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Abstract

Global Positioning System (GPS) satellites and receivers are used to derive to-

tal electron content (TEC) from the time delay and phase advance of the radio

waves as they travels through the ionosphere. TEC is defined as the integral

of the electron density along the satellite-receiver signal path. Electron density

profiles can be determined from these TEC values using ionospheric tomographic

inversion techniques such as Multi-Instrument Data Analysis System (MIDAS).

This thesis reports on a study aimed at evaluating the suitability of ionospheric

tomography as a tool to derive one-dimensional electron density profiles, using

the MIDAS inversion algorithm over Grahamstown, South Africa (33.30◦ S, 26.50◦

E). The evaluation was done by using ionosonde data from the Louisvale (28.50◦

S, 21.20◦ E) and Madimbo (22.40◦ S, 30.90◦ E) stations to create empirical or-

thonormal functions (EOFs). These EOFs were used by MIDAS in the inversion

process to describe the vertical variation of the electron density. Profiles derived

from the MIDAS algorithm were compared with profiles obtained from the inter-

national Reference Ionosphere (IRI) 2001 model and with ionosonde profiles from

the Grahamstown ionosonde station. The optimised MIDAS profiles show a good

agreement with the Grahamstown ionosonde profiles. The South African Bottom-

side Ionospheric Model (SABIM) was used to set the limits within which MIDAS

was producing accurate peak electron density (NmF2) values and to define accu-

racy in this project, with the understanding that the national model (SABIM) is

currently the best model for the Grahamstown region. Analysis show that MIDAS

produces accurate results during the winter season, which had the lowest root

mean square (rms) error of 0.37×1011 [e/m3] and an approximately 86% chance of

producing NmF2 closer to the actual NmF2 value than the national model SABIM.

MIDAS was found to also produce accurate NmF2 values at 12h00 UT, where an

approximately 88% chance of producing an accurate NmF2 value, which may devi-

ate from the measured value by 0.72×1011 [e/m3], was determined. In conclusion,

ionospheric tomographic inversion techniques show promise in the reconstruction

of electron density profiles over South Africa, and are worth pursuing further in

the future.
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Chapter 1

Introduction

This thesis aims to introduce the application of the concept of ionospheric tomog-

raphy over the South African region, with the emphasis on evaluating MIDAS, an

inversion technique developed at the University of Bath in the United Kingdom

(UK), over Grahamstown, South Africa (33.30◦ S, 26.50◦ E). In this chapter the

ionosphere, with emphasis on the information relevant to this project, will be in-

troduced. This includes the definitions of the ionosphere, its variability and how

the ionosphere is studied. The last section (section 1.4) gives an overview of what

the remaining chapters contain.

1.1 Project Objectives

This project is a feasibility study for improving the ionospheric electron density

profiles obtained from Global Positioning System (GPS) data used by the MIDAS

algorithm (Mitchell et al., 1997), by using empirical orthogonal functions derived

from the ionosonde data, a Chapman function and the International Reference

Ionosphere (IRI) model. The project had two main objectives, namely:

• To derive realistic GPS-based ionospheric electron density profiles over the

Grahamstown, South Africa station, using the MIDAS algorithm.

• To verify the procedure using an independent instrument, in this case the

Grahamstown ionosonde.
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1.2 Introduction to the Ionosphere

The GPS signals used to characterise the ionosphere traverse the ionosphere and

therefore it is important to understand its behaviour. The ionosphere is that re-

gion of the upper atmosphere, from an altitude of about 50 km to about 1 000 km,

where plasma is ionised by extreme ultra violet (EUV) radiation and high energy

particles from the sun. When the high energy photons from the sun interact with

the atoms and molecules in the ionosphere, they strip away the electrons from

the parent atoms and molecules, resulting in a number of free negatively charged

electrons and positively charged ions.

The ionosphere is divided into three regions: lower ionosphere, the bottomside

ionosphere, and the topside ionosphere. The lower ionosphere is the region be-

tween 50 km and approximately 90 km consisting of the D layer and some E layer.

The bottomside ionosphere ranges from 90 km to about 400 km and consists of

the E and F layers. And the uppermost region is the topside ionosphere at 400

km to 1 000 km.

The ionosphere is very variable, displaying diurnal, seasonal, altitude, geographic

or geomagnetic location, magnetic and solar activity variations. During the day-

time the ionosphere exhibits three main layers:

D-layer : ranges from about 50 km to about 90 km. The ionisation in this

layer is due to the ionisation of NO and at high solar activity ionisation

of N2 and O2. This layer is predominantly responsible for high frequency

radio wave absorption, which is due to the electron collision frequency being

high, equivalent to the transmitted radio frequencies, at these heights. This

phenomenon is discussed in great detail in Rishbeth and Garriott (1969). The

D-layer does not play a significant role in ionospheric tomography, because

it exhibits much lower electron densities than the F-layer and, therefore,

has a negligible contribution to the total electron content (TEC), within the

ionosphere.

E-layer : ranges from about 90 km to about 120 km. EUV ionisation in this layer

results in molecular oxygen O2 being formed as the dominant ion species.

This layer can only reflect radio waves with frequencies less than 10 MHz.
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The E-layer has a negligible effect on GPS signals with frequencies of 1.4

GHz.

F-layer : ranges from an altitude of about 120 km to about 400 km. In this

region ionisation is due to EUV solar radiation ionising atomic oxygen O.

During the day this layer splits into two layers called the F1 layer and the F2

layer. The F2 layer has the greatest electron density peak, and is the most

important layer for long distance high frequency communications. The peak

electron density in the F layer contributes the most to the ionospheric TEC.

The variation of the ionospheric electron density with altitude is due to the fact

that different molecules are dominant over the range of altitudes. The neutral gas

density decreases with height so that there are fewer neutral atoms to participate

in the ionisation process at higher altitudes. In contrast, the radiation intensity

increases with altitude. The depth to which the radiation can penetrate depends

on its wavelength, and different molecules in the ionosphere are ionised more or

less strongly by different wavelengths of the radiation. This variation of the iono-

spheric electron density with altitude is illustrated in figure 1.1.

The ionosphere displays distinct features at some latitudes. Sometimes at mid

and high latitudes, there is a dense layer of ionisation in the E region. This layer,

called a sporadic E layer, shows no relation to the daytime E layer and is very

irregular in behaviour, in that it occurs at random occasions, its virtual height is

independent of frequency, and it is partially transparent to waves reflected from

higher altitudes. At high altitudes the ionosphere shows very complex behaviour

due to its connection to the outer magnetosphere and the interplanetary medium,

through the earth’s magnetic field. The equatorial ionosphere displays troughs,

regions of suppressed electron density, in the ionisation concentration. For a more

detailed discussion see Rishbeth and Garriott (1969), pages 160-186.

The diurnal variation of the ionosphere is a result of the rotation of the earth

about its axis. Starting around sunrise and as the sun ascends, solar radiation

produces free electrons in the ionosphere and the D and E layers form at low al-

titudes. The F region decreases in height and splits into the F1 and F2 layers.

Recombination and other electron-loss processes dominate as the sun descends to-

wards the horizon and the radiation intensity decreases. The D and E layer regions

3



Figure 1.1: A typical electron density profile depicting the different layers of the
ionosphere and the dominant ions in each layer. Profile obtained from the Space
Plasma Environment And Radio Science (SPEARS) Group website (Honary, 2007)

become insignificant at night and the F1 and F2 layers recombine to form the F

layer which rises to higher altitudes while the electron density peak decreases. The

F layer remains all night.

The earth revolving around the sun provides an explanation for the seasonal vari-

ation of the ionosphere. The D, E and F1 layers experience higher ionisation in

summer as the solar angle is highest at that time. The F2 layer, however, does

not behave as expected. At mid-latitudes the F2 electron density peak at noon in
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winter is higher than electron density peak at the corresponding time in summer.

For further reading see Rishbeth and Garriott (1969), page 179.

The solar activity variation is linked to the 11-year solar cycle. When the so-

lar cycle is at its peak, i.e. at sunspot maximum period, the ionisation is greater

than at the solar minimum, i.e. at sunspot minimum, because the solar radiation

intensity increases thus enhancing the electron concentration in the ionosphere.

Magnetic storms are started by solar disturbances, like solar flares, and their re-

currence interval is associated with the period of solar rotation. During intense

magnetic storms emission of light is observed in the ionosphere at low, mid and

high latitudes. At high latitudes the display of emitted light is in the form of an au-

rora. Further details can be found in Rishbeth and Garriott (1969), pages 252-270.

The GPS and HF radio signals travelling through the ionosphere are subjected

to time delay, phase advance, reflection, refraction and rotation of the electric field

vector in inverse proportion to the square of their frequency. The ionosphere acts

as a refractive medium, to radio signals, with the index of refraction depending

on the amount of ionisation. Thus, the electron density profile is very important

in determining the state of the ionospheric activities and for the estimation and

correction of propagation delays of GPS signals.

1.3 Studying the Ionosphere

It is important to understand the ionosphere as it influences the propagation of

radio waves. In particular, imaging the ionospheric electron density distribution

is important for estimation and correction of the time delay of radio signals trav-

elling through the ionosphere from earth-orbiting satellites to the receivers on the

ground, and for radio communications on the ground. Characterising the iono-

sphere is also important for ionospheric storm studies, space weather effects and

telecommunications. The time-delay experienced by radio waves is proportional

to the total electron content (TEC), which is proportional to the plasma refrac-

tive index or inversely proportional to the square of the signal frequency. TEC is

measured by differencing two frequency signals from satellites, recorded by a dual

frequency receiver. The relationship between TEC and the electron density will
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be discussed in Chapter 2 of this thesis.

Different instruments are used to observe the ionosphere, but each is restricted

to a specific region of the ionosphere. For example, ionosondes can only measure

the bottomside region of the ionosphere up to the peak electron density. Global

Positioning System (GPS) satellites orbiting at 20 200 km are able to provide in-

formation on the entire ionospheric region and plasmasphere. The GPS satellites

are used to obtain TEC values with which the electron densities throughout the

ionosphere can be determined by a process known as tomographic inversion. There

are many ionospheric tomographic procedures. In this project MIDAS (Multi In-

strument Data Analysis System) is used to map electron densities throughout the

ionosphere over the Grahamstown ionosonde station. In section 4.1 MIDAS will

be discussed in greater detail.

1.4 Thesis Overview

In chapter 2 the apparatus and methods used to obtain the TEC values from

GPS signals and the electron density values from ionosonde data are described.

Included are, a definition of TEC and a brief introduction to the GPS system, as

well as the ionosonde.

Chapter 3 presents the theory of tomographic inversion and different methods

of solving the tomographic problem. We discuss the Chapman beta layer, the In-

ternational Reference Ionosphere (IRI) model and the South African Bottomside

Ionospheric Model (SABIM) since these models were used to provide the initial

guess ionosphere in the inversion procedure.

In chapter 4 an overview of MIDAS is given. It presents the inversion algorithm

used and the two methods of solving the inversion problem with emphasis on

the Singular Value Decomposition method (SVD). Section 4.2 describes the inver-

sion procedure within MIDAS. This provides the grid vertices used to map the

ionosphere. The different methods to create the empirical functions used in the

inversion algorithm are also discussed in section 4.2. MIDAS can use data from

different instruments. A method of using peak electron density parameters from

6



the ionosonde data and peak electron density parameters from the SABIM model

to supplement the GPS data is discussed.

The results, in the form of one dimensional electron density profiles are presented,

in chapter 5. The electron density profiles, presented in section 5.1, were con-

structed using MIDAS, and the IRI 2001 model, and then compared with the

Grahamstown ionosonde profiles. The root mean square error and the co-efficient

of correlation are the parameters used to evaluate the performance of MIDAS.

The performance of MIDAS is presented and discussed. MIDAS is evaluated for

diurnal and seasonal changes, at solar minimum.

Chapter 6 presents an overall discussion and conclusions.
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Chapter 2

Instrumentation and

Measurements

2.1 Global Positioning System

The Global Positioning System (GPS) is a part of the Global Navigation Satellite

System (GNSS) developed by the United States Department of Defence for instan-

taneous determination of position and velocity. This system is open for use to the

general public and has proven to be very useful in navigation, scientific studies

and land surveying.

The GPS system consists of three main components: the space segment, the con-

trol segment and the user segment. The space segment is actually a constellation

of about 27 satellites orbiting at an altitude of approximately 20 200 km above

the Earth. Of the 27 satellites, only 24 satellites are operational while the other

3 are spares to replace the operational satellites should they stop functioning. Six

groups of 4 operational satellites occupy six evenly spaced circular orbital planes

centred on Earth. The orbits are inclined at 55◦ to the equatorial plane and sep-

arated by 60◦ right ascension of the ascending node. The orbits have a radius of

about 26 600 km, resulting in an orbital period of approximately 12 sidereal hours.

Thus each satellite makes two complete orbits each sidereal day, and it passes over

the same location once each day. This orbital arrangement ensures that at least

4 satellites are always within a line of sight from almost any place on Earth. The

GPS satellites broadcast signals continuously on two separate frequencies of 1.58
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GHz and 1.23 GHz, known as L1 and L2 respectively. For further reading see

Dana (1994).

The satellites are continuously monitored by the ground-based control system,

which manages the tracking, telemetry and control functions including main-

tainance of the station, monitoring the system’s well-being, updating the ephemeris

and almanacs, and most importantly, maintaining the synchronism of the atomic

clocks on board the satellites to GPS system time.

The user segment of the GPS system are the GPS receivers and the user commu-

nity that receive the GPS satellite broadcasts and compute their precise position,

velocity and time. There are two kinds of receivers: the single frequency and the

dual frequency receivers. The single frequency receiver can only receive signals

on L1 frequency and cannot eliminate the effect of ionospheric delay. The dual

frequency receiver can receive both the L1 and L2 frequency signals simultane-

ously and can eliminate ionospheric effects, thus making it more accurate than

the single frequency channel GPS receiver. The military dual frequency receivers

are equipped with a classified algorithm that can retrieve the encrypted Precise

Positioning Services (PPS), primarily intended for authorised armed services and

government agencies, while the civil dual frequency receivers do not have this op-

tion available to them and thus use codeless techniques to retrieve the PPS. The

single frequency GPS receivers can only retrieve the Standard Positioning Services

(SPS), and so are not capable of reaching the precision of dual frequency receivers.

2.1.1 GPS Satellite Signal Process

GPS satellites are equipped with atomic clocks with a clock stability of at least

10−13 s. From the base frequency of the atomic clocks (10.23 MHz) all the other

frequencies that are required for the GPS satellite are derived. The navigation

message, which describes parameters like the GPS satellite orbits and clock cor-

rections, modulates both carrier signals (i.e. L1 and L2) at a data rate of 50 Hz.

The resulting signals are further modulated using two different pseudo-random

noise (PRN) codes, known as the Coarse Acquisition (C/A) code and the Precise

(P) code. The C/A code is transmitted with a frequency of 1.02 MHz, repeating

every millisecond. This code, found in all civil GPS receivers, modulates only the
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L1 frequency and the SPS is delivered through it. Each satellite has a unique C/A

PRN code and thus they are identified by their PRN number. The P-code is a

10.23 MHz PRN code that repeats every week. It modulates the L1 as well as the

L2 carrier phases. The principle of this process is illustrated in figure 2.1.

Figure 2.1: The basic principle of signal processing. Reconstructed from on a
similar figure in Dana (1994)

2.1.2 GPS TEC Measurements

Total Electron Content (TEC) is defined as the total number of electrons in a

column of unit cross-section from the transmitter, in space, to the receiver, on the

ground. The mathematical representation of the definition is:

I =
∫ S

R
Ne(r, θ, φ, t)ds (2.1)

where I stands for TEC, Ne is the electron density, r is the radial distance from

the centre of the Earth, θ, φ are the longitude, and latitude respectively, t is the
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time, and s is the satellite-receiver path length. TEC is usually measured in TEC

units (TECU) of 1016 electrons per square meter.

Radio waves propagating through the ionosphere experience a group delay and

a phase advance, because the ionosphere is a dispersive medium. A change in the

refractive index is a source of inaccuracy in GPS signals as shown by the following

derivations, from equation (2.2) to equation (2.9). Propagation of the signal can

be described by the Appleton-Hartree equation which, when neglecting collisions,

is given by:

µ2 = 1− X(1−X)

(1−X)− 1
2
Y 2

T ± [1
4
Y 4

T + (1−X)2Y 2
L ]

1
2

(2.2)

where

X =
ω2

pe

ω

Y =
ω2

ce

ω
YL = Y cosθ

YT = Y sinθ

ω2
pe = [2πfe]

2

ω2
ce = [2πf ]2 =

Be

me

µ is the refractive index; ωpe is the angular electron plasma frequency; ω is the

angular frequency of the wave; ωce is the angular electron gyrofrequency; fe is the

electron plasma frequency; f is the radio frequency; Y is the component of the

Earth’s magnetic field and θ is the angle between the field and the direction of

propagation of the signal. The plus sign refers to the ordinary wave and the minus

refers to the extra-ordinary wave.

Assuming that the magnetic field is negligible, i.e. Y = YL = YT = 0, equation

(2.2) becomes

µ2 = 1− X(1−X)

(1−X)
= 1−X. (2.3)
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Solving for µ by expansion and ignoring the high order terms we get:

µ = 1− 1

2
X (2.4)

where

X =
ω2

pe

ω2
=

(2πfe)
2

(2πf)2
=

40.31

f 2
ne

and

fe =
nee

2

4π2meε0

where ne is the electron density; e is the electron charge (1.60 × 10−19 C); me is

the electron mass (9.11 × 10−31 kg), and ε0 is the vacuum permittivity (8.85 ×
10−12 F/m). Finally,

µ = 1− 40.31

f 2
ne. (2.5)

This dispersion relation can now be written in terms of phase and group refractive

indices µph and µgr respectively:

µgr = 1 +
40.31

f 2
ne

µph = 1− 40.31

f 2
ne.

The geometric range R from receiver r to satellite s along the line of sight, adopted

from Fermat’s principle (see Hofmann-Wellenhof et al. (1997) page 102), is given

by

R =
∫ s

r
1d`,

and the pseudo-range ρ is given by

ρ =
∫ s

r
µdρ.

Then the path length difference is:

∆ρ = ρ−R =
∫ s

r
µdρ−

∫ s

r
1d`.
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As the integration is along the geometric path, dρ can be changed to d`, and then

the group refractive index can be substituted for the group delay:

∆ρgr =
40.31

f 2

∫ s

r
ned`. (2.6)

Similarly for the phase advance, the path difference is:

∆ρph = −40.31

f 2

∫ s

r
ned`. (2.7)

From the definition of TEC in equation (3.2), the above equations can be written

as:

∆ρgr =
40.31

f 2
I (2.8)

∆ρph = −40.31

f 2
I. (2.9)

But the geometric range cannot be measured directly, and therefore TEC cannot

be calculated from equations (2.8) or (2.9). Thus a method of measuring TEC

directly from the differential code delay or carrier phase measurements on both

the L1 and L2 frequencies is used. This algorithm is presented in a logical math-

ematical form in Meggs (2005).

TEC is observed from GPS measurements by a linear combination of the car-

rier phases of the signal and the pseudo-ranges recorded by a receiver on both

carrier frequencies L1 and L2. The carrier phase-based measurements as well as

the pseudo-range measurements are as follows:

L1 = ρ + ∆ρph,1 + λ1n1 + εr
1 + εs

1

L2 = ρ + ∆ρph,2 + λ2n2 + εr
2 + εs

2

P1 = ρ + ∆ρgr,1 + τ r
1 + τ s

1

P2 = ρ + ∆ρgr,2 + τ r
2 + τ s

2

where ρ is a non-dispersive delay term which lumps together the geometric dis-

tance, troposphere delay, clock errors, and non-dispersive delays in the hardware

(see Mannucci et al. (1999)); λ1n1 and λ2n2 are the unknown integer cycle am-
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biguity associated with the carrier phase term. The ε and τ are the dispersive

component of the receiver and satellite hardware delays. The errors mentioned

here will be discussed in section 2.1.4 on page 16. The P1 and P2 are extracted

from the P-code.

The phase-based TEC is calculated from the difference between the two observed

phase advances:

LI = L1 − L2 = 40.31[
1

f 2
2

+
1

f 2
1

]IL + (λ1n1 − λ2n2) + b′r + b′s. (2.10)

Similarly the code-based TEC is obtained from:

PI = P2 − P1 = 40.31[
1

f 2
2

+
1

f 2
1

]IP + br + bs. (2.11)

Having obtained the TEC values it is possible to apply the technique known as

ionospheric tomography to derive the electron density values. This technique will

be discussed in Chapter 3.

2.1.3 Position Determination

The GPS travel time is the amount of time taken by a radio signal to travel from

the satellite to a receiver. So, if the exact time the signal left the satellite is known

and the exact time it reached the receiver is known, then the travel time can be

calculated. The distance between the receiver and satellite can be determined

from the travel time, assuming the signal traveled at the speed of light. The GPS

receiver then calculates its position by measuring these path lengths from at least

4 satellites.

Each GPS satellite sends a navigation message to the receiver containing its cur-

rent position, clock corrections and other system parameters. The GPS receiver

identifies each satellite by its unique PRN code and internally produces an iden-

tical code to the satellite. By auto-correlating the two sequences, the receiver can

determine the time delay of the signal and hence the pseudo-range, i.e. the path

length.
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Observations from three satellites can be used to determine the receiver’s accu-

rate position, provided that the GPS system time, satellite and receiver clocks are

precisely and continually synchronised. This is not possible as the receivers use

quartz clocks which are not as accurate as the GPS atomic clocks. The satellite

clock also drifts from the GPS system time, but this is monitored and corrected,

thus effectively synchronising the clock with GPS system time. As the same pro-

cedure cannot be applied to the receiver clock, a fourth satellite observation is

necessary.

To solve for the receiver’s position, the Earth-centred Earth-fixed (ECEF) co-

ordinate system is used to define the satellite and receiver positions (see Meggs

(2005)). If s is the satellite’s position vector, and r is the receiver’s position vector,

then the geometric range R is given by

R = s− r,

such that the the pseudo-range is

ρ =‖ s− r ‖=
√

(xs − xr)2 + (ys − yr)
2 + (zs − zr)2. (2.12)

The pseudo-range is measured by differencing the time the signal left the satellite,

ts, and the time recorded by the receiver when it received the signal, tr:

ρ = c(tr − ts).

Taking into account the receiver’s clock inaccuracy, δtr, this can be written as:

ρ = c(tr + δtr − ts) = c(tr − ts) + cδtr.

Thus, from equation (2.12) and the above equation, the equation for the pseudo-

range becomes:

ρ =
√

(xs − xr)2 + (ys − yr)
2 + (zs − zr)2 + cδtr. (2.13)
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Since observations from four satellites are required for accuracy, the above equation

can be represented by:

ρi =
√

(xsi − xr)2 + (ysi − yr)
2 + (zsi − zr)2 + cδtr (2.14)

where i is the index of the satellites. The method of obtaining the solution, known

as the navigation solution, is discussed in Hofmann-Wellenhof et al. (1997).

2.1.4 GPS Errors and Accuracy

Although the information obtained from a GPS satellite was designed to be very

accurate, it does contain errors from several sources. The position accuracy of the

GPS system is measured by two parameters known as the User Equivalent Range

Error (UERE), and the Geometric Dilution of Precision (GDoP). The sources of

error includes ionospheric effects, ephemeris errors, satellite clock errors, multi-

path effects, relativistic effects and numerical errors, and are collectively known as

UERE. General estimated contribution values for each effect, in metres, is given

in Table 2.1, and discussed in detail in NAV (1996).

The major source of inaccuracy is the change in refractive index along the ray

Table 2.1: GPS Range Error Budget.
Source P code Error [metres] C/A code Error [metres]

Ionosphere 4.5 9.8 - 19.6
Troposphere 3.9 3.9
Ephemeris 8.2 8.2
Multipath 2.4 2.4

Others 1.0 1.0

path that changes the speed of the GPS signals as they pass through the iono-

sphere and troposphere. The atmospheric effect is minimal when the satellite is

directly overhead and increases greatly for satellites near the horizon, as the signal

has to travel a longer path through the atmosphere.

Radio waves are slowed down at a rate inversely proportional to the square of

their frequency when they are passing through the ionosphere. In other words,
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ionospheric delay affects the speed of radio waves based on their frequency, a phe-

nomenon known as dispersion. Thus both the L1 and L2 frequencies can be used

to reduce this effect by comparing the delays in the frequencies to measure the

dispersion, as previously discussed in section 2.1.2.

The troposphere effect causes further variable delay by refraction due to humidity.

The error caused by this effect changes faster, thus making it difficult to eliminate,

but this effect is very much smaller than the ionosphere effect and hence, for the

purposes of this project, the troposphere effect is ignored.

The atomic clocks on board satellites are very accurate, but there are slight varia-

tions from satellite to satellite. At GPS orbital speeds the special relativity theory

predicts that the atomic clocks will run slower than the stationary ground clocks.

On the other hand, the theory of general relativity predicts that the atomic clocks

on board the satellite will tick faster than the clocks on the Earth’s surface as the

satellites’ clocks are in a weaker gravitational field. It turns out that the time con-

traction is greater than the time dilation, thus the GPS atomic clocks run faster

and this discrepancy has to be taken into consideration.

The multipath effect is caused by reflection of the GPS signal on objects such

as buildings before reaching the receiver, see (Larson et al. (2007)). Other sources

of errors are electromagnetic radiation and man-made interferences that can hin-

der the receiver from receiving signals. All the non-dispersive errors are taken into

account by taking the differenced phase and code ranges in equations (2.10) and

(2.11). The unknown integer cycle ambiguity, λ1n1 − λ2n2, in equation (2.10) is

removed by calibrating the LI curve to the PI curve using least square fitting, (see

Meggs (2005) page 30).

The alignment or geometry of the satellite constellation from which signals are

received is a major factor in position accuracy, because it affects the other errors

as well. The quality of the constellation geometry is indicated by the dilution of

precision (DoP) values. A good distribution of the satellites across the sky (i.e.

large angle between satellites) lowers the DoP, thus providing accurate measure-

ments, while a higher DoP provides poor measurements.
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A technique known as Differential GPS (DGPS) allows for improvement in po-

sition accuracy by using a second stationary GPS receiver. Since the stationary

receiver’s position, a previously surveyed benchmark, is known accurately, the cor-

rection can be computed by differencing its known and measured positions. The

correction factor is then transmitted to other GPS receivers on a separate radio

frequency and applied accordingly to the measured data. The disadvantage of

this method is that it is restricted to nearby receivers, as the positioning accuracy

decreases as the distance between the stationary receiver and other receivers in-

creases.

An enhancement to DGPS used in the United States of America (USA), the Wide

Area Augmentation System (WAAS), offers a better accuracy than DGPS. This

system consists of a network of ground stations that continuously monitors the

GPS satellites, and compares the actual ground position with the position calcu-

lated by the GPS satellites. The varying correction factors are then continuously

calculated and transmitted to the receivers. Similar systems are under develop-

ment in Europe (EGNOS - European Geostationary Navigation Overlay Services),

and Japan and other Asian countries (MSAS - Multi-functional Satellite Augmen-

tation System). These systems will facilitate a more accurate calculation of the

TEC values.

2.2 Ionosonde

An ionosonde is a high frequency, vertically sounding radar used to measure the

bottomside ionosphere. It transmits radio waves, with frequencies ranging from 3

to 30 MHz, vertically upwards, which are reflected by the ionosphere. Different

frequencies are reflected by different plasma density regions. There are two types

of ionosondes: the pulse ionosonde and the chirp ionosonde. The pulse ionosonde

transmits short pulses at high peak power, while the chirp ionosonde transmits

long pulses at low peak power. Kelso (1964) give a more detailed discussion on

ionospheric measurements using ionosondes. The South African ionospheric group

uses a digisonde portable sounder (DPS) which is a pulse ionosonde with real-time

analysis capabilities, for more information see Galkin (2007). The output of any
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ionosonde is an ionogram, a plot of frequency versus virtual height and reveals the

heights of reflecting layers and the maximum frequency associated with them, as

shown by the example given in figure 2.2.

The ionosonde then measures the time taken for the transmitted signal to re-

Figure 2.2: An ionogram with a fitted frequency profile was extracted from SAO
explorer. The ionogram was obtained from the Louisvale digisonde station (28.50◦

S, 21.20◦ E). The vertical axis is the altitude in km, and the horizontal axis is the
frequency in MHz.

turn. The height at which the signal would have been reflected had it continued

to travel at the speed of light through the ionosphere, known as the virtual height,

is obtained from the equation

h′ =
ct

2
(2.15)

where t is the echo delay and c is the speed of light (see Davies (1990), page 95).
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Electron densities at different heights can then be calculated from:

ne =
4π2meε0

e2
f 2 = 1.24× 1010f 2 (2.16)

where f, the radio frequency, is measured in MHz, and ne in e/m3. The electron

density profile (see figure 1.1), is constructed by plotting the electron density at

different actual reflecting heights.

There are two main disadvantages to using the ionosonde to map out the iono-

sphere: they can only observe the ionosphere up to the height associated with the

peak frequency of the F2 region, and they can only observe the local ionosphere

directly above their geographic location. However, the ionosonde provides the best

’true’ measurement of the ionosphere below the F2 region peak, and therefore, will

be used as the comparison tool in this thesis.

2.3 Conclusion

In summary, this chapter introduced the measurements obtained from the GPS

system, with emphasis on the TEC value and its use, i.e. determination of the

receiver’s position. The following chapter will discuss how to use these TEC values

to obtain the electron density values, a subject known as ionospheric tomography.

Once the electron density values are obtained in a 3-D volume over the site of

interest, the electron density profiles can be constructed and these are compared

to the ionosonde measured profiles, to evaluate the accuracy of MIDAS.
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Chapter 3

Ionospheric Tomography

Ionospheric tomography is the reconstruction of the vertical electron density distri-

bution of the ionosphere from the total electron content (TEC) determined along

the ray paths of radio waves travelling through the ionosphere. In other words,

ionospheric tomography is the imaging of the ionosphere based on remote sensing

or sounding of the ionosphere using the radio waves that are influenced by the

ionosphere, (Leitinger, 1999).

The principle of tomography as an imaging procedure has been used in many

different disciplines of science and technology, for example, computerised tomog-

raphy, in medicine, uses X-ray absorption to reconstruct the internal structure of

a human body (Donnan et al., 1982), and seismic tomography uses propagation

times of seismic waves to reconstruct the earth’s interior structure (Bazin et al.,

1998).

The aim of this chapter is to present the theory of ionospheric tomography. The

different ionospheric methods developed for reconstructing the two-dimensional

and three-dimensional structure of the ionosphere, in the form of electron den-

sity as a function of three spatial variables, will also be briefly discussed. The

discussion in this chapter is based on the work of Leitinger (1999).
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3.1 Tomographic Theory

The use of satellite signal measurements in tomographic problems was first sug-

gested by Austen et al. (1988), where the electron density distribution was re-

constructed from the total electron content (TEC) along a set of rays. Further

research into the use of TEC in different methods of ionospheric tomography has

been done by many authors, such as Vasicek and Kronschnabl (1995), Spencer

et al. (1998), Hajj and Romans (1998), and Stolle et al. (2003). It is important

that as many rays as possible intersect the region of interest, over as wide a range

of angles as possible. This can be accomplished by using as many receivers as

possible and having a high data rate (Fremouw et al., 1992). For this project 8 to

10 receivers were used, and the data was sampled every 30 seconds. The geometry

of the satellite-to-receiver rays is illustrated in figure 3.1.

Figure 3.1: The signal rays as they travel from the GPS satellite to the receivers
on the ground. This figure also illustrates the division of the ionospheric region
into pixels. Adopted from Kunitsyn and Tereshchenko (2003).
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The following simple example illustrates the principle of the tomographic problem

(Meggs, 2005). For a simple case, consider the grid shown in figure 3.2 consisting

of four unknown quantities, each in a pixel with known size. The measured param-

eter is the sum of the path lengths through each pixel multiplied by the unknown

quantity in the pixel. The problem of tomography is to determine the unknown

quantities in all the pixels from the values of the measured parameter. So if i is

the indices of the projection, and bi is the ith projection, j is the pixel number and

xj is the unknown quantity in the j th pixel. Then the length of each projection in

each pixel is represented by Aij. So for the grid in figure 3.2, the following system

of equations can be formed:

b1 = A11x1 + A13x3

b2 = A12x2 + A12x2 + A21x1

b3 = A12x2 + A21x1

b4 = A11x1 + A12x2.

Collectively,

b = Ax (3.1)

which is used to solve for x using a matrix inversion method.

The influence of the ionosphere on the radio waves properties is represented by:

I\ =
∫ S

R
Ne(r, θ, φ, t)ds (3.2)

where I\ is the measured slant TEC, Ne is the electron density, r is the radial dis-

tance from the centre of the Earth, θ, φ are the longitude and latitude respectively,

t is the time, ds is the satellite-receiver path length element, and the integration

is from the receiver R to the satellite S.

For the sake of simplicity, the problem discussed here is two-dimensional, but

it can be adapted for a three-dimensional problem by introducing a longitude or

latitude dependence of the ionospheric electron density, and dividing the iono-
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Figure 3.2: A grid of pixels consisting of unknown quantities with rays traversing
each pixel. This illustration was taken from Meggs (2005).

spheric region into a grid of three-dimensional volumes. Let the ionospheric region

of interest be divided into a grid of two-dimensional boxes bounded in height and

angular spacing, as illustrated by figure 3.1. Let i be the index of the rays, Ii

represent the total electron content of the i -th ray, j be the index of the pixels

and Nj be the unknown electron density of the ionosphere. The length of each ray

in each pixel is represented by sij, and each ray gives a row in a linear-equation

system:

Ii =
∑

i

Njsij. (3.3)

The above equation can be in a matrix form of the form of equation (3.1), where

Ii will be equivalent to i measurements of b, Nj will be equivalent to j unknown

electron densities x, and sij will be equivalent to the i× j path elements A.

The body of the Earth is not transparent to radio waves, thus limiting the prop-

agation paths and so the ray paths can only be measured when the satellites are
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above the Earth’s surface. There are also no receivers perpendicular to the surface

of the Earth, and so the ionosphere cannot be scanned in the vertical direction.

Therefore equation (3.1), cannot be solved directly as the matrix A is highly sin-

gular. ‘Feasible’ solutions are gained by using prior information to stabilise the

solution to equation (3.1).

There are a number of reconstruction methods, roughly grouped into iterative

and non-iterative methods, used to solve for the electron density using the mea-

sured slant TEC values. The most famous iterative technique used to solve equa-

tion (3.1) is known as ART (algebraic reconstruction technique). There are many

derivatives of this technique, for example, MART (multiplicative algebraic recon-

struction technique), and SIRT (simultaneous iterative reconstruction technique).

Leitinger (1999) states that the ART algorithm uses the current estimate for the

solution (xk for iteration k) to compute the difference between the measured b

and bk = Axk, and a correction derived from this difference is distributed over xk

to obtain the next iteration result, xk+1.

Non-iterative techniques include the singular value decomposition (SVD) and mod-

ified truncated SVD methods discussed by Raymund et al. (1994) and Mitchell

and Spencer (2003). One other technique, described by Fremouw et al. (1992),

involves using a multiplication operator to combine a vertical model and a hori-

zontal model. The vertical model is obtained from empirical orthonormal functions

(EOFs), which are based on ionospheric models, and the horizontal model is ob-

tained from sine and cosine functions. For further reading, consult Leitinger (1999)

and Kunitsyn and Tereshchenko (2003), page 57. The method used for this project

is a non-iterative method, adapted from Fremouw et al. (1992) work, which uses

the empirical orthonormal functions (EOFs) derived from ionospheric model or

ionosonde profiles to represent the vertical structure and the horizontal structure

by spherical harmonics.

As there are many methods of solving the tomographic problem it is important to

choose the proper method of solving the system of linear equations. The chosen

method should be able to describe all the conditions of the ionosphere at all times.
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3.2 Modelling the Ionosphere

This section describes modelling the ionosphere for tomographic purposes. Both

the iterative and non-iterative algorithms need prior information about the iono-

sphere to derive the most plausible solution to the tomographic problem expressed

by equation (3.1). This prior information comes in the form of ionospheric models.

There are many models developed to describe the ionosphere but only the follow-

ing three will be discussed namely: Chapman profile, the International Reference

Ionosphere (IRI) model, and the South African Bottomside Ionospheric Model

(SABIM). The Chapman functions and the IRI model are used in the MIDAS al-

gorithm to model the ionosphere. Ionospheric parameters from the model SABIM

were used to supplement the GPS data used as inputs in the MIDAS system.

These parameters are the peak electron densities and corresponding peak heights

of the E, F1 and F2 regions and the propagation factor M(3000)F2.

3.2.1 Chapman Profile

The Chapman profile has two different formulations: the Chapman alpha layer

and the Chapman beta layer (Stankov et al., 2003), depending on the assumptions

related to the electron recombination theory. The general form of the Chapman

profile describing the electron density profile is:

Ne = Ne0exp(c[1− z − secχexp(−z)]) (3.4)

where χ is the solar zenith angle, Ne is the electron density and c is the type of

coefficient that describes the layer: c = 1/2 for Chapman alpha and c = 1 for

Chapman beta (Stankov et al., 2003). Here z is the reduced height given by,

z =
h− hm

H

where h is the height, hm is the peak density height, and H is the scale height.

Typical values of the scale height lie in the range 25-50 km according to Stankov

et al. (2003).
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The Chapman alpha profile is given by the equation:

Ne = Ne0exp(
1

2
[1− z − secχexp(−z)]) (3.5)

and the Chapman beta profile is given by the equation:

Ne = Ne0exp[1− z − secχexp(−z)]. (3.6)

Stankov et al. (2003) states that for the Chapman alpha layer, the assumption is

that the process dominant in the ionosphere is dissociative recombination, where

the electrons recombine directly with positive ions and that no positive ions are

present. For the Chapman beta layer, the dominant processes are the charge

transfer or atom-ion exchange reactions. For a more detailed explanation see

Davies (1990), pages 60 to 65. MIDAS uses the Chapman beta function to create

EOFs. The Chapman profile is used to predict the maximum electron densities

of the E and F1 layers and does not predict a realistic maximum electron density

of the F2 region, (see McNamara (1991) page 24). Examples of Chapman profiles

for two solar zenith angles 0◦ and 80◦ are given in figure 3.3.

3.2.2 The International Reference Ionosphere (IRI) Model

The IRI model is an international model used for the specification of ionospheric

parameters. It was first developed in the 1960’s and is continuously being improved

by a joint working group of the International Union of Radio Science (URSI) and

the Committee on Space Research (COSPAR).

The IRI as an empirical model is based on experimental evidence using existing

data records from both the ground and space data resources. It takes longitude,

latitude, year, day, hour, and magnetic index as input parameters and predicts

the electron density and temperature, ion density and temperature, total electron

content and other ionospheric parameters. These are monthly averages for mag-

netically quiet conditions. For a more detail description of the IRI, see Bilitza

(1990) and Bilitza (2001). An electron density profile obtained from IRI is shown

in figure 3.4.
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Figure 3.3: Chapman alpha and beta functions for solar zenith angles of 0◦ and
80◦, and using a scale height of 80 km.

There are many versions of the IRI, as the working group meet annually to discuss

and improve the model. The version of the model used for this project is the

MATLAB (Matrix Laboratory) version of IRI 2001 model, which inputs altitude,

latitude, longitude, local or universal time, day, month and year to determine the

electron densities. The IRI 2001 model was used because it was the latest model

available. The software package of the model is provided by the National Space

Science Data Center (NSSDC). It does not give a good description of the iono-

sphere in the Southern African region as no South African data was used in its

data sources.
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Figure 3.4: The IRI profile over Grahamstown on 12 March 2004 at 12h00 UT.

3.2.3 The South African Bottomside Ionospheric Model

(SABIM)

This model was developed by McKinnell (2002), using the method of neural net-

works to predict the bottomside electron density profiles. An example is shown in

figure 3.5. SABIM was first developed using the Grahamstown station data, but

now also incorporates the Louisvale and Madimbo data, thus giving the best de-

scription of the ionospheric conditions of the bottomside region over South Africa.

Required input data for the models are year, day number, longitude and latitude.

The parameters predicted by this model and used in this project were the maxi-

mum frequencies and corresponding heights of the E, F1 and F2 regions, and the

propagation factor M(3000)F2.
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Figure 3.5: The bottomside profile over Grahamstown on 12 March 2004 at 12h00
UT, as predicted by the SABIM model.

3.3 Conclusion

To summarise, the tomographic problem expressed as equation (3.2) is to derive

electron density distributions from GPS measurements. This problem, expressed

in a system of linear equations as given by equation (3.1), requires prior informa-

tion from ionospheric models to produce a realistic solution.

In the next chapter a non-iterative method or algorithm of inverting equation

(3.1) to solve for the electron densities, which is based on the method introduced

by Fremouw et al. (1992), is described. This algorithm, called MIDAS, uses GPS

data to derive the electron density distribution in four dimensions, these dimen-

sions being altitude, longitude, latitude and time. MIDAS also gives the option

to supplement the GPS data with data from other instruments. For the purposes

of this project, only one dimensional electron density profiles were derived from

MIDAS, and the dimension used is the altitude.
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Chapter 4

MIDAS

Various researchers (Fridman et al. (2006), Jin et al. (2006), Cilliers et al. (2004),

Reilly and Singh (2004), Stankov et al. (2003), Mitchell et al. (1997)) have used

different inversion techniques to construct the electron density profiles from GPS

data networks, but all these investigations have been done in the northern hemi-

sphere with the exception of Cilliers et al. (2004). The Multi-Instrument Data

Analysis System (MIDAS) is another such technique that uses data from different

instruments, e.g. GPS and ionosonde, to construct three-dimensional and time-

dependent electron density maps from TEC measurements. This software was

developed by researchers at the University of Bath (UK) and is used with their

permission in this project. MIDAS will be applied to the determination of the elec-

tron density profile over Grahamstown, South Africa (33.3◦ S, 26.5◦ E). In other

words, MIDAS will be used to reproduce the electron density profiles obtained

from the Grahamstown station ionosonde, to test if the profiles obtained from

MIDAS can be used to supplement the ionosonde profiles. A detailed technical

report on MIDAS is given by Paul Spencer in Spencer (2000), Spencer (2001), and

Spencer (2002). Mitchell and Spencer (2003) explain the algorithm of MIDAS and

a brief summary appears in section 4.1.

4.1 The MIDAS Algorithm

The ionospheric region of interest is divided into a grid of three-dimensional volume

pixels, also known as voxels, which is set up such that each voxel is bounded in

latitude, longitude and altitude, as shown in figure 4.1 obtained from Mitchell
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(2005). Assuming that the electron concentration is constant within each voxel

and contained in the column vector x , the problem of inversion can be expressed

as:

Ax = b (4.1)

where A is an i×j matrix of the path length of a satellite-to-receiver signal prop-

agating through each voxel, and b are the i slant TEC (sTEC) measurements.

(Mitchell, 2005)

Figure 4.1: Illustration of the concept of dividing an ionospheric region into a
three-dimensional grid. The figure also illustrates the ray paths from a satellite to
different receivers traversing voxels representing the ionosphere. (Mitchell, 2005)

The matrix A is highly singular and incorporates no prior information as to the

likely solution, and thus it is difficult to directly solve for the electron concentration
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(x ) in equation 4.1. To overcome this difficulty a mapping matrix X is used to

transform the problem into a set of orthonormal basis functions with n unknown

coefficients. The problem is then expressed as:

AXM = b (4.2)

where M are the unknown coefficients representing the relative contribution of the

basis functions, such that XM defines a basis set of line integrations of electron

concentration. The choice of the orthonormal basis functions and the combination

of its coefficients is critical, as they will give the final solution of the electron

concentration. MIDAS uses empirical orthonormal functions (EOFs) for the radial

variation of the ionospheric electron concentration and the spherical harmonics for

the horizontal variation. The n coefficients are obtained from:

M = (AX )−1b (4.3)

where (AX )−1 is a generalised inverse matrix such that M is the most likely so-

lution.

MIDAS has an option of generating either one-dimensional basis functions or three-

dimensional basis functions. In the case of the one-dimensional basis functions, a

set of orthonormal functions are generated for the vertical profile and these func-

tions are then modulated by spherical harmonics in latitude and longitude. The

choice of one-dimensional basis functions is unstable when there are large variations

in the vertical profile within the ray intersection volume, such as those due to the

equatorial anomaly. In the latter the option of three-dimensional basis functions

can be utilised. For the three-dimensional basis functions, the first order term is

essentially the mean model in three-dimensional space, and the higher order terms

define the linear departures from this. The basis functions are still modulated by

the spherical harmonics in latitude and longitude.

There are two options in MIDAS for solving the inverse matrix (AX )−1, and

those are the singular value decomposition (SVD) method and the LU (Lower

and Upper triangular matrix) decomposition method. Applying the SVD method,

which is the MIDAS default method, to the matrix AX , two orthogonal matrices
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U and V and a diagonal matrix of singular values w are returned:

(AX )−1 = V (diag(1/w))U T . (4.4)

Therefore, the solution to the inverse problem is given by:

M = (V (diag(1/w)U T ))b. (4.5)

Finally, the electron densities within each voxel, j, are retrieved using

x = XM . (4.6)

The problem with using the SVD method is instability when using the ionosonde

data to provide information on the vertical profile or when using higher order (3

to 9) EOFs which introduces too much ambiguity in the basis functions. The LU

decomposition method provides stability by including a regularisation matrix that

defines a default state for the ionosphere in terms of the basis functions themselves.

For the one-dimensional EOFs, the default state is provided by a globally constant

ionosphere with a profile defined by the first EOF, and for the three-dimensional

EOFs, it is the first EOF or the mean model. Spencer (2002) gives more informa-

tion on this method.

The time-dependent inversion is implemented by assuming that the change of

electron concentration within each voxel with time is linear, provided a relatively

short time period, about 30 seconds, is used. This is expressed mathematically as:

Dy = c (4.7)

where the matrix D describes the change in the ray path geometry, y is the

unknown change in electron content and c is the change in TEC. The mapping

matrix X is used to transform the problem to the one for which the unknowns

are the linear changes in coefficients G of a set of n appropriately selected basis
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functions

DXG = c. (4.8)

The change in the unknown contributions of each of these line integrations of

electron concentration is :

G = (DX )−1c. (4.9)

Thus, the time-dependent solution is obtained by

y = XG. (4.10)

This algorithm is also discussed in Mitchell and Spencer (2003). The default

mapping setting of MIDAS is conversion from the voxel-based to the orthonormal

representation using the EOFs in the vertical domain and the spherical harmonics

in the horizontal domain. The EOFs can be derived from the Chapman model,

Epstein model, IRI model, and measured ionosonde profiles.

4.2 The MIDAS Inversion Procedure

Presented in this section is a description of the application of the inversion proce-

dure within MIDAS, and the four different methods used to obtain the best profiles

from MIDAS. The GPS data used in all methods was collected every 30 seconds

and hourly reconstructions of the ionospheric electron density profiles were done.

The reconstruction grid used is a three dimensional space covering the whole earth,

with a latitude resolution of 1◦ and a longitude resolution of 2◦. The radial range

of the grid was from an altitude of 80 km to 1 181 km above the earth’s surface,

with a radial resolution of 50 km. The one-dimensional basis functions were used

for all reconstructions, and the LU decomposition was used to solve the inversion

problem.

METHOD 1: The vertical basis functions, i.e. the EOFs, were first described

by the Chapman model, with peak heights ranging from 250 km to 400 km, and

with scale heights ranging from 30 km to 120 km. The reconstructed image was
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constrained by a latitude range of 35◦ to 20◦ south and a longitude range of 10◦

to 40◦ east. The latitude and longitude constraint was imposed to coincide with

the geographical area covered by the South African region.

METHOD 2: Empirical functions were constructed from the IRI 2001 model

profiles for a range of latitudes and longitudes at the reconstruction time. There

were 23 profiles obtained from the model and used to construct the EOFs. For 11

of the profiles, the latitude was taken as 25◦ south, this being the mean latitude

in the range of 10◦ to 40◦ south, and the longitude was varied in increments of 15◦

from 75◦ to the west of Grahamstown to 75◦ east of Grahamstown. The other 12

profiles were obtained by varying the latitude in 10◦ increments from 60◦ north of

Grahamstown to 60◦ south of Grahamstown.

METHOD 3: The inversion procedure utilised the combination of the GPS data

and the ionosonde data. The ionosonde data used here was just the peak pa-

rameters from the Louisvale and Madimbo stations. The peak parameters chosen

were the maximum frequencies of the E, F1 and F2 regions (i.e. foE, foF1, and

foF2), the peak heights of the E, F1, and F2 regions (hmE, hmF1, and hmF2)

and the propagation factor M(3000)F2. The electron densities obtained from the

ionosonde, calculated from the frequencies using equation (3.16), MIDAS treats as

absolute data values, meaning that these were taken to be equal to the line integral

measurements to supplement the GPS line integral measurements. The Chapman

model was used to determine the orthogonal empirical functions, with peak heights

in the range of 250 km to 450 km, and with scale heights in the range 30 km to

100 km. The same procedure was followed when the peak parameters from the

South African Bottomside Ionospheric Model (SABIM) (McKinnell, 2002), were

used to supplement the GPS data, instead of the ionosonde peak parameters.

METHOD 4: The last procedure used the ionosonde profiles from the Louis-

vale and Madimbo stations to construct the empirical functions. To be able to

do this, the ionosonde electron densities have to be interpolated to the radial grid

vertices using the MATLAB spline function, before solving the inversion matrix

using the LU decomposition method. Consequentially, the radial grid vertices vary

for the different reconstructed profiles and thus will be specified for each profile in
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the results chapter (chapter 5).

The different procedures mentioned here were used to obtain the empirical func-

tions, and together with the spherical harmonics solve the inversion problem. The

results of the performance of MIDAS for each of these procedures are given in the

following chapter.
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Chapter 5

Results

In this chapter the electron density profiles obtained for eight days in 2005 will

be presented and discussed. The year 2005 was chosen at the commencement of

the project in August 2006, because the most recent available data was from 2005.

The GPS data was obtained from about 8 to 10 South African stations. Their

names and locations are given in Table 5.1, and their locations shown in figure 5.1.

These stations were chosen due to their proximity to the Grahamstown station at

which the algorithm is applied. The average distance between the Grahamstown

station and the surrounding stations is 306.73 km.

In this project, the IRI 2001 model is used to produce the lowest limit of the

Table 5.1: GPS receiver locations, and their distance from Grahamstown. The
coordinates for the stations were obtained from http://www.trignet.co.za.
Station name Station code Latitude ◦S Longitude ◦E Distance (km)
Bloemfontein BFTN 29.06 26.17 472.70
Beaufort West BWES 32.35 22.57 411.80

Durban DRBN 29.57 30.56 564.00
East London ELDN 33.02 27.49 94.63

George GEOR 34.00 22.22 406.40
Graaff Reinet GRNT 32.25 24.53 220.40
Grahamstown GRHM 33.30 26.53 0.00
Port Elizabeth PELB 33.59 25.36 113.20
Queenstown QTWN 31.54 26.55 195.70

Umtata UMTA 31.32 28.40 281.70

comparison task, i.e. MIDAS is expected to construct a more accurate profile
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Figure 5.1: The map showing the GPS receivers locations and the ionosonde sta-
tions. LV12P is the Louisvale station code and MU12K is the Madimbo station
code. The map is only drawn to show the locations of the receivers as well as the
ionosonde stations and thus not drawn to scale.

than IRI and produce more accurate NmF2 values, because the IRI model uses

mean parameters to produce the electron density profiles. The ionosonde data is

used as true measurements. The national model SABIM will be used to gauge the

accuracy of the NmF2 value produced by MIDAS.

5.1 Electron Density Profiles

As mentioned in section 4.2, there are different methods of using MIDAS to con-

struct the electron density profiles. The choice of the method to use in constructing

the profile is based on how closely the bottomside profile’s shape fits that of the

ionosonde and how closely the produced NmF2 value is to the measured NmF2

value. The electron density profiles obtained by using the Chapman model to cre-

ate the empirical functions (method 1 in section 4.2) exhibited negative densities
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at low altitudes (less than about 250.00 km) and at altitudes corresponding to the

topside ionosphere, when using high order functions (4 to 9 EOFs) in the vertical

domain (see figure 5.2(a)). Figures 5.2 (a) to (c) are shown for illustration pur-

poses. The profile in figure 5.2(a) was reconstructed for 21 June 2005 at 10h00

UT using 4 EOFs, 60 latitude and 4 longitude spherical harmonics. Using the IRI

model to create the EOFs (method 2 in section 4.2) improved the reconstructed

profiles, in that MIDAS was not returning negative densities anymore, but the

MIDAS profiles, especially for June and December, were still not accurate as the

peak height and peak electron density values were much higher than those of the

ionosonde. The profile in figure 5.2(b) was reconstructed using the IRI 2001 model

to create EOFs. It was also reconstructed for 21 June 2005 at 10h00 UT, but using

3 EOFs, 60 latitude and 4 longitude spherical harmonics. The profiles obtained by

using the ionosonde parameters to supplement the GPS data (method 3 in section

4.2) had an anomalous density peak above the F2 region for EOFs greater than 3,

as illustrated by figure 5.2(c). Figure 5.2(c) was reconstructed for 02 April 2005 at

12h00 UT using 4 EOFs that were created from the Chapman model, 40 latitude

and 4 longitude spherical harmonics. For EOFs greater than 2 in March and April

(and this was also the case when the SABIM model parameters were used) the

electron densities went negative at high altitudes, i.e. above 400 km. It was found

that the method that optimises MIDAS the best, i.e. produces NmF2 values close

to the measured NmF2 and shape of bottomside profile fit that of the ionosonde

botttonside profile, is the procedure that uses ionosonde profiles to create EOFs

(method 4 in section 4.2), and thus this method will be used to construct the

profiles that will be compared to the IRI and ionosonde profiles for evaluation of

the performance of MIDAS.

The profiles were obtained for April - October, and December, at the Graham-

stown station, South Africa (33.3◦ S, 26.5◦ E). One day in each month was chosen,

when three random hourly profiles were reconstructed, including a noon profile

(except for July, which has only the noon profile because of the sporadic nature

of the available GPS data). Hourly reconstructions were chosen such that there

was a morning, midday and afternoon/evening profile. The profiles obtained from

MIDAS were compared to the profiles obtained from the Grahamstown ionosonde
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Figure 5.2: Ionosonde, MIDAS and IRI 2001 electron density profiles at Graham-
stown: (a) using Chapman Profiles to create EOFs, (b) using the IRI 2001 model
to construct the EOFs, and (c) using GPS and ionosonde peak parameter data for
the reconstruction. The constructions were done on: (a) 21 June 2005 at 10h00
UT, (b) 21 June 2005 at 10h00 UT, and (c) 02 April 2005 at 12h00 UT. Note:
These profile were chosen to illustrate the difficulties in constructing the electron
density profiles using methods 1, 2 and 3.

station and to the IRI 2001 model. Profiles from the Louisvale (28.50◦ S, 21.20◦ E)

and Madimbo (22.40◦ S, 30.90◦ E) ionosonde stations were used to create EOFs

used in the reconstruction. For a particular day profile the same day profiles from

both stations were used to create the EOFs, although sometimes just one station

was used depending on the availability of the data. The criteria used to choose

these Louisvale and Madimbo profiles, which were used create the EOFs, was that

they must lie within two hours of the reconstruction time or that they have an elec-

tron density peak around that of the Grahamstown profile produced at the same

time as the reconstruction. Figure 5.3(b) shows an example of EOFs generated by
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applying the singular value decomposition to 7 Louisvale and Madimbo profiles.

These EOF were then used in the reconstruction of the profile in figure 5.3(c).

The reconstruction parameters namely number of EOFs, number of latitude and

longitude spherical harmonics and power weights of the spherical harmonics were

chosen by trial and error. For a first trial the reconstruction parameters chosen

were 2 EOFs, 16 latitude harmonics and 4 longitude harmonics. The reconstruc-

tion parameters were adjusted, by increasing and/or decreasing the numbers, until

the best MIDAS profile that fitted the measured ionosonde profile had been ob-

tained. The power weights of the latitude and longitude spherical harmonics used

in all profiles were 2, unless otherwise specified.

The radial grid, which was obtained from the ionosonde data, used for each

profile is given in table 5.2. For each day and hour, the ionosonde altitudes were

used to extrapolate to the radial grid. Thus the minimum and maximum alti-

tudes of MIDAS were determined by the minimum and maximum altitudes for the

ionosonde data used to reconstruct the profile.

5.1.1 02 April 2005

The profile in figure 5.4(a) was obtained using 6 ionosonde profiles from Madimbo

and Louisvale stations to create 2 EOFs. The number of latitude harmonics used in

the reconstruction is 16, and of longitude harmonics is 3. The midday profile, figure

5.4(b), was reconstructed using 2 EOFs obtained from 8 Louisvale and Madimbo

profiles, 16 latitude harmonics and 2 longitude harmonics. For the night profile,

figure 5.4(c), 4 profiles were used to create 4 EOFs, and 46 spherical harmonics

were used - 40 latitude and 6 longitude. At noon the MIDAS profile produced a

good fit to that of the ionosonde, but in the morning and at night MIDAS profile

overestimated the peak parameters of the F2 region, NmF2 and hmF2.

5.1.2 12 May 2005

Only the Louisvale profiles were used to create EOFs because of technical problems

with the Madimbo station. For the early morning reconstruction 4 profiles were

chosen to create 2 EOFs. The horizontal profile was constrained by 4 longitude
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Figure 5.3: Example of how the electron density profile, shown in (a), is recon-
structed using EOFs, shown in (b), created from the Madimbo and Louisvale pro-
files, shown in (c). The reconstruction parameters used were 4 EOFs, 16 latitude
spherical harmonics, and 2 longitude spherical harmonics. The reconstruction was
done over Grahamstown on 23 August 2005 at 10h00.

harmonics and 4 latitude harmonics. The midday profile was reconstructed using

2 EOFs, 6 latitude harmonics, and 4 longitude harmonics. The EOFs were created

from 6 profiles. The profile in figure 5.5(c) was reconstructed by using 4 longitude

spherical harmonics, 4 latitude spherical harmonics, and 5 Louisvale profiles were

used to create 2 EOFs in this reconstruction. Again at noon the MIDAS profile

produced a good fit to that of the ionosonde profile, while in the morning and

afternoon the MIDAS profile overestimates the peak values in the F2 region, NmF2

and hmF2.
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Table 5.2: Altitude range used to define the radial dimension.
Date Time Minimum (km) Maximum (km) Increment (km)

06h00 90.00 592.00 2.00
05.04.02 12h00 90.00 744.00 2.00

20h00 90.00 566.00 2.00
02h00 90.00 656.00 2.00

05.05.12 12h00 90.00 760.00 2.00
14h00 90.00 576.00 2.00
07h00 90.00 710.00 2.00

05.06.15 12h00 90.00 790.00 2.00
18h00 90.00 596.00 2.00

05.07.16 12h00 90.00 712.00 2.00
10h00 90.00 812.00 2.00

05.08.23 12h00 90.00 812.00 2.00
18h00 90.00 488.00 2.00
10h00 90.00 750.00 2.00

05.09.27 12h00 90.00 750.00 2.00
20h00 90.00 550.00 2.00
06h00 90.00 986.00 2.00

05.10.20 12h00 90.00 986.00 2.00
18h00 90.00 482.00 2.00
10h00 90.00 800.00 2.00

05.12.21 12h00 90.00 710.00 2.00
14h00 90.00 800.00 2.00

5.1.3 15 June 2005

The profile in figure 5.6(a) was reconstructed using 4 EOFs, 8 latitude harmonics

and 8 longitude harmonics. The EOFs were created from 4 profiles obtained from

the Louisvale and Madimbo stations. The 2 EOFs used in figure 5.6(b) were

created from 13 Madimbo and Louisvale profiles. In this reconstruction, 6 latitude

harmonics and 4 longitude harmonics were used. The power weights of these

harmonics were 4. The profile in figure 5.6(c) was reconstructed using 4 EOFs

created from 2 Louisvale and Madimbo profiles. The reconstructed profile used

40 latitude harmonics and 6 longitude harmonics. In the morning and at noon

the MIDAS profile produces a good fit to that of the ionosonde profile, but in the

afternoon MIDAS overestimates the electron density peak of the F2 region and

at noon it slightly underestimates the peak height of the F2 region. The evening

profile reconstructed by MIDAS had a greater peak height and electron density
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Figure 5.4: Ionosonde, MIDAS and IRI 2001 electron density profiles over Gra-
hamstown obtained on 02 April 2005 at: (a) 06h00 UT, (b) 12h00 UT and (c)
20h00 UT.

peak of the F2 region than those of the ionosonde profile.

5.1.4 16 July 2005

For the reconstruction of the profile presented in figure 5.7, 7 Louisvale and

Madimbo profiles were used to constrain the vertical ionosphere using 2 EOFs,

while 4 latitude and longitude harmonics were used for the horizontal constraint.

There is a good fit of the MIDAS profile to that of the ionosonde, especially when

compared to the bottomside ionosphere.
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Figure 5.5: Ionosonde, MIDAS and IRI 2001 electron density profiles over Gra-
hamstown obtained on 12 May 2005 at: (a) 02h00 UT, (b) 12h00 UT and (c)
14h00 UT.

5.1.5 23 August 2005

For the 10h00 and 12h00 (UT) profiles, 7 electron density profiles from Madimbo

and Louisvale were used to create EOFs. The 10h00 profile used 2 EOFs, while the

12h00 profile used 4 EOFs to constrain the vertical profile. The number of latitude

and longitude harmonics used in figure 5.8(a) and figure 5.8(b) is 4. Figure 5.8(c)

used 4 EOFs, created from 5 profiles, 4 latitude and longitude harmonics. The

MIDAS profiles for this day produced a good fit to that of the ionosonde, but

MIDAS overestimated the electron density peak of the F2 region in the evening.
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Figure 5.6: Ionosonde, MIDAS and IRI 2001 electron density profiles over Gra-
hamstown obtained on 15 June 2005 at: (a) 07h00 UT, (b) 12h00 UT and (c)
18h00 UT.

5.1.6 27 September 2005

In figure 5.9(a) only 5 profiles were used to create 1 EOF to constrain the vertical

ionosphere. There were 4 spherical harmonics, latitudinal and longitudinal, used

to construct this profile. The noon profile was reconstructed using only 1 EOF,

2 latitude harmonics, and 3 longitude harmonics. The EOFs were created from 7

profiles obtained from the Louisvale and Madimbo stations. For the 20h00 profile, 5

profiles from only the Louisvale station were used to create the 3 EOFs. There were

40 latitude harmonics and 8 longitude harmonics used for the horizontal constraint

of the ionosphere. Figure 5.9(a) and 5.9(b) show that the MIDAS profiles fit to

the ionosonde profiles, but also showed a slight deviation of the F2 region peak

parameters from the measure F2 region peak parameters. MIDAS overestimated

the peak parameters of the F2 region at night.

47



Figure 5.7: Ionosonde, MIDAS and IRI 2001 electron density profiles over Gra-
hamstown obtained on 16 July 2005 at 12h00 UT.

5.1.7 20 October 2005

For the morning profile, i.e. figure 5.10(a), 4 EOFs, 4 longitude and latitude har-

monics were used in the reconstruction of the electron density profiles. The EOFs

were created from 6 profiles obtained from both ionosonde stations. The noon

profile was reconstructed using 4 EOFs, 20 latitude harmonics and 6 longitude

harmonics. The 5 profiles used to create the EOFs were obtained from both sta-

tions (Louisvale and Madimbo). The profile in figure 5.10(c) was reconstructed by

using 4 EOFs, created from 4 profiles, 4 longitude and latitude harmonics. In the

morning and in the evening, there was no good correlation between the MIDAS

profiles and the ionosonde profiles. MIDAS overestimated the peak height and the

electron density peak of the F2 region in the morning and overestimated the elec-

tron density peak in the evening profile. The afternoon MIDAS profile produced

a good fit to that of the ionosonde, with a slight deviation in the peak height of

the F2 region.

5.1.8 21 December 2005

These profiles (see figure 5.11) were reconstructed using 9 profiles from the Louis-

vale station to create the EOFs. For all profiles 2 EOFs, 4 latitude and longitude

harmonics were used to reconstruct the electron density profiles. None of the MI-

DAS profiles fitted those of the ionosonde and MIDAS overestimated all the peak

parameters of the F2 region for all the reconstructions.
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Figure 5.8: Ionosonde, MIDAS and IR 2001 electron density profiles over Graham-
stown obtained on 23 August 2005 at: (a) 10h00 UT, (b) 12h00 UT and (c) 18h00
UT.

5.2 Analysis

This section discusses the results presented in the previous section. The important

parameter for discussion is the peak electron density of the F2 region, NmF2. The

NmF2 values obtained from the MIDAS algorithm are compared to those obtained

from the IRI 2001 model and also to those obtained from the ionosonde (see table

5.3 and figure 5.11). The performance of MIDAS in exhibiting diurnal, and sea-

sonal variation is evaluated in figure 5.12 and figure 5.13 respectively.

Figure 5.12(a) illustrates the accuracy of MIDAS and the IRI 2001 model in

predicting NmF2 during the course of the year. From this figure it is clear that

MIDAS produces more accurate NmF2 values than of the IRI 2001 model. The

ionosonde provides the true measured NmF2 value, and it can be seen that MIDAS
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Figure 5.9: Ionosonde, MIDAS and IRI 2001 electron density profiles over Gra-
hamstown obtained on 27 September 2005 at: (a) 10h00 UT, (b) 12h00 UT and
(c) 20h00 UT.

produced NmF2 values closer in value to the measured value than the IRI 2001

model.

Figures 5.13(a) to 5.13(c) compare the MIDAS NmF2 values to the ionosonde

NmF2 values, and tests for the accuracy in the MIDAS production of the NmF2.

Figures 5.13(d) to 5.13(f) compare the IRI 2001 model NmF2 values to those of

the ionosonde.

Figures 5.14(a) to 5.14(c) illustrate the accuracy of the MIDAS NmF2 values

compared to those of the ionosonde NmF2 values, while figures 5.14(d) to 5.14(f)

illustrate a comparison of NmF2 values from IRI 2001 model for three different

seasons. The slope, y-intercept, co-efficient of correlation and rms error values for
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Figure 5.10: Ionosonde, MIDAS and IRI 2001 electron density profiles over Gra-
hamstown obtained on 20 October 2005 at: (a) 06h00 UT, (b) 12h00 UT and (c)
18h00 UT.

figure 5.12, 5.13 and 5.14 are presented in table 5.4 for MIDAS plots and table 5.5

for the IRI 2001 plots.

MIDAS, on average, gets the shape of the profile very close to that of the mea-

sured profile (for example see figure 5.6) although it sometimes overestimate the

peak parameters (for example see figures 5.4(c) and 5.8 (c)). MIDAS performs the

worst in December (see figure 5.11) generally not matching the shape of the mea-

sured profile regardless of the hour of the day. This behaviour could be explained

by the fact that during summer the ionosphere is very variable to such an extent

that the variation of the electron density with time might be nonlinear over the

period of one hour. The MIDAS inversion program assumes a linearly variation of

the electron density with time during the hour of the reconstruction, and therefore
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Figure 5.11: Ionosonde, MIDAS and IRI 2001 electron density profiles over Gra-
hamstown obtained on 21 December 2005 at: (a) 10h00 UT, (b) 12h00 UT and
(c) 14h00 UT.

this could explain why the shape of the MIDAS profile does not match that of the

measured profile in summer.

The root mean square (rms) error determines how much the calculated data de-

viates from the observed data, in other words, how well the derived or calculated

data fit the measured data. Therefore, to determine if MIDAS produces a realistic

NmF2 value, its rms error has to be less than that of the IRI 2001 model. Com-

paring the rms error values in table 5.4 and table 5.5, it is observed that MIDAS

generally produces more realistic NmF2 values than the IRI 2001 model because

it has lower rms error values. MIDAS performs better at noon than at the other

times of the day, as the noon rms error values are generally lower than those of

the other times. Also, from the rms error values, it is seen that during the winter
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Table 5.3: Peak parameters of the F2 region, NmF2 [1011e/m3] and hmF2 [km].
The date is written in the format yy.mm.dd and the time is universal time (UT).

Date Time Index Ionosonde MIDAS IRI 2001
NmF2 hmF2 NmF2 hmF2 NmF2 hmF2

06h00 1 5.09 220.00 5.83 241.00 0.51 314.00
05.04.02 12h00 2 8.36 253.22 8.31 257.00 8.20 258.00

20h00 3 1.25 280.58 2.20 291.00 3.65 272.00
02h00 4 1.02 280.00 1.25 325.00 0.92 300.00

05.05.12 12h00 5 11.25 241.20 11.29 251.00 6.40 240.00
14h00 6 6.52 216.70 9.59 225.00 7.69 260.00
07h00 7 3.48 230.00 3.74 237.00 0.39 286.00

05.06.15 12h00 8 9.12 251.70 9.10 243.00 4.70 230.00
18h00 9 0.82 224.57 1.46 265.00 3.78 230.00

05.07.16 12h00 10 5.04 220.00 5.02 229.00 4.01 240.00
10h00 11 5.36 215.80 5.40 231.00 3.66 244.00

05.08.23 12h00 12 5.44 241.96 5.43 233.00 5.01 244.00
18h00 13 1.65 253.24 2.34 253.00 4.70 244.00
10h00 14 8.09 253.22 8.14 265.00 4.84 260.00

05.09.27 12h00 15 7.30 270.00 7.39 259.00 5.88 260.00
20h00 16 1.33 260.00 2.08 289.00 3.85 280.00
06h00 17 3.60 200.00 3.77 287.00 0.75 314.00

05.10.20 12h00 18 9.01 270.87 9.00 291.00 6.30 300.00
18h00 19 3.35 252.55 4.43 237.00 6.68 286.00
10h00 20 3.04 230.00 4.95 291.00 4.82 286.00

05.12.21 12h00 21 3.79 251.73 5.82 241.00 5.45 300.00
14h00 22 3.52 264.71 5.16 297.00 6.20 300.00

season MIDAS has a greater ability to produce the measured NmF2 values.

The accuracy of the NmF2 values obtained from MIDAS were evaluated by com-

paring them to the NmF2 values obtained from SABIM. This was done by compar-

ing the absolute error values of SABIM (i.e. |NmF2(SABIM) - NmF2(ionosonde)|)
with the absolute error values of MIDAS (i.e. |NmF2 (MIDAS) - NmF2(ionosonde)|).
The accuracy of MIDAS will always contain an uncertainty since MIDAS is essen-

tially a modelling algorithm that ingests empirical data. Therefore, to judge the

limits within which MIDAS is performing accurately, and to define what is meant

by accuracy, the national model SABIM was used, with the understanding that

SABIM is currently the best model for the Grahamstown region. So for MIDAS to
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Figure 5.12: Comparison of peak electron density values between: (a) Graham-
stown ionosonde, the IRI 2001 model and MIDAS, (b) MIDAS and the Graham-
stown ionosonde, and (c) IRI 2001 model and the Grahamstown ionosonde. The
index represents the hour and date for which the NmF2 value was obtained.

be good enough to replace this model or even supplement the ionosonde data for

places where there are no ionosondes, MIDAS has to produce NmF2 values more

accurately than SABIM. For a more accurate prediction, we expect the absolute

error of the NmF2 values produced by MIDAS to be less than the absolute error of

the NmF2 values predicted by SABIM. For the sample year used in this study, the

NmF2 values predicted by SABIM and produced by MIDAS with their respective

absolute errors are presented in table 5.6. From this table it is evident that MIDAS

produced more accurate NmF2 values 13 out of 22 times. From this statement we

can infer that there is an approximately 59% chance that MIDAS will produce an

NmF2 value that deviates from the measured value by 1.05×1011 [e/m3].
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Table 5.4: The MIDAS-Ionosonde statistical analysis. The rms error is in units of
1011e/m3

slope y-intercept co-efficient of correlation rms error
Figure 5.10b 1.01 -0.70 0.96 1.05
Figure 5.11a 0.99 -0.45 0.95 0.79
Figure 5.11b 1.11 -1.10 0.96 0.72
Figure 5.11c 0.70 -0.10 1.00 1.49
Figure 5.12a 0.95 -0.45 0.96 1.35
Figure 5.12b 1.11 -0.71 1.00 0.37
Figure 5.12c 1.12 -1.02 0.99 0.54

Table 5.5: The IRI 2001-Ionosonde statistical analysis. The rms error is in units
of 1011e/m3

slope y-intercept co-efficient of correlation rms error
Figure 5.10c 0.64 2.02 0.48 2.71
Figure 5.11d 0.53 3.04 0.49 2.81
Figure 5.11e 0.92 2.14 0.47 2.66
Figure 5.11f 1.17 -3.48 0.95 2.67
Figure 5.12d 0.81 1.89 0.68 2.93
Figure 5.12e 0.42 2.83 0.24 2.71
Figure 5.12f 0.62 2.54 0.44 2.75

To determine at what time of the day MIDAS performs best, i.e. gives accu-

rate NmF2 values most of the time, table 5.7, 5.8 and 5.9 were drawn up. Tables

5.10 to table 5.12 were drawn up to assess during which season MIDAS produces

the most accurate NmF2 values. Table 5.7 gives the NmF2 values during the

morning hours, and from this table we can see that MIDAS produces more accu-

rate values, compared to SABIM, 6 out of a total of 7 opportunities. Thus, it is

deduced that during the morning hours there is an approximately 86% chance that

MIDAS will produce an NmF2 value closer to the measured NmF2 value, within

0.79×1011 [e/m3], than SABIM.

Table 5.8 presents the peak electron density values at noon. From these val-

ues it is evident that there is an approximately 88% chance of MIDAS producing

NmF2 values closer to the measured value than SABIM, within 0.72×1011 [e/m3].

In the late afternoon/evening hours it is clear that MIDAS produces NmF2
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Table 5.6: The NmF2 values from the ionosonde, SABIM and MIDAS, and the
corresponding absolute errors of SABIM and MIDAS for the year.

Date Time Ionosonde SABIM MIDAS SABIMerror MIDASerror

06h00 5.09 4.15 5.83 0.94 0.74
05.04.02 12h00 8.36 7.52 8.31 0.84 0.05

20h00 1.25 1.24 2.20 0.01 0.95
02h00 1.02 1.12 1.25 0.10 0.23

05.05.12 12h00 11.25 5.94 11.29 5.31 0.04
14h00 6.52 5.08 9.59 1.44 3.07
07h00 3.48 5.24 3.74 1.76 0.26

05.06.15 12h00 9.12 4.46 9.10 4.66 0.02
18h00 0.82 0.94 1.46 0.12 0.64

05.07.16 12h00 5.04 3.38 5.02 1.66 0.02
10h00 5.36 3.96 5.40 1.40 0.04

05.08.23 12h00 5.44 4.03 5.43 1.41 0.01
18h00 1.65 0.96 2.34 0.69 0.69
10h00 8.09 5.76 8.14 2.33 0.05

05.09.27 12h00 7.30 5.71 7.39 1.59 0.09
20h00 1.33 1.08 2.08 0.25 0.75
06h00 3.60 3.85 3.77 0.25 0.17

05.10.20 12h00 9.01 7.02 9.00 1.99 0.01
18h00 3.35 2.55 4.43 0.80 1.08
10h00 3.04 5.37 4.95 2.33 1.91

05.12.21 12h00 3.79 5.41 5.82 1.62 2.03
14h00 3.52 4.55 5.16 1.03 1.64

values that are mostly greater than the measured and SABIM values (see table

5.9). Thus, during these hours (from 14h00 to 20h00) there is an approximately

14% chance of MIDAS producing an accurate value for NmF2, which is within

1.49×1011 [e/m3] from the measured NmF2 value. This may be explained by the

fact during these hours, the sun is very low and thus the ionosphere is unstable

and the algorithm cannot illustrate the instability.

Table 5.10 presents the peak electron density values during the autumn sea-

son. From the number of times that the absolute error of the MIDAS NmF2 value

is less than that of the absolute error of the SABIM NmF2 value, it is evident that

there is an approximately 88% chance of MIDAS producing NmF2 values closer to

the measured value (‘close’ being defined to be within 1.35×1011 [e/m3] from the
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Table 5.7: The NmF2 values from the ionosonde, SABIM and MIDAS, and the
corresponding absolute errors of SABIM and MIDAS for the morning hours.

Date Time Ionosonde SABIM MIDAS SABIMerror MIDASerror

05.04.02 06h00 5.09 4.15 5.83 0.94 0.74
05.05.12 02h00 1.02 1.12 1.25 0.10 0.23
05.06.15 07h00 3.48 5.24 3.74 1.76 0.26
05.08.23 10h00 5.36 3.96 5.40 1.40 0.04
05.09.27 10h00 8.09 5.76 8.14 2.33 0.05
05.10.20 06h00 3.60 3.85 3.77 0.25 0.17
05.12.21 10h00 3.04 5.37 4.95 2.33 1.91

Table 5.8: The NmF2 [10−11e/m3] values from the ionosonde, SABIM and MIDAS,
and the corresponding absolute errors of SABIM and MIDAS at noon (12h00 UT).

Date Time Ionosonde SABIM MIDAS SABIMerror MIDASerror

05.04.02 12h00 8.36 7.52 8.31 0.84 0.05
05.05.12 12h00 11.25 5.94 11.29 5.31 0.04
05.06.15 12h00 9.12 4.46 9.10 4.66 0.02
05.07.16 12h00 5.04 3.38 5.02 1.66 0.02
05.08.23 12h00 5.44 4.03 5.43 1.41 0.01
05.09.27 12h00 7.30 5.71 7.39 1.59 0.09
05.10.20 12h00 9.01 7.02 9.00 1.99 0.01
05.12.21 12h00 3.79 5.41 5.82 1.62 2.03

measured value) than SABIM.

Table 5.11 gives the NmF2 values during the winter season, and from this ta-

ble we can see that MIDAS produces more accurate values (rms error of 0.37×1011

[e/m3]) 6 out of a total of 7 opportunities. Thus, it is deduce that during the

winter season there is an approximately 86% chance that MIDAS will produce a

NmF2 value closer to the measured NmF2 value than SABIM.

From table 5.12, 4 out of 6 NmF2 values produced by MIDAS are closer than

SABIM to the measured ionosonde NmF2 values (‘close’ being defined to be within

0.52×1011 [e/m3]). From this we can assume that during the spring season, there

is an approximately 67% chance of MIDAS producing NmF2 values that are at

least as accurate as our national model.
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Table 5.9: The NmF2 [10−11e/m3] values from the ionosonde, SABIM and MIDAS,
and the corresponding absolute errors of SABIM and MIDAS for the afternoon to
evening hours.

Date Time Ionosonde SABIM MIDAS SABIMerror MIDASerror

05.04.02 20h00 1.25 1.24 2.20 0.01 0.95
05.05.12 14h00 6.52 5.08 9.59 1.44 3.07
05.06.15 18h00 0.82 0.94 1.46 0.12 0.64
05.08.23 18h00 1.65 0.96 2.34 0.69 0.69
05.09.27 20h00 1.33 1.08 2.08 0.25 0.75
05.10.20 18h00 3.35 2.55 4.43 0.80 1.08
05.12.21 14h00 3.52 4.55 5.16 1.03 1.64

Table 5.10: The NmF2 [10−11e/m3] values from the ionosonde, SABIM and MI-
DAS, and the corresponding absolute errors of SABIM and MIDAS for the autumn
season.

Date Time Ionosonde SABIM MIDAS SABIMerror MIDASerror

06h00 5.09 4.15 5.83 0.94 0.74
05.04.02 12h00 8.36 7.52 8.31 0.84 0.05

20h00 1.25 1.24 2.20 0.01 0.95
02h00 1.02 1.12 1.25 0.10 0.23

05.05.12 12h00 11.25 5.94 11.29 5.31 0.04
14h00 6.52 5.08 9.59 1.44 3.07

It should be noted that the TEC values used to obtain the electron densities

were not corrected for any biases and therefore this limits the accuracy of the re-

constructed profiles. It should also be noted that the percentages were inferred by

assuming that the sample is random and the distribution of the sample is Gaus-

sian. These assumptions are taken at face value and were not tested. In summary,

this chapter presented the profiles obtained from MIDAS, and the statistical anal-

yses based on these profiles. In the following chapter, a conclusion will be reached

based on the analyses and discussions presented here.
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Table 5.11: The NmF2 [10−11e/m3] values from the ionosonde, SABIM and MI-
DAS, and the corresponding absolute relative errors of SABIM and MIDAS for
the winter season.

Date Time Ionosonde SABIM MIDAS SABIMerror MIDASerror

07h00 3.48 5.24 3.74 1.76 0.26
05.06.15 12h00 9.12 4.46 9.10 4.66 0.02

18h00 0.82 0.94 1.46 0.12 0.64
05.07.16 12h00 5.04 3.38 5.02 1.66 0.02

10h00 5.36 3.96 5.40 1.40 0.04
05.08.23 12h00 5.44 4.03 5.43 1.41 0.01

18h00 1.65 0.96 2.34 0.69 0.69

Table 5.12: The NmF2 [10−11e/m3] values from the ionosonde, SABIM and MI-
DAS, and the corresponding absolute relative errors of SABIM and MIDAS for
the spring season.

Date Time Ionosonde SABIM MIDAS SABIMerror MIDASerror

10h00 8.09 5.76 8.14 2.33 0.05
05.09.27 12h00 7.30 5.71 7.39 1.59 0.09

20h00 1.33 1.08 2.08 0.25 0.75
06h00 3.60 3.85 3.77 0.25 0.17

05.10.20 12h00 9.01 7.02 9.00 1.99 0.01
18h00 3.35 2.55 4.43 0.80 1.08
10h00 3.04 5.37 4.95 2.33 1.91

05.12.21 12h00 3.79 5.41 5.82 1.62 2.03
14h00 3.52 4.55 5.16 1.03 1.64
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Figure 5.13: The plot of the peak electron density values obtained from MIDAS
and the IRI compared with the Grahamstown ionosonde peaks at different times
of the day: (a) MIDAS peak values in the morning hours, (b) MIDAS peak values
at noon and (c) MIDAS peak values in the afternoon/evening hours, (d) IRI peak
values in the morning hours, (e) IRI peak values at noon, and (f) IRI peak values
in the afternoon/evening hours. Statistical results are given in table 5.4 and table
5.5
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Figure 5.14: The plot of the peak electron density values obtained from MIDAS
and the IRI compared with the Grahamstown ionosonde peaks in different seasons:
(a) autumn MIDAS peak values, (b) winter MIDAS peak values (c) spring MIDAS
peak values, (d) autumn IRI peak values, (e) winter IRI peak values, and (f) spring
IRI peak values. Statistical results are given in table 5.4 and table 5.5
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Chapter 6

Discussions and Conclusion

The aim of this project was to determine the suitability of ionospheric tomography

as a tool for determining electron density profiles from GPS data over South Africa.

Therefore, the performance of the MIDAS algorithm in producing the electron

density profiles was evaluated by comparing the reconstructed profiles with the

ionosonde measured profiles. In order to achieve this, four methods were used to

reconstruct the profiles:

• the Chapman profile to create the EOFs,

• the IRI 2001 model to create the EOFS,

• ionosonde peak parameters to supplement GSP data and the Chapman pro-

file to create EOFs

• ionosonde profiles from the Madimbo and/or Louisvale ionosonde stations to

create the EOFs.

The method of using ionosonde profiles to measure the vertical electron density

produced realistic profiles, and thus this method was used to create all the EOFs

that were used to assess MIDAS.

The evaluation of the ability of MIDAS to reconstruct profiles that are close to the

measured profile was done by determining how well MIDAS computes the NmF2

values and comparing these MIDAS values with the measured ones from the Gra-

hamstown ionosonde. In order to to test the accuracy of the computed NmF2 value,

it was compared to the NmF2 values predicted by the national model (SABIM).
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SABIM is currently the best model that describes the bottomside ionosphere over

Grahamstown. If the deviation of the MIDAS produced NmF2 value from the

measured is less than that of the national model then MIDAS is considered to

have computed an accurate NmF2 value.

From the figures and tables presented in section 5.2, it is evident that MIDAS

produces accurate results during the winter season, with the lowest rms error of

0.37×1011 [e/m3] and an approximately 86% chance of producing NmF2 closer to

the actual NmF2 value than the national model SABIM. At 12h00 UT MIDAS

has an approximately 88% chance of producing an accurate NmF2 value which

will deviate from the measured from by 0.72×1011 [e/m3]. The worst case scenerio

is during the afternoon-evening hours, where the chance of MIDAS producing a

NmF2 value that is within 1.49×1011 [e/m3] of the measured ionosonde NmF2

value, is about 14%. Over all, for the whole year, MIDAS is expected to pro-

duce NmF2 values within 1.05×1011 [e/m3] of the measured values with a success

of about 59%. The TEC values were not corrected for the receiver and satellite

biases, and these reduced the accuracy of MIDAS. In conclusion, the agreement

of the MIDAS computed profiles and NmF2 values to the ionosonde profiles and

NmF2 values makes MIDAS a promising inversion technique for use at Graham-

stown.

6.1 Future Work

MIDAS was evaluated using a small sample of data, therefore it would be useful to

expand on the analysis by using much more data and evaluating the consistency

of the accuracy of the MIDAS computations. The dates and hours chosen for the

reconstructions in this project coincided with the period of solar minimum and

quiet magnetic times. Thus it will be interesting to apply the MIDAS algorithm

at solar maximum and during magnetic storms to fully assess its performance

under all conditions. The intention is that this study will lead to the eventual

implementation of a near real-time ionospheric tomography system within South

Africa. The evaluation of MIDAS under all conditions will help in investigating

the feasibility of the implementation of MIDAS as a near real-time system.
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