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ABSTRACT 

 

 

Snappers of the genus Lutjanus are small to large predatory fishes occurring in inshore 

circumtropical and subtropical waters throughout the world. These fishes support fisheries 

across their distribution range. Within the Western Indian Ocean (WIO), previous studies on 

Lutjanus kasmira revealed limited spatial genetic differentiation, whereas Lutjanus 

fulviflamma showed high genetic connectivity. The phylogenetic relationships among WIO 

snappers are unknown. Previous studies in the Indo-Pacific (IP) did not include any WIO 

representatives. This study examined (1) the phylogeographic patterns in Lutjanus bohar, L. 

fulviflamma and L. lutjanus to understand the origins and factors influencing the distribution 

of diversity in the region, (2) how the physical environment, biological, and ecological factors 

influence genetic diversity, (3) the placement of WIO snappers in context to those from the 

IP, as well as the placement of taxa not included previously, (4) extent of differentiation 

among conspecifics from the two regions, and (5) the relationship of the Caesionidae to the 

Lutjanidae. 

 

Samples were sourced from across the WIO and from peripheral localities, where possible. 

DNA sequence data were generated from two mitochondrial gene regions (cyt-b and NADH-

2) and a nuclear gene region (S7 intron 1). Data were analysed under a phylogeographic 

framework to examine genetic structure, diversity and differentiation among identified 

regions for each of the three species. Other sequence data were generated from two 

mitochondrial gene regions (COII and 16S rDNA) to examine the phylogenetic placement of 

WIO snappers in context of the IP snappers and the relationship of the Caesionidae to the 

Lutjanidae. 

 

Lutjanus bohar and L. fulviflamma displayed high genetic diversity, but lower diversities were 

observed for L. lutjanus. Genetic differentiation was observed between Mozambique and 

Maldives in L. bohar. Lutjanus fulviflamma was differentiated in South Africa, Mozambique, 

Mauritius and Thailand, while differentiation was observed between Kenya and Tanzania in 

Lutjanus lutjanus. Overall, low genetic differentiation and high connectivity were observed 

for each of the three species. This differentiation may result from intrinsic features of the 

species and extrinsic features of the environment, whereas the connectivity is mainly 

influenced by the pelagic larval duration. These patterns of differentiation are in accordance 
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with a proposed vicariant biogeographic hypothesis for the origins of regional faunas of the 

IP. Phylogenies were similar to those published, with additional taxa not altering the previous 

groupings found. Conspecifics from the two regions clustered together, with varying degrees 

of differentiation among the WIO and IP, depending on the species. Members of the 

Caesionidae were nested within Lutjanidae, suggesting that morphological characters 

separating the two families are taxonomically insignificant. This affirms previous notions that 

the Caesionidae should be a subfamily within the Lutjanidae. This is the first multi-gene 

study, examining differentiation in multiple species of snapper over a wide geographic area in 

the WIO, and the results of this study could have potential implications for fisheries 

management and conservation. 

 

Keywords: marine, genetics, phylogeography, biogeography, mitochondrial DNA, nuclear 

DNA,  
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CHAPTER ONE 

 

GENERAL INTRODUCTION 

 

1.1. Population structure and phylogeography 

 

Several studies on marine species (Warwick & Clarke, 2001; Borsa, 2003; Dawson & 

Hamner, 2005; Teske et al., 2008; Chlaida et al., 2009) emphasise that the marine 

environment lacks obvious physical barriers to dispersal, which means that species can 

potentially disperse over large distances. The main mode of species dispersal is thought to be 

by oceanic currents, mainly during the pelagic larval stage (Dawson & Hamner, 2005). 

However, some species are also highly mobile as adults (Árnason, 2004; Domeier & Speare, 

2012), leading to high rates of gene flow between distant localities (Palumbi, 1994; Chlaida et 

al., 2009). D’Amato and Carvalho (2005) suggested that gene flow, population history and 

environmental conditions influence genetic diversity. Over time, separated populations 

accumulate mutations, resulting in population divergence; the opposite occurs when 

individuals from other populations migrate into local populations and populations converge 

through successful reproduction (Bernardi et al., 2001). Schizas et al. (1999) suggest that 

population structure can occur in species independent of dispersal rates. Population history, 

habitat preference, local adaptation and oceanographic conditions are some of the 

mechanisms influencing marine population structure (Palumbi, 1994; González-Wangüemert 

et al., 2010). For example, Vollmer and Palumbi (2007) found great differentiation among the 

staghorn coral Acropora cervicornis populations separated by greater than 500 km, and even 

among reefs that were 2 km apart. Palumbi (1995) detected great genetic differentiation 

between populations of tide-pool copepods separated by a few kilometres, despite a larval 

stage of more than six weeks and the ability of adults to drift along rocky outcrops on which 

they live. 

 

Isolation by distance (IBD), i.e., genetic differences induced by geographically-restricted gene 

flow (Wright, 1943), is another way that marine populations diverge and become genetically 

differentiated (Hardy & Vekemans, 1999; Bohonak, 2002). This has been shown by the 

isolation of Marquesas from other West Pacific localities in surgeonfish Acanthurus 

triostegus, influenced by ocean currents (Planes & Fauvelot, 2002). Palumbi et al. (1997) 
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detected strong genetic structure among populations of sea urchins (genus Echinometra) 

separated by 5000 – 10 000 km, but low structure among populations separated by 2500 – 

5000 km, despite the high dispersal potential of these species. 

 

1.2. Larval dispersal and connectivity 

 

Dispersal refers to the movement of individuals among populations (Chenoweth et al., 1998; 

Shulman, 1998), leading to connectivity (Mora & Sale, 2002). Dispersal of larvae is important 

in maintaining gene flow over great distances, particularly in organisms with sedentary adults 

(Kinlan & Gaines, 2003). Individuals of some species are highly mobile as adults (e.g. 

Atlantic cod, Gadus morhua) and are able to travel as individuals of reproductive age over 

large distances, thus adding to the potential for short- and long-distance gene flow over large 

areas (Árnason, 2004; Leis et al., 2007; Wu et al., 2009). The pelagic larval duration (PLD) is 

generally assumed to promote species distribution and connectivity in the marine environment 

(Roberts, 1997; Riginos & Victor, 2001; Leis, 2002; Palumbi, 2003), and this has implications 

for the understanding of biogeography and population dynamics (Wellington & Victor, 1989; 

Cowen et al., 2000). Larval transport is crucial for maintaining the integrity of many marine 

species and for inhibiting speciation that could result from the isolation of adult individuals in 

local patches of habitat (Planes, 2002). Pelagic larval duration can last for a few days to 

several months, depending on the species (Wellington & Victor, 1989; Almany et al., 2007). 

For example, the PLD of the pomacentrid fish Amblyglyphidodon curacao is 15 – 22 days 

(Leis et al., 2007), whereas it can last for two to three months in the crab Cancer pagurus 

(Ungfors et al., 2009). Variability in larval transport will be determined by the interactions of 

water masses, winds, tides, currents and water temperature (Cowen, 2002; Leis & 

McCormick, 2002). These processes could either result in reduced gene flow and resultant 

population differentiation or facilitate genetic connectivity (Endler, 1973). Furthermore, 

oceanographic features like eddies and fronts can prevent mixing and diffusion of pelagic 

larvae, and two adjacent sites on different sides of an oceanographic front may rarely 

exchange migrants (White et al., 2010). Some studies have shown that larvae often recruit to 

their natal reefs, resulting in reduced dispersal (Taylor & Hellberg, 2003; Almany et al., 

2007). Local larval retention and larval behaviour, i.e., the swimming abilities of many coral 

reef fishes, are some of the factors assumed to reduce dispersal of marine fish larvae (Meekan 

et al., 1993; Cowen et al., 2000; Leis, 2002; Taylor & Hellberg, 2003; Leis et al., 2007).  
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1.3. Molecular data 

 

Molecular data can be categorised by function (protein-coding vs. non-coding vs. structural 

RNA) and by genome (mitochondrial vs. nuclear) and different categories have distinct 

properties (Springer et al., 2001). Molecular methods offer a wealth of characters for 

systematic studies (Avise, 1994). Hackett (1996) regarded some of the advantages of 

molecular data, particularly DNA sequences, as being the known genetic base and mode of 

inheritance of variation, and the large number of variable characters that can be reviewed. 

These markers are very useful in evolutionary studies of animals and plants as they can be 

interpreted more objectively than earlier methods, which involved morphological characters 

(Hillis & Moritz, 1990). Earlier methods employed to determine genetic variation were based 

on the indirect expression of DNA loci in immuno-assays, protein profiles and allozymes 

(Kocher et al., 1989; Begg & Waldman, 1999). The major impact on systematics and 

determining genetic variation occurred with the advent of DNA sequencing (Sanger et al., 

1977) and polymerase chain reaction (PCR: Saiki et al., 1988) technologies. These methods 

were useful in unravelling the systematics of species that were morphologically similar. 

Consequently, molecular systematics and phylogeographic approaches grant the opportunity 

to make inferences about species biogeography, phylogeographic structure and relationships, 

and the processes that have led to present-day distribution of genetic diversity (Hillis & 

Moritz, 1990; Avise, 2009). 

 

Molecular markers have provided the means to assess the extent to which reef fish species are 

genetically structured, the spatial scale of partitioning and the temporal pattern of population 

connectivity between isolated populations (Horne et al., 2008). Molecular data have also been 

used to resolve species relationships within different groups/taxa such as lutjanids (Guo et al., 

2007; Miller & Cribb, 2007), gobies (Wang et al., 2001), sunfishes and black basses (Near et 

al., 2004). In determining population differentiation, Waples (1987) found a negative 

correlation between estimated dispersal potential and genetic differentiation among various 

species of shore fishes. Veilleux et al. (2011) found differentiation between western and 

eastern Australian populations of Lutjanus carponotatus due to local adaptation. Viñas et al. 

(2010) detected genetic differentiation in between eastern and western populations of the 

swordfish Xiphias gladius in the Mediterranean Ocean, influenced by oceanographic currents. 
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Marine fishes often have high fecundity, large population sizes and large geographic ranges, 

leading to the expectation of high gene flow among populations (Borsa, 2003). Although 

many studies confirm this expected pattern for species with high dispersal capabilities, there 

are, however, exceptions to this paradigm in the marine environment (Avise et al., 1987; 

Palumbi, 1994). For example, the cleaner goby Elacatinus evelynae shows strong genetic 

differentiation, influenced by larval retention, despite a pelagic larval duration of 21 days 

potentially allowing for great dispersal (Taylor & Hellberg, 2003). Therefore, high dispersal 

abilities do not always result in genetic homogeneity, and population differentiation can be 

due to factors such as geographic isolation, marine barriers (ocean circulation patterns, water 

temperature, eddies and jets), behavioural limits to dispersal and natural selection leading to 

reduced gene flow (Schizas et al., 1999). 

 

1.3.1. Mitochondrial DNA (mtDNA) 

 

Animal mitochondrial DNA (mtDNA) is the most well studied piece of eukaryotic DNA. It is 

a small duplex, circular molecule (Figure 1.1), that is easy to purify relative to other 

organellar genomes, due to its buoyant density and high copy number (Wilson et al., 1985). 

The mtDNA of multicellular organisms has two ribosomal RNA genes (12S and 16S), 22 

transfer RNA (tRNA) genes, and 13 proteins that are tightly packed in about 15 kilobases of a 

double-stranded DNA molecule (Wilson et al., 1985). Although, mtDNA is a small 

component of the macromolecules in a mitochondrion, it plays an important role in energy-

yielding metabolism and protein synthesis within the mitochondrion and possibly contributes 

to the structure of the cell surface (Wilson et al., 1985; Saccone, 1994). Mitochondrial DNA 

has proved powerful in understanding the evolutionary relationships among individuals, 

populations and species (Irwin et al., 1991). Mitochondrial DNA sequence analysis has 

become one of the most widely used tools in studies of molecular phylogeny and 

phylogeography among vertebrates, including fish, because it is easy to handle and can be 

easily purified and sequenced (Avise, 2000). However, the applications largely depend on the 

gene of choice and its mutation rate. Several studies have used mitochondrial DNA to 

examine phylogeography (Rocha et al., 2008; Winters et al., 2010), population genetics 

(Ovenden & Street, 2003; Ovenden et al., 2004), and phylogenetics and biogeography (Orrel 

et al., 2002; Bernardi et al., 2004) of marine fishes. 
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Figure 1.1. The animal mitochondrial gene order, illustrating the different genes, including 

those used in the current study: cyt b (1), ND2 (2; NADH-2), COI (3), COII (4) and 16S r 

RNA (5; 16S). Figure taken from Meyer (1993). 

 

 

Mitochondrial DNA is the marker of choice because of some of its characteristics, which 

include maternal transmission, higher mutation rates compared to nuclear DNA, a lack of 

recombination, its haploid nature and smaller effective population size (Wilson et al., 1985; 

Saccone, 1994; Neigel, 1997; Avise, 2000; Sunnucks, 2000; Rokas et al., 2003). It also 

accumulates mutations faster than nuclear DNA, making it suitable to infer genealogical 

relationships among recently diverged species and for estimating divergence times (Kocher et 

al., 1989; Wilson et al., 1985; Avise, 1994; Neigel, 1997). To examine regional genetic 

structure in the three species, cytochrome b (cyt b) and NADH dehydrogenase 2 (NADH-2) 

were used in the current study. Cytochrome b has been successfully used in resolving 

population structure in the soldierfish Myripristis berndti (Craig et al., 2007; Muths et al., 

2011), the snapper Lutjanus purpureus (De Salles et al., 2006) and the nine-spined 

stickleback Pungutius pungutius (Teacher et al., 2011). Bradman and Appleton (2011) 

successfully used NADH-2 to detect differentiation among populations of the swordfish 
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Xiphias gladius. For the study of phylogenetic relationships among WIO snappers, 16S 

rDNA, cytochrome c oxidase I and II (COI and COII, respectively) were selected. Hanel et al. 

(2002) successfully used 16S rDNA to resolve the phylogenetic relationships and brood-care 

behaviour in the wrasse tribe Labrini (Labridae). 

 

For the study of phylogenetic relationships, Elliot et al. (1999) used cytochrome b and 16S 

rDNA to determine evolution in anemonefishes (family Pomacentridae). The phylogenetic 

relationships of angelfishes (Pomacanthidae) were resolved using 12S rDNA and 16S rDNA 

(Bellwood et al., 2004). Fessler and Westneat (2007) used combination of 12S rDNA, 16S 

rDNA, NADH-3, Tmo-4C4 and RAG-2 to resolve phylogenetic relationships of 

butterflyfishes (Chaetodontidae). Chakrabarty (2006) successfully applied a combination of 

mitochondrial (including 16S rDNA and COI) and nuclear (S7 intron 1 and Tmo-4C4) 

markers to resolve relationships within the Cichlidae. Guo et al. (2007) resolved the 

phylogenetic relationships of the South China Sea (SCS) snappers by applying cytochrome b 

and COII. Based on these studies, it is clear that these genes can successfully be used 

independently or in combination with other genes to either determine connectivity among 

populations or the phylogenetic relationships among fish species. 

 

As with most applications, there are drawbacks associated with the use of mtDNA (Meyer, 

1993; Saccone, 1994). These are (1) the lack of recombination, which greatly diminishes the 

power to detect significant spatial patterning (Palumbi & Barker, 1994; Sunnucks, 2000), and 

(2) the exclusive reliance on mtDNA data alone will allow only the re-construction of 

maternal lineages (Avise et al., 1987; Slatkin & Maddison, 1990). Heteroplasmy, when two or 

more genotypes co-exist within the same individual, is another limitation. Nevertheless, 

heteroplasmy poses few problems since it is rare (Avise et al., 1987). There is also the 

possibility of paternal transmission, which is estimated to be one paternal mtDNA per 

thousand maternal mtDNAs transferred to the zygote in insects and mice (Lansman et al., 

1983; Gyllensten et al., 1985). 

 

 

 

 

 



7 

 

1.3.2. Nuclear DNA (nDNA) 

 

The nuclear genome provides an array of markers for evolutionary studies. Among others, it 

is characterised by both the coding (exon) and non-coding (intron) regions that evolve at 

different rates, allowing for inferences of intra-population dynamics based on markers from 

independent linkage groups (Sunnucks, 2000; Fujita et al., 2004). For most organisms, exons 

were widely used for systematic studies. Introns are now becoming the focus of systematic 

studies (Zhang & Hewitt, 2003), as they appear to harbour a greater degree of genetic 

polymorphism within and between species and an increased rate of evolution when compared 

to exons, with exons presenting ideal places to place PCR primers (Palumbi & Barker, 1994; 

Chow & Hazama, 1998; Zhang & Hewitt, 2003). Furthermore, introns are relatively free from 

the functional (coding) constraints imposed on exons, resulting in molecular markers that 

show little base compositional bias, low transition-transversion ratios and minimal among-site 

rate heterogeneity (Guo & Chen, 2010). Von der Heyden et al. (2008) applied a combination 

of mitochondrial and nuclear genes to detect population structure among populations of the 

endemic South African bluntnose klipfish Clinus cottoides. They were able to detect 

significant geographic differentiation with mitochondrial genes and shallow but significant 

population structure with the nuclear gene. Schinske et al. (2010) used a combination of 

mitochondrial and nuclear genes, and morphological data to study the phylogeography of the 

flatfish Hypsopetta guttulata. Therefore, the inclusion of nDNA markers in evolutionary and 

population-genetic studies is indispensable for a better understanding of evolutionary 

processes that have occurred, due to differing mutation rates and inheritance properties 

(Zhang & Hewitt, 2003). Parallel analysis of nuclear DNA and mtDNA is necessary as it 

offers insight into different patterns of evolution and reflects different aspects of population 

biology and history (Palumbi & Barker, 1994; Fujita et al., 2004). 

 

1.4. Lutjanidae (snappers) 

 

1.4.1. Phylogenetic relationships 

 

Fishes of family Lutjanidae (snappers) are mainly confined to tropical and subtropical marine 

waters distributed throughout the eastern Pacific, Indo-West Pacific, and eastern and western 

Atlantic (Allen, 1985; Allen & Talbot, 1985). Snappers are perch-like, reef-dwelling marine 
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fishes that are slender- to deep-bodied with a truncate to deeply forked caudal fin. They have 

scaly sheaths at the bases of the dorsal and anal fins, teeth present on the vomer, and are 

without filamentous soft dorsal or anal fin rays (Allen, 1985). The family is composed of 17 

genera and over 120 species. The Lutjanidae has been split into four subfamilies (Allen 1985, 

1987): (1) Etelinae, containing five genera: Aphareus, Aprion, Etelis, Pristipomoides, and 

Randallichthys; (2) Apsilinae, containing four genera: Apsilus, Lipocheilus, Paracaesio and 

Parapristipomoides; (3) Paradicichthyinae, containing two monotypic genera: Symphorus and 

Symphorichthys; and (4) Lutjaninae, containing six genera: Hoplopagrus, Macolor, Ocyurus, 

Pinjalo, Rhomboplites and Lutjanus. The Etelinae (jobfishes) are the most primitive group, 

with Apsilinae intermediate to the Etelinae and the Lutjaninae + Paradicichthyinae (the most 

advanced groups). The Paradicichthyinae is the sister-taxon to the Lutjaninae and 

Caesionidae, which are often included in the Lutjanidae (see below) (Johnson, 1980). The 

genus Lutjanus, which is the focus of this study, is the largest in the subfamily with 65 known 

species (Allen, 1985). Three species from this genus inhabit freshwater streams, while the 

majority are found in the marine environment, from shallow to intermediate depths (Allen, 

1985). 

 

The Caesionidae (fusiliers) are related to the Lutjanidae and together these comprise the 

superfamily Lutjanoidea (Johnson, 1980). There is an ongoing debate about the relationship 

between the Lutjanidae and Caesionidae; whether they should be treated as separate families 

or whether the Caesionidae be placed as a subfamily within the Lutjanidae (Johnson, 1980; 

Leis, 1987; Carpenter, 1990; Johnson, 1993; Miller & Cribb, 2007). The Caesionidae is 

divisible in two subfamilies (Allen, 1985; Carpenter, 1987, 1990): (1) Caesioninae, containing 

two genera: Caesio and Pterocaesio, and (2) Gymnocaesioninae, containing two genera: 

Gymnocaesio and Dipterygonotus. These fishes are planktivorous, thus, differing widely in 

feeding habits from the Lutjanidae, which are mostly benthic carnivores (Carpenter, 1987). 

 

1.4.2. Study taxa 

 

Three species from the genus Lutjanus, the twin-spot red snapper Lutjanus bohar (Forsskål, 

1775), the dory snapper Lutjanus fulviflamma (Forsskål, 1775) and the bigeye snapper 

Lutjanus lutjanus Bloch, 1790, were selected for the study of genetic differentiation and 

connectivity across the Western Indian Ocean (WIO). Various other species from the genus 
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were also included to determine the phylogenetic relationships and placement of the WIO 

snappers in context to the Indo-Pacific (IP) snappers. Literature has shown that lutjanids have 

a wide distribution across the Eastern Pacific, Indo-Pacific, Eastern Atlantic and Western 

Atlantic (Allen, 1985). 

 

Specific studies done on representatives of the family Lutjanidae have looked at population 

genetic structure of Lutjanus campechanus (Garber et al., 2004; Pruett et al., 2005) and 

Lutjanus fulviflamma (Dorenbosch et al., 2006), larval development in the genus Macolor 

(Leis, 2007), and reproductive biology of Lutjanus argentiventris (Muhlia-Melo et al., 2003). 

Only scant information is known about other species in the genus. Two papers examining 

phylogenetic relationships within the genus Lutjanus were published; one covered the 

phylogenetic relationships of the South China Sea (SCS) snappers (Guo et al., 2007) and the 

other IP snappers (Miller & Cribb, 2007). However, none of them included the WIO 

representatives. Therefore, a combined data set from the current study and these studies was 

used to examine differentiation among conspecific representatives from the two regions and 

to determine the position of the WIO snappers in the wider IP. 

 

Members of the genus Lutjanus have variable external colouration, often consisting of yellow, 

reddish, grey or brown colours, with a pattern of stripes or bars on the sides (Allen, 1985). 

The external colouration of most species appears the same and often species are misidentified 

in the field. For instance L. bengalensis and L. quinquelineatus are both “blue-lined” species 

but the former has four stripes while the latter has five stripes (Allen, 1985). Lutjanus 

fulviflamma and L. ehrenbergii both have a prominent black-spot, with six to seven stripes for 

L. fulviflamma, while L. ehrenbergii has four to five stripes (see Allen, 1985). Morphometrics 

are included in the present study to determine if the patterns of intraspecific differentiation 

seen in genetics are also seen in the morphology (or vice versa). This will be done strictly for 

Lutjanus fulviflamma (Chapter 3) because of better sample size. 

 

1.4.2.1. Lutjanus fulviflamma (Forsskål, 1775) – dory snapper  

 

The dory snapper (Figure 1.2) is associated with coral reefs across the Indo-Pacific (IP) from 

Samoa to East Africa (with their distribution extending southwards to East London in South 

Africa), and from Australia northwards to the Ryukyu Islands (Allen, 1985). The dory 
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snapper is often found in occurrence with big-eye and blue-stripped snappers (Lutjanus 

lutjanus and L. kasmira, respectively). Juveniles of this species are found in the mangrove 

habitats or in the lower reaches of freshwater streams (Allen & Talbot, 1985).  

 

 

 

Figure 1.2. Illustration of Lutjanus fulviflamma (Forsskål, 1775). Illustration taken from 

Allen (1985). 

 

 

These environments are often nutrient rich and offer safe refuge from predators. Lutjanus 

fulviflamma can grow to a total length (TL) of 35 cm but more commonly reaches 25 cm 

(Allen, 1985; Branch et al., 1994; Froese & Pauly, 2006). For a description of the species, 

consult Allen (1985). 

 

1.4.2.2. Lutjanus bohar (Forsskål, 1775) - twin-spot red snapper 

 

The twin-spot red snapper (Figure 1.3) is associated with coral reefs, including sheltered 

lagoons and outer reefs across the Indo-West Pacific (IWP); occurring from the Marquesas 

and Line Islands to East Africa (with the distribution extending as far south as Durban), and 

from Australia northwards to the Ryukyu Islands (Allen, 1985). Lutjanus bohar can grow to a 

maximum 75 cm (TL) but more commonly attains 50 cm (Allen, 1985). For a species 

description, consult Allen (1985). Twin-spot red snappers are large, slow growing, solitary 
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species, often found adjacent to steep outer reef slopes and occasionally found in groups 

(Allen & Talbot, 1985; Branch et al., 1994; Marriot et al., 2007). 

 

 

 

Figure 1.3. Illustration of Lutjanus bohar (Forsskål, 1775). Illustration taken from Allen 

(1985). 

 

 

1.4.2.3. Lutjanus lutjanus Bloch, 1790 – bigeye snapper 

 

The bigeye snapper (Figure 1.4) is associated with rocky and coral reefs across the Indo-West 

Pacific; from the Solomon Islands to East Africa, and from Australia to southern Japan 

(Allen, 1985). They are found in large schools of more than 100 individuals with other 

Lutjanus species (Allen, 1985; Smith & Heemstra, 2003). Lutjanus lutjanus can reach a 

maximum of 30 cm (TL) but common commonly grows to 19 cm (Allen, 1985; Froese & 

Pauly, 2006). For the description of the species, consult Allen (1985). 
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Figure 1.4. Illustration of Lutjanus lutjanus Bloch, 1790. Illustration taken from Allen 

(1985). 

 

 

1.4.3. Habitat and Biology 

 

Snappers are active predators, feeding mostly at night on a variety of foods, including fishes 

(the dominant diet of most species), crustaceans, gastropods, cephalopods and urochordates 

(Allen, 1985; Smith & Heemstra, 2003). Lutjanids spawn small, spherical, pelagic eggs, with 

incubation times generally ranging from 17 to 36 hours, depending on the species and 

temperature (Allen, 1985; Grimes, 1987; Leis, 1987). To some degree, spawning occurs year-

round with maximum reproductive activity during the northern hemisphere spring and 

summer, mostly between April and July (Leis, 1987; Shimose & Tachihara, 2005; Grandcourt 

et al., 2006). The larvae develop elongate fin spines and extensive spination on the head. 

Lutjanids, like other tropical marine reef fishes, have a biphasic life cycle that includes 

sedentary or reef-associated adults and a pelagic larval stage, allowing for great dispersal 

potential (Fisher et al., 2005). Zapata and Herron (2002) studied the PLD of five species of 

snappers, Hoplopagrus guntheri, Lutjanus argentiventris, L. guttatus, L. novemfasciatus and 

L. viridis. Their results showed L. viridis to have a higher PLD (37.9 days) with L. 

novemfasciatus having the lowest (20.6 days). It is assumed that longer PLD will allow for 
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the colonisation of distant localities. Compared to other lutjanids, these PLDs are short. For 

instance, the PLD of the jobfish Pristipomoides filamentosus can last up to 180 days (Gaither 

et al., 2011a). 

 

1.5. Study area 

 

The Food and Agriculture Organization of the United Nations (FAO, 1993, 2011a) divided 

the world’s marine environment into 19 major fishing areas. The present study region, the 

Western Indian Ocean (WIO, Area 51), accounts for 8% of total marine waters (Van der Elst 

et al., 2005). The WIO (Figure 1.5) is considered a biogeographic sub-region of the Indian 

Ocean (Gullström et al., 2002). It stretches along the East African coast from Somalia to 

South Africa, and includes the Red Sea, Gulf of Oman and island states (Comoros, 

Seychelles,  

 

 

Figure 1.5. The delimitation of the Western Indian Ocean. Countries and island states 

indicated include South Africa (SA), Mozambique (MOZ), Tanzania (TAN), Kenya (KEN), 

Somalia (SOM), Maldives (MAL), Seychelles (SEY), Comoros (COM), Madagascar (MAD), 

Reunion (REU) and Mauritius (MAU). The Red Sea (RS) and Gulf of Oman (GoO) are 

included within the WIO. 
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Reunion, Mauritius and Madagascar), and extending towards the central Indian Ocean 

(Gullström et al., 2002; Wafar et al., 2011). This area comprises over 12 200 km of coastline 

with coastal ecosystems including major estuaries, coastal lagoons, mangrove forests, coral 

reefs, sea-grass beds, mud flats, algal beds, barrier islands, and sandy and rocky beaches 

(Smith & Heemstra, 1986; Van der Elst, 1990; Ngoile & Linden, 1997). These environments 

sustain diverse marine life and are critical as a source of subsistence for the coastal 

communities (Ngoile & Linden, 1997). 

 

The WIO is one of the most dynamic and variable large marine ecosystems in the world 

(Vousden et al., 2008; Van der Elst et al., 2009). The physical complexity of the WIO 

(Gullström et al., 2002; Francis & Torell, 2004; Lutjeharms, 2006) makes it suitable to 

formulate testable hypotheses regarding species diversity, population dynamics (with 

reference to population connectivity and differentiation) and biogeography. 

 

1.5.1. Physical oceanography of the study area 

 

The WIO is characterised by complex climate and current systems (Figure 1.6), strongly 

influenced by monsoonal winds (Schott & McCreary, 2001; Benny, 2002). The South 

Equatorial Current (SEC) is the major oceanic current in the WIO. It flows from the eastern 

Indian Ocean to northern Madagascar and proceeds towards the continent to northern 

Mozambique and southern Tanzania (Warren et al., 1966; Kemp, 1998). On contact with the 

continent, it splits into two components, which flow north and south. One component 

continues northward forming the East African Coastal Current (EACC) during the Southeast 

Monsoon (April – October) season (Figure 1.6: A) and leaves the continent. During the 

Northeast Monsoon (November – March) season (Figure 1.6: B), it forms the Somali Counter 

Current (SCC) (McClanahan, 1988). According to McClanahan (1988), these currents cause a 

major downwelling along Tanzania and southern Kenya during the Northeast Monsoon, 

whereas an upwelling occurs along northern Somalia during the Southwest Monsoon. The 

southward-flowing SEC continues down as the Mozambique Current (MC) into the 

Mozambique Channel. The flow of water within the channel shows a strong poleward  
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Figure 1.6. Schematic presentation of the Western Indian Ocean currents during the 

Southwest Monsoon (A) and Northeast Monsoon (B). The solid lines indicate the eastern 

boundary of the Western Indian Ocean region. Current branches include the South Equatorial 

Current (SEC), East African Coastal Current (EACC), Somali Current (SC), Agulhas Current 

(AC) and Southeast Madagascar Current (SEMC), as discussed in the text. Figure from Schott 

& McCreary (2001). 
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movement along the eastern shelf of Mozambique (Donohue & Toole, 2003). Quartly and 

Srokosz (2004) used satellite observations and indicated the presence of cyclonic eddies off 

the shelf edge along the southwestern coast of Madagascar, which draw coastal water into the 

channel. To the south, towards the end of the channel, the Mozambique shelf is wide and 

constitutes the Delagoa Bight (Lutjeharms, 2006). Some water entering this bight comes from 

the passing anti-cyclonic Mozambique eddies, resulting in the Delagoa Bight eddy 

(Lutjeharms, 2006). The Agulhas Current (AC) is composed of water from the SEC and from 

recirculation in the southwest Indian Ocean subgyre (Stramma & Lutjeharms, 1997; De 

Ruijter et al., 2005; Lutjeharms, 2006, 2007). How the SEC acts as a source for the AC has 

not been determined, but most water comes from the subgyre (Lutjeharms, 2006). 

Nonetheless, it flows past the southern tip of Africa and, upon reaching the Agulhas Bank, it 

swings back eastwards in the south Indian Ocean as the Agulhas Return Current (Lutjeharms, 

1998). Along KwaZulu-Natal, just north of Durban, the AC flows closer to shore forming the 

Natal Bight circulation (Lutjeharms et al., 2000; Lutjeharms, 2007). An upwelling upstream 

of the bight is an important hydrodynamic feature in the region of the bight (Lutjeharms & De 

Ruijter, 1996; Lutjeharms et al., 2000; Donohue & Toole, 2003; Lutjeharms, 2007). This 

upwelling and the presence of the AC causes the circulation off the KwaZulu-Natal shelf to 

undergo frequent current reversals, restricting the distribution of the coastal biota, mostly 

from the Indo Pacific (IP), with the open ocean (Schumann, 1988; Lutjeharms et al., 2000; 

Van der Elst et al., 2005). Little is known about the oceanography east of Madagascar. 

However, Lutjeharms (2006) noted the presence of the Southeast Madagascar Current 

(SEMC) and a likely upwelling on the southeast of the island – the interaction between the 

two remains unexplored. Other currents indicated in Figure 1.2 are not discussed since they 

are outside the study area. 

 

The currents discussed above may have played a role in influencing connectivity or 

differentiation in the WIO. For example, the EACC together with the SEC and the SECC 

resulted in larval exchange on large geographic scales in the blue-barred parrotfish Scarus 

ghobban (Visram et al., 2010a). Complex current systems and eddies along the Mozambique 

Channel have also been shown to play a role in influencing dispersal and establishing 

biogeographic patterns (Procheş & Marshall, 2002; Samyn & Tallon, 2005; Bourjea et al., 

2007). While the inshore waters along the KwaZulu-Natal coast retain eggs and fish larvae in 
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this region, offshore spawned eggs and larvae are transported southward in the AC (Whitfield, 

1990). 

 

1.5.2. WIO fish diversity 

 

The WIO is characterised by high levels of regional endemism (Branch et al., 1994). Areas of 

high endemism, however, are not uniformly distributed and are found around island states, 

such as Mauritius and Reunion, along South Africa (the KwaZulu-Natal province) and 

southern Mozambique, and in the Red Sea (Van der Elst, 1988; Cox & Moore, 2005; Van der 

Elst et al., 2005). Smith and Heemstra (1986) recorded 2 200 species occurring in southern 

African waters, which comprise about 15% of the total marine fishes in the world. Van der 

Elst (1985) regarded the South African fauna as originating from the Indo-Pacific and later 

divided it into five categories based on its origin (Van der Elst, 1988), where he described 

15.9% as endemic, 73.8% from the Indo-Pacific, 1.8% from the Atlantic and 0.3% from the 

Southern Ocean, while 8.4% was circumglobal. This diversity and composition led to a 

conclusion that the South Western Indian Ocean, particularly off KwaZulu-Natal, possesses a 

fauna that is distinctive from elsewhere in the Indian Ocean (Van der Elst, 1988). 

 

The diverse fish fauna of the WIO is hypothesised to have originated from the IP (Briggs 

1999). The Indo-Malayan region has been described as a centre of speciation or origin, with 

species distributions maintained by dispersal or migration from this centre (Randall, 1998; 

Briggs, 1999; Bellwood & Wainwright, 2002; Heads, 2005). There is a reduction in species 

diversity away from this centre and the older taxa are found to the periphery of this region 

(Briggs, 1999). Apart from dispersal, vicariance has been proposed for the origin of regional 

faunas of the WIO. Vicariance is described as the separation of continuously-distributed taxa 

due to a geographic or physical barrier. This leads to the separation of allopatric populations, 

resulting in the discrete distributions of taxa and a pattern of sequentially-related groups being 

geographically adjacent to each other (Hocutt, 1987; Pandolfi, 1992; Santini & Winterbottom, 

2002). Santini and Winterbottom (2002) proposed biogeographic regions for the Indo-West 

Pacific, which included the Red Sea, Somali Basin, Mozambique Basin, Arabian Basin, 

Maldives/Chagos Laccadive Ridge and Mascarene Plateau within the WIO. In order to 

support vicariant hypotheses, historical events separating species will have to be identified. 

This would require the use of the fossil record, which is poor in this region (Bellwood & 
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Wainwright, 2002). These processes (Indo-Malayan connections, vicariance and regional 

current-mediated dispersal) could act individually or in combination to produce regional 

faunas (Procheş & Marshall, 2002; Samyn & Tallon, 2005), but their contributions have not 

been established (Bellwood & Wainwright, 2002). 

 

1.5.3. Western Indian Ocean biogeographic regions 

 

Several biogeographic hypotheses have been proposed for the WIO (Hocutt, 1987; Pandolfi, 

1992; Santini & Winterbottom, 2002). However, Santini & Winterbottom’s (2002) hypothesis 

is more congruent with the features of the region (Figure 1.7). These regions are discussed 

below: 

 

1.5.3.1. Red Sea 

 

The Red Sea lies between about 13 N and 30 °N (Sheppard 2000). It is narrow and deep 

(Figure 1.7: 1), forming part of the Great East African Rift Valley system, and is connected to 

the Gulf of Aden and Indian Ocean by a shallow channel in the south (Roberts et al., 1992). 

The Red Sea is unique because it is partially isolated from the open ocean, with no river 

inflow and scant rainfall (Shaikh et al., 1986). The Red Sea is known for its steep, clear-

water, coral reefs in the north and vast areas of sedimentary shallows suitable for mangroves 

and sea grass growth in the southern half (Sheppard, 2000). Regions of the Red Sea are 

physically distinguishable in terms of temperature, salinity and endemic species (Van der Elst, 

1988). Roberts et al. (1992) described the thermal (increasing from north to south) and 

salinity (decreasing from north to south) gradients in the Red Sea. Similarly, a seasonal 

upwelling in the Gulf of Aden also forms a barrier to dispersal between Red Sea and the 

Indian Ocean (Sheppard et al., 1992). Within the Red Sea, most endemics are confined to the 

cooler and deeper northern part (Roberts et al., 1992), while the warm waters in the middle 

and southern parts could be a barrier to fishes adapted to these cooler waters (Randall, 1998). 
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Figure 1.7. Western Indian Ocean biogeographic regions as proposed by Santini and 

Winterbottom (2002): Red Sea (1), Somali Basin (2), Mozambique Basin (3), Arabian Basin 

(4), Maldives/Chagos Laccadive Ridge (5) and Mascarene Plateau (6). 

 

 

1.5.3.2. Somali Basin 

 

The Somali Basin (Figure 1.7: 2) is confined in the west by continental Africa, in the east by 

the Carlsberg Ridge and in the north by the continental shelf surrounding the island of Socotra 

(Beal et al., 2000; Santini & Winterbottom, 2002; Pushcharovsky, 2007). The basin is fed by 

the water from the Somali Current, driven by the Southwest Monsoon from May through to 

September (Smith & Codispoti, 1980; UNEP, 2004). In the northern winter, the current flows 

from north of the equator to about 2 ºS and in winter it reverses direction and flows north 

(Duing et al., 1980; Carbone & Accordi, 2000; UNEP, 2004). The surface waters of the 

Somali Basin are characterised by waters derived from the Arabian Sea and the Gulf of Aden 

(Warren et al., 1966). The Southwest Monsoon upwelling off the Somali coast (Warren et al., 

1966; UNEP, 2004) complicates interaction of these waters. This upwelling creates a physico-

chemical and thermal barrier (Kemp, 1998). 
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1.5.3.3. Mozambique Basin 

 

Simpson et al. (1979) described the Mozambique Basin (Figure 1.7: 3) as approximately 483 

km wide, bounded by the Mozambique Ridge and the Madagascar Ridge in the north, and in 

the south it connects to the South-West Indian Ridge east of the Prince Edward Fracture Zone 

system. The basin covers the central and southern, and on- and offshore parts of Mozambique 

(Salman & Abdula, 1995), and the northern parts of the KwaZulu-Natal province of South 

Africa (Samyn & Tallon, 2005). Along the coast, it is characterised by coral outcrops around 

Inhaca (Mozambique) and the northern parts of KwaZulu-Natal (Van der Elst, 1985; Samyn 

& Tallon, 2005). The east and south coasts of South African have been divided into 

biogeographic provinces characterised by different species assemblages and hydrological 

conditions; the warm temperate south coast and the subtropical east coast (Turpie et al., 2000; 

Harrison, 2002). However, the boundaries separating these provinces are not agreed upon (see 

Turpie et al., 2000; Von der Heyden et al., 2008). Griffiths et al. (2010) recognised additional 

regions along the South African coast (see Figure 1.8). 

 

 

 

Figure 1.8. The nine South African marine biogeographic regions as taken from Griffiths et 

al. (2010). 
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1.5.3.4. Maldives/Chagos Laccadive Ridge 

 

The Chagos are coral islands rising from the long, broad and slightly-curved plateau known as 

the Maldives/Laccadive Ridge (Figure 1.7: 5) (Heezen & Tharp, 1966), stretching over 2000 

km from the Indian subcontinent southwards (Parson & Evans, 2005). The Maldives 

Archipelago is at the centre of this ridge. There are 1 190 coral islands with numerous sand 

cays and faroes within the 23 atolls (Rajasuriya et al., 2002). Maldives functions as an 

important stepping-stone in transoceanic species dispersal (Sheppard, 1999, 2000; Rajasuriya 

et al., 2002). Winterbottom and Emery (1986) and Winterbottom et al. (1989) found that 

recruitment of pelagic larvae to the Maldives could come from other WIO localities or from 

the West Pacific, but the distances involved could be expected to filter out a proportion of 

those reef fishes with short pelagic stages. In addition, the distances involved could result in 

genetic differentiation within species between Maldives and other WIO localities. 

 

1.5.3.5. Mascarene Plateau 

 

The crescent-shaped Mascarene Plateau (Figure 1.7: 6) consists of shallow banks, ridges and 

channels (UNEP, 2004; Parson & Evans, 2005; New et al., 2005, 2007). It has no significant 

land mass and partially lies in the path of the South Equatorial Current (Turner et al., 2000; 

Gallienne et al., 2004; Conway, 2005; Gallienne & Smyth-Wright, 2005). This plateau has 

both continental (resulting from the breakup of Gondwana) and oceanic, volcanic 

components, which contribute substantially to its diversity (Payet, 2005). The northern part of 

the plateau is affected by the Northeast Monsoon and South Equatorial trade winds (from 

December to February), and by the South Equatorial Current during the remainder of the year 

(Gallienne et al., 2004; New et al., 2005). During the Northeast Monsoon, the Mascarene 

Ridge affects the westward flow of the South Equatorial Current, causing it to diverge and 

resulting in an increased mass of water downstream of the ridge (Gallienne et al., 2004; New 

et al., 2005). 

 

The Arabian Basin (Figure 1.7: 4) is not discussed here, because samples from this region 

were not included in the present study. 

 

 



22 

 

1.6. Rationale 

 

Studies of connectivity and differentiation on a historical (i.e. biogeographic) timescale are 

confounded by the fact that biogeographic accounts of the WIO have not considered the 

region in its entirety or have considered the region incidentally to the larger IP (Pandolfi, 

1992; Santini & Winterbottom, 2002). This knowledge gap exists despite the considerable 

diversity and endemism of some regions (see above). This study will contribute to this 

knowledge gap by sampling various localities in the region to examine patterns of 

connectivity and differentiation in lutjanid species. A molecular genetic approach will be 

followed to provide insights into the origin and relationship of regional faunas using three 

species (Lutjanus bohar, L. fulviflamma and L. lutjanus) as representatives or typical models, 

as they are widespread in the region (WIO). Snappers are sought after by recreational, 

commercial and artisanal fishers in the region (Allen, 1985), which is bordered by people 

living in developing countries and whose livelihoods depend on marine resources (Walmsley 

& Ninnes, 2006). By considering intraspecific relationships, phylogeographic breaks (genetic 

discontinuities separating geographic regions) can be detected. Intraspecific variation gives 

insights into contemporary and historical patterns of migration, connectivity, and the isolation 

of regions. The inclusion of species with different biology, habitat preferences and dispersal 

potentials (see Chapter 2) allows one to determine whether these species react similarly to the 

same environmental processes. These biogeographic breaks, patterns of genetic structure and 

species distributions can then be considered against life history and dispersal potential 

(Cowen, 2002; Planes, 2002). The interaction between environmental features and species 

biology could influence genetic differentiation (Todd et al., 1988). This has implications for 

understanding biodiversity and interactions among regional faunas (Santini & Winterbottom, 

2002). 

 

1.6.1. Research aims 

 

Studies focusing on population genetic structure of lutjanids were carried out in the Gulf of 

Mexico (Pruett et al., 2005; Saillant & Gold, 2006; Karlsoon et al., 2009), around Australia 

(Ovenden & Street, 2003; Salini et al., 2006; Van Herwerden et al., 2009), and East Asia 

(Zhang et al., 2006). Within the WIO, Dorenbosch et al. (2006) and Muths et al. (2012) 

conducted genetic studies on a single species each, with the former study (on Lutjanus 
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fulviflamma) not covering the entire region. Therefore, this study will include multiple species 

to examine population structure/connectivity in the three species (Lutjanus bohar, L. 

fulviflamma and L. lutjanus) in Chapters three and four. These chapters aim to: 

 

 Determine the relationships and interaction among, and the evolutionary history of 

different geographic regions in the WIO for each of the target species. 

 Identify the processes that have led to these relationships. 

 Consider the taxonomic status of the target species in WIO by considering whether they 

are widespread across the area or whether they harbour cryptic diversity. Cryptic species 

are common in marine taxa (Bickford et al., 2006) and widespread taxa often show 

regional differentiation (Gaither et al., 2010a). 

 

Studies focusing on phylogenetic relationships among the snappers have been conducted in 

the West Atlantic (Sarver et al., 1996; Gold et al., 2011), the Indo-Pacific (Miller & Cribb, 

2007) and the South China Sea (Guo et al., 2007), but none included WIO representatives. 

Therefore, chapter five aims to: 

 

 Examine the phylogenetic relationships of snappers found in the WIO in the context of the 

wider IP snappers. 

 Examine the extent of differentiation among the conspecifics from the WIO and the IP. 

 Determine the phylogenetic placement of taxa not included previously. 

 Consider the relationship between the Caesionidae and Lutjanidae, to determine the 

position of the Caesionidae. 

 

1.6.2. Key questions 

 

The key questions relating to the overall aims of the study and posed in each of the respective 

chapters are: 

 

 Is there regional differentiation or connectivity within each of the three species in the 

WIO? (Chapters 3 and 4). 

 Is there genetic differentiation among conspecifics between the WIO and IP/SCS? 

(Chapter 5). 
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 Are widespread species conspecific? (Chapters 3 to 5). 

 What are the processes or life-history characteristics that cause the observed patterns 

of differentiation? (Chapters 3 to 5). 

 Should the Caesionidae be considered a subfamily within Lutjanidae or as a separate 

family? (Chapter 5) 

 

1.7. Conservation and management 

 

Given the substantial threats to the marine environment and the importance of marine 

resources to communities and economies of the WIO region (Berg et al., 2002; Francis & 

Torell, 2004; Walmsley & Ninnes, 2006), effective measures are needed for conservation and 

sustainable management of the resources. Artisanal fishing provides an important source of 

food, employment and income for most coastal communities in the region (Ngoile & Linden, 

1997; Walmsley & Ninnes, 2006). A relatively limited number of specific groups (e.g. such as 

barracuda, rabbit-fish, sardines and mackerel) dominate this activity (UNEP, 2000). However, 

trends in the declared landings of marine resources from the WIO suggest that this ocean may 

be approaching its maximum harvest potential (FAO, 1993). Understanding intra-specific 

variation will aid in identification of unique stocks of exploited or exploitable species and 

management can then be initiated, such that exploitation in one region does not affect another 

negatively. For non-exploited resources, the assessment of genetic variation and stock 

structuring would be valuable as baselines for long-term monitoring and future sustainable 

management. Sustainable, well-managed fisheries are less likely to suffer over-fishing or 

stock collapse, thus reducing the vulnerability of fishing communities that depend on these 

resources (Walmsley & Ninnes, 2006). The knowledge of genetic structure of marine 

organisms can be used to inform conservation management. Reviews by Avise (1992) and 

Graves (1998) illustrated that a fuller understanding of population structure is necessary to 

make informed management and conservation decisions. Where this is not available, 

assumptions could be made based on information gained from taxonomically-related or from 

ecologically-similar species. For example, Bowen et al. (2005) suggested different 

management strategies at each life stage for the loggerhead turtle Caretta caretta. Carson et 

al. (2011) suggested marine protected areas (MPAs) for the spawning aggregates of mutton 

snapper, Lutjanus analis, for the preservation of adaptation and genetic variability. McCook 

et al. (2009) recommended a network of MPAs for coral reefs and associated habitats 
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throughout the Coral Triangle. Froukh and Kochzius (2007) proposed that the fourline wrasse 

Larabicus quadrilineatus be managed separately as two different stocks in the northern and 

the southern Red Sea. These studies present an array of cases where MPAs have been 

suggested in the hope that they will preserve all biotypes, prevent over-exploitation and 

ensure the sustainable use of marine resources (McClanahan et al., 2007; McCook et al., 

2009). The results of this study can therefore have direct implications for the conservation and 

management of marine resources in the WIO. 
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CHAPTER 2 

 

MATERIAL AND METHODS 

 

2.1. Sampling and processing 

 

Snappers were collected using different methods, including spearfishing, beach seine-netting 

(with a 10 x 2m, 1.2 cm mesh seine net), hook and line, and by applying rotenone in isolated 

rocky pools. However, the majority of the samples came from local fishermen and fish 

markets from various localities across the WIO. For molecular studies, fin or muscle tissue 

was cut and stored directly in 90-100% ethanol in a labelled tube in the field. Specimens were 

identified, photographed, measured, using standard length (SL) or total length (TL), and, 

where possible, voucher specimens were retained, labelled with the corresponding DNA tube 

number and fixed in 10% formalin. Genetic samples were later stored at -20°C until further 

analysis. All samples collected were accessioned in the National Fish Collection at the South 

African Institute for Aquatic Biodiversity (SAIAB) in Grahamstown. Specimens and tissue 

from other snappers were available at SAIAB and these were included in the study, while 

some of the samples were borrowed from other institutions or obtained from project 

collaborators. 

 

2.2. Genetic data generation 

 

2.2.1. DNA extraction 

 

Total DNA was extracted from fin clips or tissue following the protocol of the Promega DNA 

Purification Kit (Madison, New York). Extracted DNA was visualised on 1% agarose gel 

stained with ethidium bromide under ultraviolet light (UVP Transilluminator) to verify the 

quality and quantity of extracted DNA against a molecular weight marker. DNA extraction 

aliquots were labelled and stored in a -20°C freezer until further analysis. 
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2.2.2. Polymerase Chain Reaction (PCR) 

 

The PCR technique involves generating molecules of DNA from a single molecule in just a 

few hours, creating billions of amplicons (Mullis, 1990). For the study of regional genetic 

differentiation (Chapters 3 & 4) in L. fulviflamma, L. bohar and L. lutjanus, PCR 

amplification of three gene fragments (Cytochrome b, NADH-2 and S7 intron 1) was 

accomplished using universal primers (Table 2.1). Data for examining the phylogenetic 

relationships of these WIO snappers (Chapter 5) was gathered by amplification of two genes 

(16S and COII: Table 2.1). Each PCR reaction was made up to the total volume of 25 µL, 

consisting of 1X buffer, 2.5 mM MgCl2, 0.2 mM of each dNTP, 0.2 mM of each forward and 

reverse primer, 1 U Taq polymerase (Southern Cross Biotechnology, South Africa), 6 µL of 

DNA template (ca. 100 ng) and DNA-free water to fill the tube to the total volume. 

Amplification was performed in either a Master-Cycler Gradient (Eppendorf) or a MBS 

Satellite 0.2G (Thermo-Hybaid) thermal-cycler. A negative control was included with every 

PCR run and all PCR products were visualized on 1% agarose gel stained with ethidium 

bromide to verify the successful amplification of the target region by comparing these to a 

molecular weight marker of known size. 

 

 

Table 2.1. Primers used for PCR and cycle sequencing. Only the forward primers (indicated 

with an asterix) were used for cycle sequencing. 

 
Gene fragment Primer Primer sequence (5’ – 3’) Source  

 

Mitochondrial genes 

   

Cytochrome b CB12F* TGG CAA GCC TAC GCA AAA A Marko et al., 2004 

 CB13R TAT TCC GCC GAT TCA GGT AA  

NADH dehydrogenase II ND2F* CTA CCT GAA GAG ATC AAA AC Kocher et al., 1995 

 ND2R CGC GTT TAG CTG TTA ACT AA  

16S ribosomal DNA 16SAR* CGC CTG TTT ATC AAA AAC AT Kocher et al., 1989 

 16SBR CCG GTC TGA ACT CAG ATC ACG T  

Cytochrome c Oxidase II COIIF* CAA GCC AAC CAC ATA ACC Guo et al. 2007 

 COIIR TCG GGA GTC ACC AGT CTT TA  

Nuclear gene    

S7 intron 1 S7RPEX1F* TGG CCT CTT CCT TGG CCG TC Chow & Hazama, 1998 

 S7RPEX3R GCC TTC AGG TCA GAG TTC AT  
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2.2.3. DNA sequencing 

 

Prior to sequencing, all PCR products were purified using the QIAquick PCR purification kit 

(Qiagen), following the manufacturers’ protocol. After purification, the products were eluted 

to a total volume of 25 µL and visualised on 1% agarose gel. Fluoro-labelled terminator cycle 

sequencing was conducted using the protocol and products of the BigDye® Terminator v. 3.1 

Cycle Sequencing kit (Applied Biosystems). The reaction was made up of 1.5 µL Terminator 

Ready Reaction mix, 1.5 µL Sequencing buffer (5X), 0.5 µL primer (forward primers used in 

the PCR amplification diluted to 5 µM, see Table 2.1), 2 µL template DNA and DNA free 

water to fill the reaction to a total volume of 20 µL. After cycle sequencing the products were 

stored at -20 ºC. Cycle-sequencing products were then precipitated using an 

EDTA/NaOAc/EtOH protocol (Sambrook & Russell, 2001). The dried pellets were sent to the 

sequencing unit at Rhodes University (Grahamstown, South Africa) for analysis on an ABI 

3100® Prism (Applied Biosystems) automated sequencer. Alternatively, some PCR products 

for the study of regional differentiation and all PCR products for the phylogenetic study were 

sent to Macrogen (Korea) for purification, cycle sequencing and analysis. 

 

2.2.4. Statistical analyses 

 

2.2.4.1. Sequence alignment 

 

Prior to analysis, chromatograms were visualised with Chromas Lite 2.01 (Technelysium, 

available at http://www.technelysium.com.au/chromas_lite.html) and checked for errors and 

misreads. Manually-corrected sequences were examined in the multiple sequence editor 

Lasergene 9.0.5 (DNA Star Inc., Madison, WI) and finally aligned in ClustalX 2.0.12 (Larkin 

et al., 2007). For the nuclear S7 intron 1 data set, the sequences generated were aligned as 

above, with gaps retained and heterozygous positions coded using standard ambiguity coding, 

and then phased using Phase option (and the default parameters, using the MCMC algorithm) 

in DnaSP 5.10.1 (Librado & Rozas, 2009) to identify the component alleles of each individual 

from the ambiguities present in the sequence. 
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2.2.4.2. Nucleotide and haplotype diversity estimates 

 

To address the current levels of variation and genetic diversity of snapper populations, several 

methods were used, as implemented in DnaSP 5.10.1. Genetic diversity was examined by 

calculating haplotype diversity (HD) and nucleotide diversity (π) in each of the three species 

for cytochrome b, NADH-2 and S7 intron 1 for each locality and for the overall WIO sample. 

Nucleotide diversity is determined as the average weighted sequence divergence between 

haplotypes (Nei & Li, 1979). Haplotype diversity varies from zero to one (as a measure of 

frequency) and is the probability that two randomly drawn sequences will be different from 

one another (Nei & Tajima, 1980). 

 

Genealogical relationships among haplotypes/alleles were reconstructed using median-joining 

networks (Bandelt et al., 1999) to examine relationships and the geographic distributions of 

haplotypes/alleles. These networks were constructed in Network 4.6 (Fluxus Technologies, 

http://www.fluxus-engineering.com/sharenet.htm). Networks accommodate non-bifurcating 

relationships, multiple equally-parsimonious connections and regard some haplotypes as 

being genealogically ancestral to others. 

 

2.2.4.3. Population structure and Analyses of Molecular Variance (AMOVA) 

 

Genetic differentiation among localities was examined using pairwise ФST, an analogue to 

Wright’s (1965) F-statistic (FST), using Arlequin (Schneider et al., 2000; Excoffier & Lischer 

2010), for Lutjanus bohar, L. fulviflamma and L. lutjanus. FST –values are based on the 

frequency of haplotypes occurring in the different sampling localities, while ФST –values are 

calculated based on the divergences among these haplotypes (Excoffier et al., 1992). These 

divergences can be corrected based on an appropriate model of nucleotide substitution. The 

model selected would be (or would be most similar to) that determined to be the most 

appropriate model for the data by the Akaike Information Criterion (AIC: Akaike, 1974), 

which evaluates competing models within ModelTest 3.7 (Posada & Crandall, 1998). The 

fixation index ranges from zero (no genetic differentiation) to one (complete differentiation 

between localities). These tests were used in determining genetic differentiation among 

localities for each of the three species for each gene region (Chapters 3 & 4). 

 

http://www.fluxus-engineering.com/


30 

 

Genetic variation was examined using Analysis of Molecular Variance (AMOVA: Excoffier 

et al., 1992) in Arlequin 3.5.1.2 (Excoffier & Lischer, 2010). AMOVA determines the 

partitioning of variation across three hierarchical levels based on the geographical distribution 

of haplotypes/alleles [in case of this study; it can also be based on ecology, phenotype, age 

(juvenile vs adults), etc.] and considering the pairwise distances between them (Milot et al., 

2000). This was measured in terms of the F-statistic (Ф), which determines the correlation of 

haplotypic/allelic diversities at different levels of the hierarchical subdivision (Excoffier et 

al., 1992). In this study, ФCT is defined as the random permutation of all localities across 

regions, ФSC as permutation of individuals across localities within the same region, and ФST as 

permutation of individuals across localities without regard to their original locality or region. 

This approach, however, requires a priori definition of group structure. This involves 

grouping localities at different hierarchical levels to obtain the arrangement that maximises 

the differentiation among regional groupings. Different biogeographic hypotheses (e.g. 

Pandolfi, 1992; Santini &Winterbottom, 2002) and the partitioning of genetic differentiation 

based on geography or current systems were considered to explain geographic-genetic 

structure and to determine which arrangement best explains the data sets. The details of the 

various arrangements examined are presented in the respective chapters. 

 

2.2.4.4. Isolation by distance 

 

Isolation by distance (Wright, 1943) was examined to determine whether geographic distance 

has influence on genetic differentiation among sampled localities. The statistical correlation 

between genetic differentiation and geographical distances among sampled localities was 

examined by a Mantel (1967) test. This test was performed using Mantel for Windows 1.19 

(Cavalcanti, 2008), using 10 000 permutations to test for significance. Geographic distances 

between sampled localities were measured according to the minimum coastline distances 

using Google EarthTM (available at http://earth.google.com), and plotted against ΦST/(1-ΦST) 

as a measure of differentiation, following Rousset & Raymond’s (1997) recommendations. 

 

2.2.4.5 Historical demographic analyses 

 

Changes in population sizes tend to leave traces in patterns of nucleotide diversity (Pereira et 

al., 2001), such that the distribution of pairwise sequence differences in a sample (mismatch 



31 

 

distribution) contains information on the population history (Rogers & Harpending, 1992). 

The mismatch distribution is a frequency histogram of all pairwise differences among all 

DNA sequences in a sample (Harpending, 1994). In a population that has been stationary for a 

long time, these mismatch distributions become ragged, while a population that has been 

expanding generates a smooth mismatch distribution and has a peak (Harpending, 1994). 

Thus, the position of a peak reflects the time of population growth, favouring a unimodal 

mismatch distribution (Harpending et al., 1993; Harpending, 1994). Population demographic 

history was examined by calculating mismatch distributions using pairwise differences under 

a constant population growth model in DnaSP 5.10.1. Harpending’s (1994) raggedness index 

(r) was calculated in DnaSP to determine the smoothness of mismatch curve and the fit to the 

model curve expected under population growth model. A lower value for r is an indication of 

a smooth mismatch distribution, which could suggest population expansion. 

 

Neutrality indices, such as Tajima’s (1989) D and Fu’s (1997) FS statistics, were calculated in 

DnaSP 5.10.1. These tests are indicative of historical or demographic changes brought about 

by population declines or bottlenecks, founder events or population expansions (Tajima, 

1989). A negative D is interpreted as a signal of purifying selection or, alternatively, as 

demographic expansion/population growth, while a positive D indicates possible balancing 

selection. Alternatively, a negative D could result from a population bottleneck. Similarly, 

Fu’s F values are interpreted as signal of purifying selection or, alternatively, as demographic 

expansion/population growth (Tajima, 1989; Fu, 1997). 

 

2.2.4.6. Phylogenetic analyses 

 

Traditionally, phylogenetic trees were used to represent the historical relationships among 

groups of organisms or species (Hall, 2001). In this study, the phylogenetic approach was 

used to establish relationships among WIO localities for L. fulviflamma (Chapter 3), and for 

L. bohar and L. lutjanus (Chapter 4), and among species for the overall phylogenetic 

reconstruction to determine the position of WIO snappers in relation to the wider Indo-Pacific 

snappers (Chapter 5). These relationships were explored using unweighted parsimony and 

model-based likelihood approaches, such as Maximum Likelihood and Bayesian inference. 

Unweighted parsimony analyses were conducted in PAUP 4b10* (Swofford, 2002). Heuristic 

tree searches were employed to identify the most parsimonious or likely topologies. Nodal 
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support for relationships was determined by bootstrapping (Felsenstein, 1985). Bayesian 

inference analyses were performed using MrBayes 3.1.2 (Ronquist & Huelsenbeck, 2003). 

Detailed approaches followed for these analyses are outlined in the individual chapters. 

 

2.3. Meristic and morphological variation (Lutjanus fulviflamma) 

 

Traditional morphometrics or multivariate morphometrics has been described as the 

application of multivariate statistical analyses to sets of quantitative variables (Rohlf & 

Marcus, 1993; Adams et al., 2004). The results are expressed numerically and graphically in 

terms of linear combinations of the measured variables (Rohlf & Marcus, 1993). These 

statistical analyses typically include Discriminant Function Analysis (DFA) and Principal 

Component Analyses, PCA (Adams et al., 2004). 

 

Morphological variation within the dory snapper in the WIO was quantified using analysis of 

morphometric and meristic characters by applying DFA. Although PCA was used in initial 

analyses, it was unable to reliably differentiate among localities and was, therefore, not 

presented in that chapter (Chapter 3). Bell et al. (1982) found that combination of these 

techniques provide useful perspectives, with one technique providing information lacking in 

the other. Successful applications of these or a similar approach in studies of fishes have been 

documented. Moran et al. (1998) used Canonical Variate Analysis (CVA) to detect 

geographical variation in the pink snapper Pagrus auratus (Sparidae) in the Shark Bay region 

of Western Australia. Pollar et al. (2007) used DFA and neural network analyses (NNA) to 

discriminate between different populations of Tor tambroides (Cyprinidae) in Southern 

Thailand. Furthermore, Vasconcellos et al. (2008) applied CVA, supplemented by genetics, to 

determine differences between yellow snapper populations in Brazil; genetic data did not 

reveal any differences, whereas morphometrics revealed north-south differentiation within 

this species. Based on these studies, it is clear that these procedures are reliable and can reveal 

morphological differences between and within species. In the current study, the results from 

the morphometric analyses were compared to those from the genetic data to check for 

concordance between the two procedures. Concordance between the two data sets would 

strengthen the conclusions regarding patterns of differentiation, whereas the discordance 

between the two data sets could mean that the species is responding to local processes and the 

influence that these have despite possible gene flow (Bell et al., 1982). 
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CHAPTER THREE 

 

REGIONAL DIFFERENTIATION IN THE DORY SNAPPER LUTJANUS 

FULVIFLAMMA (Forsskål, 1775) IN THE WESTERN INDIAN OCEAN 

 

3.1. Introduction 

 

The dory snapper, Lutjanus fulviflamma (Forsskål, 1775), is widely distributed throughout the 

Indo-Pacific (IP) from the Arabian Gulf and Red Sea to South Africa (south to East London), 

east to Samoa and from Australia to the Ryukyu Islands in the West Pacific (Allen, 1985; 

Smith & Heemstra, 1986). Lutjanus fulviflamma mainly occurs inshore on coral reefs or rocky 

substrata to depths between 3 and 35 m (Allen, 1985), and in mangrove estuaries and over 

muddy bottoms (Smith & Heemstra, 1986). It is often found in large aggregations with 

Lutjanus kasmira and Lutjanus lutjanus (King, 1996; Grandcourt et al., 2006). Compared to 

other lutjanids, L. fulviflamma has a short life span (e.g., up to 55 years for L. bohar). Heupel 

et al. (2010) estimated the maximum age of L. fulviflamma to be 17 years. This is in 

accordance with 14 years found by Grandcourt et al. (2006), while Shimose and Tachihara 

(2005) estimated a maximum age of 24 years. This relatively short life span, rapid initial 

growth, early attainment of sexual maturity and high natural mortality suggest that the species 

may be resilient to exploitation (Grandcourt et al., 2006). Kaunda-Arara & Ntiba (1997) 

established that L. fulviflamma has a prolonged spawning period from November/December 

to April/May, releasing several batches of eggs in a single spawning season in Kenyan 

inshore marine waters. This spawning season coincides with the North-eastern Monsoon 

period when East African coastal waters are calm, favouring the survival of ichthyoplankton 

(Kaunda-Arara & Ntiba 1997). Fecundity ranged from 51 000 to 460 000 oocytes in fish of 17 

cm to 30 cm TL, respectively (Grimes, 1987). However, the biology of the other spawning 

stocks in the region has not yet been established. 

 

Lutjanids are high-value fish sought after by artisanal, recreational and commercial fisheries 

for consumption (Kaunda-Arara & Ntiba, 1997; Marriot & Mapstone, 2006). In Kenya, 

snappers are the third most abundant group of fishes caught and their aggressive nature makes 

them vulnerable to most fishing gears (Nzioka, 1984; Grandcourt et al., 2006). The juveniles 
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are found in shallow inshore waters and constitute 60% of the total catch in mangrove-lined 

creeks, which serve as nursery areas (Kaunda-Arara & Ntiba, 1997). 

 

Little information is available on the larval dispersal, recruitment behaviour and stock 

structure of this species (e.g. Kaunda-Arara & Ntiba, 1997; Dorenbosch et al., 2006). This 

information is critical to understanding connectivity and the factors that influence this, for 

conservation and management strategies (Möller et al., 2011). Life-history traits (such as 

reproductive behaviour, dispersal potential, local recruitment and effective population sizes), 

oceanographic and historical features all play a vital role in shaping genetic structure in 

marine populations (Palumbi, 1994; Bohonak, 1999; Gonzalez et al., 2008). Given this 

complexity, spatial sampling covering a large area, as well as the analyses of multiple-loci 

(both mitochondrial and nuclear makers) are required to improve the chances of recovering 

evidence of population differentiation; this is often not possible with a single marker (Palumbi 

& Barker, 1994; Fujita et al., 2004). 

 

The consideration of genetic connectivity and differentiation on a historical (i.e. evolutionary 

or biogeographic) timescale is confounded by the fact that the biogeographic accounts of the 

Western Indian Ocean (WIO) have considered the WIO incidentally to the larger IP (Pandolfi, 

1992; Santini & Winterbottom, 2002). This lack of knowledge exists despite the considerable 

diversity and endemism of various regions of the WIO (Longhurst & Pauly, 1987; Van der 

Elst, 1990; Branch et al., 1994; Randall, 1998; Turpie et al., 2000; Cox & Moore, 2005). The 

lower diversity of the WIO relative to the Indo-Malayan region has underpinned the notion 

that it, like other regional faunas of the IP, originated and is maintained by dispersal or 

migration from the Indo-Malayan region, a centre of speciation (Briggs, 1999). Evidence for 

dispersal is provided by some studies (Briggs, 1999; Mora et al., 2003). Alternatively, 

regional diversity could have originated by the establishment of barriers and subsequent 

vicariance (Pandolfi, 1992; Randall, 1998), with specific hypotheses proposed for the WIO 

(Pandolfi, 1992; Santini & Winterbottom, 2002). The features of the region (discussed in 

Chapter 1) may play an important role in species connectivity (Beldade et al., 2009) and the 

establishment of biogeographic patterns (Samyn & Tallon, 2005), and influence this diversity. 

 

Few studies have looked at population genetic structure, genetic differentiation and/or 

connectivity in the WIO. Among the studies on fish, Visram et al. (2010a) examined genetic 
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connectivity of the blue barred parrotfish Scarus ghobban. These authors detected high gene 

flow, with some isolation by distance influenced by the South Equatorial Current and the 

Equatorial Counter Current systems. Of greatest relevance to the current study is the study by 

Dorenbosch et al. (2006). They investigated the population genetic structure of Lutjanus 

fulviflamma (77 individuals) from Tanzania, Kenya and the Comoros. They found no 

population structure, with low levels of genetic differentiation among populations, and 

concluded that the species has high genetic connectivity across the region. The shortcomings 

of their study were the limited spatial scale of sampling with only a few localities included, 

the consideration of a single marker AFLP (Amplified Fragment Length Polymorphism) and 

the fact that morphological differentiation was not considered. The main disadvantage of 

AFLPs is the difficulty in identifying homologous alleles; thus, genealogical relationships 

cannot be deduced with certainty (Zhang & Hewitt, 2003). In the current study, multiple DNA 

markers were included to test whether these reveal comparable patterns of differentiation to 

those found by Dorenbosch et al. (2006), and sampling was conducted over a broader 

geographic scale to determine whether the patterns these authors found (i.e., a lack of 

differentiation) are applicable to a much larger area. 

 

Since L. fulviflamma is widespread in the region (WIO), a morphological component was 

included in this study to examine if patterns of genetic differentiation are reflected in 

morphology. The expectation is to find morphological differentiation corresponding to field 

observations. For example, individuals collected at Mida Creek along the Kenyan north coast 

(Figure 3.1: A) displayed distinctive red markings on the edges of the caudal fin, dorsal fin 

and the base of the pectoral fin and were paler than the characteristic bright yellow colour 

known from specimens collected in Tanzania (Figure 3.1: B). The snout length of the former 

appeared shorter and they appeared to possess a longer third dorsal spine. 
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A. 

 

 

B. 

 

Figure 3.1. Lutjanus fulviflamma (Forsskål, 1775) specimens from (A) Mida Creek, Kenya 

and (B) Nyama-Reef, Tanga, Tanzania (B). Note the red markings in A on the base of 

pectoral fin, edges of the caudal fin and at the tips of spines and rays of the dorsal fin. (Photos 

© SAIAB). 
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The aim of this study was to investigate regional differentiation in Lutjanus fulviflamma 

among the WIO localities, including representatives from Thailand and the West Pacific 

Islands. Genetics and morphometrics were used to examine the relationships among regions 

and identify the processes influencing genetic diversity. Morphological analyses can reveal 

the degree of adaptive differentiation that may have occurred between disjunct populations 

(Hermida et al., 2009). Although morphological differentiation may be reflected genetically, 

and may imply limited gene flow between localities, it is imperative to investigate the amount 

of genetic differentiation through more direct methods (Patterson, 1987). A combination of 

genetic and morphological data allows for the interpretation of patterns of variability, 

enabling the investigation of the source of possible inter-population variation, and contributes 

to the understanding of ecology and biogeography (Silva et al., 2010). A key underlying 

question, in terms of the management and conservation of this important fisheries species, is 

whether there is genetic connectivity or differentiation among the WIO localities.  

 

3.2. Material and Methods 

 

For an overview of the general methods refer to Chapter 2. 

 

3.2.1. Sampling 

 

Lutjanus fulviflamma specimens were collected from various localities in the WIO and 

peripheral localities outside the WIO (Figure 3.2). Samples for the genetic component were 

included from the following localities: South Africa (SA), Mozambique (MOZ), Tanzania 

(TAN), Kenya (KEN), Madagascar (MAD), Mauritius (MAU), Seychelles (SEY), Thailand 

(THA), Australia (AUS) and a West-Pacific Island (WP-Is: Tonga). Specimens for 

morphometric analyses (Table 3.1.) were obtained from the National Fish Collection at the 

South African Institute for Aquatic Biodiversity (SAIAB). These included individuals from 

SA, MOZ, TAN, KEN, MAR, SEY, MAD, Yemen (YEM), and China (CHI). These 

individuals were not necessarily those used in the genetic component. Fifty-six individuals 

were used for the genetic component and 89 individuals were used for the morphometric  
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Figure 3.2. Sampling localities for Lutjanus fulviflamma (Forsskål, 1775). 
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component. See Appendix I for the number of sampled individuals per locality and GPS co-

ordinates. 

 

3.2.2. Genetic data 

 

Total genomic DNA was extracted and each of the three gene regions of interest, the 

cytochrome b and NADH-2 mitochondrial gene fragments and the S7 intron 1 nuclear gene 

fragment, were amplified by PCR, purified and sequenced. PCR conditions for the 

amplification of the three gene regions are detailed below (Table 3.1). Refer to Chapter 2 for 

details on sequence clean-up and alignment. 

 

 

Table 3.1. Thermocycling regimes for the amplification of the respective mitochondrial and 

nuclear gene regions from Lutjanus fulviflamma (Forsskål, 1775). 

 
Gene region PCR thermocycling profile 

Stage1 

Initial 

denaturation 

Stage 2 

Denaturing             Annealing          Extension 

 

Cycles 

Stage 3 

Final extension 

       

Cytochrome b 94 °C, 1 min 94 °C, 30 sec 50 °C, 1 min 72 °C, 1 min 35 72 °C, 10 min 

NADH-2 94 °C, 4 min 94 °C, 45 sec 50 °C, 1 min 72 °C, 1.5 min 35 72 °C, 10 min 

S7 intron 1 95 °C, 2 min 95 °C, 45 sec 53 °C, 1 min 72 °C, 1.5 min 35 72 °C, 10 min 

 

 

To examine current levels of variation and genetic diversity of the dory snapper populations, 

several methods were used, as implemented in DnaSP 5.10.1 (Librado & Rozas, 2009). 

Genetic diversity was measured by calculating haplotype/allelic diversity (HD/AD) and 

nucleotide diversity (π) for each locality and for the overall sample for the cytochrome b, 

NADH-2 and S7 intron 1 gene fragments. Private haplotypes/alleles in this study are 

described as those restricted to a single locality. 

 

Median-joining networks (Bandelt et al., 1999) were constructed using Network 4.6 (Fluxus 

Technologies) to examine the genealogical relationships among haplotypes/alleles and to 

visualise their geographic distributions. 
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Population differentiation among localities was examined in Arlequin 3.5.1.2 (Excoffier & 

Lischer, 2010). Pairwise estimates of differentiation (ΦST) were obtained for comparisons 

among localities. The significance of ΦST values was determined by a permutation 

contingency procedure using 1 000 replicates (Roff & Bentzen, 1989). These comparisons 

were restricted to localities with sample sizes of five or more individuals. These localities 

included South Africa (15 individuals), Mozambique (nine individuals), Kenya (six 

individuals), Red Sea (five individuals) and Thailand (five individuals). Genetic structuring 

among localities was examined by Analysis of Molecular Variance (AMOVA) using 

Arlequin. This procedure involved grouping localities based on different biogeographic 

hypotheses to obtain the arrangement that maximised the differentiation among regional 

groupings. These were based on Pandolfi’s (1992) and Santini and Winterbottom’s (2002) 

vicariant biogeographic hypotheses. Following Pandolfi’s (1992) hypothesis, these regions 

are the Red Sea, Western-Central Indian Ocean (South Africa, Mozambique, Tanzania, 

Kenya, Madagascar, Seychelles and Mauritius), East Indian Ocean (Thailand), Western-

Central Pacific (Australia and Tonga). Under Santini and Winterbottom’s (2002) hypothesis, 

these six-regions were the Natal Basin (South Africa and Mozambique), Somali Basin 

(Tanzania and Kenya), Red Sea, Mascarene Plateau (Seychelles, Mauritius and Madagascar), 

Andaman Basin (Thailand) and Coral Sea (Tonga). 

 

To test for correlation between geographic and genetic distances, isolation by distance (IBD: 

Wright, 1943) was examined using Mantel for Windows 1.19 (Cavalcanti, 2008) and 10 000 

permutations to test for significance. 

 

Phylogenetic relationships among individuals were determined and the relationships among 

regions inferred through the construction of phylogenetic trees. The out-groups used for the 

individual trees were different due to difficulty in amplifying some of the genes in certain 

species. Lutjanus carponotatus and L. monostigma were used for the cytochrome b, L. 

kasmira for the NADH-2 and L. bohar for the S7 intron 1 data sets. Each data set was 

analysed independently. Combined data analysis was not considered because not all 

individuals amplified for each of the regions. Neighbour-joining (NJ), parsimony (MP) and 

likelihood (ML) trees were generated in PAUP*4b10 (Swofford, 2002). Statistical support for 

these relationships were determined by bootstrapping (Felsenstein, 1985), using 1000, 10 000 

and 100 replicates for NJ, MP and ML analysis, respectively. Bayesian inference (BI) 
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analyses involved four independent Markov Chain Monte Carlo (MCMC) chains running 

simultaneously for each data set. These chains were run over 5 000 000 generations for 

cytochrome b, 1 000 000 generations for NADH-2 and 3 500 000 generations for the S7 

intron 1, and sampled every 1000th generation from the posterior probability distribution. 

Each analysis was run three times simultaneously to ensure convergence. To determine that 

the process converged, the average standard deviation of split frequecies between 

simultaneous analyses was monitored to ensure that it fell below the 0.05 threshold and the 

analyses were stopped. The first 25% of the trees were discarded as burn-in. A 50% majority-

rule consensus tree was generated from the post burn-in trees of each analysis to determine 

the relationships and the posterior probability (support) of each node. 

 

The cytochrome b data set was sufficient for examination of demographic parameters. The 

historical demography of L. fulviflamma was examined with mismatch distributions using 

DnaSP 5.10.1 (Librado & Rozas, 2009). Harpending’s (1994) raggedness index was used to 

test for fit to a mismatch distribution under a population expansion model. Tajima’s D 

(Tajima, 1989) and Fu’s F (Fu, 1997) statistics were also determined in DnaSP to detect the 

various historical signatures of demographic change (population expansion or collapse) for 

the overall sample. 

 

3.2.3. Morphometric analyses 

 

Morphological variation within the dory snapper Lutjanus fulviflamma was quantified using 

morphometric measurements, following the procedures of Allen (1985, 1987), Allen and 

Talbot (1985), and Anderson (1987). Twenty-four morphological characters were measured to 

the nearest 0.1 mm using Vernier-callipers and recorded. Standard length (SL), fork length 

(FL) and total length (TL) of larger specimens were measured using a measuring tape. Six 

meristic counts were taken under a dissecting microscope. For most specimens, gill rakers 

were not well developed; therefore, rudiments were also counted. The morphometric 

measurements and meristic characters examined are given in Table 3.2 and illustrated in 

Figure 3.3. 

 

Separate statistical analyses were conducted on morphometric and meristic data sets because 

morphometric data are continuous and more susceptible to environmentally-induced 
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variability, while meristic data are discrete and fixed early in development (Hermida et al., 

2005; Simon et al., 2010). Refer to Chapter 2 for an overview of the statistical analyses. 

 

Meristic data were not log-transformed. Counts for damaged specimens were corrected prior 

to analyses by replacing them with means for the respective localities. Stepwise Discriminate 

Function Analyses (DFA) were used to calculate the linear combinations of the morphometric 

and meristic variables, which maximally discriminated among the localities. To examine the 

extent of differentiation among localities, individuals were re-assigned to a population based 

on the linear combination of variables of each discriminant function. Canonical variables 

were then extracted from morphometric and meristic data sets, independent of the defined 

groups. Standard coefficients for canonical variables were extracted, and individuals were 

plotted according to their canonical scores along successive roots to examine differentiation 

among individuals and localities. 
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Table 3.2. Morphological measurements and meristic counts included in the morphometric 

analyses of dory snapper Lutjanus fulviflamma (Forsskål, 1775). 

 
Character Acronym Description 

 

Morphometrics 

  

Standard length SL Measurement from tip of snout to the base of the caudal fin 

Fork length FL Measurement from tip of snout to the shortest/central portion of the tail 

Total length TL Measurement from tip of snout to the end of the longest caudal fin lobe 

Body depth BD Greatest depth, not including fleshy or scaly structures at fin base 

Body width BW Width of the body at widest point 

Snout length SNL Distance from tip of snout to anterior bony orbit of the eye 

Head length HL Distance from tip of snout to end of opercular membrane 

Orbit diameter OD Greatest distance between eye orbit rims 

Inter-orbital width IO The distance across the top of the head between the eyes 

Caudal peduncle length CPL Distance between the posterior end of the anal fin base and the base of the caudal 

fin rays 

Caudal peduncle depth CPD Least depth of caudal peduncle 

Upper-caudal lobe  UCL Distance from shortest portion of forked tail to end of upper caudal lobe 

Middle-caudal lobe MCL Distance from origin of caudal rays to middle of the shortest/central portion of the 

caudal fin 

Dorsal fin length  DL Length of the dorsal fin base from anterior to posterior end 

Anal fin length  AL Length of the anal fin base from anterior to posterior end 

Pectoral fin length  PL Length of the pectoral fin from the anterior to the posterior end 

Pre-dorsal length  PDL Distance between the dorsal fin origin and tip of snout 

Pre-anal length  PAL Distance between the anal fin origin and the tip of snout 

Pre-pelvic length  PVL Distance between the pelvic fin origin and the tip of snout 

1st Dorsal spine length  D-I-L Length of the first dorsal spine 

2nd Dorsal spine length  D-II-L Length of the second dorsal spine 

3rd Dorsal spine length  D-III-L Length of the third dorsal spine 

4th Dorsal spine length  D-IV-L Length of the fourth dorsal spine 

Meristics  

  

Lateral line scales  LLS Number of pored or tubed scales forming a sensory canal between the upper end 

of the gill opening and base of the caudal fin 

Gill rakers, upper UGR Number of short protuberances of the upper gill-arch on the opposite side from the 

gill filaments 

Gill rakers, lower LGR Number of protuberances of the lower gill-arch on the opposite side from the gill 

filaments 

Dorsal spines  DS Number of spines in the dorsal fin 

Dorsal rays  DR Number of soft rays in the dorsal fin 

Pectoral rays  PR Number of pectoral fin rays 
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Figure 3.3. External morphology and measurements taken from Lutjanus fulviflamma 

(Forsskål, 1775) specimens. Diagram taken from Allen (1985). 

 

 

3.3. Results 

 

3.3.1. Genetic data 

 

3.3.1.1. Cytochrome b analyses 

 

The cytochrome b data set (636 nucleotides) included 540 sites that were conserved, 96 sites 

were polymorphic of which 79 were parsimony informative and 17 were autapomorphies. 

This data set contained 32 haplotypes from 56 individuals (Tables 3.3 & 3.4). The haplotype 

network (Figure 3.4) clearly showed the differentiation of individuals from the West-Pacific 

Island and Thailand from those of the rest of the WIO localities. Within the WIO, haplotypes 

H2 and H3 were present in four localities each; together these haplotypes were present in six 

localities. Haplotypes H13, H17 and H20 were present in two localities each. Although they 
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were not found in all localities, together these encompassed almost the full extent of spatial 

sampling in the WIO from South Africa to the Red Sea. The haplotype network was generally 

star-shaped with high frequency or common haplotypes (H2 and H3) having less frequent 

haplotypes radiating from them. Two haplotypes also appeared divergent from the main WIO 

network and were divergent from other haplotypes from the same locality: H18 (six 

mutational steps from the main network and eight mutational steps from the closest haplotype 

from the same locality) and H30 (four and seven mutational steps, respectively). The 

remaining 27 haplotypes were private. The highest proportion of private haplotypes within the 

WIO was found in Mauritius (4, 80%) with the lowest found in the Red Sea (1, 20%) (Table 

3.3). Furthermore, many private haplotypes were found in the Mascarenes (Madagascar, 

Mauritius and Seychelles) and Kenya. 

 

Haplotype (HD) and nucleotide diversities () for the individual localities are presented in 

Table 3.3. Overall, the haplotype diversity was high, with low nucleotide diversity. 

Diversities for the individual localities were mostly comparable. 
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Table 3.3. Sample sizes (N) and genetic diversities at each sampling locality for the three gene regions (Cytochrome b, NADH-2 and S7 intron 1) 

examined for Lutjanus fulviflamma (Forsskål, 1775). Indices include number of haplotypes/alleles (Nh/Na), the number of private 

haplotypes/alleles (NPH/NPA), haplotype diversity (HD) or allelic diversity (AD), and nucleotide diversity (π). Standard deviations are presented for 

haplotype/allelic and nucleotide diversities. 

 

Locality Cytochrome b NADH-2 S7 intron 1 

N Nh NPH HD π N Nh NPH HD π N Na NPA AD π 

 

SA 

 

15 

 

9 

 

7 

 

0.924±0.044 

 

0.004±0.003 

 

9 

 

6 

 

2 

 

0.833±0.127 

 

0.003±0.002 

 

14 

 

12 

 

8 

 

0.978±0.035 

 

0.017±0.009 

MOZ 9 6 3 0.833±0.127 0.003±0.002 12 6 3 0.758±0.122 0.004±0.002 12 6 1 0.758±0.122 0.005±0.033 

TAN 4 3 1 0.833±0.222 0.003±0.003 7 4 2 0.714±0.181 0.003±0.002 16 12 5 0.942±0.048 0.028±0.017 

KEN 6 5 3 0.933±0.122 0.006±0.004 5 3 0 0.700±0.218 0.004±0.003 10 8 4 0.956±0.059 0.010±0.006 

R-SEA 5 3 1 0.700±0.218 0.004±0.003 5 4 3 0.900±0.161 0.006±0.004 4 4 4 1.000±0.177 0.016±0.012 

SEY 4 3 2 0.833±0.222 0.006±0.005 4 4 2 1.000±0.177 0.006±0.004 8 6 2 0.929±0.084 0.005±0.004 

MAD 2 2 1 1.000±0.500 0.002±0.002      4 2 1 0.500±0.265 0.003±0.003 

MAU 5 5 4 1.000±0.127 0.009±0.006 1 1 1 --- --- 2 2 1 -- -- 

THA 5 4 4 0.900±0.161 0.002±0.002 5 3 3 0.700±0.218 0.001±0.001 2 2 1 -- -- 

WP-Is 1 1 1 --- --- 1 1 1 --- --- 2 1 1 -- -- 

Overall 56 32 27 0.942±0.022 0.008±0.001 49 22 17 0.906±0.002 0.009±0.002 37 38 28 0.946±0.016 0.015±0.003 
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Table 3.4. The distribution of cytochrome b haplotypes of Lutjanus fulviflamma (Forsskål, 

1775) among South Africa (SA), Mozambique (MOZ), Tanzania (TAN), Kenya (KEN), Red 

Sea (R-SEA), Seychelles (SEY), Mauritius (MAU), Madagascar (MAD), Thailand (THA) and 

the West Pacific Island (WP-Is). 

 
 SA MOZ TAN KEN R-SEA SEY MAU MAD THA WP-Is Total 

 

H1 

        

1 

   

1 

H2 2 1  2    1   6 

H3 3 4 2  3      12 

H4 1          1 

H5 1          1 

H6 1          1 

H7   1        1 

H8          1 1 

H9         1  1 

H10         2  2 

H11         1  1 

H12         1  1 

H13     1  1    2 

H14     1      1 

H15  1         1 

H16  1         1 

H17  1 1        2 

H18    1       1 

H19    1       1 

H20    1  1     2 

H21 2          2 

H22 3          3 

H23       1    1 

H24      2     2 

H25 1          1 

H26      1     1 

H27  1         1 

H28 1          1 

H29    1       1 

H30       1    1 

H31       1    1 

H32       1    1 

Total 15 9 4 6 5 4 5 2 5 1 56 
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Figure 3.4. Median-joining haplotype network derived from the cytochrome b data for 

Lutjanus fulviflamma (Forsskål, 1775). The size of the node (haplotype) corresponds to the 

frequency of that haplotype and the colours represent the occurrence of that haplotype at 

different localities. Numbers on the branches indicate mutational differences if more than one-

step. 

 

 

Among-population comparisons for the cytochrome b were limited to localities with five or 

more individuals (Table 3.5). Thailand was significantly differentiated from all other WIO 

localities, yielding ΦST values ranging from 0.719 to 0.832 (P < 0.05). Mauritius was 

significantly differentiated from South Africa (ΦST = 0.223, P < 0.01) and Mozambique (ΦST 

= 0175, P < 0.001). Although not significant, there is evidence that South Africa shows 

moderate differentiation from the remaining WIO localities (ΦST values ranging from 0.033 to 

0.077, P > 0.05). Although there was a relationship between genetic and geographic distances 

as determined by Mantel-test, this correlation was not significant, regardless of the distances 

separating the chosen localities (r = 0.120, P = 0.602: Figure 3.5). 
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Table 3.5. ΦST values of among-population differentiation obtained in the comparison of 

Lutjanus fulviflamma (Forsskål, 1775) representatives from South Africa (SA), Mozambique 

(MOZ), Kenya (KEN), Red Sea (R-SEA), Mauritius (MAU) and Thailand (THA). Significant 

comparisons (P < 0.05), as determined from permutation tests, are indicated in bold font. 

 
 SA MOZ KEN R-SEA MAU THA 

 

SA 

 

- 

     

MOZ 0.066 -     

KEN 0.077 0.009 -    

R-SEA 0.033 -0.073 -0.039 -   

MAU 0.223 0.175 -0.043 0.079 -  

THA 0.802 0.832 0.759 0.820 0.719 - 

 

 

 

 

Figure 3.5. Isolation by distance graph showing pairwise genetic distance, ΦST/(1 - ΦST) for 

the cytochrome b, NADH-2 and S7 intron 1 data sets, plotted as a function of geographic 

distance among localities for Lutjanus fulviflamma (Forsskål, 1775) from South Africa, 

Mozambique, Tanzania, Kenya, Red Sea, Mauritius and Thailand. Mantel tests: cytochrome 

b: r = 0.120, P = 0.602; NADH-2: r = 0.717, P = 0.914 and S7 intron: 1 r = 1.000, P = 0.987. 
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The division of molecular variance into three components in an AMOVA allows for the 

estimation of the relative levels of genetic divergence that can be attributed to each level of a 

hierarchy. For AMOVA analyses (Table 3.6), the proportion of variation attibuted to 

differentiation among regions was maximised when localities werer grouped according to the 

biogeographic regions identified by Santini & Winterbottom (2002; see Chapter 1 and above). 

According to this grouping, a significant and high proportion of variation (44.76%, P < 0.05) 

observed was due to differences among regions. This was however, lower than the among-

individual component (50.79%, P < 0.001). This suggests that most of variation for this 

marker is found among individuals. 

 

 

Table 3.6. Results of AMOVAs examining the partitioning of differentiation at various 

hierarchical levels based on sequence data of the cytochrome b, NADH-2 and S7 intron 1 

genes for Lutjanus fulviflamma (Forsskål, 1775). The geographical groupings were in 

accordance with Santini and Winterbottom’s (2002) biogeographic regions. These are the 

Natal Basin (South African and Mozambique), Somali Basin (Tanzania and Kenya), Red Sea, 

Mascarene Plateau (Seychelles, Mauritius and Madagascar), Andaman Basin (Thailand) and 

Coral Sea (Tonga). Significant values (P < 0.05) from permutation tests are indicated in bold 

font. 

 
Gene region Source of variation d.f. Sum of squares % variation P-value 

      

Cytochrome b Among regions 5 62.071 44.76 < 0.05 

 Among localities within regions 4 8.640 4.45 0.206 

 Within localities 46 66.111 50.79 < 0.001 

      

NADH-2 Among regions 5 91.984 68.71 < 0.001 

 Among localities within regions 3 3.329 0.00 0.781 

 Within localities 40 44.340 31.29 < 0.001 

      

S7 intron 1 Among regions 5 24.730 3.87 0.438 

 Among localities within regions 4 17.053 7.29 < 0.01 

 Within localities 64 162.285 88.84 < 0.01 
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The Akaike Information Criterion (AIC) identified the most appropriate model of evolution 

for the dataset as HKY + G, with a gamma distribution (α) of 0.23. A transition:transversion 

ratio (Ti:Tv) of 4.85 and nucleotide composition (A = 0.23, C = 0.33, G = 0.15, and T = 0.29) 

were specified for the data set. The ML tree (-lnL = 1314.84; Figure 3.6) was constructed to 

examine the relationships among individuals and localities. The topologies of the strict 

consensus of 14 equally parsimonious trees, and the NJ and BI trees were similar to the ML 

tree presented. The monophyly of L. fulviflamma with respect to the outgroups was resolved 

with good statistical support (bootstraps of 100 % and posterior probability of 1.00). The 

West-Pacific Island individual (MA9329 WP Is) was a sister-taxon to two main clades, one 

including all the WIO individuals (clade A; 73/83/1.00) and the other containing the Thailand 

individuals (clade B; 97/99/1.00) . No regionally differentiated groups were observed within 

the WIO, with the exception of sub-clade I. This sub-clade was weakly supported, confined to 

South Africa, but did not include all the individuals from this locality. 

 

The mismatch analysis for the cytochrome b data revealed a bi-modal distribution (Figure 3.7) 

for the entire data set. Multimodal distributions can represent populations that underwent 

demographic expansion, but are currently relatively stable. Harpending’s (1994) raggedness 

index (r = 0.013) was low, indicating a good fit to the model of population expansion. 

Tajima’s (1989) D-value was negative (D = -1.812, P < 0.05). The negative value of this 

statistic is often regarded as evidence of a historically expanding population. Similarly, Fu’s 

(1997) F-statistic was negative and significant (F = -2.487, P < 0.05), indicating departure 

from neutrality (an excess of low frequency haplotypes). 
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Figure 3.6. Outgroup-rooted maximum likelihood phylogram (-lnL = 1341.84) for the 

cytochrome b data depicting relationships among the sampled Lutjanus fulviflamma (Forsskål, 

1775) individuals. Bootstrap support (MP and NJ) and Bayesian posterior probabilities 

respectively are indicated on branches. Localities are indicated on the terminals using the 

codes used previously in the text. The scale-bar indicates the estimated evolutionary distance. 
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Figure 3.7. Mismatch distribution curve constructed using pairwise differences observed 

(blue line) among cytochrome b sequences of Lutjanus fulviflamma (Forsskål, 1775). The red 

curve represent the expected frequency under a model of population expansion. 

 

3.3.1.2. NADH-2 analyses 

 

The NADH-2 data set contained 49 sequences (633 nucleotides). Of these, 584 sites were 

conserved, 49 sites were polymorphic of which 21 sites were parsimony informative and 28 

sites were autapomorphies. These sequences contained a total of 22 different haplotypes 

(Table 3.3 & 3.7). The haplotype network (Figure 3.8) clearly showed differentiation of the 

West-Pacific Island and Thailand individuals from the rest of the WIO localities, as with the 

cytochrome b data. Five haplotypes (H1, H2, H6, H7 and H18) were shared among localities 

and together they encompassed almost full extent of sampling from South Africa to the Red 

Sea. The common WIO haplotypes appeared to show a general star-like pattern with less-

frequent haplotypes radiating from them. The remaining 17 haplotypes were private. Within 

the WIO, of those localities with multiple individuas and haplotypes, the highest proportions 

of private haplotypes were found in the Red Sea (3; 60%) and Seychelles (2; 50%). No 

private haplotypes were found in Kenya (Table 3.3). 

 

Haplotype diversities (HD) and nucleotide diversities () for the individual localities are 

presented in Table 3.3. Overall HD was high (0.906±0.002) and  was low (0.009±0.002). 
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This HD is marginally lower than that of cytochrome b, with  being marginally higher. The 

diversity values for each locality were marginally lower, but with  for some of the localities 

being a little higher, than those of cytochrome b. 

 

 

Table 3.7. The distribution of NADH-2 haplotypes of Lutjanus fulviflamma (Forsskål, 1775) 

from South Africa (SA), Mozambique (MOZ), Tanzania (TAN), Kenya (KEN), Red Sea (R-

SEA, Seychelles (SEY), Mauritius (MAU), Thailand (THA) and the West Pacific Island (WP-

Is). 

 
 SA MOZ TAN KEN R-SEA SEY MAU THA WP-Is Overall 

H1 1 2 4 3      10 

H2 1  1  1     3 

H3   1       1 

H4      1    1 

H5  1        1 

H6 1     1    2 

H7 4 6  1      11 

H8 1         1 

H9 1         1 

H10  1        1 

H11         1 1 

H12        3  3 

H13        1  1 

H14        1  1 

H15     2     2 

H16     1     1 

H17     1     1 

H18  1  1  1    3 

H19       1   1 

H20  1        1 

H21      1    1 

H22   1       1 

Total 9 12 7 5 5 4 1 5 1 49 
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Figure 3.8. The median-joining haplotype network derived from the NADH-2 data for 

Lutjanus fulviflamma (Forsskål, 1775). The size of the node (haplotype) corresponds to the 

frequency of that haplotype and the colours represent the occurrence of that haplotype at 

different localities. Numbers on the branches indicates mutational differences if more than 

one-step. 

 

 

Among-population comparisons for NADH-2 fragment were also limited to those localities 

with five or more individuals. These were South Africa (nine individuals), Mozambique (12 

individuals), Tanzania (seven individuals), Kenya (five individuals), Red-Sea (five 

individuals) and Thailand (five individuals). From this analysis, Thailand was significantly 

differentiated from the WIO localities with ΦST-values ranging 0.853 to 0.916, P < 0.01 

(Table 3.8.). Significant differentiation was also observed between Tanzania and the Red Sea 

(ΦST = 0.233, P < 0.05). Although not significant, P > 0.05, there appears to be moderate 

differentiation between SA (ΦST values ranging from 0.081 to 0184) and the other WIO 

localities (except Mozambique). These observations are consistent with the cytochrome b 

results. The Mantel test identified no significant relationship (r = 0.717, P = 0.914) between 

genetic and geographic distances (Figure 3.5). 
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Table 3.8. ΦST values of among-population differentiation obtained in the comparison of 

Lutjanus fulviflamma (Forsskål, 1775) individuals from South Africa (SA), Mozambique 

(MOZ), Tanzania (TAN), Kenya (KEN), Red Sea (R-SEA) and Thailand (THA) for the 

NADH-2 data. The significant ΦST estimates (P < 0.05), as determined from permutation 

tests, are indicated in bold font. 

 
 SA MOZ TAN KEN R-SEA THA 

 

SA 

-      

MOZ -0.052 -     

TAN 0.184 0.117 -    

KEN 0.094 0.007 -0.089 -   

R-SEA 0.081 0.033 0.233 0.047 -  

THA 0.912 0.881 0.916 0.888 0.853 - 

 

 

The same six biogeographic regions defined for the cytochrome b data set were defined for 

the NADH-2 data set. A large and significant component of variation was due to 

differentiation among regions (68.71%, P < 0.001) and a lower component of variation was 

due to differentiation within-localities (31.29%, P < 0.001) (Table 3.6.). This finding is 

slightly different to that found with the cytochrome b data where most of the variation was 

found among individuals. 

 

The NADH-2 data set (633 nucleotides) included 49 polymorphic sites; 22 of these were 

parsimony informative and there were 27 autopomorphies. The Akaike Information Criterion 

(AIC) selected TrN + I as the best evolutionary model for the data set. A nucleotide 

composition (A = 0.27, C = 0.35, G = 0.14, and T = 0.24), nucleotide substitution rate matrix 

of A↔C = A↔T = C↔G = G↔T = 1.00, A↔G =10.63 and C↔T = 3.55, and a proportion of 

invariable sites (I = 0.71) were determined for the data. The ML phylogram depicting 

relationships among individuals is presented in Figure 3.9 (to ensure consistency with 

cytochrome b data).  Unlike cytochrome b data, the monophyly of L. fulviflamma was 

statistically not supported with respect to the outgroup, L. kasmira. In this tree, a Thailand and 

WP-Island clade were nested within the WIO clade, but their placement was not supported 

statistically. However, the branch lengths leading to these individuals were longer than those 

for the WIO individuls. This observation is in agreement with the haplotype network and  
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Figure 3.9. Maximum likelihood phylogram (-lnL = 1120.18) derived from NADH-2 data 

from Lutjanus fulviflamma (Forsskål, 1775) individuals, depicting relationships among the 

WIO localities. Lutjanus kasmira (SA1100) is included as an outgroup. Nodal support 

(bootstrap % for MP and NJ, and BI posterior probabilities, respectively) are indicated on the 

branches. The scale bar indicates the estimated evolutionary distance. 
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supports the view that these individuals are divergent from the WIO individuals. No obvious 

spatial differentiation was observed among WIO localities. 

 

3.3.1.3. S7 intron 1 analyses 

 

The phased S7 intron 1 data set (345 nucleotides, 37 individuals) contained 261 conserved 

sites, 87 variable sites of which 64 sites were parsimony informative and 23 sites were 

autapomorphies. This data set contained a total of 38 alleles (Table 3.9). The allele network 

(Figure 3.10) showed no differentation of the alleles from the West Pacific Islands and 

Thailand from those from the WIO, disagreeing with the results found using mitochondrial 

markers. Overall, mitochondrial markers showed differentiation among the WIO and the WP-

Island individual, and of Thailand from the WIO, but the nuclear marker showed a lack of 

differention among the same regions. Although the allele network (Figure 3.10) was complex, 

three alleles (A2, A5, A10) occurred at a higher frequency and were shared among localities. 

Together, these alleles occurred across the full extent of spatial sampling in the WIO, with the 

exception of the Red Sea. Less abundant alleles radiated from these common alleles. Alleles 

A11, A18, A26 and A34 were shared between proximate localities, while A4, A13 and A30 

were shared between geographically-distant localities. Alleles A6 to A9 from Tanzania were 

very divergent from all other alleles and formed a distinct clade. A16, A17 and A 23 were 

divergent from other alleles of the same localities (South Africa and the Red Sea) and all 

other alleles in the region. The highest proportion of private alleles was found in the Red Sea 

(4, 100%), followed by South Africa (8, 57.14%), and the lowest was found in Mozambique 

(1, 8.33%) (Table 3.3). 

 

Overall allelic diversity (AD= 0.946±0.016) and nucleotide diversity were high (π = 

0.015±0.003). The diversity values for the individual localities were also high, mostly 

comparable to each other, and marginally higher than the mitochondrial markers (Table 3.3). 

In summary, overall allelic/haplotype diversities were high across the markers, with S7 intron 

1 (0.946±0.016) being marginally higher than cytochrome b (0.942±0.022) and NADH-2 

(0.906±0.002). Although π were generally low for mitochondrial markers and highest in S7 

intron 1 (0.015±0.003), they were lower in cytochrome b (0.008±0.001) than in NADH-2 

(0.009±0.002). 
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Table 3.9. The distribution of S7 intron 1 alleles of Lutjanus fulviflamma (Forsskål, 1775) 

among South Africa (SA), Mozambique (MOZ), Tanzania (TAN), Kenya (KEN), Red Sea 

(R-SEA), Seychelles (SEY), Madagascar (MAD), Mauritius (MAU), Thailand (THA) and 

West Pacific Island (WP-Is). 

 
 SA MOZ TAN KEN R-SEA SEY MAD MAU THA WP-Is Overall 

A1    1       1 

A2  6 2 2  1 3    14 

A3 2          2 

A4 1  1        2 

A5   4 2  1     7 

A6   1        1 

A7   1        1 

A8   1        1 

A9   1        1 

A10 2 1    2  1 1  7 

A11  1 1        2 

A12 1          1 

A13 1   1       2 

A14 1          1 

A15 1          1 

A16 1          1 

A17 1          1 

A18 1 2         3 

A19         1  1 

A20     1      1 

A21     1      1 

A22     1      1 

A23     1      1 

A24  1         1 

A25    1       1 

A26   1 1       2 

A27    1       1 

A28    1       1 

A29      1     1 

A30   1   2     3 

A31 1          1 

A32 1          1 

A33        1   1 

A34  1 1        2 

A35      1     1 

A36       1    1 

A37          2 2 

A38   1        1 

Total 14 12 16 10 4 8 4 2 2 2 74 
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Figure 3.10. Median-joining allele network derived from the S7 intron 1 data set for Lutjanus 

fulviflamma (Forsskål, 1775) alleles. The size of the node (allele) corresponds to the 

frequency of that allele and the colours represent the occurrence of the allele at different 

localities. Numbers on the branches indicates mutational differences between alleles where 

more than one mutational step. 

 

 

Only four localities within the WIO had sufficient individuals (five or more) to test for 

population differentiation (Table 3.10). These were South Africa (seven individuals), 

Mozambique (six individuals), Tanzania (eight individuals), and Kenya (five individuals). 

Unlike the mitochondrial markers, S7 intron 1 revealed the differentiation of Mozambique 

from all other localities in the region with ΦST-values ranging from 0.074 to 0.154, P < 0.05. 

Other comparisons, although they indicated moderate differentiation among the localities 

considered, particularly Tanzania, were not significant (P > 0.05). This could have been 

influenced by the sample size. Similar to the mitochondrial markers, no significant 

relationship existed between genetic and geographic distances (r = 1000, P = 0.987), as 

determined by a Mantel test. 
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The same six biogeographic regions (Natal Basin, Somali Basin, Red Sea, Mascarene Plateau, 

Andaman Basin and Coral Sea groupings) were examined to determine the division of 

molecular variance (Table 3.6). In contrast to mitochondrial markers, a low (and non-

significant) component of variation was due to differentiation among regions (3.78%, P > 

0.05), with a substantially large and significant component of variation (88.84%, P < 0.01) 

associated with differentiation among individuals. 

 

 

Table 3.10. ΦST values of among population differentiation obtained in the comparison of 

Lutjanus fulviflamma (Forsskål, 1775) individuals from South Africa (SA), Mozambique 

(MOZ), Tanzania (TAN) and Kenya (KEN) for the S7 intron 1 data. Significant ΦST estimates 

(P < 0.05), as determined from permutation tests, are indicated in bold font. 

 
 SA MOZ TAN KEN 

 

SA 

-    

MOZ 0.074 -   

TAN 0.114 0.154 -  

KEN 0.032 0.126 0.111 - 

 

 

The S7 intron 1 data contained 60 polymorphic sites, of which 40 were parsimony 

informative and 20 were autopomorphies. The Akaike Information Criterion (AIC) identified 

the most appropriate substitution model for the data set as K81uf + G, with a gamma 

distribution (α) of 0.67, a nucleotide composition of A = 0.25, C = 0.17, G = 0.28 and T = 

0.29, and a nucleotide substitution rate matrix of A↔C = G↔T = 1.00, A↔G = C↔T = 2.83 

and A↔T = C↔G = 1.91. In the ML phylogram presented (Figure 3.11), L. fulviflamma was 

statistically supported (100/100/1.00 for MP, NJ and BI) with respect to the outgroup, L. 

bohar. The tree indicated, in agreement with the haplotype network, the presence of two main 

clades: clade A containing most of WIO alleles, with the West Pacific Island alleles nested 

within this clade, and the other (Clade B) containing Tanzanian alleles. The latter did not 

include all alleles from this locality. Both clades were generally well supported by certain  
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Figure 3.11. Outgroup-rooted ML phylogram (-lnL = 865.14) for the S7 intron 1 data 

showing relationships among Lutjanus fulviflamma (Forsskål, 1775) alleles. Alleles of L. 

bohar (MA7870a and MA7870) were used as outgroups. Nodal support (bootstrap % for MP 

and NJ, and BI posterior probabilities) are indicated on the nodes. The scale bar indicates the 

estimated evolutionary distance. 
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analyses. No regionally differentiated clades were observed within clade A, with the 

exception of sub-clade I from South Africa. These alleles were from the same individuals that 

formed a sub-clade in the cytochrome b tree. This sub-clade did not include all the alleles 

from this locality and was poorly supported. Few relationships among other alleles were 

supported across all analyses. 

 

3.4. Morphometric analyses 

 

Discriminant Function Analysis (DFA) was used to examine differentiation among Lutjanus 

fulviflamma from nine localities across the WIO and peripheral areas, using data from 89 

individuals. These were South Africa (33 individuals), Mozambique (16 individuals), 

Tanzania (11 individuals), Kenya (two individuals), Mauritius (three individuals), Seychelles 

(14 individuals), Yemen (two individuals), China (two individuals) and Comoros (one 

individual). Of the 24 morphometric characters available, 17 contributed significantly (Wilks’ 

Lambda: 0.175, F = 2.579, P < 0.000) to the classification functions that discriminated among 

individuals from various localities. These were SL, FL, TL, BD, BW, SNL, HL, OD, IO, 

CPL, CPD, UCL, MCL, DL, AL, PL, VL, PDL, PAL, PVL, D-I-L, D-II-L, D-III-L and D-IV-

L (see Table 3.2.). Eight variables (BW, HL, SL, AL, MCL, PVL, D-II-L and D-IV-L) 

contributed significantly to the variation among individuals and accounted for 88.89% of the 

variation present in the data set. The re-classification of individuals (Table 3.11) to localities 

was conducted according to the classification functions for each locality and 50 to 100 %, 

with an overall of 71.59 %, of individuals were correctly reclassified to their locality of 

origin. This indicates some degree of morphological differentiation among the localities. 

These canonical variables were extracted from the morphological measurements. The 

percentage variation explained by each and the Eigen-values are listed in Table 3.12. The first 

three canonical variables had an Eigen-value greater than (or equal to) one, which indicates 

that the combination of variables accounted for more of the overall variation than each 

variable did independently. 
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Table 3.11. Classification matrix of Lutjanus fulviflamma (Forsskål, 1775) using 

morphometric characters according to the discriminant functions for the nine sampled 

localities. The rows present the source locality and the columns present the locality to which 

the individuals are classified. Localities: Yemen (YEM), Mauritius (MAU), Seychelles 

(SEY), Madagascar (MAD), Mozambique (MOZ), Kenya (KEN), Tanzania (TAN), South 

Africa (SA) and China (CHI). 

 
Locality % 

Correct 

YEM  

P=0.02 

MAU 

P=0.03 

SEY 

P=0.16 

MAD 

P=0.34 

MOZ 

P=0.18 

KEN 

P=0.03 

TAN 

P=0.13 

SA 

P=0.39 

CHI 

P=0.02 

          

YEM 100.00 2 0 0 0 0 0 0 0 0 

MAU 66.67 0 2 1 0 0 0 0 0 0 

SEY 57.14 0 0 8 0 2 0 0 4 0 

MAD 100.00 0 0 0 3 0 0 0 0 0 

MOZ 50.00 0 0 2 0 8 0 0 6 0 

KEN 66.67 0 0 0 0 1 2 0 0 0 

TAN 72.73 0 0 0 0 1 0 8 2 0 

SA 82.35 0 0 1 0 4 0 1 28 0 

CHI 100.00 0 0 0 0 0 0 0 0 2 

Total 71.59 2 2 12 3 16 2 9 40 2 

 

 

Table 3.12. Relative contributions of variation and Eigen-values of the canonical variables 

calculated from the discriminant functions analysis using 17 morphological variables for 

Lutjanus fulviflamma (Forsskål, 1775) individuals. 

 
Canonical variable Cum. % proportion Overall % Eigen-value 

    

Canonical root 1 30.82 30.82 1.819 

Canonical root 2 52.28 21.46 1.266 

Canonical root 3 69.69 17.41 1.028 

Canonical root 4 81.21 11.52 0.680 

Canonical root 5 88.34 7.13 0.420 

Canonical root 6 93.18 4.84 0.286 

Canonical root 7 97.53 4.35 0.257 

Canonical root 8 100.00 2.47 0.146 
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Although canonical variable 1 (canonical root 1) accounted for the highest overall percentage 

of variation, it was not used for plotting and considering scores and differentiation among 

individuals from different localities because standard length (SL, r = 4.095) contributed most 

to this root. Therefore, individuals were plotted two-dimensionally according to their scores 

along the second and third canonical variables to determine the extent of differentiation 

among localities (Figure 3.12). A large central cluster was observed with individuals from 

South Africa, Mozambique, and Mauritius overlapping, reflecting no differentiation among 

these localities. There was some differentiation of individuals from Kenya, Madagascar, 

Tanzania, Yemen and China from this central cluster along the 2nd canonical root; this 

indicated greater anal and pectoral fin lengths, body depth and head length contributing to the  

 

Figure 3.12. Scatter-plot of individuals according to scores along the second and third 

canonical variables from the discriminant function analyses of 24 morphometric variables 

from Lutjanus fulviflamma (Forsskål, 1775). 

 



66 

 

differentiation. Among these populations, China, Kenya and Yemen were separated from 

Madagascar and Tanzania along canonical root 3. Greater body depth, head length, anal 

length, fork length and a longer third dorsal spine influenced this separation. These characters 

further drive the separation of a number of Seychelles individuals from the central cluster. 

The individual from the Comoros was also differentiated from all other localities along 

canonical root 3. Overall, the results indicate a slight degree of regional morphological 

differentiation in L. fulviflamma. 

 

Most of the meristic counts did not vary much between localities (Table 3.13) and were, thus, 

not expected to reveal much differentiation among localities when subjected to multivariate 

statistical analysis. Nonetheless, the DFA were applied on six meristic counts: LLS, UGR, 

LGR, DS, DR and PR (Table 3.2). Five counts (LLS, UGR, DR, DS and PR) (Wilks’ 

Lambda: 0.366, F = 2.139, P < 0.0002) contributed significantly to the discrimination among  

 

 

Table 3.13. Number of individuals (N) of Lutjanus fulviflamma (Forsskål, 1775) from which 

meristic data were taken, with median and range counts for each meristic count for each 

locality sampled (South Africa, Mozambique, Tanzania, Kenya, Comoros, Madagascar, 

Mauritius, Seychelles, Yemen and China). Abbreviations: LLS (lateral line scales), UGR 

(upper gill rakers), LGR (lower gill rakers), DS (dorsal spines), DR (dorsal rays) and PR 

(pectoral rays). 

 
Locality N Median, range 

 LLS UGR LGR DS DR PR 

 

South Africa 

 

34 

 

46, 43-49 

 

6, 6-7 

 

8, 7-10 

 

10 

 

14, 13-14 

 

15, 14-15  

Mozambique 16 46, 43-49 7, 6-7 8, 7-11 10 13, 13-14 14, 13-15 

Tanzania 11 46, 44-49 6, 6-7 8, 7-10 10 14, 13-14 15 

Kenya 3 44, 44-46 6, 6-7 8, 7-9 10 13, 12-13 14, 13-14 

Comoros 1 48 7 8 10 14 13 

Madagascar 3 47, 45-47 7, 6-7 8, 7-8 10 14, 13-14 14 

Mauritius 3 45, 44-50 7 8 10 14, 14-15 14, 14-17 

Seychelles 14 44, 43-49 6, 6-7 8, 7-10 10, 10-11 14, 12-14 14, 13-15 

Yemen 2 45.5, 45-46 6  7.5, 7-8 10 13.4, 13-14 14.5, 14-15 

China 2 44.5, 44-45 6.5, 6-7 7.5, 7-8 10 13.5, 13-14 14 
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localities. Individuals were reclassified to populations on the basis of the classification 

functions and the correct classification ranged from 0 to 85.29%, with an average of 53.41 % 

correctly assigned to their locality of origin (Table 3.14). This percentage was lower in 

comparison to the analysis of the morphometric characters, suggesting that individuals from 

most localities are not differentiated in terms of meristics. However, South African 

individuals were more easily recognisable in comparison to other localities (85.29% correctly 

assigned). 

 

 

Table 3.14. Classification matrix of Lutjanus fulviflamma (Forsskål, 1775) individuals using 

meristic characters, according to the discriminant functions. Individuals were sampled from 

Yemen (YEM), Mauritius (MAU), Seychelles (SEY), Madagascar (MAD), Mozambique 

(MOZ), Kenya (KEN), Tanzania (TAN) South Africa (SA) and China (CHI). The rows 

present the source locality and the columns present the locality to which the individuals are 

classified. Locality abbreviations are the same as in Table 3.11. 

 
Locality % 

Correct 

YEM 

P=0.02 

MAU 

P=0.34 

SEY 

P=0.16 

MAD 

P=0.03 

MOZ 

P=0.18 

KEN 

P=0.03 

TAN 

P=015 

SA 

P=0.39 

CHI 

P=002 

          

YEM 0.00 0 0 0 0 0 0 0 2 0 

MAU 33.33 0 1 2 0 0 0 0 0 0 

SEY 50.00 0 0 7 0 1 0 0 6 0 

MAD 0.00 0 0 0 0 2 0 0 1 0 

MOZ 56.25 0 0 0 0 9 1 0 6 0 

KEN 33.33 0 0 0 0 0 1 0 2 0 

TAN 0.00 0 1 0 0 0 0 0 10 0 

SA 85.29 0 0 1 0 4 0 0 29 0 

CHI 0.00 0 0 1 0 0 0 0 1 0 

Total 53.41 0 2 11 0 16 2 0 57 0 

 

 

Three variables, UGR, DR and DS, contributed significantly to the canonical roots that 

explained differentiation among individuals. The percentage variation explained by each 

canonical root and Eigen-value of each root are displayed in Table 3.15. All Eigen-values 

were below ≤ 0.5. 
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Table 3.15. Relative contributions of variation and Eigen-values of canonical variables 

calculated from discriminant function analysis using five meristic counts taken from Lutjanus 

fulviflamma (Forsskål, 1775) individuals. 

 
Canonical variable Cum. % proportion Overall % Eigen-value 

    

Canonical root 1 42.20 42.20 0.509 

Canonical root 2 73.47 30.65 0.372 

Canonical root 3 96.65 23.18 0.256 

Canonical root 4 99.37 2.72 0.032 

Canonical root 5 100.00 0.63 0.008 

 

 

Individuals were plotted two-dimensionally along the first and second canonical roots (Figure 

3.13: A) and second and third canonical roots (Figure 3.13: B). Both plots showed a central 

cluster of individuals from many localities and no clear separation of any localities. Some 

differentiation (Figure 3.13: A) was observed with some (but not all) of the individuals from 

the Seychelles being separated from the main cluster along the 2nd canonical root, influenced 

by PR and LLS, and the separation of certain individuals from Mozambique, Kenya and 

Mauritius along the 1st canonical root, influenced by UGR and LLS. The third canonical root 

revealed the separation of single individuals from Seychelles and Mauritius from the central 

cluster, driven by UGR and PR. Overall, very little differentiation was observed among 

localities and the conclusion can be made that meristic counts are not useful in determining 

differentiation in this species. 

 

 



69 

 

 

 

 

Figure 3.13. Scatter-plot of Lutjanus fulviflamma (Forsskål, 1775) individuals from sampled 

localities according to scores (A) along the first and second canonical roots, and (B) along the 

second and third canonical roots from discriminant function analyses using six meristic 

counts. 

 

A. 

B. 
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3.5. Discussion 

 

The results of both mitochondrial and nuclear sequence data analyses indicated a measure of 

spatial genetic heterogeneity involving some of the localities across the sampling area, 

depending on the gene region. Both mitochondrial markers revealed the differentiation of 

Thailand and the Western Pacific Island individuals from those from WIO localities (as 

revealed by the median joining networks, phylogenetic trees and pairwise estimates of 

differentiation), but this geographic differentiation could not be observed with the nuclear 

marker. The separation of localities from the Western Pacific (Western Pacific Island) or 

Eastern Indian Ocean/Andaman Sea (Thailand) are similar to the results of Bay et al. (2004), 

who found a complex pattern of differentiation in the parrotfish Chlorurus sordidus across the 

IP. These authors also found differentiation of the WIO from other IP localities. McMillan 

and Palumbi (1995) found differentiation between WIO and IP populations of butterflyfishes 

Chaetodon punctatofasciatus and Chaetodon rhombochaetodon. Gaither et al. (2010b) 

observed genetic structuring in Lutjanus fulvus between the Indian Ocean and the Pacific 

Ocean. Craig et al. (2007) and Muths et al. (2011) also found significant differentiation 

between the WIO and the Western Pacific populations of soldierfish Myripristis berndti. 

These studies indicate an effective physical mechanism that is blocking gene flow between 

the WIO and other parts of the IP for some of the species. Fluctuating climatic conditions in 

the Pleistocene are hypothesised to be responsible for the differentiation between the two 

regions (McMillan & Palumbi, 1995). Other authors (Craig et al., 2007; Gaither et al., 2010b) 

suggested isolation by distance (IBD) to be responsible for the differentiation of the WIO 

from the IP. However, IBD was not responsible for the differentiation of Thailand in this 

study, suggesting that other processes could responsible. In contrast to these examples and the 

current study, Gaither (2010b) found low differentiation of Sodwana Bay and Diego Garcia in 

L. kasmira, which may be influenced by geographical isolation of these localities. The lack of 

structure in the jobfish Pristipomoides filamentosus (Gaither et al., 2011a) is influenced by 

prolonged spawning period lasting up to 10 months maximising the exposure to seasonal 

currents transport, and the ability of some mature adults to disperse. 

 

Within the WIO, most of the pairwise ΦST values among localities were low, but a few 

moderate and significantly large values were observed. This, together with the absence of 

significant isolation by distance pattern, suggests a general lack of clear population 
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differentiation within the WIO. However, all three data sets indicated the moderate 

differentiation of South Africa from most WIO localities. Individual data sets indicated the 

differentiation of Mauritius from South Africa and Mozambique (cytochrome b), the 

differentiation between Red Sea and Tanzania (NADH-2), and the significant differentiation 

of Mozambique from other WIO localities (S7 intron 1 data). Other localities showed 

differentiation with the S7 intron 1 data, but were non-significant. Although the current study 

found some evidence of genetic connectivity among certain localities in the WIO, as 

suggested by Dorenbosch et al. (2006), the above evidence of local differentiation was also 

detected. However, no unique lineages were detected in the WIO, with the exception of 

unique sub-clades of South African individuals recovered in the analyses of the cytochrome b 

and S7 intron 1 data. Several authors have provided evidence of such local differentiation. 

Gopal et al. (2006) found some evidence of differentiation in the spiny lobster Palinurus 

delagoae, along the east African coast (between South Africa and Mozambique), influenced 

by ocean currents. Muths et al. (2011) found differentiation of Kenya individuals in 

Myripristis berndti and suggested that this population may have undergone a different history 

of colonization from the wider South Western Indian Ocean (SWIO) stock. Visram et al. 

(2010a) also observed differentiation of Kenya and Seychelles versus Tanzania and Mauritius 

in Scarus ghobban. 

 

Morphometric characters indicated some evidence of differentiation of China, Yemen, 

Madagascar, and certain individuals from Kenya, Seychelles and Tanzania from a central 

group of WIO individuals. This differentiation indicates the effectiveness of morphometric 

characters. However, meristics have failed to separate L. fulviflamma populations. Failure of 

meristic counts to separate species has been observed in other species as well (Murta, 2000). 

Meristic characters are fixed early in development and are not influenced by environmental 

factors (Murta, 2000; Hermida et al., 2005; Sfakianakis et al., 2011) and these may be too 

conserved to detect variation at the intraspecific level. This study found congruence between 

genetics and morphometrics in that both methods were able to detect differentiation of some 

localities within the WIO and between WIO and the wider IP. 

 

Analyses of the three markers revealed high haplotype and allelic diversity in the region, with 

generally low nucleotide diversity. Few haplotypes were shared widely across the region, with 

the majority of haplotypes being private. Grant and Bowen (1998) suggest that high haplotype 
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diversity and low nucleotide diversity represent a departure from neutrality, indicating an 

expanding population. The significant and large negative Fu’s F and Tajima’s D values under 

a model of population expansion (Rogers & Harpending, 1992; Fu, 1997; Chiang et al., 

2008), suggest that L. fulviflamma has experienced population expansion in the WIO. Short 

branch lengths in the phylogenetic tree further suggest a recent population divergence in this 

species. The haplotype network showed two abundant/ancestral haplotypes having less 

abundant haplotypes radiating from them, further suggesting expanding population. This rapid 

population growth enhances the retention of new mutations (Avise et al., 1984). 

 

Dorenbosch et al. (2006) proposed three hypotheses that could explain genetic structuring in 

L. fulviflamma along the East African coast when the East African Coastal Current (EACC) is 

strongest. They suggested that (1) larval exchange between populations will be low, (2) larval 

exchange would occur over a small geographic scale between populations in conjunction with 

the flow, or (3) that the EACC, in conjunction with the South Equatorial Current (SEC) and 

Equatorial Counter Current (ECC), would enable larval exchange over a large geographical 

scale. The third hypothesis will lead to high genetic connectivity over a large geographic 

scale, resulting in one gene pool where populations or individual localities cannot be 

genetically distinguished. They found the third hypothesis to be the most likely for the 

distribution of genetic variation along the East African coast, but with the differentiation of 

the Comoros Archipelago. Considering the localities common to the two studies, genetic data 

(i.e., S7 intron 1, although not significant) found evidence of differentiation of Tanzania, 

whereas morphometrics detected differentiation of Tanzania and Kenya from other localities. 

This can possibly be attributable to the influence of the SEC and the ECC systems. The SEC 

flows towards the main African coast and splits after the northern-tip of Madagascar into a 

southward-flowing current, which flows through to Mozambique, forming the Mozambique 

Current, and the northward-flowing component, which forms the EACC (Warren et al., 1966; 

Kemp, 1998; UNEP, 2004; Magori, 2008). This split may be responsible for the 

differentiation of Tanzania and Kenya observed in the current study. On a smaller spatial 

scale in Tanzania, Garpe and Öhman (2003) demonstrated that L. fulviflamma aggregations 

were restricted by habitat preference and substrate structure to a small area in Mafia Island 

Marine Park. By extrapolation, this suggests that habitat preference and habitat fragmentation 

may also play a role in restricting dispersal of L. fulviflamma in this area. The differentiation 

of South Africa could have resulted from complex oceanographic features between South 
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Africa and Mozambique. For example, Gopal et al. (2006) observed the differentiation of 

South African specimens from KwaZulu-Natal in the spiny lobster Palinurus delagoae. These 

authors proposed that a combination of life history traits, particularly reproductive migrations, 

affects the position of larval release relative to oceanic currents. This behaviour has 

implications for larval dispersal and gene flow. However, larval recruitment to adult habitats 

and ocean currents result in reduced gene flow between South Africa and Mozambique 

(Gopal et al., 2006). Similar mechanisms are proposed for the differentiation of some South 

African individuals from other localities in this study. 

 

 Genetic structure may also increase with increasing geographic distance when 

settlement events decline with increasing distance from the source population 

(Palumbi, 1994) or decrease with an increasing dispersal ability at any given spatial 

scale (Bay et al., 2004). According to Gold and Richardson (1998), population genetic 

structure may be attributed to differences in the biology of marine animals (i.e. species 

life-history, ecology, habitat preference, and reproductive biology), environmental 

influences (ocean currents and temperature) and species behaviour (breeding 

strategies). Grimes (1987) described L. fulviflamma as a restricted continental, highly-

fecund batch-spawning species (with spawning peaks in summer months) in East 

African waters. Peak spawning occurs in October, a time of high productivity (for 

eggs and rapid larval development) during the Southeast Monsoon (Nzioka, 1979), 

which speeds up the EACC and lowers the thermocline (Grimes, 1987). This breeding 

strategy introduces larvae into a rich food supply in order to grow rapidly and escape 

predators (Grimes, 1987). The expectation was, therefore, to find high genetic 

connectivity similar to that found by Dorenbosch et al. (2006) in L. fulviflamma. 

Therefore, this study sampled a wider geographic coverage, and found patterns of high 

connectivity, but also of low but significant differentiation. These patterns are more 

similar to those of L. kasmira in the region (Muths et al., 2010). These authors 

suggested that local processes influenced differentiation. This observation further 

warrants investigation into early life history of L. fulviflamma in order to identify other 

processes that could potentially have an impact on connectivity and differentiation. 

 

Studies (including fish and invertebrates) in the WIO have focused on few localities and have 

not considered the region in its entirety. A broader study, like the present, is important for 
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understanding the patterns of connectivity and differentiation and, in turn, for the 

conservation and management of coral reef fisheries (Visram et al., 2010b). A number of the 

patterns of connectivity and differentiation find comparison in other taxa studied in the 

region. This study and those mentioned below present a complex array of patterns of 

differentiation and connectivity observed in various taxa across the WIO. For instance, Muths 

et al. (2011) found restricted connectivity in the soldierfish Myripristis berndti, with localities 

along the Mozambique Channel being densely connected as a central locality and localities at 

the extremities, Europa, Kenya and Reunion, being differentiated. Visram et al. (2010a) 

detected isolation by distance among the populations of blue-barred parrotfish Scarus 

ghobban from the east coast Africa (Kenya & Tanzania) and Mascarene Islands (Seychelles & 

Mauritius). This was due to separation of Kenya and Seychelles from Tanzania and Mauritius 

through the influence of the SEC and the ECC. Similarly, the differentiation of South Africa 

from Mozambique and Madagascar observed in the spiny lobster Palinurus delagoae (Gopal 

et al., 2006) was attributed to ocean currents, anti-cyclonic eddies along the Mozambique 

Shelf and East Madagascar Current (EMC) water masses reaching the Agulhas Current (AC) 

only irregularly. Similar patterns to those observed in fish also apply to crustaceans in the 

region (WIO). Fratini and Vannini (2002) found greater differentiation of Mauritius from 

other localities in the WIO, and reduced connectivity, despite the potential for extensive 

dispersal, in the swimming crab Scylla serrata in mangrove swamps of the African tropics 

(Kenya and Zanzibar). Silva et al. (2010) examined population structure of the fiddler crab 

Uca annulipes across the WIO part of its Indo-West Pacific (IWP) distribution. They detected 

no population differentiation and high gene flow across the East African latitudinal gradient, 

with evidence for population expansion in this species. Baratti et al. (2005) found significant 

population differentiation among Kenyan and Tanzanian populations of marine isopod 

Sphaeroma terebrans in the WIO, influenced by ecology, reproductive strategy, and 

geographic isolation between populations. While fish studies typically show a pattern of low 

population differentiation in the region, crustaceans show significant population 

differentiation. Therefore, it is inappropriate to extrapolate patterns across different taxonomic 

groups, assuming that these patterns will be the same. 

 

Several hypotheses have been proposed concerning the biogeographical regions of the WIO 

and the IP. Hocutt (1987), Pandolfi (1992) and Santini and Winterbottom (2002) considered 

the vicariant origins of regional faunas and biogeographical regions. The historical events that 
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have led to the separation of biogeographic regions and those physical features that maintain 

them may have had an influence on the differentiation observed in the current study. In 

accordance with Santini and Winterbottom’s (2002) hypothesis, differentiation would be 

expected among localities of the Natal Basin, Somali Basin, Madagascar Plateau, Andaman 

Basin and the Coral Sea. AMOVAs indicated that much of the observed differentiation was 

concordant with these biogeographic regions. Other processes, such as dispersal, may be 

responsible for absence of full concordance with these regions. However, this will require 

direct methods (tagging and telemetry) to test this hypothesis – this was not covered by the 

current study. 

 

Management of fisheries is necessary to ensure that present fisheries can continue to be 

exploited in perpetuity and to assist in the recovery of depleted stocks (Graves, 1998; Ward, 

2000). Identifying connectivity and differentiation allows for the identification of localities 

among which gene flow is restricted. In the current study, these involved South Africa, 

Mozambique, Mauritius and Thailand localities, although not all were shown to be 

differentiated with all the markers used. Adults of L. fulviflamma are sedentary (Samoilys & 

Carlos, 2000); hence, connectivity in the WIO is assumed to be maintained by larval dispersal 

(Dorenbosch et al., 2006). Therefore, identifying nursery areas is critical for the conservation 

and resource management of this species (Nzioka, 1979; Grimes, 1987; Kamukuru & Mgaya, 

2004; Vasconcellos et al., 2008), but these sites were not identified in the current study. The 

differentiation of these localities may suggest different stocks for L. fulviflamma in the region, 

but sampling size was inadequate to say with certainty whether they are different stocks. If 

these represent different stocks, these will then require mostly independent management by 

the respective countries. This study outlined localities on which to focus conservation efforts. 

 

Several studies in the WIO (Turpie et al., 2000; Kamukuru et al., 2005; Muths et al., 2012), 

Indo-Pacific (Allen, 2007) and northern Atlantic (Ungfors et al., 2009), and a review by 

Botsford et al. (2009) have suggested that a network of Marine Protected Areas (MPAs) is 

needed for conservation and fisheries management. These MPAs will be effective, especially 

in lutjanids, due to their high degree of variation in life history strategies and dispersal ability 

(Grimes, 1987). Generally, short distance dispersers will persist in almost all MPAs, while 

long distance dispersers require a specific density of MPAs along the coast (Botsford et al., 

2009). The patterns observed in the current study imply that effective MPAs be developed 
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and co-managed, as the differentiated localities may also be driven by differences in selection 

across environmental gradients and larval adaptation in these localities (Grimes, 1987; 

Rodrigues et al., 2008; Visram et al., 2010b). Management decisions that will preserve future 

potential for ecological and evolutionary adaptation will have to implemented to conserve L. 

fulviflamma in localities where the species displayed differentiation. Moritz (1994) described 

Management Units (MUs) as populations with significant divergence of haplotype/allele 

frequencies, irrespective of phylogenetic distinctiveness of haplotypes/alleles. However, 

based on low sampling sizes in the current study, this is a suggestion and will have to be 

confirmed with more studies, more samples and much wider sampling coverage in the region. 

Similar management recommendations were suggested for Lutjanus kasmira (Muths et al., 

2012) and the white-spotted rabbitfish Siganus sutor (Visram et al., 2010b) in the WIO. This 

is the first large-scale study to address connectivity and differentiation of L. fulviflamma in 

the WIO. The wide sampling in the current study provided patterns that were not detected by 

Dorenbosch et al. (2006) for this species. Comparable phylogeographic studies like the 

present help identify areas of concern for conservation and help coastal and oceanic nations 

identify where to focus their conservation efforts. 
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CHAPTER FOUR 

 

A COMPARISON OF PATTERNS OF DIFFERENTIATION IN LUTJANUS BOHAR 

(Forsskål, 1775) AND LUTJANUS LUTJANUS Bloch, 1790 ACROSS THE WESTERN 

INDIAN OCEAN AS INFERRED FROM THREE DNA MARKERS 

 

4.1. Introduction 

 

The twin-spot red snapper Lutjanus bohar (Forsskål, 1775) and the bigeye snapper Lutjanus 

lutjanus Bloch, 1790 are widely distributed in the Indo-Pacific (see Chapter 1 for species-

specific details). In the year 2000, the total catch of Lutjanus bohar was 127.5 tonnes out of 

2875 tonnes of total reef fish caught in the Seychelles. In 2003, this number declined to 44.9 

tonnes out of the 2441 tonnes of total fish caught (Marriot & Mapstone, 2006; Marriot et al., 

2007). In Eritrea, this species contributes an average of 16% to the total artisanal catch 

(Habte, 2003). Lutjanus lutjanus is also common in markets and comprises an estimated 10 – 

20% of the snappers in the trawl catch in the Gulf of Suez (Allen, 1985). As evidenced by 

these statistics, the harvesting of these species for commercial and artisanal purposes is a 

cause for concern, particularly for L. bohar. Lutjanus bohar is characterised by delayed 

maturity, making it less likely to produce sustainable harvest yields (Marriot & Mapstone, 

2006) and most likely to be heavily impacted by over-fishing (Musick, 1999; Marriot et al., 

2007). Therefore, their management is important to ensure that present fisheries can continue 

to be exploited in perpetuity (Ward, 2000). 

 

These two species have not been studied genetically previously. However, a few studies have 

examined demographic parameters and age estimates in L. bohar, and phylogenetic studies 

have included L. bohar (Newman & Williams, 2001; Marriot & Mapstone, 2006; Marriot et 

al., 2007; Miller & Cribb, 2007), while Martinez-Andrade (2003) looked at age estimates in 

L. lutjanus. Therefore, more studies covering other aspects of life history are needed for a 

fuller understanding of the biology of these species. The current study will focus on the 

genetics of these species. Genetic information can be used to make indirect inferences to 

understand species biology and its integration within an ecosystem context. This knowledge 

will be useful in making recommendations about the conservation and for management 

strategies for these species. 
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Domeier and Colin (1997) reported spawning aggregations of L. bohar, but did not provide 

detailed descriptions. Lutjanus bohar spawns during September-October and December-

January along the Tanzanian and Kenyan coasts (Nzioka, 1979). Lutjanus lutjanus spawning 

is reported to occur during March and November in the Gulf of Aden and east Africa (Nzioka, 

1979) and from January to June in the Gulf of Suez (Allen, 1985). Like other lutjanids, these 

species spawn pelagic eggs, with the spawning season in east Africa coinciding with 

Northeast Monsoon period. This time is conducive for dispersal and aids the survival of 

ichthyoplankton (see Chapter 3). The estimated pelagic larval duration of lutjanids is 

generally 25-47 days (Allen, 1985; Grimes, 1987; Leis, 1987; Lindeman et al., 2001; Zapata 

& Herron, 2002). However, information about larval dispersal, recruitment behaviour and 

stock structure of these species is scarce. 

 

The oceanographic nature and the rich biodiversity of the Western India Ocean (WIO) makes 

it suitable to conduct biogeographic studies to examine factors and processes shaping patterns 

of species diversity and variation (see Chapters 1 & 3). With reference to previous genetic 

studies on lutjanids in the WIO, Dorenbosch et al. (2006) found low genetic differentiation 

and high connectivity in Lutjanus fulviflamma along the east-African coast (Tanzania, Kenya 

and the Comoros). In Chapter 3, the same species was studied and similar patterns were 

found, but with the differentiation of South Africa, Mozambique, Mauritius from other WIO 

localities and Thailand (depending on the individual analysis). Although only a few 

haplotypes were shared, together these encompassed almost the full extent of spatial sampling 

in the WIO; thus indicating genetic connectivity in the region. Muths et al. (2012) found 

differentiation of Moroni and Mauritius from other localities in Lutjanus kasmira, influenced 

by ecological plasticity. In terms of management and conservation of these important fisheries 

species, we ask if there is genetic differentiation within the two species in the WIO and 

compare the results to those of L. fulviflamma to determine if similar patterns apply to these 

species. These species have different life history strategies, but they generally have similar 

reproductive behaviour, dispersal potential and are exposed to similar environmental and 

oceanographic features. The expectation is to find similar genetic patterns between the two 

species, and between them and L. fulviflamma. 
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4.2. Material and Methods 

 

Lutjanus bohar specimens were included from Mozambique, Tanzania, Kenya, Seychelles, 

Madagascar, Red Sea, Maldives and Australia, while L. lutjanus specimens were successfully 

collected from only three localities: Mozambique, Tanzania and Kenya (Figure 4.1). Some of 

the samples were obtained from the National Fish Collection at SAIAB, while others were 

obtained from the Australian Museum, Senckenberg Museum and the University of Kansas 

(USA); see Appendix II. 

 

Total genomic DNA was extracted and three gene regions (cytochrome b, NADH-2 and S7 

intron 1) were amplified by PCR, purified and sequenced (see Chapter 2 for further details) 

for individuals of both Lutjanus bohar and L. lutjanus. PCR cycling-conditions for the 

amplification of the three regions are detailed in Table 4.1. See Chapter 2 for further details. 

 

 

Table 4.1. Thermocycling regimes for the amplification of the respective mitochondrial and 

nuclear gene regions from both Lutjanus bohar (Forsskål, 1775) and Lutjanus lutjanus Bloch, 

1790 individuals. 

 
Gene region PCR thermocycling profile 

Stage 1  Stage 2  Cycles Stage 3 

Initial denaturation Denaturation Annealing Extension  Final extension 

 

Mitochondrial genes 

     

Cytochrome b 94 °C, 4 min 94 °C, 30 sec 50 °C, 30 sec 72 °C, 1.5 min 35 72 °C, 10 min 

NADH-2 94 °C, 4 min 94 °C, 45 sec 50 °C, 1 min 72 °C, 1.5 min 35 72 °C, 10 min 

Nuclear gene       

S7 intron 1 95 °C, 2 min 95 °C, 45 sec 53 °C, 1 min 72 °C, 1 min 35 72 °C, 10 min 

 

 

For each of the two species and gene regions, genetic diversity indices were calculated for 

individual localities and for the overall sample, haplotype networks were constructed, 

pairwise estimates of population differentiation were determined and AMOVAs were 

performed as in Chapter 3. For phylogenetic tree construction, Emmelichthys struhsakeri 

(Emmelichthyidae) was used as an outgroup in the construction of MP, NJ, ML and BI trees. 
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Figure 4.1. Sampling localities of Lutjanus bohar (Forsskål, 1775) and Lutjanus lutjanus 

Bloch, 1790 individuals. 

 

 

Bayesian inference (BI) analysis involved four independent Markov Chain Monte Carlo 

(MCMC) chains running simultaneously for each data set. These chains were run over one 

million generations and sampled every 1000th generation. To ensure convergence, each 

analysis was run three times in parallel until the standard deviation of split frequencies among 

the runs fell below the 0.05 threshold, then stopped. The first 25% of the trees were discarded 

as burn-in and a 50% majority-rule consensus tree generated from each analysis to determine 

the relationships and the posterior probability (support) of each node. 

 

4.3. Results 

 

4.3.1. Lutjanus bohar (Forsskål, 1775) 

 

The cytochrome b sequence data set (581 bp in length) contained 20 haplotypes from 31 

individuals (Table 4.2). The haplotype network (Figure 4.2: A) showed three haplotypes (H1 

present in four localities, and H2 and H12 present in two localities each) being shared among 

localities, but collectively these were not found in all localities. The remaining 17 haplotypes 
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(54.8%) were private. Within the WIO and of those localities with more than one individual 

(Mozambique, Tanzania, Kenya, Seychelles, Madagascar and Maldives), the highest 

proportion of private haplotypes (Table 4.2) was found in Madagascar (2; 100%), followed by 

Mozambique (5; 62.5%), with a low proportion in Tanzania (1; 50%), Seychelles (2; 40%) 

and Maldives (2; 25%); the single individual from the Red Sea not being considered. Two 

other haplotypes are worth consideration. Haplotype H9 from Mozambique was six 

mutational steps from the most closely-related haplotype and was divergent from other 

haplotypes from the same locality (Figure 4.3). The other is haplotype H19 from Australia, 

which was very divergent (12 mutational steps away) from haplotype H20 from Australia. 

The latter was not divergent from the WIO haplotypes and clustered with them in the 

network. 

 

The NADH-2 data set (30 individuals, 632 bp) contained 16 haplotypes (Table 4.2). The 

Australian samples were not included because they failed to amplify. The haplotype network 

(Figure 4.2: B) shows two haplotypes (H2 present in three localities, and H3 present in five 

localities) being more abundant than the others and shared among localities. These two 

haplotypes encompassed the full spatial extent of sampling from Mozambique to the 

Maldives. The highest proportion of private haplotypes was found in Kenya (3; 75%), 

followed by Seychelles (2; 66.7%) and Mozambique (4; 40%). Unlike cytochrome b data, no 

private haplotypes were found in Tanzania. Haplotype H16 from the Seychelles appeared to 

be slightly more divergent from other haplotypes from the same locality and was four 

mutational steps away from the closest haplotypes (H8 from Mozambique and the widespread 

H2). 

 

Fewer individuals (22) amplified for the S7 intron 1 gene fragment than for the mitochondrial 

gene fragments and some localities (Madagascar, Red Sea and Australia) were not 

represented. The S7 intron 1 data set (534 bp in length) contained 44 alleles; 39 of these were 

unique (Table 4.2). Only allele A10 (Figure 4.3) was shared between Mozambique and 

Tanzania. The highest percentage of private alleles (100%) was found in Kenya and 

Seychelles, followed by Maldives (15; 93.8%) and Mozambique (8; 66.7%), with a lower 

percentage in Tanzania (1; 50%) (Table 4.2). Some alleles from Kenya, Mozambique, 

Seychelles and Maldives were highly divergent from other alleles from the same localities 

(Figure 4.4). 
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Table 4.2. The number of individuals/alleles (N) and genetic diversity indices at each of the sampling localities for Lutjanus bohar (Forsskål, 

1775) from Mozambique (MOZ), Tanzania (TAN), Kenya (KEN), Seychelles (SEY), Madagascar (MAD), Red Sea (R-Sea), Maldives (MAL) 

and Australia (AUS) for the three gene regions (cytochrome b, NADH-2, and S7 intron 1) examined. Indices include the number of haplotypes 

(Nh) or alleles (NA), the number of private haplotypes (NPH) or alleles (NPA), haplotype (HD), allelic (AD) diversity, and nucleotide diversity (π). 

Standard deviations are presented for HD, AD and π. 

 

 

 

Cytochrome b (581 bp) NADH-2 (632 bp) S7 intron 1 (534 bp) 

Locality N Nh NPH HD π N Nh NPH HD π N Na NPA AD π 

 

MOZ 

 

8 

 

7 

 

5 

 

0.964±0.077 

 

0.010±0.006 

 

10 

 

6 

 

4 

 

0.844±0.103 

 

0.003±0.003 

 

12 

 

9 

 

8 

 

0.939±0.058 

 

0.012±0.007 

TAN 2 2 1 1.000±0.500 0.007±0.008 2 2 0 1.000±0.500 0.002±0.002 2 2 1 1.000±0.500 0.009±0.010 

KEN 3 3 2 1.000±0.272 0.003±0.003 4 4 3 1.000±0.177 0.004±0.003 8 8 8 1.000±0.063 0.027±0.016 

SEY 5 4 2 0.900±0.161 0.006±0.004 3 3 2 1.000±0.272 0.006±0.005 6 6 6 1.000±0.096 0.016±0.010 

MAD 2 2 2 1.000±0.500 0.009±0.009 1 1 1 --- --- - - - --- --- 

R-SEA 1 1 1 --- --- 1 1 1 --- --- - - - --- --- 

MAL 8 4 2 0.786±0.113 0.004±0.003 9 5 3 0.806±0.120 0.002±0.002 16 15 15 0.992±0.025 0.010±0.006 

AUS 2 2 2 1.000±0.500 0.021±0.021 - - - --- --- - - - --- --- 

Overall 31 20 17 0.925±0.037 0.007±0.001 30 16 14 0.869±0.047 0.003±0.001 22 39 38 0.994±0.007 0.016±0.002 
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Figure 4.2. Median-joining haplotype networks derived from the cytochrome b (A) and 

NADH-2 (B) data sets for Lutjanus bohar (Forsskål, 1775) individuals. The size of the node 

(haplotype) corresponds to the frequency of that haplotype and the colours represent the 

occurrence of that haplotype at different localities. The numbers on the branches indicate 

mutational differences where greater than one. 

A                                                             

B 
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Figure 4.3. Median-joining haplotype network derived from the S7 intron 1 data set for 

Lutjanus bohar (Forsskål, 1775). The size of the node (allele) corresponds to the frequency of 

that allele and the colours represent the occurrence of that allele at different localities. The 

numbers on the branches indicate mutational differences greater than one. 

 

Haplotype diversities (HD), allelic diversity (AD) and nucleotide (π) diversities are presented 

in Table 4.2. Overall haplotype diversity was higher for cytochrome b (0.925±0.037) than 

NADH-2 (0.869±0.047), while the allelic diversity for S7 intron 1 (0.994±0.007) was higher 

than haplotype diversities of both the mitochondrial genes. Nucleotide diversities were 

highest for S7 intron 1 (0.016±0.002), and slightly higher for cytochrome b (0.007±0.001) 

than for NADH-2 (0.003±0.001). Generally, the diversities at individual localities showed 

comparable trends across the markers. Within the WIO, Tanzania and Kenya were the most 

diverse among the localities for all the markers, along with Seychelles for the NADH-2 and 

S7 intron 1 markers. 

 

Among population comparisons (Table 4.3) were restricted to those localities with five or 

more individuals (see Table 4.2). For cytochrome b these were Mozambique (eight 

individuals), Seychelles (five individuals) and Maldives (eight individuals). For NADH-2 

analysis these were Mozambique (10 individuals) and Maldives (nine individuals), and for the 

S7 intron 1 they were Mozambique (six individuals) and Maldives (eight individuals). The 

cytochrome b and NADH-2 data sets revealed low to moderate differentiation, but the ΦST – 



85 

 

Table 4.3. ΦST values of among population differentiation obtained in the comparison of 

Lutjanus bohar (Forsskål, 1775) representatives from Mozambique (MOZ), Seychelles (SEY) 

and Maldives (MAL) for the cytochrome b (below diagonal) and between Maldives (MAL) 

and Mozambique (MOZ) for the S7 intron 1 (above diagonal) gene fragments. Significant (P 

< 0.05) estimates, as determined from permutation tests, are indicated in bold font. 

 
Locality MOZ SEY MAL 

 

MOZ 

 

- 

  

0.121 

SEY -0.082 -  

MAL -0.010 -0.014 - 

 

 

values were all non-significant. The ΦST values ranged from -0.082 to -0.014 (P > 0.05) in 

cytochrome b (Table 4.3), while a value of -0.039 (P > 0.05) was obtained between 

Mozambique and Maldives for NADH-2. However, the S7 intron 1 data (Table 4.3.) 

highlighted significant differentiation between Mozambique and Maldives with a ΦST –value 

of 0.121 (P < 0.010). The present data were insufficient to test for patterns of isolation by 

distance.  

 

Analysis of Molecular Variance (AMOVA) was examined with localities grouped based on 

Pandolfi’s (1992) and Santini & Winterbottom’s (2002) biogeographic regions (see Chapter 

3). The latter arrangement provided the best description of differentiation, maximising the 

component of variation attributed to differentiation among regions. There were six regions for 

the cytochrome b: Natal Basin (Mozambique), Somali Basin (Kenya and Tanzania), Red Sea, 

Mascarene Plateau (Madagascar and Seychelles), Chagos Plateau (Maldives) and the Coral 

Sea (Australia); five for NADH-2 (as before, but excluding the Coral Sea); and four for the S7 

intron 1 data (excluding the Red Sea and Coral Sea). Across the gene regions, the among-

region component of variance was low (5.55%, 8.45% and 5.52% for cytochrome b, NADH-2 

and S7 intron 1, respectively) and non-significant (P > 0.05; see Table 4.4). A substantially 

large and non-significant (P > 0.05) for mitochondrial markers, but significant (P < 0.001) for 

the nuclear marker, component of variance (92.09%, 95.18% and 87.94% for cytochrome b, 

NADH-2 and S7 intron 1, respectively) was associated with differentiation among individuals 

within localities. 
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Table 4.4. AMOVA results examining the partitioning of differentiation in Lutjanus bohar 

(Forsskål, 1775) among the Natal Basin (Mozambique), Somali Basin (Kenya and Tanzania), 

Red Sea, Mascarene Plateau (Madagascar and Seychelles), Chagos Plateau (Maldives) and 

the Coral Sea (Australia), depending on the gene region, at various hierarchical levels based 

on sequence data of the cytochrome b, NADH-2 and S7 intron 1 gene fragments. The 

biogeographic groupings are defined in the text. 

 
Source of variation d.f. Sum of squares % variation P-value 

 

Cytochrome b 

    

Among regions 5 13.454 5.55 0.438 

Among localities within regions 2 4.150 2.36 0.235 

Within localities 23 44.525 92.09 0.156 

     

NADH-2     

Among regions 4 5.233 8.45 0.196 

Among localities within regions 2 1.833 -3.62 0.821 

Within localities 23 22.900 95.18 0.259 

     

S7 intron 1     

Among regions 3 27.697 5.52 0.504 

Among localities within regions 1 4.775 6.54 0.739 

Within localities 39 150.438 87.94 < 0.001 

 

 

Phylogenetic trees were constructed to examine relationships between individuals and 

localities. The cytochrome b data contained slightly more individuals that other data sets and 

included Australian individuals, allowing examination of differentiation between the WIO 

and the IP. This alignment (581 bp) had 545 conserved sites and 36 polymorphic sites of 

which 10 were parsimony informative and 26 were autapomorphies. The AIC identified GTR 

+ I as the appropriate model for the cytochrome b data set. The model parameters were a 

nucleotide composition of A = 0.25, C = 0.31, G = 0.15 and T = 0.29, a nucleotide 

substitution rate matrix of A↔C = 1.37, A↔G = 7.55, A↔T = 0.28, C↔G = 4.87, C↔T = 

3.47 and G↔T = 1.00, and a proportion of invariable sites (I = 0.81). This model was 

included in the construction of phylogenetic trees. The NJ tree for the cytochrome b data is 

shown in Figure 4.4. This tree was presented because of the resolution of internal nodes, 

which were poorly resolved with other analyses. In the tree, the monophyly of L. bohar with 
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respect to the outgroup E. struhsakeri was not supported. This tree indicated, in agreement 

with the haplotype network, the presence of a single clade (Clade A) containing all the WIO 

individuals, with one Australian individual clustered among them. This clade was relatively 

well supported (bootstraps 96/97/92 for MP, NJ and ML, respectively). The other Australian 

individual was divergent from the individuals in Clade A. No differentiated clades were 

observed among the WIO individuals. The ML tree (-lnL = 1127.68, tree not shown) was 

generally similar  to the NJ tree in the positioning of one Australian individual outside the 

main clade, while the remaining individuals formed a polytomy. The maximum parsimony 

analysis for the cytochrome b resulted in 278 equally parsimonious trees, with the tree 

parameters: Tree Length (TL) = 25,  Consistency Index (CI) = 0.76, Homoplasy Index (HI) = 

0.24, Retention Index (RI) = 0.87 and Rescaled Consistency Index (RC) = 0.66. The resulting 

strict-consensus tree (tree not shown) was generally similar to the NJ tree presented. Bayesian 

analysis produced a large polytomy, with both Australian individuals within this clade. 

 

A tree generated from combined data was not included becase data sets were not compatible 

in terms of the number of individuals sequenced; the same individuals were not sequenced for 

each marker and combining these would result in a loss of information. 
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Figure 4.4. Outgroup-rooted neighbor-joining (NJ) tree depicting relationships among 

Lutjanus bohar (Forsskål, 1775) individuals for the cytochrome b gene fragment. Bootstrap 

support (MP, NJ and ML) and Bayesian Posterior Probabilities (BI) are indicated on the 

branches, respectively. The scale-bar indicates the estimated evolutionary distance. 
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The NADH-2 data set (632 bp) had 610 conserved sites, 22 polymorphic sites, four parsimony 

informative characters and 18 autapomorphies. The HKY + I model was the best model for 

the NADH-2 data set. The model parameters were a nucleotide composition of A = 0.28, C = 

0.35, G = 0.13 and T = 0.24, a transition:transversion ration (Ti:Tv) of 1.75 and a proportion 

of invariable sites (I = 0.28). The NJ tree (tree not shown) failed to recover any genetic 

structure and the monophyly of L. bohar was not supported. The ML tree (-lnL = 1025.68, 

tree not shown) formed a large unsupported polytomy. The MP analysis resulted in five 

equally parsimonious trees, with tree parameters: TL = 9, CI = 0.67, HI = 0.33, RI = 0.82 and 

RC = 0.55. The resulting strict-consensus tree (tree not shown) was similar to the NJ tree, 

forming a polytomy, and was statistically not supported. The results of the BI analysis were 

similar to the results of the other analyses. 

 

Once phased, the S7 intron 1 data had 482 conserved sites, 52 polymorphic sites, 41 

parsimony informative sites and 11 autapomorphies. The F81 + I + G model was the most 

appropriate evolutionary model for the data set. The parameters for this model were a 

nucleotide composition of A = 0.24, C = 0.20, G = 0.24 and T = 0.32, a proportion of 

invariable sites (I = 0.71) and a gamma distribution of rate variation (α = 1.21). The NJ tree 

(tree not shown) resulted in a polytomy. However, there were a few alleles from Maldives, 

Mozambique and Kenya, respectively, that formed moderately supported clades, 

corresponding to certain clusters in the network. The ML analysis (–lnL = 1025.68, tree not 

shown) recovered fairly-well supported clades containing Mozambique alleles and clades 

containing Maldives alleles, but with the majority of the internal nodes forming a polytomy. 

The MP analysis resulted in 343 647 equally parsimonius trees. These equally parsimonius 

trees had the parameters: TL = 85, CI = 0.55, HI= 0.45, RI = 0.79 and RC = 0.43. The strict-

consensus tree (tree not shown) recovered the same clades as NJ tree, but these were poorly 

supported. The results of the BI analysis (trees not shown) were similar to the results of the 

MP analysis. Overall, the trees did not show a clear clustering of individuals from the same 

locality, thus suggesting little genetic differentiation for this speceis in the study area. 
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4.3.2. Lutjanus lutjanus Bloch, 1790 

 

Lutjanus lutjanus proved difficult to sample, with few individuals obtained from only three 

localities: Mozambique, Tanzania and Kenya. The cytochrome b alignment had 594 

nucleotides from each of 21 individuals and contained seven unique haplotypes (Table 4.5). 

The haplotype network (Figure 4.5: A) showed haplotype H2 as being more abundant and 

being shared between Tanzania and Kenya, with less frequent haplotypes from these two 

localities radiating from it. Haplotypes H3 and H4 from Mozambique appeared to be 

divergent from those from Tanzania and Kenya, but caution should be exercised due to low 

sample sizes. Six haplotypes were private (Table 4.5), with the highest proportion found in 

Mozambique (2; 66.7%), followed by Kenya (2; 28.6%) and Tanzania (2; 18.2%). 

 

The NADH-2 alignment (571 nucleotides) from 18 individuals contained five unique 

haplotypes (Table 4.5). The haplotype network (Figure 4.5: B) showed that only haplotype 

(H3) was shared among the three localities. Haplotypes H1 and H5 were very divergent from 

other haplotypes of the same locality and were each 13 mutations steps from H3. The highest 

proportion of private haplotypes was found in Kenya (3; 50%), followed by Tanzania (1; 

11.1%), with none in Mozambique (Table 4.5). 

 

Once phased, the S7 intron 1 data set (392 nucleotides) resulted in 48 constituent alleles 

(Table 4.5). Three alleles (A2, A9 and A14) were shared among the three localities, while 

alleles A1, A11 and A16 were shared only between adjacent localities (Figure 4.5: C). Three 

alleles (A6, A8 and A18) from Tanzania and allele A13 from Kenya were divergent from  
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Table 4.5. Number of individuals or alleles (N) and genetic diversity indices at each of the sampling localities and for the overall sample of 

Lutjanus lutjanus Bloch, 1790 from Mozambique (MOZ), Tanzania (TAN) and Kenya (KEN) for the three gene regions (cytochrome b, NADH-

2 and S7 intron 1) examined. Indices include the number of haplotypes (Nh) or alleles (NA), the number of private haplotypes (NPH) or alleles 

(NPA), haplotype (HD) or allelic (AD) diversity, and nucleotide diversity (π). Standard deviations are presented for HD, AD and π. 

 
Locality                            Cytochrome b (594 bp)                                                             NADH 2 (571 bp)                                                           S7 intron 1 (392 bp) 

 N Nh NPH HD π N Nh NPH HD π N Na NPA AD π 

 

MOZ 

 

3 

 

2 

 

2 

 

0.667±0.314 

 

0.003±0.003 

 

3 

 

1 

 

0 

 

--- 

 

--- 

 

8 

 

8 

 

3 

 

1.000±0.063 

 

0.012±0.008 

TAN 11 3 2 0.345±0.172 0.001±0.001 9 2 1 0.222±0.166 0.005±0.003 22 14 8 0.922±0.045 0.014±0.008 

KEN 7 3 2 0.524±0.209 0.001±0.001 6 4 3 0.800±0.172 0.013±0.008 18 9 4 0.837±0.066 0.006±0.004 

Overall 21 7 6 0.562±0.121 0.002±0.004 18 5 4 0.405±0.143 0.007±0.003 24 22 16 0.916±0.026 0.011±0.002 
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Figure 4.5. Median-joining haplotype networks derived from the cytochrome b (A), NADH-2 

(B) and S7 intron 1 (C) data sets for Lutjanus lutjanus Bloch, 1790. The size of the node 

(haplotype or allele) corresponds to the frequency of that haplotype or allele and the colours 

represent the occurrence of that haplotype or allele at different localities. The numbers on 

branches indicate mutational differences if more than one step. 

B 

A 

C 
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other alleles in the region, including alleles from the same localities. The highest proportion of 

private alleles was found in Mozambique (3; 37.5%), followed by Tanzania (8; 36.4%) and then 

Kenya (4; 22.2%). Although the networks displayed genetic diversity, no clear geographic 

structuring was observed, with the exception indicated in the cytochrome b data. 

 

Genetic diversities haplotype (HD), allelic (AD) and nucleotide (π) diversities are presented in 

Table 4.5. Overall, allelic diversity was high for S7 intron 1 (0.916±0.026), with cytochrome b 

having a slightly higher haplotype diversity (0.562±0.121) than NADH-2 (0.405±0.143). 

Generally, nucleotide diversity was higher for S7 intron 1 (0.011±0.002) and NADH-2 

(0.007±0.002) than cytochrome b (0.002±0.004). The diversities for the individual localities were 

generally high for S7 intron 1 and moderate for cytochrome b, while NADH-2 showed a much 

wider range across the various localities. 

 

Population differentiation was examined between Kenya and Tanzania, as these were the only 

localities with a sufficient number of samples. Both mitochondrial gene fragments gave non-

significant (P > 0.05) ΦST -values (0.008 and 0.020 for cytochrome b and NADH-2, respectively), 

indicating little differentiation among the two localities. However, the more variable S7 intron 1 

gene detected moderate differentiation among these localities with a significant ΦST –value 

(0.056; P < 0.05). Isolation by distance tests could not be performed due to insufficient data. 

 

Analysis of Molecular Variance (AMOVA) was conducted to detect if there was differentiation 

among localities. For cytochrome b, a slightly lower component of variation was due to 

significant differentiation among localities (45.56%, P < 0.001) than within localities (53.44%, P 

< 0.001) (Table 4.6). The former component could be detecting the apparent differentiation of 

Mozambique as observed in the haplotype network. The NADH-2 data revealed most of the 

variation to be partitioned within localities. A low but significant component of variation (4.97%, 

P < 0.05) was due to differentiation among localities in the S7 intron 1. This could be due to the 

divergent alleles from Tanzania as observed in the network. Most of the variation (95.03%; P < 

0.001) was partitioned within localities (Table 4.6).  
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Table 4.6. AMOVA results examining the partitioning of variation in Lutjanus lutjanus Bloch, 

1790 individuals among Mozambique, Tanzania and Kenya at two hierarchical levels based on 

sequence data of the cytochrome b, NADH-2 and S7 intron 1 gene fragments. 

 
Source of variation d.f. Sum of squares % variation P-value 

 

Cytochrome b 

    

Among localities 2 4.606 45.56 <0.001 

Within localities 18 6.442 53.44 <0.001 

     

NADH-2     

Among localities 2 3.167 -4.14 0.630 

Within localities 15 30.389 104.14 <0.001 

     

S7 intron 1     

Among localities 2 7.524 4.97 < 0.05 

Within localities 45 95.101 95.03 <0.001 

 

 

Phylogenetic trees were generated to examine relationships among individuals and localities. The 

cytochrome b data (594 bp) included 518 conserved sites and 76 variable sites, with six 

parsimony informative characters and 70 autapomorphies. The NJ tree is shown in Figure 4.6, 

representing the relationships among individuals and localities. This tree is represented to ensure 

a consistent comparison with the results from L. bohar. In the NJ tree, the ingroup was not 

supported with respect to the outgroup. The tree indicated, in agreement with the haplotype 

network, the presence of Mozambican individuals being differentiated from the main 

Tanzanian/Kenyan clade. 

 

The model of evolution as determined by AIC in ModelTest 3.8 (Posada & Crandall 1998; 

Posada 2006) was HKY for cytochrome b. This model was enforced in the construction of the 

ML tree. The model parameters were: base frequencies of A = 0.24, C = 0.32, G = 0.15 and T = 

0.29, and a transition:transversion ratio (Ti:Tv) of 2.49. The ML tree (-lnL = 1098.78, tree not 

shown) failed to recover any clades and all the individuals formed a polytomy. The MP analysis 

produced nine equally parsimonious trees with parameters: TL = 9, CI = 0.78, HI = 0.22, RI =  
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Figure 4.6. Outgroup-rooted neighbor-joining (NJ) tree depicting relationships among Lutjanus 

lutjanus Bloch, 1790 alleles for the S7 intron 1 gene fragment. Bootstrap support (MP, NJ and 

ML) and Bayesian inference (BI) posterior probabilities are indicated on the branches, 

respectively. The scale-bar indicates the estimated evolutionary distance. 
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0.71 and RC = 0.56. The resulting strict-consensus tree (tree not shown) was similar to the NJ 

tree. The results of the BI analysis were similar to the results of the NJ and MP analyses. A tree 

generated from combined data analysis was not generated because of the reasons stated above. 

 

The NADH-2 data set (571 bp) contained 539 conserved sites and 32 variable sites, with nine 

parsimony informative characters and 28 autapomorphies. The NJ tree (tree not shown) showed 

one individual from Kenya (H1 from the haplotype network) being basal to all other individuals, 

which formed a polytomy. The TIM model was the best model for the data set. The model 

parameters were base frequencies of A = 0.27, C = 0.35, G = 0.12 and T = 0.25, and a 

substitution rate matrix of A↔C = G↔T = 1.00, A↔T = C↔G = 1.60, A↔G = 4.86 and C↔T = 

2.59. This ML tree (-lnL = 1501.88, tree not shown) was similar to the NJ tree. The MP analysis 

resulted in nine equally parsimonious trees with parameters: TL = 15, CI = 0.73, HI = 0.27, RI = 

0.56 and RC = 0.41. The strict-consensus tree (tree not shown) resulted in a polytomy. The 

results of the BI analysis were similar to the results of MP analysis. 

 

After phasing, the S7 intron 1 data (392 bp) resulted in 48 constituent alleles, 362 conserved sites 

and 30 variable sites, where 21 were parsimony informative characters and nine were 

autapomorphies. The NJ analysis (tree not shown) recovered a few relationships among 

Tanzanian alleles that were fairly-well supported, but with the majority of alleles forming a 

polytomy. The model of evolution was F81 + G with model parameters of A = 0.24, C = 0.18, G 

= 0.26 and T = 0.33, and a gamma distribution of rate variation (α) of 0.39. The ML tree (-lnL = 

624.00) was similar to the NJ tree in that the same clades containing Tanzanian alleles were 

recovered, but these were poorly supported. The MP analysis resulted in 91 equally parsimonious 

trees with the parameters: TL = 21, CI = 0.62, HI = 0.38, RI = 0.89 and RC = 0.55. The resulting 

strict-consensus tree (tree not shown) was generally similar to the NJ and ML trees. Bayesian 

analysis recovered the same clades containing Tanzanian alleles, but these clades were 

moderately-well supported. Similar to the L. bohar phylogenetic results, the trees generally 

presented no clustering of individuals from the same locality, indicating a general lack of spatial 

genetic structure among the localities examined with the exception of Mozambique in 

cytochrome b data. 
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4.4 Discussion 

 

Analyses of mitochondrial markers (cytochrome b and NADH-2) and a nuclear marker (S7 intron 

1) for L. bohar indicated a high level of haplotype and allelic diversity and generally low 

nucleotide diversity in the region. These diversities are similar to those of crimson snapper 

Lutjanus erythropterus in East Asia (Zhang et al. 2006). Only a few haplotypes were widely 

shared across the region (three in cytochrome b, two in NADH-2 and one in S7 intron 1) and 

these were not always shared among all localities. One haplotype from Australia (cytochrome b 

data) was very divergent from other the Australian haplotype, which was placed among the WIO 

haplotypes. The BLAST search of both Australian sequences positively identified these 

sequences as L. bohar, however, there were no specimens or photographs to confirm the BLAST 

results. Most of the pairwise ΦST –values for mitochondrial genes were low and non-significant. 

The ΦST –values for the nuclear gene were higher than for the mitochondrial genes and revealed 

the significant differentiation between Mozambique and Maldives from each other. AMOVA 

revealed that a low and non-significant component of variation was associated with 

differentiation among regions, while most of the variation was partitioned among individuals. 

From the phylogenetic relationships, cytochrome b indicated the divergence of one Australian 

haplotype from all other haplotypes, with S7 intron 1 recovering clades containing Maldives and 

Mozambique alleles, respectively. 

 

In Lutjanus lutjanus, analyses of the three markers revealed moderate haplotype diversity for the 

mitochondrial markers (cytochrome b and NADH-2) and high allelic diversity for nuclear (S7 

intron 1) marker. One haplotype of each mitochondrial marker and three alleles in the nuclear 

marker were shared among the sampled localities. Similar to L. bohar, both mitochondrial genes 

had low nucleotide diversities with the nuclear gene having higher nucleotide diversity. The 

pairwise ΦST –values were very low and non-significant for mitochondrial genes (comparing only 

Kenya and Tanzania due to sample sizes). The nuclear gene indicated low but significant 

differentiation between Kenya and Tanzania. Across the markers, AMOVA revealed that a low 

and significant component of variation was associated with differentiation among regions, with 

the exception of NADH-2, which was low but non-significant. A large and significant component 

of variation was associated with differentiation among individuals within localities. Across the 
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markers, the haplotype networks and phylogenetic trees indicated the differentiation of 

Mozambique with cytochrome b, while S7 intron 1 recovered clades containing some Tanzanian 

alleles. This differentiation may be a signal picked up by the AMOVAs, which indicated a high 

and significant proportion for the among region component of variation in cytochrome b and a 

very low proportion for the S7 intron 1. Overall, these results suggest that there is differentiation 

between Maldives and Mozambique in L. bohar and between Tanzania and Kenya, as well as 

Mozambique, in L. lutjanus. Although every effort was made to collect as many samples of the 

latter as possible from across the region, samples could only be found in three localities and this 

warrants extreme caution when interpreting these results. 

 

The high haplotype diversities observed in L. bohar are generally similar to those observed in 

other lutjanids such as L. fulviflamma (Chapter 3), L. kasmira (Gaither et al., 2010a, b; Muths et 

al., 2012) and L. fulvus (Gaither et al., 2010b). The low genetic diversities observed in L. lutjanus 

are similar to those of the jobfish Pristipomoides filamentosus (Gaither et al., 2011a). The few 

studies previously conducted in the WIO demonstrated high levels of genetic connectivity 

(Dorenbosch et al., 2006; Ragionieri et al., 2010; Visram et al., 2010a; Muths et al., 2012). In 

each of these studies, however, there were cases of restricted differentiation. Accordingly, this 

study demonstrated pattern of differentiation of Mozambique (observed in both L. bohar and L. 

lutjanus) and Maldives (observed in L. bohar). Differentiation of Mozambique from South Africa 

has been found in the spiny lobster Palinurus delagoae (Gopal et al., 2006). Besides currents, 

local adaptation may influence and contribute to the differentiation of Mozambique in these 

species, including L. fulviflamma (see Chapter 3). The differentiation of Maldives in L. bohar is 

probably due to isolation by distance, but this hypothesis could not be confirmed by a Mantel test 

due to insufficient data. This differentiation could also result from local processes or species 

behaviour. Similarly, this differentiation of Maldives is in agreement with the results found for 

Abudefduf vaigiensis and Epinephelus merra (Gouws et al., 2011), and four species of 

damselfishes: Stegastes nigricans, Chrysiptera biocellata, C. glauca and C. leucopoma (Lacson 

& Clark, 1995). Overall, both snapper species demonstrated high levels of genetic connectivity in 

the region. Lutjanids are characterised by high fecundity, spawn pelagic eggs and have pelagic 

larvae with the ability to swim (Grimes, 1987; Fisher et al., 2005). These characteristics and the 

fact that spawning occurs during the Northeast Monsoon period could enhance and influence 
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dispersal ability. The pelagic larval stage of lutjanids can last up to 38 days in some species 

(Zapata & Herron, 2002), which is sufficient for eggs and larvae to be carried by ocean currents 

to distant localities, maintaining connectivity. This pelagic duration further allows new recruits to 

reach considerable size before settlement, increasing survival (Gaither et al., 2011a). 

 

Pandolfi’s (1992) and Santini and Winterbottom’s (2002) vicariant biogeographic hypotheses 

were tested as distinct scenarios. Considering Santini and Winterbottom’s (2002) hypothesis, 

differentiation would be expected among localities of the Mozambique Basin, Somali Basin, 

Mascarene Plateau and Maldives/Chagos Laccadive Ridge. In accordance with this hypothesis, 

differentiation of Mozambique (representing Mozambique Basin) and Maldives (representing 

Maldives/Chagos Laccadive Ridge) was observed. Santini and Winterbottom (2002) proposed 

that the central Indian Ocean (Maldives in this case) is inaccessible to many reef fish species 

because of the large expanses of water towards this region. Complex oceanographic features 

within the Mozambique Channel (Procheş & Marshall, 2002; Bourjea et al., 2007) may influence 

the differentiation of the Mozambique locality. Biogeographic hypotheses for L. lutjanus were 

not tested because samples only came from three localities. 

 

Catch statistics from the artisanal, recreational and commercial fisheries are generally scarce for 

both L. bohar and L. lutjanus. Total catch statistics for Madagascar and Mozambique have not 

been kept for over a decade, while South African, Seychelles’ and Tanzanian catches are 

generally declining, and Kenyan catches are fluctuating (FAO, 2011b). In all these countries, 

45% of total marine landings are unidentified, representing the poor quality of catch data in the 

WIO (FAO, 2011b). With regard to the current species, information shows that L. bohar landings 

have declined to 44.9 tonnes in the Seychelles (Marriot & Mapstone, 2006; Marriott et al., 2007). 

Lutjanus lutjanus catch landings have not been recorded since Allen’s (1985) statistics from the 

FAO. The difficulty in catching these species in the WIO for this study could result from many 

factors, singly or in combination, including using inappropriate fishing gear or sampling 

approaches, sampling from incorrect habitats or at the incorrect time of the year. To manage these 

species, information about their spawning grounds, ecology, and their stock structure is critical. 

In the present study, the stock structure could not be determined accurately due to low sample 

sizes. As observed above, this study identified differentiation between Mozambique and 
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Maldives in L. bohar, and between Tanzania and Kenya in L. lutjanus, but these were not 

recovered with all the markers. Structure among these localities and others may suggest different 

stocks for these species. However, independent management of these stocks (if present) will be 

required, especially for L. bohar, which is long-lived and slow-growing, and very susceptible to 

overfishing. It is also necessary to understand the intrinsic features (life history, reproductive 

biology and ecology) of these species to make informed management decisions. This knowledge 

is scant and more direct studies (tagging, telemetry and propagule movement) are needed to 

understand the intrinsic features in order to have more confidence in the patterns observed.  
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CHAPTER FIVE 

 

PHYLOGENETIC RELATIONSHIPS IN THE GENUS LUTJANUS WITH A FOCUS ON 

THE POSITION OF THE WESTERN INDIAN OCEAN SNAPPERS IN RELATION TO 

THE INDO-PACIFIC  

 

5.1. Introduction 

 

Fishes of the family Lutjanidae (snappers) are widely distributed throughout the world’s marine 

environments (see Chapter 2). Snappers are mostly reef-dwelling marine fishes, with three Indo-

Pacific (IP) species inhabiting freshwaters and the juveniles of several species inhabiting 

mangroves, estuaries and the lower reaches of freshwater streams (Allen, 1985). Most lutjanids 

are carnivorous and feed primarily on fishes, crustaceans, molluscs and urochordates (Allen, 

1985, Smith & Heemstra, 1986). Miller and Cribb (2007) considered there to be six subfamilies, 

Lutjaninae, Paradicichthyinae, Etelinae, Apsilinae, as well as the Caesioninae and 

Gymnocaesioninae, and 21 genera and 123 species in the family. However, taxonomic 

uncertainty exists regarding this family. Much debate stems around the relationship between the 

Lutjanidae and Caesionidae, whether they should be treated as separate families or whether the 

Caesionidae should be placed as a subfamily within the Lutjanidae (Johnson, 1980, 1993; 

Carpenter, 1990). Many authors (Leis, 1987, 2005; Johnson, 1993; Reader & Leis, 1996) 

disagree with the separation of the two families because it renders the Lutjanidae paraphyletic. 

Johnson (1980) and Carpenter (1990) separated the two families based on the Caesionidae’s 

adaptation to a planktivorous feeding mode and modifications in the upper jaw structure. Based 

on larval morphology and jaw musculature, the Caesionidae has been placed as a subfamily 

within the Lutjanidae (Johnson, 1993; Reader & Leis, 1996). However, there are not many clear 

synapomorphies characterising either group (Allen, 1985). Miller and Cribb’s (2007) analysis of 

genetic data placed the Caesionidae within the Lutjanidae, further expanding this debate. 

 

The genus Lutjanus is the largest in the subfamily, with 67 recognised species (Guo et al., 2007). 

Twenty-seven species of this genus are known to inhabit the Western Indian Ocean (WIO) 

(Allen, 1985). Most species in this genus are long-lived, slow growing and important to artisanal, 
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recreational and commercial fisheries (Allen, 1985). They provide a significant food source for 

developing countries (Blaber et al., 2005). 

 

Guo et al. (2007) and Miller & Cribb (2007) looked at phylogenetic relationships among snapper 

species. Guo et al. (2007) determined the relationships of the 12 snappers (genus Lutjanus) from 

the South China Sea (SCS) using sequence data from the cytochrome b (cyt-b) and cytochrome c 

oxidase II (COII) genes. The monophyly of the Lutjanidae was not supported, but the monophyly 

of individual species was strongly supported. These authors also found unexpected relationships 

among L. ophuysenni and L. vitta, and among L. argentimaculatus and L. erythropterus and 

concluded that these were due to introgression caused by hybridisation. Miller and Cribb (2007) 

examined the relationships of the IP snappers, including the subfamilies Lutjaninae, 

Paradicichthyinae, Apsilinae and Caesioninae, using cytochrome b and 16S rDNA gene 

fragments. Their results nested the Caesioninae within the Lutjanidae, supporting the view that 

Caesioninae should be treated as subfamily within the Lutjanidae. The subfamilies Apsilinae + 

Paradicichthyinae formed a clade and this was placed as a sister taxon to the Lutjaninae. They 

further found evidence that the western Atlantic snappers (Lutjanus campechanus, L. synagris, 

and Rhomboplites aurorubens) included in their analysis were derived from the IP. Allen (1985) 

and Allen and Talbot (1985) inferred lutjanid relationships and identified groups based on general 

morphology and external colouration. These groups included the “blue-lined group” (Lutjanus 

kasmira, L. bengalensis, L. notatus and L. quinquelineatus), the “black-spot group” (Lutjanus 

fulviflamma, L. ehrenbergii, L. johnii, L. fuscescens, L. russellii and L. monostigma), the “yellow 

group” (Lutjanus adetii, L. lutjanus, L. madras, L. vitta and L. mizenkoi) and the “red group” 

(Lutjanus erythropterus, L. gulcheri, L. malabaricus, L. sanguineus and L. timorensis). Lutjanus 

bohar, L. gibbus and L. sebae are considered “red group” species (Newman & Dunk, 2002; 

Marriot & Mapstone 2007), but phylogenetic relationships do not always put them among the 

members of the “red group” (Miller & Cribb, 2007). Nevertheless, Miller and Cribb’s (2007) 

study supported these relationships, where members of the “black-spot” and the “blue-lined” 

groups each clustered together. 

 

Regional genetic differentiation among lutjanids has been demonstrated in the WIO. This 

includes differentiation of South Africa, Mozambique and Mauritius from other WIO localities in 
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L. fulviflamma (Chapter 3), the differentiation between Mozambique and Maldives in L. bohar 

and between Tanzania and Kenya in L. lutjanus (both in Chapter 4). Muths et al. (2012) detected 

differentiation of Mauritius and Moroni in L. kasmira, while Gaither et al. (2010b) did a genetic 

evaluation of L. kasmira across the IP and detected low but significant differentiation of Sodwana 

Bay and Diego Garcia within the WIO. These studies illustrate differentiation over a range of 

spatial scales in the WIO for a few snapper species. It will be interesting to see if there will be 

evidence of genetic differentiation over a larger spatial scale, between WIO and IP conspecifics. 

Differentiation of the WIO from the larger IP has been observed in many reef fishes (McMillan 

& Palumbi, 1995; Planes & Fauvelot, 2002; Bay et al., 2004; Leray et al., 2010), shrimps (Duda 

& Palumbi, 1999) and mangrove crabs (Ragionieri et al., 2009). 

 

This study included the same taxa and the data generated in the studies by Guo et al. (2007) and 

Miller and Cribb (2007), and additional data and some taxa not included in their studies. The 

primary aims of this study were to (1) determine the placement of the WIO representatives of the 

widespread taxa and WIO endemics, (2) determine the phylogenetic relationships among 

snappers and the placement of newly included taxa, (3) determine the extent of differentiation 

between conspecifics from the WIO and the IP, and (4) determine the position of the 

Caesioninae. This study will further examine if there is concordance between morphology and 

genetics through the examination of the complexes discussed above. This study also aims to 

determine if the WIO endemics form a monophyletic clade similar to the Atlantic species (Miller 

& Cribb, 2007). 

 

5.2. Material and Methods 

 

5.2.1. Sampling and data analysis 

 

Tissue, primarily muscle and fin clips, of Lutjanus species collected from the WIO were obtained 

from the National Fish Collection (SAIAB) and by active sampling at various localities in the 

WIO (see previous chapters). Tissues of specimens from regions outside the WIO were obtained 

from the Australian Museum, the Northern Territory Art Gallery and Museum (Australia), and 

the University of Kansas (Appendix III). The same sample was used to generate both the 16S 
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rDNA and COII data for all taxa sequenced. Miller and Cribb’s (2007) and Guo et al.’s (2007) 

sequence data were downloaded from GenBank (Appendix V). Sequences of an additional gene 

fragment, cytochrome c oxidase I (COI), were downloaded from the Barcode of Life Database 

(BOLD; Appendix IV) and GenBank databases (Appendix V). These included Lutjanus and 

representatives of the Caesionidae from the IP. This gene fragment was included because data 

were available for a wide range of snappers collected from across the WIO. Species included here 

but not included in Guo et al.’s (2007) and Miller and Cribb’s (2007) studies are L. bengalensis, 

L. ehrenbergii, L. gulcheri, L. lutjanus, L. notatus (a WIO endemic), L. rivulatus, L. sanguineus 

(WIO endemic) and L. timorensis. Species included in the previous studies for which WIO 

representatives are included here are L. argentimaculatus, L. bohar, L. erythropterus, L. 

fulviflamma, L. fulvus, L. gibbus, L. johnii, L. kasmira, L. monostigma, L. quinquelineatus, L. 

russellii, L. sanguineus, L. sebae and L. vitta. This represents 22 of the 27 species known to occur 

in the WIO. 

 

Genomic DNA was extracted using commercial kits from samples of the included taxa. Each 

gene region (16S rDNA and COII) was amplified by PCR, purified and sequenced (see Chapter 2 

for details). PCR conditions for the amplification of the gene regions are listed in Table 5.1. 

These gene fragments and primers were used to complement and expand Guo et al.’s (2007) and 

Miller and Cribb’s (2007) data sets. See Chapter 2 for details of sequence editing and alignment. 

 

 

Table 5.1. Thermocycling regimes for the amplification of the respective mitochondrial gene 

regions (16S rDNA and COII) amplified specifically for this study for Lutjanus species. 

 
Gene region PCR thermocycling profile 

Stage 1 

Initial denaturing 

Stage 2 

Denaturing             Annealing          Extension 

 

Cycles 

Stage 3 

Final extension 

16S rDNA 96 °C, 3 min 94 °C, 50 sec 50 °C, 30 sec 72 °C, 50 sec 30 72 °C, 10 min 

CO-II 94 °C, 1.2 min 94 °C, 45 sec 54 °C, 45 sec 72 °C, 1 min 35 72 °C, 10 min 
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The relationships among individuals were determined by constructing phylogenetic trees. 

Lethrinus obsoletus (Lethrinidae) and Emmelichthys struhsakeri (Emmelichthyidae) were used as 

outgroups for both the 16S and COII analyses, while E. struhsakeri was used as an outgroup for 

the COI analyses because L. obsoletus COI data could not be found in GenBank. These species 

were used as outgroups based on their hypothesised close relationship to the Lutjanidae (Johnson 

1980). Support for the relationships was determined by bootstrapping (as before), using 10 

replicates for ML analysis. Bayesian analyses were run over 5 million generation. See Chapter 3 

for further details. 

 

5.3. Results 

 

5.3.1. Cytochrome c oxidase I (COI) 

 

The COI sequences from 43 individuals were 517 nucleotides long. This data included sequences 

from individuals from the WIO downloaded from the BOLD database, and IP individuals 

downloaded from GenBank. The BI tree (Figure 5.1) shows the ingroup was not supported with 

respect to the outgroup, Lethrinus obsoletus. The Apsilinae (A. rutilans and A. virescens) appears 

paraphyletic with respect to Lutjaninae + Caesioninae, but this is not statistically supported. The 

monophyly of Lutjaninae + Caesioninae was poorly supported (67/86/--/0.73 for MP, NJ, ML 

and BI, respectively). Although species clades were strongly supported with 100% bootstraps for 

MP, NJ and ML, respectively, and 1.00 BI support, there was no statistical support for 

relationships among species. These supported clades included the Lutjanus argentimaculatus, L. 

bohar, L. gibbus, L. lutjanus and L. sebae clades. Lutjanus analis and L. madras clades were 

strongly supported, but they included individuals from one ocean region only. A Lutjanus 

ehrenbergii clade was retrieved, but not supported. Lutjanus bengalensis individuals did not form 

a clade. 
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Figure 5.1. Bayesian inference tree derived from the COI data depicting relationships among 

snappers. Bootstrap support (MP, NJ, and ML) and Bayesian Posterior Probabilities (BI) are 

indicated on the branches, respectively. The blue text indicates individuals from the Indo-Pacific 

and the black text represents the Western Indian Ocean individuals. Morphological/external 

colouring groupings are indicated. The scale bar indicates the estimated evolutionary distance. 
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Some of the genetic relationships corresponded to morphology/external coloration. The WIO 

endemic (L. notatus) belonged to the “blue-lined group”. This clade was moderately-well 

supported (74/90/--/0.98 for MP, NJ, ML and BI, respectively). Lutjanus fulvus was closely 

related to this clade (see below). The clade containing L. ehrenbergii, L. russellii, and L. 

monostigma and L. fulviflamma (the “black-spot group”) was only supported by BI (0.97), but 

with the L. fulviflamma representative found outside this clade. Lutjanus sanguineus (WIO 

endemic) formed a clade with L. malabaricus (“red group”), as well as with L. sebae; this clade 

was moderately-well supported (79/86/80/1.00). Lutjanus bohar and L. gibbus formed a poorly 

supported clade (72/94/--/0.68) away from the “red group” clade. 

 

The ML tree (-lnL = 2019.16, tree not shown) was constructed to examine the relationships 

among individuals. The Akaike Information Criterion (AIC) identified TrN+I+G as the best 

evolutionary model for the data set. Model parameters were as follows: gamma parameter (α) = 

2.16, with nucleotide composition of A = 0.29, C = 0.31, G = 0.12 and T = 0.29, a nucleotide 

substitution rate matrix of A↔C = G↔T = 1.00, A↔G = C↔T = 15.90 and A↔T = C↔G = 

1.80, and a proportion of invariable sites (I = 0.66). The relationships among species were poorly 

supported (see below for subfamily relationships). The NJ tree (tree not shown) was similar to the 

BI tree presented. 

 

The MP alignment yielded 206 variable sites, with 193 parsimony informative characters and 13 

autopomorphies. This analysis resulted in nine equally parsimonious trees with these parameters: 

Tree Length (TL) = 955, Consistency Index (CI) = 0.30, Retention Index (RI) = 0.64 and 

Rescaled Consistency Index (RC) = 0.33. These low values indicate that characters could be 

saturated and homoplasious. The resulting strict consensus tree yielded poor resolution of internal 

nodes, resulting in a large polytomy of the ingroup taxa (tree not shown).  

 

Genetic differentiation was observed between certain WIO and IP conspecifics. These included 

L. bohar (0.27% sequence divergence), L. argentimaculatus (0.37%), L. sebae (0.77%), L. 

bengalensis (4.2%) and L. ehrenbergii (7%). There was no genetic differentiation observed in L. 

lutjanus and L. gibbus between the two regions. 
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The clade containing the Caesioninae was monophyletic, but poorly supported (--/60/60/0.69), 

and clustered within the Lutjaninae. Within this clade, the monophyly of each of Pterocaesio and 

Caesio was not resolved, since individuals from same genus did not cluster together. There was 

no support for these relationships. 

 

5.3.2. Cytochrome c oxidase II (COII) 

 

Guo et al.’s (2007) sequences from 12 Lutjanus species (37 individuals) and the outgroup 

(Emmelichthys struhsakeri) were 690 nucleotides long. The present study included 13 species not 

included previously: L. bengalensis, L. ehrenbergii, L. gibbus, L. gulcheri, L. kasmira, L. 

lutjanus, L. monostigma, L. notatus, L. quinquelineatus, L. rivulatus, L. sanguineus and L. 

timorensis, and Lethrinus obsoletus as an outgroup. Eight species, L. argentimaculatus, L. bohar, 

L. fulviflamma, L. fulvus, L. johnii L. malabaricus, L. sebae and L. vitta were common to both 

data sets. 

 

The molecular phylogeny produced using Bayesian inference depicting relationships among 

snappers is presented in Figure 5.2. The Lutjanidae was moderately-well supported (89/79/--/0.96 

for MP, NJ, ML, and BI, respectively), but included the single individual from the Caesioninae 

(P. tile). The WIO snappers clustered with the IP representatives of the same species, with 

additional taxa grouping in accordance with general morphology and/or external colouration. 

This inclusion of additional taxa did not alter the groupings found by Guo et al. (2007). 

Generally, individual species were strongly supported with 100% bootstraps for MP, NJ and ML, 

respectively, and 1.00 BI support. These included the Lutjanus fulviflamma, L. johnii, L. russellii, 

L. sebae and L. stellatus clades. Although the L. argentimaculatus clade was supported, it 

included an L. erythropterus individual (see below). Those species that were not retrieved as 

monophyletic included L. bohar, L. fulvus, L. vitta and L. malabaricus. 

 

Some concordance between genetics and morphology was observed. The clade containing L. 

monostigma, L. ehrenbergii, and L. fulviflamma (the “black-spot group”) was not supported, and 

Lutjanus johnii and L. russellii were excluded from this clade. Lutjanus notatus (WIO endemic)  
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Figure 5.2. Bayesian inference tree representing relationships among Western Indian Ocean and 

South China Sea snappers derived from the COII data. Bootstrap support and Bayesian Posterior 

Probabilities (BI) are indicated on the branches (as MP, NJ, ML, and BI, respectively). The blue 

text indicates Guo et al.’s (2007) specimens and the black text represent the Western Indian 

Ocean individuals, with morphological/external coloration groupings indicated. The scale bar 

indicates the estimated evolutionary distance. 
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and one L. fulvus (a possible misidentification) individual were placed in a clade containing the 

“blue-lined group” species, L. bengalensis, L. kasmira and L. quinquelineatus. This clade was 

relatively well supported (89/52/70/0.98). The remaining L. fulvus individuals formed a 

moderately-well supported clade (60/100/65/0.89). Lutjanus sanguineus (a WIO endemic) was 

placed in a strongly supported (99/95/100/1.00) clade containing the “red group” species, 

including L. gulcheri, L. malabaricus, L. timorensis and an L. erythropterus individual. The 

inclusion of L. erythropterus among the L. malabaricus individuals, as well as the inclusion of a 

L. erythropterus individual in the L. argentimaculatus clade is dealt with below. Unlike the COI 

data, the relationship between L. bohar and L. gibbus was not supported, and one L. bohar 

individual was positioned outside this clade. 

 

For the ML analysis, the AIC was used to identify the best model of evolution in ModelTest. The 

K81uf+I+G model was identified as the most appropriate model for the data set. The model 

parameters were a gamma parameter (α) of 1.044, nucleotide composition: A = 0.32, C = 0.31, G 

= 0.12 and T = 0.26, a nucleotide substitution rate matrix: A↔C = G↔T = 1.00, A↔G = C↔T = 

22.64 and A↔T = C↔G = 1.96, and proportion of invariable sites (I = 0.59). The ML phylogram 

(-lnL = 1921.75, tree not shown) had poorly resolved internal nodes. The NJ tree (tree not shown) 

was similar to the BI tree presented.  

 

The MP alignment (570 bp) of 58 individuals provided 199 variable characters of which 166 

were parsimony informative and 33 were autopomorphies. This analysis yielded four equally-

parsimonious trees with the parameters: TL = 784, CI = 0.32, RI = 0.75 and RC = 0.38. The 

resulting strict consensus tree resolved the internal nodes similarly to the ML tree (tree not 

shown). See below for the positioning of L. johnii across the analyses. 

 

Genetic differentiation was observed between WIO and SCS conspecifics. These included L. 

sebae (0.12% sequence divergence), L. argentimaculatus (0.12%), L. johnii (0.26%), L. 

fulviflamma (0.38%), L. fulvus (2.8% among all individuals), L. vitta (2.8%) and L. malabaricus 

(6.5%). The highest sequence divergence (10.2%) was observed between L. bohar individuals 

which were in different parts of the tree (see above). 
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Pterocaesio tile was the only member of the Caesioninae with data for the COII gene fragment 

available from GenBank , and was nested within the Lutjaninae. 

 

5.3.3. 16S ribosomal-DNA (16S rDNA) 

 

The original data set of Miller and Cribb (2007) contained 572 bp sequences from 29 species 

from the Lutjanidae (including the subfamilies Lutjaninae, Apsilinae, Paradicichthyinae and 

Caesioninae) and a wide range of outgroup taxa from the Nemipteridae, Sparidae, Lethrinidae 

and Haemulidae. However, this study used similar outgroups (Lethrinus obsoletus and 

Emmelichthys struhsakeri) to those in the COI and COII analyses for consistency. This study 

included eight species (L. bengalensis, L. ehrenbergii, L. gulcheri, L. lutjanus, L. malabaricus, L. 

notatus, L. rivulatus and L. timorensis) not included in Miller and Cribb’s (2007) study. Thirteen 

species (L. argentimaculatus, L. bohar, L. erythropterus, L. fulviflamma, L. fulvus, L. gibbus, L. 

johnii, L. kasmira, L. monostigma, L. quinquelineatus, L. russellii, L. sebae and L. vitta) were 

represented in both studies. 

 

In the BI tree presented (Figure 5.3), the monophyly of the Lutjanidae was resolved, but with 

poor support (--/62/--/0.85 for MP, NJ, ML and BI, respectively). The inclusion of additional taxa 

did not alter the groupings found by Miller and Cribb (2007). Conspecifics of widespread taxa 

formed individual clades. Most of these were resolved with good support, with 100% bootstraps 

for MP, NJ and ML, respectively, and 1.00 BI support. These included L. argentimaculatus, L. 

bohar, L. gibbus, L. johnii and L. sebae. There was fair support for the L. fulviflamma and L. 

fulvus clades in some analyses. Some individual species did not form monophyletic clades or 

were not supported. These included L. erythropterus, L. kasmira, L. quinquelineatus, L. russellii 

and L. vitta. 

 

As with previous data sets, some concordance was found between genetic relationships and 

general morphology/external colouration. Lutjanus notatus (WIO endemic) was placed in a 

poorly supported clade (61/64/--/0.56) containing the “blue-lined group”, L. bengalensis, L. 

kasmira and L. quinquelineatus. Similar to the COI data set, L. fulvus was included in a larger 

clade  
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Figure 5.3. Bayesian inference tree-representing relationships among snappers from the Western 

Indian Ocean and Indo-West Pacific from the 16S rDNA data. Bootstrap support (MP, NJ, ML, 

and BI, respectively) and Bayesian Posterior Probabilities (BI) are indicated on the branches. The 

blue text indicates Miller and Cribb’s (2007) specimens while the black text indicates the 

Western Indian Ocean individuals, with morphological/external colouration groupings indicated. 

The scale bar indicates the estimated evolutionary distance. 
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containing the “blue-lined group” and two other species (L. stellatus and L. rivulatus) not 

belonging to this group. A clade containing L. malabaricus, L. gulcheri, L. erythropterus and L. 

timorensis, as well as L. sebae (the “red group”), was moderately-well supported (62/94/90/1.00). 

Similar to previous data sets, L. bohar and L. gibbus formed their own clade outside the “red 

group” and were sister taxa to the caesios, a finding that is consistent across the markers. The 

clade containing the “black- spot group”, L. fulviflamma, L. ehrenbergii, L. russellii and L. 

monostigma, was neither monophyletic nor supported. Lutjanus johnii was not included in this 

clade, while some L. russellii individuals formed a clade with L. carponotatus (not a “black-spot” 

member). Lutjanus dessucatus (not a “black-spot” member) and members of the “yellow group” 

(L. lutjanus and L. vitta) were included in this clade. The relationship between the “yellow 

group” species was not supported. 

 

In the ML analysis, the AIC selected TVM + I + G as the best evolutionary model for the data set 

in ModelTest. The model parameters were a gamma distribution (α) of 0.491, nucleotide 

composition of A = 0.31, C = 0.25, G = 0.21 and T = 0.24, a nucleotide substitution rate matrix of 

A↔C = 2.65, A↔G = C↔T = 15.29, A↔T = 2.98, C↔G =0.34 and G↔T = 1.00, and a 

proportion of invariable sites (I = 0.473). The ML phylogram (-lnL = 1485.42, tree not shown) 

resolved some of the internal nodes poorly, resulting in polytomies. The NJ analysis (tree not 

shown) resolved internal nodes similar to the BI tree presented. 

 

The MP alignment, 484 nucleotides from 59 individuals, provided 142 variable sites, 97 

parsimony informative sites and 44 autapomorphies. This analysis resulted in 859 equally 

parsimonious trees with parameters: TL = 431, CI = 0.37, RI = 0.67 and RC = 0.30. These low 

values could result from the reason stated above. The resulting strict consensus tree resolved the 

internal nodes poorly (tree not shown). 

 

Genetic differentiation was observed among some conspecifics from the two regions. These 

included L. argentimaculatus (0.05% sequence divergence), L. sebae (0.06%), L. fulviflamma 

(0.15%), L. kasmira (0.21%), L. monostigma (0.42%), L. johnii (0.63%), L. fulvus (1.3%), L. 

russellii (2%), L. vitta (2.3%) and L. erythropterus (2.5%). No differentiation was observed in L. 

bohar, L. gibbus and L. quinquelineatus between the two regions. 
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The monophyly of the Caesioninae was not resolved and they appeared paraphyletic, since a 

close relationship was found between Macolor niger (a lutjanid) and Caesio cuning. This 

relationship was fairly-well supported in certain analyses (65/81/--/0.78). The genus Pterocaesio 

was well-supported (97/100/100/1.00); this is contrary to the results found with the COI data. 

Although the Caesioninae clade included Macolor, this clade was supported by a high posterior 

probability. The inclusion of this clade within the Lutjaninae rendered the Lutjaninae 

paraphyletic 

 

5.4. Discussion 

 

The phylogenetic analyses in the current study were based on sequences of the COI, COII and 

16S rDNA mitochondrial gene fragments. This study included species previously not included in 

Guo et al.’s (2007) and Miller and Cribb’s (2007) data sets. Of the 27 lutjanid species (genus 

Lutjanus) occurring in the WIO, 22 were represented in the current study, including two endemic 

species, L. notatus and L. sanguineus. This data set also contained representatives of the 

widespread taxa in order to examine population differentiation between the WIO and the wider 

IP. 

 

The results presented clearly indicate concordance among the three markers with regard to the 

general relationships among subfamilies (see below). The inclusion of additional taxa did not 

alter relationships found by Guo et al. (2007) or Miller and Cribb (2007). The WIO individuals 

are part of the wider IP lutjanid fauna with most conspecifics from the two regions clustering 

together. 

 

All the markers were able to recover most individual species groups with good support, with the 

exceptions stated below. This study indicated some evidence of genetic differentiation between 

IP and WIO conspecifics. All the taxa differentiated in the COII data (except L. malabaricus) 

were also differentiated with the 16S rDNA data (see above). Across the markers, the species that 

showed differentiation between the WIO and IP included Lutjanus argentimaculatus, L. 

fulviflamma, L. fulvus, L. johnii, L. sebae and L. vitta. The species that showed no differentiation 
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were L. bohar, L. gibbus L. lutjanus and L. quinquelineatus. It appears that an environmental 

mechanism may be impeding gene flow between WIO and IP across various species (McMillan 

& Palumbi, 1995; Williams & Benzie, 1996; Avise, 2000). However, it has not been established 

where this barrier is located or which processes are responsible (Bay et al., 2004; Horne et al., 

2008). More focused studies are needed to examine what these barriers are and where are they 

most likely to be in reducing free movement of most species between the two regions. This 

knowledge is further impeded by limited information available about the life history features of 

many lutjanids. Nonetheless, Gaither et al. (2010b) demonstrated that the Indo-Pacific Barrier is 

not effective in restricting gene flow in L fulvus and L. kasmira. Besides lutjanids, other reef 

fishes have shown differentiation between WIO and the IP (see Chapter 3). The lack of 

differentiation observed in other species could result from life history traits of these species. 

Generally, some of these species are long-lived (L. bohar and L. gibbus), have long pelagic larval 

durations (PLDs) and the larvae have strong swimming abilities allowing for extensive gene flow 

across the IP. Alternatively, temporal rather than spatial partitioning with periods of expansion 

and re-colonisation to distant habitats resulting in widespread secondary contact among 

previously isolated populations could be a result of this connectivity across the IP, as suggested 

by Klanten et al. (2007) and Horne et al. (2008). 

 

There were some discrepancies in the COII data. Lutjanus bohar was positioned away from its 

WIO conspecifics, which could possibly have been a misidentification in Guo et al.’s (2007) 

data. Similarly, the inclusion of L. erythropterus in the L. argentimaculatus clade and L. 

erythropterus in the L. malabaricus clade could have been a misidentifications or introgressive 

hybridisation as suggested by Guo et al. (2007). These sequences from Guo et al.’s (2007) data 

were the only COII sequences on GenBank, and this study could not determine the true origin or 

identity of these species. Nonetheless, hybridisation among lutjanids is a common phenomenon 

(Loftus, 1992). 

 

According to distribution records of lutjanids (Allen, 1985; Allen & Talbot, 1985), L. notatus and 

L. sanguineus are WIO endemics and the expectation was that these individuals would form a 

monophyletic clade similar to the Atlantic species (Miller & Cribb, 2007), but they did not. 

Across the data sets, L. notatus was included in the “blue-lined group” + L. fulvus clade, whereas 
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L. sanguineus was included in the “red group” + L. sebae clade (Lutjanus sebae did not amplify 

for 16S rDNA data). This observation suggests that placement of these WIO endemics is in 

accordance with general morphology/external colouration. 

 

The inclusion of the Caesioninae within the Lutjaninae renders the Lutjaninae paraphyletic. 

However, the caesios themselves are not monophyletic. In the 16S rDNA data, Macolor niger 

was nested within the Caesioninae and was a sister taxon to C. cuning. Leis (2007) found 

Macolor larvae to possess all the characteristics of lutjanids, but its systematic relationship has 

not been investigated thoroughly (Miller & Cribb, 2007). Pterocaesio was well supported and 

was sister to Caesio/Macolor. This sister-group relationship was supported by a high BI posterior 

probability. The Caesioninae clade was not supported by COI data. In both the COII and 16S 

rDNA data, the Caesioninae was a sister taxon to the L. bohar/L. gibbus clade. The main 

morphological trend separating the Caesioninae from the Lutjaninae is the separate ossification of 

the ascending process of the pre-maxilla and the absence of the ethmo-maxillary ligament 

(Carpenter, 1987, 1990). Other characters include decreased dentition, which is correlated with a 

specialisation for small prey size, and the forked caudal fins and a fusiform body shape related to 

mid-water schooling (Carpenter, 1990). However, Allen (1985) found no unique characters 

distinguishing either the Lutjanidae or Caesionidae. Hence, these adaptations in feeding mode 

may be taxonomically insignificant. This is because the current results, in agreement with Miller 

& Cribb’s (2007) results, place the caesionids among the lutjanids. It is highly unlikely that their 

position will change with additional taxa and analyses. Based on the current results, this study 

supports the views of Johnson (1993), Reader and Leis (1996), and Miller and Cribb (2007) that 

the Caesionidae should be placed as a subfamily within the Lutjanidae. 

 

Phylogenetic relationships from these mitochondrial data were consistent with 

morphology/external colouration as suggested by Allen (1985). For example, in all analyses the 

“blue-lined group” (L. bengalensis, L. kasmira, L. notatus and L. quinquelineatus) was 

monophyletic. The “yellow-group” (L. vitta, L. madras and L. lutjanus) was monophyletic in the 

analyses of the COI and 16S rDNA data sets. As for the “red group” (L. erythropterus, L. 

gulcheri, L. malabaricus, L. sanguineus and L. timorensis) and the “black-spot group” (L. 

ehrenbergii, L. fulviflamma, L. johnii, L. monostigma and L. russellii), certain taxa meant to be 
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included in these clades fell outside, rendering these groups paraphyletic or polyphyletic. For 

instance, Lutjanus bohar, L. gibbus and L. sebae are regarded as red species (Marriot & 

Mapstone, 2006; Marriott et al., 2007; Nanami & Yamada, 2009); however, these species were 

not always included in the “red group” clades across the markers. Lutjanus sebae was included in 

the “red group” in the COI data only, while L. bohar and L. gibbus were always excluded from 

this group. The latter species pair showed a close relationship to the members of the Caesioninae 

in both the COII and 16S rDNA analyses. Similarly, in all analyses L. johnii did not group with 

the “black-spot” group. Lutjanus johnii is characterised by a large black-spot above the lateral 

line below the anterior soft dorsal rays, sometimes absent in adults (Allen, 1985), suggesting a 

close relationship to members of the “black-spot group”. The close association of L. fulvus to 

members of the “blue-line complex” is somewhat surprising. Morphologically, Lutjanus fulvus is 

yellowish-tan to brown with a series of narrow yellow or golden-brown stripes (Allen, 1985), 

which superficially suggests a close relationship to members of the “yellow group”. Apart from 

external colouration, meristic characters appear to reflect the separation of these groups (Allen & 

Talbot, 1985). In most cases, most members of each of these respective groups have the same 

number of dorsal and anal spines and rays (see Allen, 1985). These characters are usually fixed 

early in the development and are independent of fish size (Murta, 2000). The combination of 

meristic characters with other methods is useful in population differentiation studies (Turan et al. 

2006). These observations lead to a conclusion that, while external coloration is reliable for 

inferring phylogenetic relatedness in some lutjanids, it should not be used exclusively without 

other methods (e.g. genetics) to infer evolutionary history. 
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CHAPTER SIX 

 

GENERAL DISCUSSION 

 

This study examined population differentiation within Western Indian Ocean (WIO) species of 

the snappers (Family Lutjanidae) from the genus Lutjanus: Lutjanus bohar, L. fulviflamma and L. 

lutjanus. Both mitochondrial and nuclear genes were employed, and a morphometric component 

included to examine differentiation in L. fulviflamma, to check for concordance between these 

approaches. The combination of mitochondrial and nuclear genes allows for comparison of the 

extent of population differentiation recovered with each marker, the discrimination of past 

colonisation from recent connectivity, and for the detection of deeper phylogenetic relationships 

due to different mutation rates (Von der Heyden et al., 2008; Muths et al., 2011). Across the 

markers, the diversities for the nuclear marker were always higher than mitochondrial markers. 

Lutjanus bohar and L. fulviflamma had high genetic diversity indices, whereas L. lutjanus was 

characterised by low genetic diversity indices. The high genetic diversities observed in L. 

fulviflamma and L. bohar are similar to those found in Lutjanus erythropterus (Zhang et al., 

2006) and Lutjanus kasmira (Gaither et al., 2010a; Muths et al., 2012), while low diversities 

observed in L. lutjanus are similar to those observed in jobfish (Pristipomoides filamentosus: 

Lutjanidae) (Gaither et al., 2011a). 

 

The results of this study clearly presented some evidence of genetic differentiation between WIO 

and IP. This was most evident in L. fulviflamma (Chapter 3) and members of the “blue-lined 

group” (L. bengalensis and L. kasmira), “red group” (L. erythropterus and L. malabaricus), 

“yellow group’’ (L. vitta) and “black-spot group” (L. ehrenbergii, L. johnii, L. monostigma and L. 

russellii), as well as in L. argentimaculatus, L. bohar, L. fulvus and L. sebae, which do not belong 

to these groups. The differentiation of the WIO from the IP has been observed in many other reef 

fishes and invertebrates. This differentiation is generally accepted to be historical, coinciding 

with fluctuating sea-levels during the Pleistocene, which exposed the Sunda Shelf between 

Malaysia and northern Australia. This exposure limited water exchange between the Indian and 

Pacific Oceans (McMillan & Palumbi, 1995; Barber et al., 2000; Bay et al., 2004; Jeffrey et al., 
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2007; Gaither et al., 2010b, 2011b; Leray et al., 2010). In this study, varying levels of 

differentiation were observed between WIO and IP, these included high levels of differentiation 

in Lutjanus fulviflamma, L. fulvus and L. vitta, moderate differentiation in L. johnii, and low 

differentiation in L. argentimaculatus and L. sebae. Species that showed no differentiation 

between the two regions included L. bohar, L. gibbus, L. lutjanus and L. quinquelineatus. 

 

In examining patterns of connectivity and differentiation within the WIO, the current study 

presented evidence for the differentiation of South Africa, Mozambique and Mauritius in L. 

fulviflamma (Chapter 3). Lutjanus bohar showed differentiation between Mozambique and 

Maldives, while L. lutjanus indicated differentiation between Tanzania and Kenya (Chapter 4). 

Similar patterns of differentiation within the WIO have been established in other species. For 

instance, Visram et al. (2010a) found the differentiation of Kenya and Seychelles from Tanzania 

and Mauritius in the blue-barred parrotfish Scarus ghobban. The authors found that this 

differentiation was influenced by the South Equatorial Current (SEC) and Equatorial Counter 

Current (ECC) systems. Ridgway et al. (2008) observed differentiation of South Africa from 

Mozambique in the coral Pocillopora verrucosa. This differentiation was over an ecological time 

scale and was coupled with a genetic diversity gradient from north to south. Gouws et al. (2011) 

demonstrated differentiation of Maldives from other localities of the WIO in Abudefduf 

vaigiensis and Epinephelus merra. The authors suggested that this differentiation might be 

influenced by the geographical isolation of this locality. Muths et al. (2011) found restricted 

connectivity in Myripristis berndti, with individual localities along the Mozambique Channel 

being densely connected as a central region and localities at the extremities, Europa, Kenya and 

Reunion, being differentiated. In contrast, other studies have demonstrated high connectivity 

between East Africa (Tanzania and Kenya) and Comoros (e.g. Lutjanus fulviflamma: Dorenbosch 

et al., 2006) and across the WIO (e.g. Lutjanus kasmira: Muths et al., 2012). These and the 

current study illustrate the complex array of patterns of connectivity and differentiation that are 

observed in various taxa across the region. Overall, these studies show that oceanic currents, local 

adaptation and, to some extent, species behaviour enhance and influence differentiation in the 

WIO. For example, species which are resident as adults, such as L. kasmira, L. fulviflamma, L. 

quinquelineatus, L. monostigma and L. fulvus, would enhance population differentiation, whereas 

roving species like L. argentimaculatus, L. bohar, L. gibbus and L. sebae (Samoilys & Carlos, 
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2000) would promote connectivity among populations. Thus, population structure results from 

the interaction of the intrinsic features of the species, such as ecology, life-history, habitat 

preference and reproductive biology, and the extrinsic physical features of the environment, such 

as currents and temperature (Gold & Richardson, 1998). 

 

Lutjanids are highly fecund and spawns pelagic eggs (Grimes, 1987), which would promote 

connectivity among localities. In addition, larval movement, recruitment and settlement 

behaviour and adult movement can promote connectivity or differentiation. However, little is 

known about the early life history and ecology of these species and genetic connectivity is, thus, 

assumed to be maintained by egg and larval dispersal and by adult migration in L. bohar 

(especially to spawning aggregations: Domeier & Collin, 1997). Several studies (Bernardi et al., 

2001; Fauvelot & Planes, 2002; Dorenbosch et al., 2006; Craig et al., 2007; Gaither et al., 2011a) 

have shown that the pelagic larval stage is the main mode of connectivity among localities for 

many species. Muths et al. (2012) proposed that ecological features of Lutjanus kasmira, such as 

habitat preference, competition for space and trophic behaviour, influence and contribute to the 

genetic connectivity of this species in the WIO. However, information regarding larval dispersal 

and recruitment behaviour of the three species (Lutjanus bohar, L. fulviflamma and L. lutjanus) is 

lacking and it would provide more confidence in the patterns observed and inferences made in the 

current study. Thus, understanding the components of connectivity and differentiation that are 

attributable to intrinsic and extrinsic features is a challenge (Gouws et al., 2011), but are 

necessary for understanding connectivity and for implementing conservation and management 

strategies. 

 

Several authors (e.g. Hocutt, 1987; Pandolfi, 1992; Santini & Winterbottom, 2002), considered 

the vicariant origins for regional faunas and proposed biogeographical regions for the IP, as well 

as the WIO. The physical features or the historical events that have led to the separation of the 

biogeographic regions may have influenced population differentiation observed in the current 

study. According to Santini and Winterbottom’s (2002) biogeographic hypothesis, differentiation 

would be expected among the localities of the Mozambique Basin, Somali Basin, Mascarene 

Plateau, Maldives/Chagos/Laccadive Ridge, Red Sea and the Arabian Basin. The three species 

(Lutjanus bohar, L. fulviflamma and L. lutjanus) demonstrated patterns of differentiation 
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corresponding to these biogeographic regions. Differentiation was observed among the 

Mozambique Basin (represented by South Africa and Mozambique), the Mascarene Plateau 

(represented by Mauritius) and the Maldives/Chagos Laccadive Ridge (represented by Maldives). 

Absence of full concordance with Santini and Winterbottom’s (2002) proposed biogeographic 

regions suggests that, for the studied taxa, other processes may have been significant and perhaps 

dispersal is an overriding process across certain areas. Other hypotheses (Hocutt, 1987; Pandolfi, 

1992) provided a poor fit to the data. 

 

To effectively manage and conserve fisheries resources in the region, an understanding of 

population genetic structure is necessary. Accordingly, the differentiation observed, as discussed 

above, may suggest different stocks in the mentioned localities. However, this was not the aim of 

this study and the present data cannot effectively examine stock structure of these species. If 

there are different stocks, this would then require further examination of population dynamics for 

each locality for each species. This would then provide information regarding the ecological 

independence of subpopulations within each species in these localities. Independent management 

will then have to be put in place to conserve these species and preserve the genetic integrity of 

these stocks (if present). Lutjanus bohar is most likely to be impacted by over-fishing because the 

species is long-lived and takes time to reach sexual maturity, while L. fulviflamma, which grows 

rapidly and attains sexual maturity early, may be resilient to exploitation (Kamukuru & Mgaya, 

2004; Marriott & Mapstone, 2006; Marriott et al., 2007). With the increased fishing pressure, 

most species are exposed to over-exploitation (Kamukuru et al., 2005). This fishing pressure can 

be alleviated by establishment of Marine Protected Areas (MPAs), which have been suggested 

for the conservation and management of many fisheries species (Turpie et al., 2000; Kamukuru et 

al., 2005; Allen, 2007; Botsford et al., 2009; Ungfors et al., 2009; Muths et al., 2011, 2012), 

including lutjanids. As illustrated by these authors, MPAs offer a range of benefits including 

alleviating declining and recovering populations. However, these MPAs will work only if all 

kinds of fishing, commercial, recreational and artisanal, are carefully managed (see below) 

(Denny & Babcock, 2004). Although WIO MPAs are largely ineffective (Mora et al., 2006), 

McClanahan et al. (2007) demonstrated fish recovery in Kenyan MPAs, influenced by migration 

of individuals from outside into the reserve. Of the three species, L. bohar will have a 

competitive advantage over the other two species in a no-take MPA due to its longevity. Munga 
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et al. (2012) observed high abundances of long-lived species, including members of the 

Lutjanidae, in a no-take Mombasa MPA. Periodic fishing closures and bag limits for fishery 

sensitive species have been proposed for population recovery in Kenyan MPAs (McClanahan et 

al., 2007). In the Atlantic, Carson et al. (2011) demonstrated that MPAs are critical in preserving 

Lutjanus analis spawning aggregations to maintain genetic diversity in this species. 

 

Caution should be taken when interpreting the results of this study due to (1) limitations in 

sample sizes, particularly for L. bohar and L. lutjanus, (2) some of the samples amplified for 

mitochondrial markers, did not amplify for nuclear markers, and (3) the spatial coverage for these 

two species, which is a cause for concern. Nonetheless, the results of this study contribute 

substantially to the understanding of the WIO biogeography. It is clear from the results 

(particularly for L. bohar and L. fulviflamma) that increasing sample size or more data may not 

necessarily change the patterns observed. This study further demonstrated that utilising multiple 

markers (mitochondrial and nuclear), which provide different properties of evolution and 

transmission, is important in uncovering the patterns observed. The concordance between the 

markers strengthens the confidence in the patterns observed, while contradicting patterns could 

result from features such as hybridisation and introgression, demographic changes or sex-biased 

dispersal. 

 

According to Allen (1985), these three species of lutjanids (Lutjanus bohar, L. fulviflamma and L. 

lutjanus) are abundant in the WIO. However, during this study, fewer individuals were collected, 

particularly of L. bohar and L. lutjanus. A range of factors (as outlined in Chapter 4) could have 

resulted in the study not acquiring the desired sample numbers. As such, reservations have to be 

made over some of the conclusions drawn from certain analyses. Therefore, future research 

should increase sampling sizes to have a more comprehensive understanding of the 

phylogeography and biogeography of these species. To make accurate inferences about 

connectivity, the interaction between the species’ intrinsic features (life history, reproductive 

biology and ecology) and extrinsic features (the environmental features) will need to be given 

careful consideration in future studies. This, however, will require other methodologies, such as 

tag-recapture experiments, telemetry and studies of propagule movement, to have greater 

confidence in what caused the patterns observed. Alternatively, if funding, sample size and time 
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were adequate, different marker sets could have been examined. These would most likely be 

microsatellites. These markers are codominant and distributed throughout the genome, offering 

an advantage over nuclear markers. This suggestion is made because across the data sets, while 

all samples amplified for cytochrome b, fewer individuals amplified for NADH-2 and the fewest 

for S7 intron 1. Cytochrome b was more sensitive to detecting patterns of differentiation, which 

in most cases, were not observed with NADH-2. The S7 intron 1 provided patterns of 

differentiation in agreement with cytochrome b, and in some instances recovered differentiation 

not observed with cytochrome b. The inclusion of microsatellites would add more confidence and 

recover more patterns of differentiation, as observed in Lutjanus kasmira (Muths et al., 2012) 

study. A suggestion for future studies is to use mitochondrial markers (particularly cytochrome b) 

with microsatellites to recover patterns of differentiation /or connectivity in lutjanids. Adequate 

sample sizes are needed in order to do more analyses for better confidence in the patterns 

observed.   
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APPENDICES 

 

Appendix I: Lutjanus fulviflamma (Forsskål, 1775) samples collected across the Western Indian Ocean 

and borrowed from Kansas University of Technology and analysed in this study. These samples were used 

to generate sequence data for Cytochrome b, NADH-2 and S7 intron 1 genes. Samples for the 

morphometric study came from various localities across the Indo-Pacific. 

Species Sample size Locality name Country GPS position 

  Latitude Longitude 

Genetics samples 
      

Lutjanus fulviflamma 5 Sodwana Bay South Africa -27.864999 35.383333 

Lutjanus fulviflamma 4 Mthatha River mouth South Africa -31.933333 29.183333 

Lutjanus fulviflamma 6 Mhlathuze estuary South Africa -28.449999 32.416667 

Lutjanus fulviflamma 4 Inhambane Mozambique -23.864999 35.383333 

Lutjanus fulviflamma 2 Pemba Bay Mozambique -12.960833 40.507778 

Lutjanus fulviflamma 2 Lumbo Mozambique -15.010556 40.666389 

Lutjanus fulviflamma 4 Maputo Bay Mozambique -25.948203 32.679537 

Lutjanus fulviflamma 3 Shimoni  Kenya -4.649999 39.383333 

Lutjanus fulviflamma 3 Dabaso Kenya -2.683333 39.600000 

Lutjanus fulviflamma 2 Anosy Madagascar -25.067000 46.931300 

Lutjanus fulviflamma 7 Zanzibar Tanzania -6.166667 39.183333 

Lutjanus fulviflamma 5 Port Louis Mauritius -20.185219 57.408478 

Lutjanus fulviflamma 2 Baie Ternay Seychelles -4.633333 55.366667 

Lutjanus fulviflamma 2 Mahe Seychelles -4.616667 55.450000 

Lutjanus fulviflamma 5 Farasān Island Saudi Arabia  16.800000 41.900000 

Lutjanus fulviflamma 5 Phuket Thailand 7.883333 98.400000 

Lutjanus fulviflamma 1 Tongatapa Tonga -21.166667 -175.166666 

      

Morphometric samples 
      

Lutjanus fulviflamma 1 Kosi Bay South Africa -33.599998 26.899999 

Lutjanus fulviflamma 3 Kosi Bay South Africa -26.883333 32.866665 

Lutjanus fulviflamma 6 Durban Bluff South Africa -29.850000 31.000000 

Lutjanus fulviflamma 2 Bizana Coast South Africa -31.566668 29.399999 

Lutjanus fulviflamma 4 Sodwana Bay South Africa -27.516666 32.683334 

Lutjanus fulviflamma  Six Mile Reef South Africa -27.625000 32.656666 

Lutjanus fulviflamma 2 Xora South Africa -32.150002 29.000000 

Lutjanus fulviflamma 1 Swartkops River mouth South Africa -33.866665 25.633333 

Lutjanus fulviflamma 1 Kariega River South Africa -33.683334 26.683332 

Lutjanus fulviflamma 1 Whale Rock South Africa -31.933332 29.216667 

Lutjanus fulviflamma 1 Preslies Bay South Africa -31.883333 29.266666 

Lutjanus fulviflamma 1 Between Goss Bay & Goss Point South Africa -31.399999 29.883333 

Lutjanus fulviflamma 9 unspecified South Africa   

Lutjanus fulviflamma 2 Maputo Mozambique -25.966667 32.583332 

Lutjanus fulviflamma 1 Tekomaji Island Mozambique -10.783334 40.650001 

Lutjanus fulviflamma 1 Mozambique Island Mozambique -15.033334 40.650002 

Lutjanus fulviflamma 1 Delagoa Bay Mozambique -25.966667 32.583332 

Lutjanus fulviflamma 1 Moebase lower mouth  Mozambique -17.066668 38.683334 

Lutjanus fulviflamma 1 Inhaca Island  Mozambique -26.016666 32.966667 

Lutjanus fulviflamma 1 Ponta Milibangalala Mozambique -26.450001 32.933334 

Lutjanus fulviflamma 1 Baixo Sao Joan Mozambique -26.399999 32.916668 

Lutjanus fulviflamma 2 Larde Estuary - Lower reaches Mozambique -16.524723 39.711113 

Lutjanus fulviflamma 1 Inhambane Mozambique -23.793283 35.527117 

Lutjanus fulviflamma 4 Unspecified Mozambique   

Lutjanus fulviflamma 1 Zanzibar Island Tanzania -6.166667 39.183334 

Lutjanus fulviflamma 2 Tanga Tanzania -5.116667 39.083332 
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Lutjanus fulviflamma 2 Nyama Reef 7 Tanzania -5.100000 39.100000 

Lutjanus fulviflamma 5 Chwaka Bay Landing Site Tanzania -6.129500 39.466167 

Lutjanus fulviflamma 1 Paje Tanzania -6.266667 39.550000 

Lutjanus fulviflamma 1 Shimoni Kenya -4.650000 39.383335 

Lutjanus fulviflamma 1 Mombasa Kenya -4.083333 39.666668 

Lutjanus fulviflamma 2 Mauritius Mauritius -20.299999 57.583332 

Lutjanus fulviflamma 1 La Morne Mauritius -20.469833 57.344300 

Lutjanus fulviflamma 4 Mahe Seychelles -4.616667 55.450001 

Lutjanus fulviflamma 1 Assumption Island Seychelles -9.750000 46.500000 

Lutjanus fulviflamma 3 Aldabra Island Seychelles -9.433333 46.333332 

Lutjanus fulviflamma 2 Off Baie Ternay Seychelles -4.636600 55.375198 

Lutjanus fulviflamma 1 Baie Ternay Seychelles -4.641699 55.376099 

Lutjanus fulviflamma 3 Seychelles Seychelles -3.950000 54.533332 

Lutjanus fulviflamma 2 Karaman Island Yemen 15.350000  42.583333  

Lutjanus fulviflamma 2 Makung market China 23.566668 119.58334 

Lutjanus fulviflamma 1 Grande Comore Comoros -11.816666 43.016666 
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Appendix II: Lutjanus bohar (Forsskål, 1775) and Lutjanus lutjanus Bloch, 1790 samples analysed in the 

current study collected from various localities in the Western Indian Ocean and borrowed from Kansas 

University of Technology. These samples were used to generate Cytochrome b, NADH-2 and S7 intron 1 

sequence data for both species. 

 
Species Sample size Locality name Country GPS position 

  Latitude Longitude 

      

Lutjanus bohar 2 Pomene Mozambique -22.925278 35.552222 

Lutjanus bohar 2 Inhambane Mozambique -23.864999 35.383333 

Lutjanus bohar 4 Incaha Mozambique -26.046883 32.851090 

Lutjanus bohar 2 Zanzibar Tanzania -6.166667 39.183333 

Lutjanus bohar 4 Dabaso Kenya -2.683333 39.600000 

Lutjanus bohar 2 Picard Island Seychelles -9.399486 46.197911 

Lutjanus bohar 1 Denis Island Seychelles -3.799998 55.555556 

Lutjanus bohar 1 Anosy Madagascar -25.067000 46.931300 

Lutjanus bohar 1 Farasān Island Saudi Arabia 16.800000 41.900000 

Lutjanus bohar 9 Gan Maldives 7.883333 98.400000 

Lutjanus bohar 1 Lizard Island Australia -15.933333 124.416667 

Lutjanus bohar 1 Great Barrier Reef Australia -36.166667 175.416667 

      

Lutjanus lutjanus 3 Off Mozambique Mozambique -13.818056 40.618611 

Lutjanus lutjanus 11 Zanzibar Tanzania -6.166667 39.183333 

Lutjanus lutjanus 7 Shimoni Kenya -4.649999 39.383333 
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Appendix III: Samples analysed for the phylogeny chapter (Chapter 5) from various localities in the 

Western Indian Ocean, and samples borrowed from Art Gallery and Museum of the Northern Territory 

(NT), Darwin, in Australia. These samples were used to generate COII and 16S sequence data. 

 
Species Sample size Locality name Country GPS position 

  Latitude Longitude 

      

Lutjanus argentimaculatus 1 Anosy Madagascar -25.061000 46.931300 

Lutjanus argentimaculatus 1 Robinson River Australia -16.049999 137.266667 

Lutjanus argentimaculatus 2 Phuket  Thailand 7.883333 98.400000 

Lutjanus bengalensis 1 Cape Vidal South Africa -46.333333 51.733333 

Lutjanus bohar 1 Pomene Mozambique -22.925278 35.552222 

Lutjanus ehrenbergii 1 Zanzibar Tanzania -6.166667 39.183333 

Lutjanus erythropterus 1 Darwin Harbour Australia -12.471111 130.847500 

Lutjanus fulviflamma 1 Sodwana Bay South Africa -27.864999 35.383333 

Lutjanus fulviflamma 1 Inhambane Mozambique -23.864999 35.383333 

Lutjanus gibbus 1 Shimoni Kenya -4.649999 39.383333 

Lutjanus gulcheri 1 Off Mozambique Mozambique -16.384444 40.033333 

Lutjanus johnii 1 Barron Island Australia -12.166667 132.350000 

Lutjanus kasmira 1 Mascare-6 Mauritius -16.843333 59.593333 

Lutjanus lemniscatus 1 Darwin Harbour Australia -12.471111 130.847500 

Lutjanus lemniscatus 1 Phuket Thailand 7.883333 98.400000 

Lutjanus lemniscatus 1 Pomene Mozambique -22.925278 35.552222 

Lutjanus lutjanus 1 Off Mozambique Mozambique -16.384444 40.033333 

Lutjanus madras 1 Phuket  Thailand 7.883333 98.400000 

Lutjanus malabaricus 1 Off Mozambique Mozambique -16.384444 40.033333 

Lutjanus notatus 1 Off Mozambique Mozambique -16.384444 40.033333 

Lutjanus quinquelineatus 1 Quissico & Zavora Mozambique -24.659932 35.083704 

Lutjanus sebae 1 Zanzibar Tanzania -6.166667 39.183333 

Lutjanus sebae 1 Lynedoch Bank Australia -10.016667 130.816667 

Lutjanus timorensis 1 Lynedoch Bank Australia -10.016667 130.816667 
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Appendix IV: Sequences downloaded from the BOLD database used in the construction of the COI 

phylogeny in Chapter 5. 

 
Family Species Sample size Sequence name 

    

Lutjanidae Aphareus rutilans 1 80635 

 Aprion virescens 1 77780 

 Lutjanus argentimaculatus 1 TZW141 

  1 78275 

 Lutjanus bengalensis 1 GP8625 

  1 77985 

 Lutjanus bohar 1 80663 

  1 TZW201 

 Lutjanus ehrenbergii 1 TZW051 

 Lutjanus fulviflamma 1 TZW097 

 Lutjanus fulvus 1 80662 

 Lutjanus gibbus 1 78258 

  1 TZW061 

 Lutjanus lutjanus 1 80637 

  1 TZW196 

 Lutjanus madras 1 77084 

  1 77809 

 Lutjanus monostigma 1 RB09_127 

 Lutjanus sanguineus 1 77782 

 Lutjanus sebae 1 77456 

  



157 

 

Appendix V: Sequences downloaded from GenBank with their accession numbers for COI, COII and 16S 

mitochondrial DNA gene fragments for the construction of phylogenies in Chapter 5. 

 
Family Species GenBank accession number 

  COI COII 16S 

     

Emmelichthyidae Emmelichthys struhsakeri  AP004446 AP004446 

     

Lethrinidae Lethrinus obsoletus NC009855 NC009855 NC009855 

     

Lutjanidae Aphareus  furca   DQ784722 

 Aprion virescens   DQ784723 

 Caesio caerulaurea JF492986  DQ784724 

 Caesio cuning   DQ784725 

 Caesio lunaris JF492994   

 Lutjanus adetii   DQ784727 

 Lutjanus analis HQ987863   

  JQ841254   

 Lutjanus apodus JQ741279   

 Lutjanus argentimaculatus NC016661 DQ900723 DQ784728 

   EF025487  

 Lutjanus bengalensis NC011275   

 Lutjanus bohar GU805107 EF025488 DQ784729 

 Lutjanus campechanus   AY857940 

 Lutjanus carponotatus   DQ784730 

 Lutjanus decussatus   AF247445 

 Lutjanus ehrenbergii HQ149874   

 Lutjanus erythropterus  EF025489 DQ444480 

   EF025490  

 Lutjanus fulviflamma  DQ900712 DQ784731 

 Lutjanus fulvus  DQ900709 DQ784732 

   DQ900711  

 Lutjanus gibbus GU805121  DQ784733 

 Lutjanus griseus JQ842927   

 Lutjanus johnii  DQ900720 DQ444484 

 Lutjanus kasmira NC011578  DQ784734 

 Lutjanus lutjanus HQ149880   

 Lutjanus malabaricus NC012736 DQ900704  

   DQ900705  

   DQ900706  

   DQ900708  

   EF025491  

 Lutjanus monostigma   DQ784735 

 Lutjanus notatus JF493842   

 Lutjanus ophuysenii  EF376183  

 Lutjanus quinquelineatus   DQ784736 

 Lutjanus rivulatus NC009869   

 Lutjanus russellii NC010963 DQ900714 DQ784737 

   DQ900715  

 Lutjanus sebae NC012736 DQ900717 DQ784738 

 Lutjanus stellatus  DQ900701 DQ444483 

   DQ900702  

   DQ900703  

 Lutjanus synagris   AY857939 

 Lutjanus vitta  DQ900725 DQ784739 

   DQ900727  

   DQ900730  

   DQ900756  

   EF025493  
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 Macolor niger   DQ784740 

 Pterocaesio marri HQ945929  DQ784742 

 Pterocaesio pisang   DQ784743 

 Pterocaesio tile JQ681325 AP004447  

 Symphorus nematophorus   DQ784745 

 Symphorus spilurus   DQ784744 

 


