abundance (individuals/100 m 2) of species observed using (Slate), 

photographic (Photo) and videographic (Video) transects on Two-Mile Reef. Families and species within families 

are listed alphabetically. X = Species was not observed. 

FAMILY Species Slate Photo Video 
POMACANTHIDAE (Cont.) Plectroglyphidodon johnstonianus 0.62 0.06 0.14 

 
Pomacanthus imperator 0.04 0.09 0.08 

 
Pomacanthus rhomboides 0.16 X 0.08 

 
Pomacentrus caeruleus 0.49 0.22 0.72 

 
Pomacentrus trichourus 0.13 0.02 0.08 

 
Pseudochromis dutoiti 0.11 X X 

PRIACANTHIDAE Priacanthus hamrur 0.36 X X 
SCARIDAE Calotomus carolinus 0.02 0.02 0.06 

 
Scarus atrilunula X 0.02 X 

 
Scarus cyanescens X 0.02 X 

 
Scarus frenatus X 0.05 0.06 

 
Scarus ghobban X X 0.08 

 
Scarus rubroviolaceus 0.93 0.49 0.95 

 
Scarus tricolor X 0.02 X 

SERRANIDAE Aethaloperca rogaa 0.07 X X 

 
Anthiinae 7.04 5.88 7.71 

 
Cephalopholis argus X X 0.06 

 
Cephalopholis miniata 0.04 0.02 0.06 

 
Cephalopholis sonnerati X 0.03 X 

 
Cephalopholis urodeta/ nigripinnis X X 0.03 

 
Epinephelus rivulatus 0.04 X 0.06 

 
Epinephelus tukula 0.02 X X 

 
Variola louti 0.04 0.06 0.08 

SIGANIDAE Siganus sutor X 0.09 0.19 
SPARIDAE Chrysoblephus puniceus 0.02 X X 

 
Diplodus cervinus hottentus X 0.02 0.03 

TETRAODONTIDAE Arothron mappa 0.04 X X 

 
Arothron nigropunctatus 0.02 X 0.03 

 
Arothron stellatus 0.04 X X 

 
Canthigaster valentini 0.02 X X 

ZANCLIDAE Zanclus canescens 0.33 0.42 0.50 

 

Table A3.4: Area standardised abundance (individuals/100 m2) of species observed at shallow (6–14 
m), intermediate (14–22 m) and deep (22–30 m) depths during winter and summer using videographic 
transects on Two-Mile Reef. Families and species within families are listed alphabetically. X = Species 
was not observed. 
 

  
Winter 

 
Summer 

FAMILY Species Shallow 
Inter- 

mediate Deep 
 

Shallow 
Inter- 

mediate Deep 

ACANTHURIDAE Ctenochaetus binotatus 4.62 4.62 4.23 
 

7.54 7.54 3.84 

 
Zebrasoma scopas 0.08 X X 

 
0.06 0.17 X 

 
Naso hexacanthus 0.06 0.84 X 

 
X 0.89 0.06 

 
Acanthurus lineatus 0.06 X X 

 
0.28 X X 

 
Naso unicornis X X X 

 
0.08 0.03 0.08 

 
Acanthurus nigrofuscus 0.22 0.53 0.28 

 
0.64 0.78 0.19 

 
Acanthurus thompsoni 0.22 1.09 0.89 

 
0.50 0.45 2.56 

 
Acanthurus tennenti 1.03 1.89 1.45 

 
2.03 2.20 2.89 

 
Naso lituratus 0.28 0.39 X 

 
0.47 0.19 0.17 
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Table A3.4: Area standardised abundance (individuals/100 m2) of species observed at shallow (6–14 m), 
intermediate (14–22 m) and deep (22–30 m) depths during winter and summer using videographic transects on 
Two-Mile Reef. Families and species within families are listed alphabetically. X = Species was not observed. 

  
Winter 

 
Summer 

FAMILY Species Shallow 
Inter- 

mediate Deep 
 

Shallow 
Inter- 

mediate Deep 

ACANTHURIDAE  Paracanthurus hepatus X X X 
 

0.11 X 0.14 
(Cont.) Acanthurus dussumierii X 0.11 0.06 

 
0.06 X 2.12 

 
Acanthurus leucosteron 1.03 0.25 X 

 
2.09 0.17 0.03 

 
Ctenochaetus strigosus 0.95 0.64 0.61 

 
2.25 1.45 0.75 

 
Zebrasoma gemmatum X X X 

 
0.03 0.08 0.14 

 
Naso brevirostris X X 0.03 

 
X 0.03 0.06 

 
Ctenochaetus striatus 0.33 0.22 0.33 

 
1.20 0.67 0.33 

 
Acanthurus xanthopterus X X 0.06 

 
0.03 X X 

APOGONIDAE Apogon angustatus X X 0.06 
 

X 0.03 0.03 

 
Cheilodipterus quinquelineatus X X X 

 
X X 0.03 

 
Apogon kallopterus X X 0.08 

 
X X X 

 
Cheilodipterus artus X X 0.03 

 
X X 0.06 

BALISTIDAE Sufflamen bursa X X 0.11 
 

0.19 0.11 0.14 

 
Sufflamen fraenatus X 0.22 0.17 

 
0.08 0.06 0.19 

 
Balistoides conspicillum 0.08 0.06 X 

 
0.03 0.03 0.03 

 
Sufflamen chrysopterus 0.78 1.17 1.20 

 
1.45 1.11 1.45 

 
Melichthys indicus 0.22 0.14 0.17 

 
0.28 0.25 0.11 

 
Balistapus undulatus 0.08 0.08 0.06 

 
0.33 0.25 0.42 

 
Odonus niger 0.61 1.98 0.47 

 
0.22 1.53 0.78 

 
Pseudobalistes fuscus X X X 

 
X 0.03 0.06 

 
Balistoides viridescens 0.03 X 0.06 

 
X 0.03 0.08 

BLENNIIDAE Cirripectes auritus X X X 
 

0.03 X X 

 
Aspidontus dussumieri 0.06 0.08 0.03 

 
0.45 X 0.03 

 
Ecsenius midas X X X 

 
0.03 X X 

 
Exallias brevis X X X 

 
0.06 X X 

 
Plagiotremus tapeinosoma X 0.11 0.11 

 
0.25 0.11 0.06 

 
Cirripectes stigmaticus X X X 

 
0.08 X X 

 
Plagiotremus rhinorhynchos X X X 

 
0.03 0.06 0.08 

CAESIONIDAE Pterocaesio tile X X X 
 

0.33 X X 

 
Pterocaesio capricornis X X X 

 
X X 1.48 

 
Caesio xanthonota 0.50 4.04 4.62 

 
0.50 1.98 3.51 

 
Paracaesio xanthura X X X 

 
0.03 X 0.06 

CARANGIDAE Caranx melampygus 0.11 0.06 0.08 
 

0.19 0.14 X 

 
Carangoides caeruleopinnatus X 0.08 X 

 
X X 0.03 

 
Decapterus macrosoma 0.61 X X 

 
X X X 

 
Carangoides fulvoguttatus 0.03 X X 

 
X X X 

CHAETODONTIDAE Chaetodon dolosus X X 0.19 
 

X X 0.06 

 
Chaetodon blackburnii X 0.03 0.14 

 
0.03 0.03 0.06 

 
Hemitaurichthys zoster 0.25 0.22 X 

 
0.78 0.14 0.06 

 
Heniochus acuminatus X 0.06 X 

 
X X X 

 
Chaetodon guttatissumus 0.36 0.86 0.28 

 
0.19 0.64 0.47 

 
Chaetodon unimaculatus 0.75 0.92 0.42 

 
0.84 0.70 0.33 

 
Forcipiger flavissimus 0.17 0.31 0.06 

 
0.50 0.25 0.14 

 
Heniochus monoceros X X 0.06 

 
0.03 0.06 0.06 

 
Chaetodon meyeri 0.22 0.11 0.14 

 
0.31 0.17 0.03 

 
Chaetodon madagascariensis 0.33 0.86 0.95 

 
0.72 0.75 1.06 

 
Chaetodon lunula 0.17 X 0.03 

 
0.06 X X 

 
Chaetodon trifascialis X X X 

 
0.03 0.03 X 

 
Heniochus diphreutes X 2.39 0.50 

 
X X 1.00 

 
Chaetodon auriga X X 0.06 

 
0.28 0.08 0.19 

 
Chaetodon vagabundus 0.06 0.22 0.17 

 
X 0.06 0.06 



Appendix 3 

201 

Table A3.4: Area standardised abundance (individuals/100 m2) of species observed at shallow (6–14 m), 
intermediate (14–22 m) and deep (22–30 m) depths during winter and summer using videographic transects on 
Two-Mile Reef. Families and species within families are listed alphabetically. X = Species was not observed. 

  
Winter 

 
Summer 

FAMILY Species Shallow 
Inter-

mediate Deep 
 

Shallow 
Inter-

mediate Deep 

CHAETODONTIDAE  Chaetodon kleini 0.64 2.17 2.14 
 

0.84 1.11 1.34 
(Cont.) Chaetodon xanthocephalus X X X 

 
X 0.06 X 

CHARCHARHINIDAE Carcharhinus sealei X X X 
 

X X 0.06 
CIRRHITIDAE Paracirrhites arcatus 0.08 0.19 X 

 
0.47 0.22 0.11 

 
Paracirrhites forsteri 0.19 0.06 0.06 

 
0.17 0.08 0.03 

 
Cirrhitus pinnulatus X X X 

 
0.03 X X 

 
Cirrhitichthys oxycephalus 0.11 0.42 0.39 

 
0.45 0.61 0.39 

 
Cyprinocirrhites polyactis X X X 

 
X X 0.08 

DINOPERCIDAE Dinoperca petersi X X 0.03 
 

X X X 
DIODONTIDAE Diodon hystix 0.03 X X 

 
X X X 

 
Diodon liturosus X X X 

 
X X 0.03 

ECHENEIDAE Echenis naucrates X X X 
 

0.03 X X 
EPHIPPIDAE Tripterodon orbis 0.03 X X 

 
X X X 

FISTULARIIDAE Fistularia commersonii 0.03 X X 
 

0.03 X X 
GOBIIDAE Ptereleotris heteroptera X 0.03 0.56 

 
X 0.39 0.31 

 
Nemateleotris magnifica X 0.11 0.50 

 
0.11 0.58 1.20 

 
Valenciennea strigata X 0.06 X 

 
0.11 X 0.17 

 
Ptereleotris evides X X X 

 
0.11 0.22 0.03 

GRAMMISTIDAE Grammistes sexlineatus X X X 
 

0.03 X X 
HAEMULIDAE Plectorhinchus chubbi X 0.03 0.17 

 
X 0.06 0.06 

 
Plectorhinchus flavomaculatus X X X 

 
X 0.03 0.03 

 
Plectorhinchus playfairi 0.06 0.03 0.06 

 
0.03 0.17 0.03 

HOLOCENTRIDAE Myripristis berndti X X 0.11 
 

X X X 

 
Myripristis murdjan X X 0.56 

 
0.45 X 0.81 

 
Sargocentron diadema X 0.03 0.67 

 
0.14 0.03 0.17 

 
Myripristis melanostica X X 0.06 

 
X X 0.36 

 
Sargocentron spiniferum X X 0.08 

 
X X X 

 
Sargocentron caudimaculatum X 0.03 0.42 

 
0.06 X 0.19 

LABRIDAE Coris giamard africana/ cuvieri 0.03 0.03 0.06 
 

X X X 

 
Bodianus axillaris 0.03 0.08 X 

 
0.03 0.03 0.03 

 
Hologymnosus annulatus 0.03 X 0.03 

 
X X 0.03 

 
Hemigymnus fasciatus 0.03 X X 

 
X X X 

 
Hemigymnus fasciatus X X X 

 
0.03 X X 

 
Labroides bicolor X 0.06 0.11 

 
0.08 0.17 0.08 

 
Gomphosus caeruleus 0.56 0.22 0.28 

 
0.86 0.58 0.33 

 
Anampses caeruleopunctatus 0.06 0.06 0.03 

 
0.25 0.06 0.06 

 
Macropharyngodon cyanoguttatus 0.03 0.03 0.03 

 
X 0.03 0.03 

 
Labroides dimidiatus 0.53 0.72 1.86 

 
1.25 1.36 1.84 

 
Halichoeres hortulanus 0.33 0.45 0.28 

 
0.92 0.86 0.11 

 
Pseudodax moluccanus 0.22 0.14 0.08 

 
0.31 0.19 0.06 

 
Cheilei inermis X X X 

 
0.06 X X 

 
Coris aygula 0.06 X 0.03 

 
0.06 0.03 X 

 
Thalassoma lunare 0.08 0.19 0.06 

 
0.14 0.14 0.06 

 
Stethojulis interrupta X X 0.03 

 
X X X 

 
Bodianus diana 0.06 0.22 0.22 

 
0.11 0.36 0.14 

 
Macropharyngodon bipartitus 0.14 0.11 0.19 

 
0.08 0.17 0.17 

 
Cirrhilabrus exquisitus X X X 

 
0.14 X X 

 
Thalassoma hebraicum 1.95 2.51 1.84 

 
2.78 3.42 1.95 

 
Bodianus perditio 0.03 X X 

 
0.06 0.03 X 

 
Anampses lineatus 0.53 0.84 1.14 

 
1.53 0.81 0.81 

 
Anchichoerops natalensis X X X 

 
X X 0.03 
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Table A3.4: Area standardised abundance (individuals/100 m2) of species observed at shallow (6–14 m), 
intermediate (14–22 m) and deep (22–30 m) depths during winter and summer using videographic transects on 
Two-Mile Reef. Families and species within families are listed alphabetically. X = Species was not observed. 

  
Winter 

 
Summer 

FAMILY Species Shallow 
Inter-

mediate Deep 
 

Shallow 
Inter-

mediate Deep 

LABRIDAE (Cont.) Hologymnosus doliatus X 0.06 0.03 
 

0.06 0.03 0.03 

 
Halichoeres nebulosus 0.11 X X 

 
0.45 0.03 0.08 

 
Halichoeres iridis X X 0.39 

 
X X 0.47 

 
Cheilinus fasciatus X X X 

 
0.03 0.03 X 

 
Thalassoma genivittatum X X X 

 
0.08 0.06 X 

 
Bodianus bilunulatus 0.08 0.19 0.31 

 
0.03 0.03 0.19 

 
Thalassoma hardwicke 0.03 X X 

 
0.03 X X 

 
Pseudocheilinus hexataenia 0.03 X 0.03 

 
0.03 0.03 X 

 
Pseudojuloides cersinus X X 0.03 

 
X X X 

 
Coris caudimacula 0.39 0.78 1.17 

 
1.34 1.78 1.78 

 
Pseudocheilinus evanidus X X 0.08 

 
0.31 0.33 0.61 

 
Thalassoma amblycephalum 0.03 X X 

 
1.20 X 0.17 

 
Anampses twistii X X X 

 
0.03 X 0.03 

 
Anampses meleagrides 0.22 0.19 0.03 

 
0.19 0.47 0.17 

 
Halichoeres scalpularis 0.03 X X 

 
X X X 

LETHRINIDAE Monotaxis grandoculis X 0.03 0.08 
 

X X 0.06 

 
Gymnocranius griseus X X X 

 
X X 0.03 

 
Lethrinus lentjan X X X 

 
X X 0.03 

 
Lethrinus rubrioperculatus 0.08 0.08 0.08 

 
X 0.03 0.39 

 
Lethrinus crocineus 0.03 0.06 0.03 

 
X 0.03 0.08 

LUTJANIDAE Aphareus furca 0.03 0.03 0.06 
 

0.08 X 0.03 

 
Lutjanus kasmira X X 0.03 

 
1.22 1.73 X 

 
Lutjanus fulviflamma X X X 

 
1.45 0.06 X 

 
Paracaesio sordidus X X 0.72 

 
0.03 0.03 X 

 
Aprion virescens 0.03 0.03 0.03 

 
X 0.08 0.19 

 
Lutjanus gibbus 0.03 0.03 0.17 

 
0.42 0.17 X 

 
Lutjanus rivulatus X 0.03 0.03 

 
X 0.03 X 

 
Lutjanus bohar X X X 

 
0.06 X X 

MALACANTHIDAE Malacanthus brevirostris X 0.08 0.06 
 

0.11 X 0.08 
MONACANTHIDAE Cantherhines dumerillii 0.06 0.06 0.06 

 
0.11 0.03 X 

 
Cantherhines pardalis 0.08 0.03 0.06 

 
0.06 0.06 0.08 

MUGILOIDIDAE Parapercis xanthozona 0.03 X 0.11 
 

X 0.06 0.08 

 
Parapercis schauinslandi X X X 

 
X X 0.03 

 
Parapercis punctulata X 0.03 0.11 

 
0.08 0.08 0.25 

MULLIDAE Parupeneus macronema 0.53 0.84 1.11 
 

0.39 0.97 0.84 

 
Parupeneus rubescens 0.03 0.36 0.17 

 
0.06 0.14 0.33 

 
Parupeneus pleurostigma 0.06 0.08 0.17 

 
0.06 X 0.25 

 
Parupeneus cyclostomus 0.06 0.31 0.11 

 
0.14 0.17 0.42 

 
Parupeneus bifasciatus X X X 

 
0.06 X X 

 
Mulloidichthys vanicolensis X X 0.89 

 
1.73 X X 

MURAENIDAE Siderea grisea X X 0.03 
 

X X X 

 
Gymnothorax favagineus X X X 

 
X 0.03 X 

 
Gymnothorax eurostus X X X 

 
X 0.03 X 

 
Gymnothorax nudivomer X X 0.03 

 
X X X 

MYLIOBATIDAE Manta birostris X 0.03 X 
 

X X X 
OPLEGNATHIDAE Oplegnathus robinsoni 0.08 0.03 0.03 

 
0.03 0.08 0.06 

OSTRACIIDAE Ostracion cubicus X X 0.03 
 

X 0.08 0.03 
PEMPHERIDAE Pempheris adusta X X X 

 
0.14 X X 

POMACANTHIDAE Centropyge multispinis 0.97 0.92 1.75 
 

1.86 2.14 2.95 

 
Centropyge acanthops 0.06 0.28 0.89 

 
0.08 0.70 1.11 

 
Pomacanthus semicirculatus X X X 

 
0.03 X X 
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Table A3.4: Area standardised abundance (individuals/100 m2) of species observed at shallow (6–14 m), 
intermediate (14–22 m) and deep (22–30 m) depths during winter and summer using videographic transects on 
Two-Mile Reef. Families and species within families are listed alphabetically. X = Species was not observed. 

  
Winter 

 
Summer 

FAMILY Species Shallow 
Inter- 

mediate Deep 
 

Shallow 
Inter- 

mediate Deep 

POMACANTHIDAE  Apolemichthys trimaculatus 0.06 0.06 0.17 
 

0.08 0.08 0.08 
(Cont.) Chromis nigrura 1.98 0.56 X 

 
26.11 2.70 1.89 

 
Pomacentrus caeruleus 0.11 0.61 0.17 

 
0.45 0.14 0.22 

 
Chromis dasygenys X X X 

 
X X 0.58 

 
Chromis dimidiata 7.01 10.69 4.62 

 
16.06 20.63 9.91 

 
Chromis weberi 13.70 13.14 7.46 

 
18.57 14.84 6.57 

 
Dascyllus trimaculatus X 0.47 2.12 

 
0.31 0.75 0.64 

 
Pseudochromis dutoiti X 0.06 0.06 

 
0.06 0.06 0.08 

 
Pomacanthus imperator 0.06 X 0.14 

 
0.03 0.17 0.08 

 
Plectroglyphidodon dickii 0.31 0.08 X 

 
1.00 0.08 0.03 

 
Amphiprion akallopisos X 0.06 0.17 

 
0.11 0.14 0.17 

 
Pomacanthus rhomboides X 0.28 0.17 

 
0.17 0.14 0.14 

 
Amphiprion allardi 0.08 X X 

 
0.03 0.08 0.06 

 
Dascyllus carneus X X 0.53 

 
0.03 0.17 0.11 

 

Plectroglyphidodon 
johnstonianus X X X 

 
0.14 0.03 X 

 
Pomacentrus trichourus 0.06 0.08 0.03 

 
0.33 0.14 0.08 

PRIACANTHIDAE Priacanthus hamrur X 0.08 X 
 

X 0.56 0.03 
PSEUDOCHROMIDAE Pseudochromis melas X 0.06 0.03 

 
0.31 0.06 0.22 

 
Pseudochromis natalensis X X 0.06 

 
0.08 0.06 0.14 

SCARIDAE Scarus ghobban 0.03 X X 
 

X X X 

 
Scarus frenatus 0.03 X X 

 
0.03 0.06 X 

 
Calotomus carolinus X X 0.03 

 
X X 0.03 

 
Scarus rubroviolaceus 0.81 1.00 0.56 

 
1.06 0.72 0.45 

 
Scarus scaber X X 0.03 

 
X X X 

 
Scarus tricolor X 0.03 X 

 
X 0.03 X 

SERRANIDAE Epinephelus macrospilos X X X 
 

X 0.03 X 

 
Cephalopholis miniata X X 0.06 

 
X 0.22 0.19 

 

Cephalopholis urodeta/ 
nigripinnis X 0.06 0.08 

 
X X 0.06 

 
Anthiinae 4.12 9.97 15.48 

 
8.63 13.03 11.22 

 
Epinephelus rivulatus 0.03 0.03 0.11 

 
0.08 0.14 0.03 

 
Cephalopholis argus X X X 

 
0.03 0.03 0.03 

 
Epinephelus tukula X 0.11 X 

 
X 0.03 0.03 

 
Aethaloperca rogaa X X X 

 
0.06 X X 

 
Variola louti 0.11 0.08 0.17 

 
0.22 0.14 0.28 

 
Cephalopholis sonnerati 0.03 0.06 X 

 
0.06 X 0.06 

SIGANIDAE Siganus sutor 0.14 0.03 0.11 
 

0.06 0.03 0.03 
SPARIDAE Chrysoblephus lophus X X X 

 
X X 0.03 

 
Polysteganus praeorbitalus X X X 

 
X X 0.06 

SPHYRAENIDAE Sphyraena jello X X X 
 

X 0.06 X 
TETRAODONTIDAE Canthigaster valentini X X X 

 
0.03 X X 

 
Arothron immaculatus X X X 

 
X 0.03 0.06 

 
Arothron nigropunctatus 0.03 X X 

 
X X X 

 
Canthigaster rivulata X X X 

 
0.03 X X 

 
Canthigaster valentini 0.03 0.06 0.06 

 
X 0.03 0.03 

 
Canthigaster amboinensis X X X 

 
0.03 X X 

 
Arothron hispidus X X X 

 
0.03 X X 

ZANCLIDAE Zanclus canescens 0.33 0.47 0.19 
 

0.42 0.56 0.50 
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Appendix 4 -  

A preliminary protocol for the survey of high-latitude, epibenthic 

coral reef fishes in the Western Indian Ocean by videographic 

transecting 

The following protocol is specifically designed for the non-destructive underwater visual 

census of high latitude coral reef fishes in the Western Indian Ocean using videographic 

transecting by SCUBA divers. This protocol has been formulated based on the conclusions of 

Wartenberg (2012). The protocol is presented in point-form, and without motivation, to avoid 

redundant reviews of the information presented at length in Wartenberg (2012), and outlines 

the most appropriate approaches to experimental design, the selection of survey technique 

parameters, the quantification of supplementary variables, observer-related standardisation, 

and standardised videographic transect deployment.  

 

By way of example, the protocol outlined here is specific to the research aims of Wartenberg 

(2012) that include between season- and depth-category comparisons of ichthyofaunal 

community structure on a single, large, high latitude patch reef. Simple adjustments to this 

protocol will allow for alternative comparisons, such as between reefs or protection regimes. 

 

If this protocol is to be used as it is intended, then it is to be used in conjunction with 

Appendices 1 and 2 from Wartenberg (2012) which provide necessary additional information. 

The species lists presented in Wartenberg (2012) Appendix 3 will prove useful. For further 

information, thesis meta-data, or digital examples of videographic transects and associated 

fish counts contact the South African Environmental Observation Network, Elwandle Node, 

South Africa.  
 

Experimental design 

 

Sampling stratification 
 

- Select an appropriate, representative patch-reef based on the initial research questions 

of interest. In this case: Do coral reef ichthyofaunal community structures change 

between seasons or depths? 
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- Design sampling such that balanced samples can be achieved for each 

category/stratum investigated. For example, equal numbers of replicates in mid-winter 

and mid-summer. 

- Restrict sampling to the leeward-reef slope, unless a comparison between fore- and 

leeward-reef fish communities is required. 

- Conduct transects on substrate known to consist of reef. Avoid, or exclude from 

analysis, transects conducted on sandy areas. 

- Structure sampling such that the maximum number of replicates can be achieved in 

the least number of days. 

- Restrict sampling to a narrow time-window, e.g. 09h00 – 13h00, and ensure that the 

selected time-window remains constant throughout the study or monitoring program. 

- Those factors which cannot be stratified for must be measured and/or estimated as 

supplementary variables. 

Replication 

- If a study is being conducted in a new locality, the maximum number of replicates 

logistically feasible is recommended for each stratum. There should be no less than 10 

and no more than 25 replicates at this initial stage. From the resulting data, the 

optimal number of replicates specific to a study area can be determined using the 

methods outlined in Chapter 4 of Wartenberg (2012).  

- It was shown that, for Two-Mile Reef, South Africa, the optimal number of replicates 

was a minimum of 17, but more favourably 20, for each stratum. 

Randomisation 

- Conduct sampling using a stratified-random sampling design without 

replacement. 

- Using a geographical information systems software package, such as ArcGIS 10 

(Environmental Systems Research Institute, Inc ©) divide a georeferenced reef map 

into potential sampling sites based on required strata characteristics and the size of the 

survey technique boundaries i.e. 50 m based on transect length. 

- Of the appropriate sites, use a random number generator to select which sites within 

each stratum are to be sampled. 
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- Generate co-ordinates for each site to serve as transect start points.  

- Generate additional co-ordinates as a contingency to disrupted or failed transects.  

- Locate selected sites in the field using a handheld GPS (e.g. etrex, Garmin ©). 

- Ground-truth sample site depths using a boat based echo sounder prior to diver 

deployment. 

Supplementary variables 

The following supplementary variables must be measured and/or quantified for each 

sample site. 

Topographic complexity 

- Record depths at the start of each transect and at each 10 m interval. Topographic 

complexity in terms of profile and rugosity can then be calculated as per Chapter 3 of 

Wartenberg (2012). 

- In addition, use the independent, qualitative metric habitat complexity, which 

quantifies the reef architecture for each sample according to five predetermined 

categories: highly complex, semi-complex, complex, homogenous, highly 

homogenous. For visual examples of each habitat complexity category see Appendix 

1 of Wartenberg (2012). 
 

Substrate 

 

- Quantification of substrate for each sample site was according to five predetermined 

categories: reef, reef-sand, reef/sand, sand-reef, or sand. For visual examples of each 

substrate category see Appendix 1 of Wartenberg (2012). 
 

Current 
 

- Both divers estimate the current speed at each sampling site and the mean obtained. 

Record current direction at each sampling site. 
 

Visibility 

 

- Measure horizontal visibility at the sampling depth for each sampling site. Post 

transect completion diver I must swim away from diver II along the extended transect 
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line. The point at which divers can no longer distinguish one another is recorded as 

the visibility for that site. 

Water temperature 

- Record water temperature at the sampling depth using dive computers such as 

the Gecko (Suunto ©). 

Turbidity 

- Collect water samples at the sampling depth, place on ice, and freeze as soon as 

possible for analysis in a laboratory. 

Survey technique and fish assemblage parameters 

Survey technique parameters 

- Record the time of day that each transect commences. 

- Transect length = 50 m. 

- Keep swimming speed constant at approximately 6.25 m.min-1 = 8 min.transect-1. 

- If unconfounded comparability to the original thesis is desired, conduct video 

transects using a DX 1200 HD Camera (© SEA&SEA SUNPAK Co., Ltd.) set to 

underwater video mode. If this camera cannot be attained ensure that, at a minimum, a 

camera with precisely the same field of view is employed. 

- If a direct comparison to Wartenberg (2012) is undesirable, then ensure that a 

sufficiently high-resolution video camera is employed such that ease of fish 

identification from digital footage is facilitated. 
 

Fish assemblage parameters 

- Exclude cryptic species from counts. 

- Only fish larger than 4 cm may be included in counts. 

- Those species which are particularly morphologically similar must be assigned to 

species groups. For a practical example see Appendix 3 (Table A3.2) of Wartenberg 

(2012). 

- Fishes passing from behind divers are to be excluded from counts. 
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- Once an individual is counted, it is not recounted. 

- Individuals clearly attracted to the area due to diver activity are not counted. 

Observer-related standardisation 

Observer and diver selection 

- Observers must possess sufficient diving experience and skill to conduct replicated 

transects with negligible variability. One prerequisite is that all divers are Class IV 

commercial divers or higher. 

Reconnaissance diving 

- In areas which have not been previously studied, reconnaissance diving prior to study 

commencement is strongly recommended to facilitate the collation of necessary 

preliminary study site information. A number of SCUBA diver deployments using the 

roving diver technique, as carried out in the original thesis, are recommended for this 

initial stage. 

Diver equipment 

- Aside from standard SCUBA diving equipment, the equipment required to conduct 

effective, holistic underwater videographic transects is outline in Appendix 1 (Table 

A1.2) of Wartenberg (2012).  

Diver training 

- To reduce observer-related bias and standardise the methods used to conduct 

videographic transects, observer training is recommended.  

- Holistic observer training should be conducted in terms of fish identification, transect 

width estimation, swimming speed, and the quantification of supplementary variables. 

Appendix 2 of Wartenberg (2012) outlines the most appropriate methods for this. 
 

Standardised videographic transect deployment 

 

- An effective diving vessel such as a rigid-inflatable boat (RIB) should be employed 

for deploying divers. 

- All dives should be conducted according the dive plan which is appended to 

Wartenberg (2012) (Appendix 1, Table A1.1) and should not last longer than  
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21 minutes regardless of the operational depth up to 30 m. 

- Upon arrival at the preselected sample site coordinates a dive team, deploy a dive 

team consisting of a pair of observers using the negative entry technique. 

- Divers must maintain neutral buoyancy 1 m above the reef substrate throughout each 

transect. 

- Once arriving at the sampling depth, divers must swim into the current for 10 m along 

the depth contour before establishing the transect start point. 

- Each diver in a dive team, diver I and II, must conduct specific duties, outlined in 

Appendix 1 (Table A1.2) of Wartenberg (2012), which must remain constant 

throughout the study. 

- Capture video footage at a 1 m elevation on a plane parallel to the slope of the reef. 

- The distance and angle of the observable field must be kept constant. 

- Fish assemblage data from transects must be obtained by analysing videographic 

transects using the Standard-count technique. 
 

For an example of the effective implementation of this protocol in surveying high-latitude 

epibenthic reef fishes in the WIO see Chapter 5 of Wartenberg (2012). 

 


