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INTRODUCTION. 

Decameter radiation was first observed from Jupiter by Burke and Franklin 

(JGR 60, 213, 1955). In 1964 Bigg (Nature, 203, 1008, (1964)) found that 

10 exerted a profound effect on the radiation. 

The majority of the early theories to explain the origin of the decameter 

emissions, attributed the radiation to an emission process occurring at 

or near the electron gyrofrequency or the plasma frequency (for a review 

see eg. Warwick, Space Sci. Rev. &" 841 (1967)). More recent work centred 

around the question of how 10 modulates the emission (see the article of 

Carr and Gulkis (Annual Review of Astronomy and Astrophysics Vol 8 (1970)) 

for a detailed review). 

The theories assume either that 10 generates the decameter radiation 

locally (see eg. Gledhill Nature 214, 155, (1967)) or that 10 generates 

a disturbance that propagates through (large) distances in Jupi ter;'s 

magnetosphere to the source of the decameter radia.tion, possibly the 

Jovian Ionosphere (see eg. Goldreich an~ Lynden-Bell Ap. J. 156 (1969)). 

An. objection to Gledhill1s theory is that there is no apparent source 

for the high densities required by the model. Goldreich and Lynden-Bell 

argue that the decameter bursts are due to micro-instabilities initiated 

by a current of key electrons flowing along the ill9gnetic flux tube that 

passes through 10 and into the Ionosphere. 

A conspicuous success of this theory is the explanation of the conical 

beaming observed for the decameter radiation, the highly asymmetrical 

longitude dependence of the bursts, however, (as remarked by Carr and 

Gulkis (ibid)) is not explained. (See Goertz, PhD TheSiS, Rhodes 

University for a critical discussion of the theory of Goldreich and Lyrlden­

Bell). 

Goertz (ibid) takes up an older idea (see eg. Carr and Gulkis, (ibid) 

p6l4) that 10 generates hydromagnetic disturbances in Jupiter's magneto­

sphere, which are guided (Alfven waves) along Io's field line into the 

Ionosphere: the Alfven velocity is given by BQ/~Of)~ (in usual lmm units), 

so that (see eg. Warvdck (ibid)) the waves slow down and steepen (ie. 

decrease their wavelengths) close in to the denser Ionosphere. This 
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localization of energy can couple to arlY of a number of instabilities 

and so generate and/or amplify the decameter radiation. 

This thesis considers the transmission of Alfv~n waves from 10 to the 

Ionosphere. Various simplified laws for the variation of plasma density 

are analyzed and juxtaposed to simulate a realistic density variation 

along the Io-Jupiter flux line. Apparently the Ionosphere is pervious 

only to high enough frequencies, L~ excess of 1 Hz. On the other hand 

the magnetosphere cannot guide the high frequencies efficiently. The 

Iosphere (that region of the magnetosphere in the vicinity of 10) 

excercises no containing control over movements faster than ~ .05 Hz. 

The analysis is magnetohydrodynamic and both transient and harmonic 

behaviour is examined. 
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SYMBOLS 

The following is a list of (non-standard) symbols used regularly in the 

text,. 

A, B 

b 

C 

D~fJ 

F-ft.f1 

Hts) 

K 

k.' 

N,N"'AlC 

~('l) 

fOI eto 

~o 

r 

t'o, f", 

l\3 
50 

T 

U-

A definition of the symbol may be found on the page indicated. 

p 26 

P 18 

p 19 

p 9 

p 26 

p 53 

p 37 

p. 15 

P 45 

p 46 

P 52 

P 15 

p 35 

p 51 

p 30 

p 17 

p 53 

p 14 

p 27 

p 43 

p 9 

amplitudes of harmonic waves 

filter parameters 

driver parameters; also used (see eg. p 26) for coupling 

matrices; also used ( see eg. p 40 ) as general (integration) 

constants 

normalised magnetic field: b is also used as a filter 

parameter, see p 18 

coupling matrix 

diameter of 10 ~ 3000 lan 

enErgy transfer parameters 

filter transfer fUnction 

(generalized) wave number: see also p 57 

coefficient for standing waves 

particle densities: alsoN!,p 54 
L,-' [ ~ ($)1 

Ionosphere parameters 

Ionosphere parameter 

filter/transmission parameter: also used(p 52) as the 

distance from Jupiter's centre 

filter parameters: ~ is sometimes used to denote the 

radius of Jupiter, see eg. p 5 

radius of Jupi ter ~ 70,000 lan. 

Laplace variable: also used (p 35) to denote distance 

connection matrix: also absolute temperature ( see eg. 

p 52) 

distance variable: also used (p 48) as a characteristic 

function 

normalized velocity 
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p 9 

p 13 

p 9 

p 23 

p 24 

P 31 

p 19 

P 9 

P 9 

p 17 

p 10 

p 35 

p 31 

P 11 

P 17 

p 13 

P 13 

p 9 

P 18 

P 10 

P 31 

p 27 

p 56 
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the coordinate in Cartesian x-direction 

:fil ter parameters: the roles of ,.. and )I, are sometimes 

interchanged (see eg. fig.3,p 23: also p 54(ii)) 

usually used to denote normalized time: sometimes used 

to denote Cartesian y-direction eg. p 8 

a travel time: ~()., yo 11-

a travel time: see also p 41 

filter/transmission parameter 

:filter parameter: also used (see p 40) as a parameter for 

the law ~ .a ~.~.!-) 'l./~ 

specific speed: also ~.e~~Xp 26) ,~.~l)(p 16) 

normalized density 

:filter parameter 

exponent in the-- density law ~ ,:l!o/~)'i 
magnetic field ratio 

filter energy parameter: also used in Section 5,see eg. 

p 43, as a normalized time: also used as a magnetic 

colatitude,p 52 

travel time 

used in the body of the thesis(Sections 2~5) for the travel 

2.fl, -lol.: used in Sections 1 and 6 as the MF.3 permeability 
)AfJ :e 1.11" .x tt(' \.Ie,IrIt''j 1M 

used generally as a length variable: see also p 39 

:filter parameters 

a characteristic plasma density 

normalized time: see also p 34 

travel time ~ .... x 

used generally as a phase: see also p 48 

transmission ratio: also ~T p 30 

frequenc.r: see also V ~, p 54 
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SECTION 1. 

BASIC EQUATIONS 

In conventional MKS symbols, the magnetohydrodynamic equations are 

(see eg. Alfv~n and Falthammar (1963): Cosmical Electrodynamics 2nd Ed. 

Clarendon Press, Oxford: Alfv~n uses CGS units). 

(i) 'Ix B = for 
(ii) l7X E." ~ - ~B kat w,,J-h 'l.B"" 0 

_" -"» 4 

(iii) l' :b \j?/l>-L::O J x ~ - ~f + F 

(iV) -~'f.tat;:;' V.t'f ifl ) 

(v) 'P ~ !.oI\S"\ ~"lf 

(vi) 1\. <i"" tE' +- u:- JC s) 

Denote the above equations (1.1) (i) ••• (vi). 

n 1.1 

Here displacement currents are ignored in Ampere's law (1.1 (i)); D/Dt 
., '#1 -"1" .-

is the convective derivative ?~ + ~.U ;? ~ f conserves energy 

for reversible adiabatic motions; 0 is the electrical conductivity and 
4 

F is the totality of non-electrical, non-pressure forces acting on a 

unit volume of plasma. 

We will assume that Jupiter's external magnetic field is that of a dipole 

inclined at an angle of 100 to the rotational axis. (see eg. Morris and 

Berge (196?): Astrophys. J. 136 276-282). 10 rotates at an L value 

approximately equal to 6. The corresponding L shell has a radius of 

curvature in the order of (~)l:.ro)J2.': (6x-ro,ooo)h .. ... L\o.Ooo \C..'It\ 

where "'0 = 'O,OOO!LW\ is J upi t er r S radius • Clearly wavelengths much smaller 

than 2...X ('JC 'J.. 2..10,000) ~ 1,t.OO, Ot:lo k.l.\ will not feel the curvature in the 

dipole lines. Now we calculate (see section 6) a maximum. Alfv~n velocity 

of .46c = .46 x 300,000 = 138,000 km/sec along a field line. With 5 Hz 

this gives a wavelength 138,000 + 5 = 27,600 km~< 1,200,000 km. Thus we 

are at liberty to straighten out the Io-Jupiter flux line in the analysis. 

In detail we mark out a Cartesian reference frame, in which the Io-Jupiter 

flux line unfolds onto the x-axis. The zerO of x is in the Iosphere and 

the Ionosphere is located at both large, positive and large, negative 

x-values. The y-axis,pointing away from Jupiter, is in a meridian plane 

of the dipole and the z-axis completes a right-hand system with x and y. 

Of course the dipole field underlies the x-direction. 
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";& .. 
~ a -• v $ 

~ .! ... : • -: ., 
We have • ~ 

The above approximations are particularly suitable in the Iosphere and 

the Ionosphere, where the total curvature in the field lines is s:mall. 

The majority of our considerations will be in this frame of reference 

unravelled from a spinning dipole. We will ~ke the approximation that 

the equations (1.1) hold tr,ue in the (acc~lera~ing) frame. It is under-
~ 

stood that the usual rotational forces are included in F • The error 

in Maxwell's equations can be estimated by regarding the acceleration 

of the frame as due to two effects: the (constant) motion about Jupiter's 

rotational axis and th2 100 tilt of the magnetic to the rotational axis. 

The work of T~ocheris (Phil r~g. Sere 7 40 no. 310 Nov 1949 p1l43-ll54) 

can be used to show that the former effect is of the order JtD/c. where 51 
is the angular velocity of the frame, D is a scale of interest and c is 

the velocity of light. For phenomena on Jupiter (~ = 1.76 x 10-4 rad/sec) 

influenced by 10 (D = 420,000 km = radius of Io's Jovian orbit), we have 

A% = (1.76 x 10-4 x 420,000 )/3 x 105 = 2.46 x 10-4 whicl: is very small 

compared to 1. Also it is clear that the latter effect can influence 

only those events less frequent than rl In particular for 5Hz, we 

have n /5 x (21t) = 1.76 x 10-4/101t. = 5.6 x 10-6 which is again very 

small compared to 1. The approximation is good! 

....., 
Now we are including in f gravitational, centrifugal and Coriolis forces. 

(~e tilt of the dipole is neglected as an apparent force). The first two 

are derivable from a potential~ (Se~ Gledhill (1967): Goddard Space Flight 
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Centre Report X-6l5-67-296) which is unaffected by motions of the 10 flux 

line as measured in the rotating frame of Jupiter. 

Conversely we vd~l be able to find motions of the flux line largely 

independent of 1Y • 

Lehnert (Astrophys. J. (1954) 119 647) measures the ratio of Coriolis 

force to magnetic force by the parameter '1..0:= Sl./w where n is again 

the rotational velocity of the planet and w is the angular frequency of 

some hydromagnetic motion. For Jupiter Sl == 1.76 x 10-4 rad/sec, so that 

:for 5 Hz,.:x.,== (1.76 x 10-4 ) / (2n: x 5) == 5.6 x 10-6 ~<.. 1. The insignificance 

o:f the Coriolis force in the Jovian context affords a considerable simpli­

:fication as may be seen from the following. The Coriolis force is given 

by 2.1" if x.li.) where ;; is the plasma velocity as measured in the rotating 

:frame and~ is the angular velocity vector of the planet. For the moment 

we turn the Cartesian x-axis back into its original dipole, retairrL~g 
-* 

(local) y- and z-directions in an obvious manner. Now clearly motions ~ -of the :flux tube will couple through Jl. At the Iosphere we would expect 

two circularly polarized characteristic ~ave modes. At the point 

approximately half way along the tube between 10 and the Ionosphere, 

where the field direction is in the magnetic equatorial plane, there will 

be significant coupling from v to the longitudinal motion v. Thus a z x 
non-trivial Coriolis force would severely alter the character of waves 

moving in from 10. 

Motions on the scale of Jupiter's radius, however, vall be affected. (fol­

lowing Lehnert ibid.) 

The preliminary analysis will be for an incompressible, infinitely 

conducting plasma, assumptions which we will reconsider in a later section. 

(see Section 6. ) Infinite conductivity implies E -+ (~x B) -= C with its 

:familiar interpretation of freezing the flux lines into the plasma. Also, 

we want to investigate -r e '1'<.'0(.,) , a non-constant function of x, so we 

interpret incompressibility as "fl. (1' \P~ e.. 0 rather than the usual v. Veo 0 

With these approximations, and using a vector identity, the equations (1.1) 

reduce to: 
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(i) ~ B/'Ut, = .t> ~ (\r x-a) 

(ii) ,,:S co 0 

(iii) t t>~ /r;,"t,:! - l7 (al./l..y.. +'P'" ~) ... ('~1))\-e. '1) b 
(iv) v.~\Y)~o ~ 

which we refer to as equations (1.2) «i) ••• (iv)). 

We will be interested in solutions to (1.2) such that t?(&'"/2.jAo +p~ "-\»:=.c. 

Now as remarked previously, "'l> is independent of the motions of the flux 
... 

tube. Also, we will be regarding e, as a solution to the remaining 

equations (1.2). Thus ~P=- _v(B"Z/lf°"-ry.,) serves to define P for particular 

motions in Jupiter's ~-environment. That P does not couple back into 

the equations is precisely the analytical convenience in assuming incom­

pressibility. 

The first results will be appropriate for a region of the magnetosphere, 

such as the Iosphere, where the underlying magnetic field does not vary 
...., 

significantly. In the Cartesian frame we thus have an underlyingB= (B ,0,0) 
o 

Where B is a constant. We look for plane x-solutions such that the o 
operators ()4j ~ ~~t E 0 Then incompressibility implies tba t "f V; is 

a constant. At a large distance from a source v is zero and so v = 0 x x 
for all x is the consistent solution. 'ti. B = 0 implies tba t B is a 

x 
:function of time alone. But Faraday's law (1 .. 2) (i) in the x-direction 

gives :~>C ~ 0 as ~ "E. i\ =:. o . .:. Bx = constant = Bo. It is easily shown 

that in the y and z directions Faraday's law also gives 'G 13a 4t .. &Cl0~~~x J 

~ ~'14t. ... I!oo 'Otr"J I'l>X 

Momentum conservation (1.2) (iii) gives "f'"bV":Jfrot, "" ~ '"bt3lt~tt 
Ii '()B~ / 

~~J~ =- jJ: /'0" 

There is no coupling of the transverse y and z illotions, as we .expect on 

physical grounds. We will consider the y-motions 

}-<.I ... ) 
where we have set b = B. Clearly these equations represent a factorization 

y y 
of the familiar incompressible, perfectly conducting Alven motions into 

partial waves. Indeed, we can substitute to obtain ?>"'U-~/"O'lC.l '= )A6'f/ro: ?>"'-v'a/~1:.'L 

- '!'z. ~ where VA -::: '&0 /, "o",)II~ is a (local) Alfv$n velocity. We can 
- ~ ~... v- J 

call such an equation, with varying 1 and hence varying VA' a generalized 



Alfven equation (GAE). 
~.. '\. 

_I'(~~~. ~ ~ (.1 'O~) 
q)t, ~ JA.o ~x.. r 41fil 
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The field b , however, satisfies 
y 

which cannot be reduced to GAB in a non-trivial 

way. This incompatibility of b and v motions will in general invalidate 
y y 

such theorems as ~he equipartition of energy eg. we will see that the 

kinetic energy ir~;will not in general equal the magnetostatic energy 

t~:l in the wave. A t this point it ni.ght be thought that the crucial 
-,~ 

parameter is VA' giving equal weight to variations in Bo and r . That 

this is not so is seen from (1.3) which remains a good approximation for 

B = B (x), provided the characteristic region of charge for B is large 
000 

compared to a wavelength (see Section 6.). But then d r c d"lt/!\.(:~) gives 

a scale change in which (for r a constant) the motions of b and v are 
y y 

compatible and Alfven. 

Thus through B = B (x) we can at most slow down (or speed up) a wave: to o 0 

ha . t h t t ""'. -,~ • c nge l s c arac er we moo vary t 

We will use normalized variables U-= 0;,/ (~!y.or)v" b c ~ /~ t 

~ ... (Bo~~.t)Jla.i, J ~ ~ ('1&.) l'fo)H\.)O where \0 is a characteristic plasma 

denSity. Here f->!J.)1"'i'o)Uz.is an Alfven veloc~ty: V"J h ~ f3 are dimensionless 

while d has units of lengt,h. 

The equations become 

coupling to \T)U(. -: ~'\. \T,u :: 0 where all subscripts indicate partial differen-

~ titian. We note that? is an inverse speed i.e. a normalized time per 

unit length: we will call it the specific speed. We refer to ~~, however, 

as the (normalized) denSity. 
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SECTION 2. 

". t.. 

THE DENSITY LAW ~ !:: (~'\ (TRANSIENT BEHAVIOUR) 

We can make the f~llowing classical comments from th~ theory of partial 

differential equations about the pair h" = f->'"v-~ I b~ ,.. V"1l The 

characteristics o'J 'Co t f.>ax imply through Riemann J s method (see eg. 

Sommerfeld: lectures on Theoretical Physics: Vol VI Partial Differential 

equations in Physics: Academic Press) for hyperbolic equations, a finite 

commu...nication velocity f'. Now (as in optics) 0-"" - p"L \Tn .. 0 gi.ves 

a ray theory only for the higher frequencies, the lower frequencies being 

denied a f' group mobility. In fact the magnettosphere should whistle 

at the hydromagnetic frequencies. Also, along a characteristic, we have 

d ~ .. if d u- for equiparti tion of energy we would need d (b :t ~ \1") :: 0 . 

Thus there is a departi tion -!:. \tdf-> in the wave. 

r 
In this thesis we will investigate the particular law ~ II:: (Xf!;/.)(:'5 where )(0 

is a scale length, for various positive values of the exponent S. 
At various stages in the theory, however, and in particular in Section 5, 

, 
we examine the relevance of phenomena predicted on the basis of the 

particular law, to a general ~ variation. Before proceeding with this 

section the reader might find it convenient to refer to Section 6 where the 
f 

relationship of the law {')(~I,.:) to a physically likely density variation along 

the 10 flux line, is discussed. 

In e ~x <')ttJ , then, we have typically 
~ 

+----------4----~x 

Nowf'is a specific speed:hence 1rb~'·l:~~)qx is a time for signalling 

from x. -.. x <')(0. Integrating we obtain for b"" I, rrf (x) # \:~ [, - e/:to)'-t] . 

E 
Thus if~'1 and we imagine f->-G-") extends up to x:.: 0 J li~l\ 'Yr (>'} "" ~ 

)(-0 () 

But if g..,.l, \"VI\ 'l&(:C)~ c() The law v~l is then the. dividing line 
, "t40 

between laws with finite and infinite travel times ~K(~). The physical 
0' significance is as follows: when £' 4 J. a signal entering f ~ t){g /y.) 
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from the right (see, in particular, the Ionospheric calculations of Section 3) 

will reach ~~O in finite time, feel the immobility of the (infinitely) 

dense region J( ~ 0 , reflect back and set up a standing wave in 0,"" ~ )C. 

Thus no net energy can be passed into such an (idealized) Ionosphere in 

a steady state. When r'l , however, 'l'~ (0+) is infinite and the wave never 

reaches x-o to generate a reflection, and energy can be continuously 

fed into the Ionosphere from the right. 

f" -,( J-l) 
If we consider the travel time to infini ty e~ (!L} '" J". fi> dX to E~ Q - {~4' 

the situation is reversed (we imagine here that ~. ~./~~ extends from 

t ) Th 
" 

))(.. (' 
'i,.-c"-", 0 + 0:;,. en 111'\ er ()( ;:,. r- when () ')' 

lI-"'tlO 0-\ 
and = 00 when r41 . J., 

again gives the dividing line. 

Evidently it is analytically wise to regard d:l as a singularity: one 

way of accomplishing this, which will prove particularly convenient in 

the later analysis, is to write Ee 
obtained only as the li~ ,W./l'1_1) • 

1'1\ .... too 
We have 

and 

for and then 

4----------------+-+ x 
o 

so that 6')1 for \'100..,,1 and o,f~\ for -~LM.L D .. 

is 

lM/~-I' ] 
Now under a change of variable 'i = :;. f (30 d){ ~ 1. (M- ,) r "£I / x (1/ .... ,) 

the GAE lr~..: - pL IJ'n =-0 becomes tr~, -tr,.!# +- f \1"~ "0, 

which is an important equation in Riemann's unsteady one-dimensional gas 

dynamics. (see ~rfeld: Lectures on Theoretical Physics: Vol II: 

Mechanics of Deformable Bodies: p.265 et seq: Academic Press). Sommerfeld 

(ibid) references Bechert with a lemma : if uJ solves ""'1 - w,~ .,. (~/J) w~ .: C 

then U"' ~ t ~4;::: 2. ~U:>~ljt.­

Now the general solution for 
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the wave equation, is known: clearly the~ by induction, we can obtain 

the general solution for the densities w\" OJ !2. J t: 4}.... eg. if u> solves 
~ ," the wave equation \i= i ~ solves "" .. 1.: i .f, (i ~) ~ e- ~-l\.J \.0 

solves p\.:.4 : on .. the other hand f""1 d ,:::. f'-t cl~)'&. solves ~~-t. 

etc. (We will mention a beautiful connection between the analytic 

viability of Riemann's equation for ~':'O/:!1..J!:.4,.... and the Bernoulli-

Liouville (see eg. Watson: Theory of Bessel Functions p.85 et seq: 

Cambridge University Press) theory for the solution of Riccati ' s equation 

in elementary terIDB). 

give 8').) We will now 

begin a detailed study of the case W\ to '2.. U f.» & ~"I.<) 1. or p ' ... f<!.o/)&.) 4 , the 

inverse fourth power density law. We remember that as t~, ,the travel 

time 'Y~ (0+) is infinite. On the other hand t 'WI E>s &-) '" ,t.. Jr){1:) is 
)1.-<;>/10 F-1 

finite i.e. there is a finite travel time to infinity. (Note: the finite 

travel time .J. ~-, arises because the Alfven velocity ,-

gets arbitrarily large. This will imply a signalling velocity greater than 

the speed of light, whi ch is impossible. The detail is that in ~~ \)'"~ = bx 

we have conserved momentum non-relativistically. Clearly we must be 

circumspect in using the physics \T,..", - ~'- \,Tv'} :. 0 

(where we have chosen the plus sign). 

is a solution of the wave equation 

) • Also l C! )1. .. /-; '" 

whenever 

tV is the reduced equa.tion lJ'tt -v-.,j .j. L.Vl/~ 0 has a general 

solution t r Q} t 1) .\- ~ ~ ~ - ~) where t ~ s are arbitrary except for 

some obvious mathematical requirements. 

has a general solution 

For x,. 0 the wave ~ f ("j -+ '/:.o'1./~) moves and increases 

to the right: moves and decreases to the left. 

Also we notice that the so~ution ~r4XJ to the GAE would be given by a 

WKB method: '1-0" /)( ,as a primi ti ve of the specific speed (3.:. ("'o"'/~) is 

the generalized phase, while ~,inversely proportional to a fourth root of 

~1.=- (!.o:> /.<-y.~ ,is the WKB growth factor. We might say then that 

{?>1.:::. ~o/)(')\(o is accurately a WKB medium. Of course, for a high frequency 

ray theory we have \Y oc 't-'/~ (~ \, oC 1'/ .. ') for any density law \ (as 

obtained by Alfven and Falthammar (ibid) p.87) 

We consider an Iospheric variation of f as in fig (1). 
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--~--4-------~------------~------~r-----~ o 

For For 7L >,,.c, ,~::~, ~ ft.-/"t;'/", a constant <. 1. 

10 generates somewhere to the left of 

. ,to • We will sometimes refer to the region )lo ->)(t as the filter. For 

convenience we change scale as follows: 

fOr " .!!i )l 0 set '; x- 2-.)(0 

~o ~ X ~ :.t, set 
~ 1:: 

-xo ... /~ 

set 
~ ll, t )l. 

::- ~i)( - 2... ('\, X', 

The variable ~ increases continuously with )(. through ,L~ and x, At 

At -x. ) J :: ~I' ~ - ~o"t.. Ix I Also we have 

1. 

The preceding remarks on the speed ~o/JO<) mea.n tm t the general solution 

to the GAE in 'x lD -:>)C, , is given by'l" where w is the general solution to 

the wave equation w~1 - w-:!~ e 0 

Thus we must solve the equations 

in 

in (z. \) 
in 

I 

The equations couple at the boundaries Xo ~ )(, where we demand continuity 

of (J" and V;, conditions which are conveniently obtained from the equations 

\r)l -::. b::-J and ~a.\1""~ ~ (I" using Feynman ' s method (see Feynman, Lectures on 

Physics, Vol II, Chapter 33-3). In detail, the method would give us contin-

uity oftr'and b :But if the necessary limiting operations are inter-

changeable - a condition we will certain.ly assume - then V"x 'C". l>j gives 

the continm ty of \rl' • While the condition 0!1\1* may be regarded as obvious 
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for connected bodies, that o,n b precludes the existence of surface curren-ts 

at y. Or x •• 

In the normalize~variables the boundary conditions become 

at ~o V'" ('t;.- J ~ ) 

\r ( 'i!.- ) ~) 
(2..1.) 

Now we assume that 10 generates a wave 1 (~-:l) travelling to the right in 

l ~ eo • The wave reaches \ .. 1.:. at time ac.o so that r{~)= 0 for ~"'fa 

but as we include shock waves in the analysis f~~ is not generally assumed 

equal to zero. Where necessary, the reader should interpret in the sense 

of generalized fun0tions. We will say that the driver 1 decays if 

L'M f (t) exists and equals zero. This la tter condition will be assumed 
'..,-DO 

where appropriate in the theory. 

We will use the Laplace TrfLnsform method for its ease in incorporating 

initial conditions. Also at this stage'we can mention that a non-trivial 

convergence problem arises in the analysis which seems to have a natural 

resolution in the Lapl~ce Transform method. At a later stage it is 

convenient to adopt a more direct, physical approach. In what follows 

all attempts at mathematical rigo~ are abandoned. There should be no 

difficulty in providing the justification for the method. As in all 

transform techniques this is probably best given a posteriori. 

The equation \J""~'1 - \J'"~j 1: 0 for'~ to transforms in time to 

d~\r _ ~2. u- ~ - ~ "'(1 0 ... ) - V"" tl 0+') where V- is the transform of \1" t and S., 0 
d J:a. J ~ I 

is the Laplace variable." 

But \1{~.o+) ~ i~) and \J'"~ ('t. o .) - - 1'(1) . 

• .'. cl"ir _ '!o~~ Co f~~ - os f('t) which has a general solution 
d ~'" 
0- :: e. -~ ~ r!. e. c"j-L f O")dr + 

1 

A e - <» (!t - ~ 0 ') ~ e. e. s (''J- ,.. ') 

are functions of ~ yet to be determined. Let us set 

Now tr~) is bounded as ~..." -00 J so we must have 
'f 

\To :. u-(o) J we get tr (~) 'C. e-s~ f,.c e.'-'" f ?) Gtr 
for ., ~ ~Il • 

where A and B 

~ 1:: r:o e.. -'!.u- r ('fc- v-) d..a- • 
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which solves to 

where li> is the t~ansform of wand oJ... ~ ( "(4) ,.W).:= \Ai (~.) • 

d~"') " -For ,. -:,. '(. J tr'1 - ulj1 • 0 transf orms to d,~ ... 1> ..,,!! (1 , giving 

0- = A't. ... ",C.'1-1i1 + !> e. i.C,- ~~) where A, B are again constants. Here the 

boundedness of t} as ~ increases implies ~ ~ 0 and where tr. =- iT (1,) J 

we get 

We refer to the totality of expressions for ~ and w in the three regions 

as (2.3). The boundary c ondi tions' (2.2) transform to 

It is now a matter of algebra to substitute (2.3) into the four equations 

(2.4) and solve for the four unknowns ~~" !.V, • 

Eventually we obtain ~ e -'> ('51 - ~o) 

where 

The factor (t,-~~)in (2.5) is the time for a pulse to move from "0 tot, • 
-s(l .~) 

This explains the delay e t in the response at ~, to a driver at Xb • 

Now t would give the field at )to if there were no filter 10 -)", and ~.I) 

for all X Then sf would give its derivative. (It is true but not 

trivial that sf gives the tr~nsform of the derivative of f in ~he theory 

of generalized functions as well.) In anticipation of later results 

we choose to regard this product sf as the systems driver, rather than 

f alone. The implication is that the Iosphere is a generalized A.C. 

device. Following engineering usage, il(5) is called the system transfer 

function. Let ptj) be the inverse transform r(~) .... .[, -\ {n (~) 1 . 

In investigating r(~) we will apply the initial and final value theorems 

of Laplace Transform Theory to H~). These state, respectively, that 

under suitable conditions li .... tt\j) ~ k ~ A(~) and h~ t (~).: h~ s J.Hs.) 
~ -'O~ s...,OO ~""'4:) ~-")O 

We must emphasize that the reader interested in rigorizing the theory 

would justify the applicability of these two theorems, particularly the 

latter, as a very central result. 
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At a later stage we will consider an already-mentioned and related 

convergence problem. In what follows let us measure zero time from 

~ :: Ci.- 'to). 

Now for the shock f(~-\\ ): \l «~D- ~ )-d ') (where'U is the unit Heaviside), 

f 4: {: €--c;'\I" r ~o -\.T)~ = \: e. -SV' 'U.~)cLr ;: 'Is ~~. ~ t ., Thus II is J 

within a factor,the response of the system to a shock input. We have 

H t.S(~o-f,)- lpsz...~,r~_e...-2.-:'L'I('-"1»::: -4~'I.'i,,,o _2..sJ..('i,-t;o)"l..+ oe#~ 

Hence 

Also 

Thus for a shock input, liM V- ~'J~) .: 
:;t-'l/JO 

and ~ l1" (!!" 'j) ~ ~/.Q ~ ~ 
~-')O~ 50. ><0' 

there is no filter, 1ip.\ \r"~'J~) 
a ->0 <10 !j ... 'ItH 

Whenr-' i.e. 

1t~ \1"' ~'J~) =- l 

and 

J 
which we 

certainly expect. When Jot, ,,,. )to I ~1 is small so that 

for large ~ • The physical picture is that of two non-growing waves 

of amplitude (V -+ 1 moving in opposite directions in the fil ter 't~ -)~\, 

coupling to the uni t driver and a reflec,ted wave of amplitude f'J 401 at 

~.) and coupling to a transmitted wave of amplitude ~2 at some distant 

Clearly no net energy passes the point ~. We begin to 

form the idea that it is difficult for energy to eS.cape continuously 

from the Iosphere, at least at the lower frequencies. To interpret 

HW\ \r (' '-l) ::. 1l_/ xo we remember that the shock 1.L triggers a wave 
s~ c+ I, ... 

X {(';i ol ~."'/>,) moving to the right in the filter from "0. At !:J ~ 0 + 

(in the original time scale) we must have ,c." t(>'o' :: I to rna tch boundary 

condi tions. The phase ~'O in t will reach 'Il, a t time ~ t ~. - ~ 0 Thus 

at time ~,. <3,- ~.), the zero of the shifted scale, we have \7 (~,) : ~, :f (~o\ 
The larger :.l'.1the more the wave can grow in its 

passage from The physics in the growth is quite elementary: towards 

~, the medium is getting lighter. To balance the forces in the wave 

front, the decrease in inertia implies larger velocities. On the other 

hand, a \T-wave moving from 'Il, to ~f1 , will decrease. 

In systems engineering, r{~)is sometimes called the weighting function Or 

the memory function. This is because \r{'i,/~) is proportional to the 

convolution of the driver <}~ with t\<!»:: ~{,t~)1 It follows that events 

in the driver 'i t{~!>-~) .. £-'{-srJ which occur at a time:i can be 
j 

recalled to an extent P ('1'- ~) at a time t11_~) later. Hence memory 
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function! The significance of the reEult 
S -)(Z) 

is that the system has infinite memory. Moreover, it remembers remote 

events equally. If everything of significance in the driver occurs in 

finite time, so that ~t1<J.-~\1 becomes small, then the system will 

eventually recall each event equally and it remembers them in a simple 

sum. Now physically, events are changes ~[*~o-~)1 in the pulse so that 

only a driverfwith net variation can permanently affect the Iosphere. 

Thus a pulse with f~ .. )~ .1.Wn i'~)::: b will eventually be forgotten, 
fj-., -40 

while a shock, with its interpretation as a generalized function, will 

be remembered. Apparently, then, very low frequency motions can sustain 

convective movements perpendicular to the field lines, particularly as 

~ increases WEB away from the Iosphere. Such motions might produce 

an ex-Iospheric trigger for Sonnerup and Laird's (see JGR (1963) 60 no 1 

pp 131-139) interchange instability. 

We initiate now a systematic investigation of 

H(?\ ': s/«. H.2.."4><;'~ t-z."ils) -e-.Jl~~) 

(Note: do not confuse this .1'. with the permeability JA- of free space; the 

latter has been normalized out of the equations in (1.4)),is twice the 

travel time for the filter X~~X\ • In particular we will interpret it 

as the time for a signal to leave x, , be reflected from X<o and return 

to x, If we take s large enough we can expand H~)as 

Qio+r\»~' (s.- rv1L~' 

where r. = '/2.~t <.0 ) f"c ::: '/1.10 ~o J '60 -=- -'/4 'it'f;o :::. -'1,.. ~o 

1. 

If the filter were to extend beyond x, , so that ~ '" (llo~) for all )(. '7., x., J 

then -2..1'0 Co 2.X o would be the time required for a signal from;it) to 

be reflected from infinity and return to Xo (see previous discussion on 

finite travel times). Similarly -4~, ~ ~~~/~, gives the time for 

signalling and return to x,. Thus -r., e -'4~o (-rj ,,-l~'J) gives a natural 

frequency for the filter ~o -') ao (",-tal). Of course 1 r~ \ '> 1'-0 1 " Clearly 

these. ideas tie in with the above interpretation of jJf> " 

Each of the terms t< in ii(~) represents a wave arriving at :>(, at a (shifted) 

time )Jo'(.. • The waves are generated by successive reflections back and 

forth between )(t;I and x) as is familiar in optical filter theory. The 

first wave is proportional to $ /(?,"r~){~ ... rJ) the second wave creates an 
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impression which is a factor ~o Its;. r. Y..."='- r,,) of the ~irst, and so on. 

Now "to/~tro'Ls-r,) ::: (-(r::"'1)1[s~ro - 4;o~r.l has an inverse Laplace transform 

~~.+t,\(e ... r9J - e..r.;J]. This functionl~o~ll) [e- r
-d_ e "I~ J is a typical element 

in the total memory of the system: the element operates from one wave to 

the next. We can now understand the mechanism of the total recall implied 

by II"; P{'a}" constant"'" 0 : as r.LO, e.-ro~ increases with ~ and so remembers 
J-'»QO 

the distant past. On the other hand er~ will emphasize recent events. 

-t"o~ 

A corollary of the i~inite memory e is that it is not obvious that the 

behaviour of the system is convergent. The problem comes into relief 
lS"0 

when we analogize the facter «»,.r,,~ ~-r.) as a mechanical system. Wi th a mass 

~oJ a ~riction "'\)" Jand a spring constant Ko we would require "0/""0 .: -"""0 ::. '10.t 0 

and -:"",0 = f",-r
tl 

L.. 0 • Thus the analogy requires ~o a negative spring 
"'0 

constant , giving an unstable system. Thus there is no local physics to 

give us the intuition for stability. 

Apparently stability must come from the co-operative behaviour of the entire 
lS'o 

~il ter. We see that as ~" i$ negative in (~-t-rox.s- r.) the wave K will oppose 

the effect of the wave (ko-\) etc. A term e.-r-'<\will, on reflection, generate 

waves proportional to _e..-to(<':J-}lo) and -(i\-jA-' e -r"{1-}'o) (amongst 

others). The non-trivial problem (see Appendix) is that all these waves 

converge for large J Physically we may expect the Iosphere to act as 

an underdamped system with overshoot. 

In the appendix we show (essentially) that we can write 

where 

r ( ~) 2: t (I'() 
("'<1-\ 

~c ~ 
"':;0 

----4( 2. to '\ 

~ 
1" is a normalized time 1'= .po and the notation [1"') gives the largest 

integer ,1'. The first term in (2.6) is defined as zero for l' =- 0 • 

The functions fw;. are modified spherical Bessel functions of the first 
.., 1t' )'11.. '\ kind. We have h (-e' ... l- I ~ L e) " These functions can be expressed 

~ ~l ~~~ 

in terms of elementary functions eg. la):: /,)~h (~~ (see Appendix) .. 
('l) 
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For ~! \ we get 
f C\') 0: (-r,r" ::\ Cr. e. r,p.o'Y ~ ro ;. ... 01'".",,] 

r,+ ro -j giving p to) .. -r. r. • is,, , 

giving, for a shock input, l~ra u- t't, '!) 'II; - (~~..t Yo : ~ , which we have obtained 
~ .... ". previously. 

It is possible to prove the following facts about - PO') fOr 'l' ~ , • 

Certainly -,l~is posi ti ve in the range. I t has a maximum value r. r"o 
~ 

at 1" .. 0 and a minimum value ta r,,\a<:·oI°(where «0 to 9. "- z. > \ ) at 

~. ['/./'0(,.,+1".,)1 \p) (ro /r.)1. Lt. Also we h2.ve from the final value 

theorem lilrw'l [-,t~)l" tr· r .. ) ( "Lr. rw / rl \. H_1.) =- ",,~r:t': . We can then establish the 
~-'''O .~.. •• -. (\~ "'0/1+ Gto) 

following inequalities for the max:Lmum and IDl1llmUIO. va..Lues: (r,fo\ ~o < 

<. (r, r~) -' ~ 1- L.. r', To ) which gives the overshoot. Also we have 
"'0 (Ito 

t- at., 1- ~;' 
_ p ('r '" ,) ~ (0{'0 e -l- e ) (:', ro) . 

,+-""~ otoe\~"'o 1 el-c1~1 
We have, of course (rlro) o{o (1- (i(o)4Holo) L.. tirO) ,.. L.. (r. r o\ • 

1 + d.e 

We can draw a sketch 

~--------~~---+-------------- ~ o 
z. 

(. - r,r .. ) -- ---+-""---r" 
-i.'" t 

l.. 

..lo t- !i .. 
1- 411-0 1- «.-1 

is not necessarily less than [tJ...o eo -+ -e 1r: ro) 
t ... 01... Joll 

Graph (1) plots p (\"') _ t·, {A' ~)] for various values of r~ ~ r, . 

The properties of pt.'l')mentioned above for 1'! 1 are displayed in the 

curves. Unless is large, there is very little oscillation 

in the response for ~~l ie. the driver is cancelled almost immediately 

by the first reflection. 

The physics is as follows: When the travel time ~o is small, which occurs 

for a given ~owhen ~I ~XO, the reflection K=lcontains as up-tO-date, though 

inverted, image of the wave k~o and cancellation will be complete: when 
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for the given xo) significant events can occur 

in k S 0 of which K la t has no immediate c ognizanc e ; the time I'~ for 

information to be communicated becomes important and it takes that much 

longer for a steady state to be achieved. Clearly we can extend these 

ideas to show that the filter will track accurately any motions in the 

driver ~~ which are slower than }Ao. 

Another view of the problem is that perturbations should take a time ~~ 

to die out. 

In Graph (1) we see that the asymptotes of -~~) increase with l~\ : this is 

to be expected for a given driver acting on progressively lighter media 
( ' t t) 

;0 4 5 <. -2.. (In reconverting to j : yo "( it should be remembered 

that ~Q is different for each of the three curves.) 

The numbers attached to the curves are ro
7

"',) 'B J A, respectively: thus eg. 

-1,-2,.5 J 1 gives the response of an Iosphere ro :. - 1 I r, = - 2... to a 

driver ~ e. -" 5,'j To see the desteepening of the waves we must normalize 

the driver ~ e·5~ by the specific speed' ~l at )l, for each Iosphere TO" r •• 

The dotted line on the Graph (2) represents this normalization for the 

case "'0 .. -I , r". ~ - 2. • The growth of the response with respect to the 

driver is of course the WEB effect. 

Graph (3) shows the response of the filter to a driver 1('~o-d)= As\;tl>~ 

The first four numbers attached to each curve are as in the preceding 

paragraph: the fifth number is the time interval used in the numerical 

integrations. Clearly the filter is capacitive, letting in the higher 

frequencies. lllis may be regarded as evidence for a more general coupling 

theory which we will consider under the harmonic analysi:~ ( see Section 4). 

Also, as expected, it does not take many oscillations to reach a steady 

state. Graph (4) gives the response to the single pulse i(~o-::J):[l-'\.l(~- ~)1>( 
'1- (A ~'" BJ 1 where "\.l is the unit Heaviside. The numbers attached to 

the curves are as in Graph (3.). 

We defer a full ra,r, - parametric analysis of r(~) to Section (4). 
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SECTION 3 

... ,'" 
THE DENSITY LAW ~ '" (~J (TRANSIENT BEHAVIOUR) (CONTD) 

If we displace the driver in Section 2 from the high to the low density 

terminal of ~ .. (Xe/}C)1. and reverse its direction, we move from a consideration 

of the Iosphere to a consideration of the Ionosphere. Clearly much of the 

physics, particularly after a time ~o and into the steady state, will be 

the same. In the total problem, however, there are features specific to 

the Ionosphere. In this section we will briefly discuss two of them. 

Firstly, in the Ionosphere, it is sometimes permissible to neglect 

internal reflections. For example, the decameter instability (which gives 

rise to the observed radiation in Goertz's theory) might eat up the pulse 

before it can reach and be reflected from the lower Ionosphere. Or perhaps 

viscious effects at the lower Ionosphere/upper Atmosphere are severe 

enough to damp out the return wave. The convenient picture is clearly 

---..-------+------+-+x 

Wi th )it" 0 the travel time }Jo (given byl.'l.v (1 - :~ ') when -L,::t 0 ) is infinite so 

that we have formally precluded reflections off Xl. (note that here 1(9('0-:' 

compare with Iosphere). 

Now consider a driver U":-. fo(':S-~) moving in from the left and arriving at 

'teo at tiTIE ~ ~o. There will be a reflected wave t(~")l) back into X.c.ll'l) 

and a transmitted wave x ~(1''l .. ~) into the Ionosphere. In analogy with a 

pulse moving along an increasingly heavy string, )( S (~1. '*" ~) propagates 

(slower and slower) to the right, diminishing WKB in size with the distance. 

solving to 
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which gives an explicit physics. The ~ilt8r responds only to variations 

~ <!{I ~ -)Co») in the driver, as emphasized previously. I~ ~ <fo (~-"o'l) 
becomes small, the integral in (3.2) ceases to change and tte factor 

reduces <XO ~o!) the field )l.:J..<',c.,,+~, at ~o to zero. Thus for a 

shock t(~ -)Co) ::: ti~) (11 the unit Heaviside) we have )to 3o{Y-o,,"o) ::: e ';J/z.'JLo 

~o On the other hand we ~~ticipate capacitive behaviour. 

Indeed for a sinusoid fo q~ -:.to i'" ~ ~~) we get "'0 ~Dt)(~ + ~ ~ ... Ul'21> At-Yo. (LO <:1-+ 4) 
tu 

where ~:: Qt'U.os. "'J:and 0 '" • <. "h ... (w .... ",'2,,..;5 :z; 

increases with the frequency w ,the capacitive behaviour is 

apparent. Moreover the behaviour is critical around ~~o as may be 

seen (~or ~ I:> ~ J ) from 

(.o~~ 
; 

.9/ 
,(,/ 

1IJ"tl/ 
.,0/ 

-/ 
/ 

~ 

0 . i .t t z. L 

The relevant physics is in the basic equation \r,,::. b,. At steady state, 

or at low frequency, b~ ~ 0 Thus \Tv. ~ o. But the heavy region near 

)C,~o is immobile. Hence ""'C!o for all )(. It is wonderful how the 

Ira thema tics compacts this physics into the formula l( ~o C,{o~ -4- J) : from 

the second equation (3.1) we see that in a steady state ~ot-.lo+i)\ can only 

be zero. 

Finally we remark that the decay e iJ/~)I.{j from 11~) in the Ionosphere 

is in contrast to the initially growing response e. -ro~ tc a similar 

shock in the Iosphere (s~e Section 2). The reader will find that detailed 

consideration of this point gives an additional, non-trivial insight into 

the workings of the ~ilter. 

The second feature specific to the Ionosphere is tm uncertainty in 

boundary conditions. As with the mathematical theory for the Earth, 

there are difficulties with the plasma condition at the lower Ionosphere. 

Nevertheless there is likely to be a rather narrow region of precipitous 

decrease in plasma density towards the upper atmosphere. In a picture 
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lP-----t---- ~. p.. 
-----------+------~--4_------~~ 

x. o 

2.. 
we can model this effect, be it crudely, by disconnecting ~, from (~~/~) 

and making i t small. 

There is the following important physical consequence: the convected 

velocity field tr enlarges into the light medium (3. • But the electric 

field ei! is given by U";j Bo (see Section 1) proportional to tr : thus, 

basically to conserve energy, the Poynting term E~ b makes b small in the 

region "',?'I(,. We have then that x, is a significant reflection point for 

b-field and there is accumulation in X'Xo. This is obviously of 

importance for an instability which relies for its basic physics on Fermi 

type collisions between particles and magnetic field. 

We could analyze the I~nosphere in fig. (3) using the Laplace Transform 

method of Section 2. There are additional technical difficulties due to 

the disconnection at x, which fragments the modified spherical Bessel 

functions 1w. It is particularly apt to Bay that we would be concerned 

with a theory of functions which bear a derivative relationship to the 

r:s , as the associated Legendre functions f;,,,)to the functions 1't L:z) • 

We prefer, however to look directly at the waves, as in the previous 

paragraphs. The method is straightforward: the wave \or-){ ~o(!.ol./:.' -r~) 

reaches )l. at a time . ~~.., )(o( 1- ~ )transrni tting the wave h '0 L~ - ~lli ) into x-.,,, 1 

and refle c ting the wave "" ~ I <. '" - ~o 'L ') back in to x.. L )I. \ • Again rna t ching 

boundary conditions we get 

III ~t (~ - ~'O~ /)Jl) 
-l (.l ~(~n".I,'1lv'-!yt'y' -lb1. \ 

: e. -~ (~I~." ~D'" Ill.) Jet t;r. - \\'" I } 

jo ( ~,l~ AI" 
~. \ 

At a time 2.~0 this wave will reach "10 and so on. 

Iosphere we expect the method to converge). 

(From our experience in the 

The Graphs (5) give a dynamic portrayal of the passage of a driver 
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into an Ionosphere 
, 

, ,c,. -& Also we 

have set ~I a \ 

3. 

as (~)z. = ( (-\~ J~ 4. this constitutes a discormection of 
~, t-"&) , 

The curves plot b-field as a function of distance in the filter ~~"1, 

at successive time intervals of approximately ~ '" t 10 :: 1. (<- t) - (-~)1./t'i)) 

: t(~) ; . ob15 The b field increases towards the higher 

densi ties at )(,:: - ~ .. - ·ns as mentioned briefly in Section 2. (b is 
. ealcula ted from the a bove me thod as b ~) ~ J: v-~ dS') 

Alfven and Falthammar (loc cit) observe that the increase is basically a 

statement of the conservation of energy. In addition, the waves steepen 

towards X, ie. the wavelength decreases and there is a localization of. 

energy in space. It is at points of the medium where the localization has 

been sufficient to accumulate a large field energy per unit particle, that 

instabilities will be initiated. 

We remind the reader that the frequency of the pulse in the medium is 

that of the driver: there is a change only of wave number, not of frequency. 

The product ~~ is a non-linearity in space, not in time! 

An important feature is t:re development of nodes and antinodes (crt Y ~ --25"J ~-.\"1, 

~-·11.5 Q~)( ~~-1 ,l"-'llr r~~p.) An instability which feeds off b should b..a.ve hot 

spots approximately at the antinodes. It is meaningless to extend a 

magnetohydrodynamic analysis beyond this point. 

Lastly we mention that the phenomenon-orientated physicist should not be 

too hasty in dismissing the low frequencies as uninteresting. This is 

because every real pulse is finite and contains a non-trivial spectrum of 

frequencies in the front and the tail. Though the body of the wave be at 

low frequency and without incident, the onset (and decay) of the wave 

should register as an Ionospheric event. The extreme case is the shock 

'\.t~) : the response e ~/bto 
~~'l,.) 

and b .. (1..-7)e. u; - 2 where 'j" 

travels from ~o as the pair 

~ (I - ¥)and ~ -~li is thus the travel time 

from "' .... ~~ to )( ..... )/, In the wave front (i. e. J ~ ~'J ) b ~I ~)C) ~ -lto~ ) 

giving accurately a WEB increase. Also there is the associated steepening/ 

localization. Thus we should see at successive times, (with ,,~e-\): 
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-0 -b ... 

•• 

-I 

One must expect, as mentioned previously, that close enough to ~cOI b 

couples to an instability. Movements at low frequency must not be 

dismissed, a priori, as influencing the decameter radiation. 

)I 

Also low frequencies reveal a fundamental difference between the 

characteristic motions of the filter and those of its surround. In the 

is possible: but 

across the boundary at x~,the wave feels the increasing inertia of the 

medium and such ~ -motions are progressively damped. Thus in x~~. 

only motions with 0"')(£0 are possible. The flux law U; ",bj then gives 

bJ ~ -0 for II L)C<> , but \:'~..lt 0 for ~'7}i"". Thus in "'" x. the plasma can 

move steadily and maintain a constant tilt ON. +4" b -.: Ql"L+AY\ tbi/~o '> , 

say, in the field lines: in ~~X~ ,however, plasma motion will continuously 

stretch the line$. VeYily, then, the flux in X7~<> is anchored at heavy 

x, 1: 0 while that in )LLll" ,if l.mcoupled from 'It~) is free. 

We mention that the Ionospheric flux lines, stretching out from the immobile 

base )( ~ 0 to gain the tension to reduce the motions \j , eventually assume 

a non-trivial tilt..,. Q.K.h,Y\ b ,... t:\K.-hl~ ~\=., F. L -~) e.. ~-~")/uo - 2.. ] ;: - tUC..~ 2. • 

Detailed consideration of this point for a polarization ba gives an 

explanation of the "lead" of Io's effect at Jupiter from its dipole flux 

tube (see Goertz and Deift, to be published: will be referenced in Goertz, 

PhD thesis, Rhodes University). 
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SECTION 4 

THE DENSITY LAW P ~ -= <-~~ 4- (HARMONIC BEHAVIOUR). 

In this section we look for harmonic solutions in a filter. 

tit. 

, where ~o;: rt1is not necessarily L 

We assume that in 

'4. ll----' 
and examine the coupling at· ~o and;t, (The actual field is obtained, 

as usual, by taking real parts). The reader will notice that we use 

ampli tudes ¥ 0 It in ')(. 6 )to J .. b • in leo {. )l l)4, } "e,. .. in \\ 'It. J. )It " respectively: 

also, a subscript" ( indicates travel to the right, -2." to the left. We 

require u):\: 0 

Coupling is obtained, as always, through continuity in V" . tint! l.T'Jt • 

At ~o we then obtain A Q ::- 'Bo 6 

( ~\ \ ~, \ 
where a:: Qa. 1 J b 1:: (1)1.) 

• ) I'W~O"O 
(,twro -e 

(L\to) ~l)) e. -\''"'f>'C)Xo 

We denote all the formulae by (4.2) 

At XI we obtain '8. b:l Cc 

.~ ::. 

'It -, _ 
J ·Uo -

where 

tio e. _l\.Opoxo ] 

_~tjJlIc 
(H i""~)lCo)e 

b:: (Iu\. 
\:It. J I 
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We denote all these formulae by (4.3). 

The total filter performance is given by (. s=. To. where T = c. _\ G, lSo-\ A. T 

may be termed the connection matrix. Clearly we have from (4.2), (4.3) 
that T'" exists for w:t 0 • Hence we have that the only solution for 

Ta: 0 (or T-'e "'- b ) is the trivial Cot lI\ 0 (or c.-c). Thus a driver a, to 
will always leak through the filter: conversely the filter is never a 

perfect magnetohydrodynamic mirror. Also, the invertibility of) makes 

it impossible to set up a standing wave in the filter by driving it 

only from one end. 

Consider firstly an Ionosphere 

--r------r------~-+x 

We drive from )t:;£)t1:) (a, .... ,) and there are no sources in the Ionosphere 

(\)~'I:- ~. Then from (4.2) the transmission problem, in particular, 

requires the solution of A ( ~~ ') l7 Bo (~ ~ for b, • 

b.)( e il.U <..~ ... p..oxol./)IC '\ ::: e. ~(Ij- t?aolCo) ( 2.. iu:> 1'"0"0 ) 
We get _\ ... -a..~ ~o '"'.. <'.lt~.. The transmission 

ratio 'iii ?C II: transmitted wave/driver ~ 2..,·w~o~o 1_1 4 'l..i~!\o)to (\.Ofk.Jf<"'~O\l .,.(~~\l.lt ]e;~ 

(where 0< q,: Q.tt(O",(\l)(\°1~r-o"·}<I/1lto)a.liJ < ~)} which, for r-0-\checks with a 

formula (and a graph l1C I) in Section 3. We can understand the high 

frequency bias, specifically as it appears in the coupling problem, as 

follows: A(~\.) ~ Bo t~) expands to 
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:: b e. I't..o)l'_~O 
I ~o 

For good transmission Q7. ~ o. But then 
-il4)",,~o (. ) ''''''''''4 (-i"'~~4.-e I ~ 1-\W~Yo ~,e must be compatible. This is only possible ifpo~~> 

Now f'ow is the wave number of the driver to the left of )(0 • But in 

Section 3 we showed that a shock (with IT'll '" 0 ) is damped (tr,.. 41:» on 

crossing into the Ionosphere: moreover, for a given ~o ) this generation 

of wave-number is proportional to ;0. Thus the inequality ic <<:. r--.. LO 

will be true if the additional curvature in the pulse as it slows down 

in the Ionosphere, is small compared to the wave-number in the driver: 

dynamically, as tr,," ~ the inequality makes the motions bJ compa tible 

across the boundary and there is no need to excite other motions, like 

the reflected wave, to restore continuity to the physics. We get good 

transmission! Conversely at low frequency'. {and hence small wave number) 

the effect of the medium predominates generating motions ~ in the 

Ionosphere entirely different from the driver: these motions can only 

be matched in a strong reflection. In terms of lengths we say that only 

those wavelengths ~w which are much smaller than the Ionosphere (length 

)(. ), are transmi tted '! 

With this behavioltr we should contrast the coupling problem from the 

lower Ionosphere into the upper Atmosphere 

___ ~ ___ -+-__ -;_~X 
~, 0 

With h,,,, I and Ca· 0 we must solve for c. to 

get c. e "Io)( ~- f11X) :::. [ :z.~.uJ rc ~""t./>L1 J [-1, e ,'.., ~ (~ .... )(i:lLpoJ~.)] c.d:. J( =-X, • 
\.J \:1.0 f->o (jl.:.t. +>Jol./7L.) 

The transmission ratio?( equals (L\u.) ~ox.,1./;ot\)1< 1+ l.W ~t) (F-D/I -+ ')C~'a../"J) :. 

YrHt-(t)~)which is equal to I only when ~,,, (~)l. ie. when the density is 

connected at J(1 The reader will recognize 1./{ l+ ~lt~~)1.) as the trans-

mission ratio for the non-dispersive filter (see ega Alfven and Falthammar, 

loc cit, p85 et seq). 
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~------~~------+---~--~~ 

The ~hysics is obvious from the preceding paragraph: to get through a 

filter ~odified, a pulse mu.st have significant variation in a character­

istic length of the medium. But here the meduim changes in zero distance. 

Clearly the disconnection introduces an irremovable incompatibility 

across x,. At best, high frequency in the ionosphere can ~emove the 

variation in ~.(.x'O (and in )l")rXO 1 if any) : a reflection 1-)( "C 

2-• I - from )(0 , however, always remains. 
" I ~ ~.(~)~ 

Macroscopically, the coupling problem appears as the off-diago~al terms 

in the connection matrix. If the incompatibility of motions across the 

boundary is removable the Off-diagonal terms in the matrix should 

become small with frequency. 

}(() ) A- 1 
f!, e t .,~~" .::J... 4- )to) Thus at e ( l.~·~~o 

(Li~{\O ) 

l "'.., 1'-" -~~~,. ]. f)t.\t e )lo at )(., ) 

0 e." ~o 

I ~ \'\:4 r"( \\1)1\+ ~:/~,) \ 

'2..,'"" ~o ~oa. J 

r» [ e. -;\:0 f->0((!oIX\ l- ~o\.I'Jl.) (~1)(1+- )/o1./~, ) 

rv ~ )to" 
W 

e-l'~f-'o (~lltl _ xo"/>i.) (-(fol'" _:01./)1.,)) 

l-~l> 

::!-- ) , 1 t l.l~~o ID 
j"'V 

_.'U'~ ~.x~ ( -.1- ..f. Yo) w 
e "\.\'"'1'0 

~,-\ c.. 1:: 

t'~~. (~, li.- ~ ... \ . { ~_.,1\ ) e :.c. (1 - Uo.) ~o }\,)t, - ,. 

1. iU) ~O)tbl. 

"14 Bol1\llt. +- 1l':1",) ( , ( 1./ '\ e ... -\ J. t w 1'-'0 ~1}l\")I.. J(.) i 

2.., w~. lto\. 

,'U) r>- (~,)I., - ~~I./x.') (- ( ~I)C.' - X'O'")./~I ~ ) 1 
e Z,Xo'" 

e" l'W ~o (~. lit + ~ol../£.) ( ( fl')(' .... "iC'I../x .) \ J 
'"I.-)to1. ) 

OnJ.y when ~I'" "" )1.0'-/>1, (ie. ~1 .,. (.!o/:.L.,l ) does the incompatibility disappear. 

But then the medium is reconnected at x, • 

The above results have been concerned with coupling per se. Additional 

features arise when we allow two 00upling pOints to interfere, as in the 

filter, fig (4). It is sufficient to consider a reconnected filter, driven 

from the right 
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------------~----~----_r----~. ~ 

at )t~ 

gi ring a transmission ratio 'It 1 • 

As discussed in Section 2 I ~~o 4 ~)C.,. (1- )leI".) ~ the travel time for a 

pulse from Yo to lit, : ~e'a4 ")-.u is then naturally the (high frequency) 

lag across the filter. (Note: ~o" J-o/l. where yo is from Section 2). 

Also, as we expect from general theory, ~l can be obtained from the 

Laplace Transform (set =p .. e.. iW:j ¥ - Ac'/:':/)I. 't: )ICo~c ,- t.\4} in equation i ) 0 '\ "J I \- J 

(2.5) of Section 2). 

Now we can expect that low frequency pulses with their large wavelength, 

are unable to take advantage of the non-zero length ()(.-)l1») of the filter 

to remove the incompatibility : indeed we obtain 
. z..r7 

,~r'" , which is the transmission coefficient for a filter 
,,""'0 

(w~ r =- ~-o /",:)1 

~ driver 

--~------~----~------~~x 
-to 0 

The high frequency pulses, however,are transmitted through Xl , couple 

to the wave )( ei~(~~ ~xo"'/;(") which grows WKB to a factor (X"/)I!\\at ~o 

where it is transmitted: formally h~ 'XT '" r (of course 't.r~+r~ ~ r 
\0 -'140 

wi th equality only for r .. l tt ~!) "')(, and there is no filter). 

These two results give the limits of responBe for the filter: in a theorem, 

z..ri1 .... r ... ~ l?:T I "r for all w • The increase with b) from 2.~ .... r-l is not 

monotonic: there is an interference pattern superimposed on th~ coupling 

high frequency biaso This may be seen in Grapll (6) where we plot 
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1')( ,.1 :: 
versus 

of: .. 1w~o~~ for various values of r .. )/'0/)£1 • ( ~~1 )is the number 

of ~~'-wavelengths in the characteristic length ~ ). From optical 

filter theory we ~xpect the local maxima (see eg. graph (6)), r- 8! 

etc) to occur when the initial reflection off 

)('0 is I~Oo out of phase with the first reflection off x, • 

Indeed, we can show in detail that the phase difference between these 

reflections is given by "P~ _ al(t'-l\ -+- ¢ where .f~H'\ ~ Co 
tJI...(r- I) 
I .... W, ... r 

and Jr ~ ~ ~ ~l't/1. • The product. vI.(,. ... ~ ~ '1.W \,0 ~o is the lag due to the 

displacement of the coupling points )to and )t, (see above) and <P 

an additional phase due to incompatibilities in the media across the 

is 

boundari e sat )( (1 and )(, as « GQ b:>" ~ must become constant for large 

0( . For r. B , we obtain 

~ ~ ) ~ 1::: - 3-\(..;- ~ (~- (-\) + 1\ ~ 

0(.= "S", '" - CI\-t.."1 AI (z. (-l.) ~ I ) 7t :;:: -= 
ta(: 1..'15, "\' = -15' .,., IV (l. {-~) ~ 1) It. <oc 

which agree substantially with the values «- 1.\, J.t\, z.. ~ from the graph. 

For large «:, when <t> ~ constant .c Tt, the' local maxima are given approximately 

by e.{(f'-I) ... l..l"I1t~f\an integer. Clearly, then, the variation in IJ')lT\ given 

by 0- tM ~(t~\)~~iS due to the path length between ", and ~1lo ,while 

that due to [1- 'i"" d.(t-_I")]1. I '::J)2. which dies out with e.l.(oC.~) large, is 
411,L r- )\ '-« t 

essentially a coupling phenomenon. For interference to be significant, 

~ we must be ,able to fit at least one ~o -wavelength into the filter X~~X\ ~ 

when ~ is small, it can happen that these small wavelengths are available 

only at frequencies high enough to overcome the coupling difficulties. 

Then the interference will have little amplitude: this effect is seen 

for on the graph (6). 

Graph (6) can be used to initiate a plausible parametric analysis of ~~. 

Where results have been rigorously proved, we will indicate it. Now 

amongst the four parameters 'J<o,)(') (\0 J u,) only t-he combinations 0( .. -l.W ~oJ{o 

and ,.:: j'o/,c, are physically significant. Immedia tely we see that for w 

and ~o only their product, the wave number, is important. Thus it is 

sufficient to regard w as constant: 

a..'Yld vary ~o 
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------r----+----t----""x 

Then r is constant and ~ is proportior~l to ~.~ the situation is identical 

to varying the frequency into a prescribed filter and the curves on 

graph (6) can be used directly. Now we can show that the filter regarded 

as an Ionosphere (ie. driven from the left), has a transmission coefficient 

porportional to 1<,. : in fact ~~ ~ ~.,/r"'. Thus an Ionosphere at fixed 

temperature, and hence of approximately fixed extent, will shift its 

performance unmodified, up and down the frequency scale depending on the 

value of the density ie. depending on the physical density of the plasma 

production. 

Fix Jt, and its densi ty ~rl : POI~~,L and vary ":0. 

Thus is constant. The dashed line on Graph (6) plots 

Dtr- ::)0 • As r cC 1xo \ , we see that i1c: T \ increases with Xo • 

\. 

Physica.lly by increasing )(0 wi th ~, and (3o ~o I~I) fixed, we are :making 

the output region of the filter (ie. x !I x: 0 ) lighter: the decreasing 

inertia should let through larger velocities ~ • 

(The above variation has been rigorously proved.) 

Fix '10 and its densi ty ~() , and vary x, • 

I) 
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Then ~ is constant and ... a( \ Jl, 1'" From the graph we see that l'7C T \ 

will increase as 'C, -" 0 • 

as 1(, ... 0 the region )t ... x • 

In interpreting this result we remember that 

is becoming heavier: clearly then, a unit move-

ment in ~~~, should produce a larger response in a medium « xo) that 

is, relatively, becoming lighter. Now if we have an Iosphere of a given 

temperature, so that x. is fixed, then transmission from 10 will be better, 

the higher the density at ~~o Thus from a consideration of trans-

mission alone, apart from considerations of generation, we see that a 

significant 10 effect requires a substantial Iosphere. 

Lastly, fix the density ~~ at )(0 and the density pot~)). at x, and vary ')(0 

____ ~--__ ~------~----__ ~_r-4--r_~--+~ 

Then r is fixed and ~ varies proportional to x. : again the situation is 

that of varying the frequency into a given filter. Thus to vary the 

temperature and hence the extent of an Ionosphere of prescribed density 

1 imi ts po and 
& 

~o l'tlo/}t.) , is to move its performance -Unmodified along 

the frequency scale. 

The final consideration in this section is energy flux. Before proceeding 

we must make the energy concept precise in the magnetohydrodynamic context: 

using the basic equations \1'~ = I.~ and p~ \}'"'1 'S t-x we get 

(r 4- ¢'\j ::. bbJ '" ~1.1.I"'U-~ 'CO bV".c ~ u-b" 'I: l-"""\, 

ie. i:,:l ~ \. 1 ) t - f- ~) -:. <-~U" II (4. 4) 
t ~.':J 

Equation (4.4) is the Poynting theorem neglecting displacement currents: 

\/",1. is the magnetostatic energy I f'~ is kinetic energy and <'::-t>V-) ~ bEl 

is the Poynting energy flux. The familiar interpretation of (4.4) is 

that a non-zero gradient in the flux (-V'b ), wfiich implies an unequ3.1 

flow of energy into and out of an elemental length A~ , will lead to an 
d b' A~ ~ 

accumulation of energy in the length given by "b1 ( 1: + 1:::) b x 
-') 1-

Apparently an electrostatic energy Eo lei is unimportant in magnetohydro-
2. 

dynamics: indeed, neglecting displacement currents, we get frolli Amperes 

( ) ( ) 
-'» \ -:-'>1 

lawin 1.1 i, 0 =. ~.('Vxe.)". '7-(~"&f:oJJ 
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" where the last equality conserves charge. Hence t-o Thus, 

magnetohydrodyr~mic motions cannot alter an existing charge distribution: 

consequently the electrostatic energy ~o\El· cannot change in a magneto­
l. 

hydrodynamic process and we neglect it. 

From (4.1), we see that in a wave medium ( X~X ... J say) a pulse \T '= ~\ e. \l»tj ... ~o'X) . 

travels with t,:: -~(1, e \'4 (~ - ~.)t;) , which is the familiar result giving 

equipartition of energy 
\ t~(~ '" ~1l61./j4 ) 
0t)(. e must travel with 

as ~"lu-\":;,:. ~.!!,. and tbJ 1
/1. '" ~~ ~ "t +.L there can be 

1. )Ie ~ 2,,,," 1. ~ 

equipartition of energy only for large W ie. in a ray theory. (cf Bazer and 

Harley, Geometric Hydromagnetics (1963): JGR 68 no.l p147-l74). Indeed for 

• (we remember from Section 3 that the filter 

generates wavenumber U"'ll and hence h~ : in fact \.~ .. 1.1")( ::. 1,1 e (IU (~ .. \\oJio'i,t)(I_ I·~~.!ll:>?) 

1 where(-\~~~~~/~) is due to the curvature in the driver and the I 

is the effect of the medium. When w is small b ~ r~~4~ 

can grow large in the long period m/l.\»). The fact that 

low frequencies, is important in the later theory. 

It is interesting to follow 

into the filter 

----~------r_-----r--~r_~+x 

et"'f..'1 .... 'o~:-I lC) 

~~ 

for 

Taking real parts, we have the waves 
, II.. ~/) 

\1"1:. ~ (O.,[w (~+- ~~l(01.I,(.)l ,~:: rt\'\~o"l.)1. i- ;;"'1 a~ (\.OJ ... ~{\olCO I< +~ 

where ~W\; =. )( / W~'I.'Q'" , -Jt/~ £ ~ ./. 0 • If X', is small, then as the wave 

approaches x. ~ 0 htends to l {\o;lel.\<..o .. w(~+ {i~~) and the motion become 
tf x. )I 

WKB (near x, the wave has steepened to a wavelength small with respect 

to the scale of the filter and the physics follows). 

The energy density is proportional to 

(w~~tt> ~:: W (iJ +~t>~.,'I,. /~) i~ <:I 1~CA.1 HWle ~,. ('.\ fiJl£tLJoC. J 
t e ~ - ~o ~fi" / )11. 
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~ II", 

( r;),h. J. 1{~1.) .. ,1\'" t q 1 (D", t?~ .. ,.y) 

where Los ~ = 

Thus at a fixed point x there is in a period a maximum energy density 
-a. 1 \ ['1 $1 .1.) 1. t ') ~ 1 ~ ~ proportional to (E> + 1.",1.) t t ~ + l~ ... tv,:):L (Ct>s"!Q)) of tFt .) tw~ ..... n 1.q J 

This function increases as :J. -'J Xl • Thus at a fL'Ced frequency, the time 

averaged energy density at a point increases into the Ionosphere. Verily 

then the energy is localized as it slows down into the higher densities! 

~ 1. 1. '1 At. I 

The energies ~l.v and ~ reach maxima C~ J and rei" 2.~ .. 1 ,respectively, 

in the period ~. Individually they increase into the Ionosphere owing 

to the localization but close to ~=O the ratio magnetic energy/kinetic 

energy e. 1'" {;-w} 1. decreases to 1. (We have 'shown above tba t near ~. ~ /) 

the motion becomes WEB). An important parameter in Goertz's theory (see 

PhD Thesis, Rhodes University) of the dec.ameter radiation is the 

rragnetic energy per particle ~ (~1. +2. ...,-"1. )/~"&. -= x~ ( t "" )(2. /r(p~I.Q)Lxo~l). 

This quantity decreases, however, as )t 4 0 into the Ionosphere and it is 

not obvious' that the waves from 10 give rise to significant Ionospheric 

events. The discussion of possible Ionospheric insthbilities which can 

generate and/or maser dec:ameter radiation, is delicate (see Goertz, ibid). 

The problems of energy transfer from 10 to the Ionosphere can be gauged 

from the following preliminary discussion (see Section (6) for details). 

Consider the density along Io's flux line 

-I----~ ________ -""----t""""" 

--*-4-----+----+----a---------
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(note the location of )t,,)to in the Iosphere (c f" fig (4)): (- So) is the 

distance variable in the Ionosphere, measured from the right so that 

s ,., ct~ <; 0 when ~ ... ~o ). 

Now from (1.4) we see that time t is normalized to 

where Btl is a magnetic field and Yo is a characteristic density. If 

we work out the details of the normalization of equations (1.3) we see 

that the choice of r'O is arbitrary, but B~ ::nust be the underlying 

magnetic field in the direction Of~ijxis to retain its significance as 

a length. We find it convenient to choose 10 the same for normalization 

in the Iosphere and the Ionosphere: in fact we will have it) ~ l' ()C.o ) 
1 

Then [>0" I but t>o;:: P'(<\o)]: It is clear then that a :frequency fA) in 10-
1'0 

time ~ corresponds to a frequency w· co v.) (\(1/ &,rul' ') in the Ionosphere 

( ~o is the field at 10: Bht is the field in the Ionospherenear Jupiter). 

Let Then v,'jl ~ u.) '10 

Now consider a pulse (from 10) travelling to the 

right in x ~"" : .s gives Io-time. Then at Ji'o we have a transmitted wave 
iW{'1-fJ.:.X'O) (j 2. '"/)~ / "1Qf'<>~]1 i~ ~~J iu;)('1- ~.)t;') 4e. = \L( w~o)t.'CI ", /[(I+t..\~~"'XO")(I_'\.\·W~oV'ot.J;tI)-e. <I Je. 0 e 

(use previous expression for --Xl" but s.et (-)t~'~)to and (-x"...,)i, : then 

-'3o~i)~ - ~J(o(\- f~ ') is the travel time). 

Now we will show (see Section (6)) that a ray theory is valid in ~o~~o 

for the frequencies of interest. Let \r'" CI' e. i\U('j'-_ ~44o) be the wave at 

( 3' is Ionospheric time: of course w~ • ~l~' ) . 
Now we have noted previously that in a ray theory there is an equipartition 

of energy ie. Ib\"1. =- ~l- Itrl& In fact one can show more viz.- b = - ~ \r 

for a wave travelling to the right Xo -) c:lo 

a wave travelling in a constant medium ~ 

, which is the relation for 

(see equations (4.1)). Now 

if we remember that the time average over a period of (U\.~(bY!t~(lr)) J 

is i Itt! (b \T") ~ - (? 1\)'"\ /'z. , we obtain from (4.4) the conservation of energy 

~)( (- f.> l..rll J 1. ') =-- 0 

ie. ~-l ?:1,,,,t'l. is a constant. As ~-' is an Alfven velocity a:i.1.d fhrl'1. 

is proportional to the kinetic energy we see that for high enough frequencies 

the Poynting theorem reduces to the familiar ideas (see ego Rossi: Optics: 

Addison Wesley: pp466-467) of energy flow for (constant) wave media. 

RemOving the normalization, then,high frequency energy conservntion gives 

VA l' 1 U; \"1. = constant, wh8re VA is the local Alfven velocity, 'f the local 
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density and tr~ the convected transverse velocity field (here the subscript 

~ indicates the ~ -direction, not a differentiation).. Then for ~o -) ~() 

~ t (~ J .Ia\ J& .:: 
()loro)'!" ... 0 ~o to)" 

we have 

I 

(the factor ~o~lo is the familiar variation (see 3rd 
_L 

page of Section 2) ~ 1 ~when the underlying field does not change: a 

change in the field reflects through ., ~ : (Sf) ) t ) .. 
o -er~,,-

1·,~I{'i1 + po4o) .. ! .• :'\4)t{4'- '040)[ l.i~lpQ~o] 
At A we have a transrrd.tted wave a" cfoe.. = ....... 

'10 1 -I. U~'tQqo 

(use the result obtained previously for the Ionosphere 

If we assemble all the factors, we obtain as a response to a pulse 

tT~ -e..t''"''~-~~ • .x) ~ €i~llJ'_Ioj~o~~)in the Ios:ghere, a wave \J": (lu~e'·I\)·ll.\' .. ~o4:/s') 

where 10." \ 140\ • ~l" 1=1." 1=, 

and F." 1 '11' ~t P»~o /c-\ ... l. ,'w' 'D~O) ) 

Fl,..:: "1'O}lt,. P.- \i 

F~ l:f 1 <. '2.~ ~j;OS./"I)/[ (I.J. t.!'too ~)/o)( 1-1-1'''' to>lo\. fit. )_ e l--'~lh'1o] I 
'"/ '/ \ ,'",' (~l ~ pod,~t. Is.) 

Associated wi th -the tr' will be a b '" - 0." (po~o $ ~ \ ~\ J e . 
1 it) 

The average energy flow into the Ionosphere is then given by ~ ~~(~ 

= ~ lollclo1iz. which is equal to the kinetic energy at 90. 
The following limits are available: tIM \t:r(tftlJ J ..,. I ~ I q.- q ~, eO) ll~ 1 v-(e!v) 1:: 1! 

\3-">0 ~ ~o _ vJ-UIi!I 

and Ii", 
t,.)40 

1 bt4o) \:: (2.rol)l. (,,~'Vl. ~()-t,] II ('2../ I + ~'/)(o)l.] 
.l )J'!. 4 

:- (A'io fl>l.) 
H- ()(. /;,(0)1. J-

We see immediately that for energy transfer there is a total system bias 

(except for an interference effect in f~ see I 'Xl" I) towards high frequency. 

This is not entirely obvious becau.se if '+1(l4-~'I)l~sa') >(~) ie ~o/>L, < 
2.+,Ji &# 3-13 1 b(qo) , has a low frequency bias (we remember that low frequencies , 

can generate large magnetic fields in the Ionosphere): as \~l has a high 

frequency bias it is a IDa tter of detail whether the flux i fu. (v- b'" ) 
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is favoured by low or high frequency. We get, above, i flu ( vb"')c. !i: \ !J"(~,,)\1. ~ 
apparently the magnetic field energy due to tllli wavenumber effect of the 

Ionospher~( ie. the ( ~.) in 1 tao ;0" ~ :'.\ ) is not transportable. The energy 

due to 1 G\'" 1. I '4ICt!)~/Stl. \ :. \q")a.~ ... ~tI/ t however, is portable as we see in 
~ ~ .. ~. 2-

1/a. tte 4!b") .. .L ~ l'o llT"t~.,) \~] :.. i [ Pc I Q~O I \ ~. r~ I ~ 1 (we remember that the factor 

II'&. in' t p.,~ ( lTb·) is a number obtained in calculating the time average): 

in fact we see that the generalization of the equipartition of energy 

in a wave medium, becomes the equipartition of portable el1ergy in the 

medium Pc (~) \. • 
So 

All these conSiderations, however, are naIve: the higher frequencies are 

not guided efficiently along the field lines (see Section (6)): this 

important effect should be incorporated in ~ 
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SECTION 5. 

~ 

THE DENSITY LAWS f\:&:. ~. G) 3 AND (3" ~ ~~1. (?) 1. 

~ 1. + 
In Section 2 we singled out the law ~: f';,) as an analytically convenient 

densi ty variation with an infinite travel time t • .-,)/ 3: 0 ie. in the 

notation of Section 2, 11\;' 'Yf(x) .. to In this section we consider 
)(,,",,0 

~::: C!-/J()'¥) which has a finite travel time h~ '1"'" (lI) .:::. )('9/1_ ~ 3 Xo 
"-"0 

(see Section 2) and the singular density ~ * ~./~ We remember that 

f-' ~ (:i-I".) is the dividing line between densities wi th finite travel 

times and those wi thinf'ini te travel times (in the model Ec:.. \ and S,., 

respectively). ~ = (x.,I}i) itself has an infinite travel time II~ '1gLx) .. 
J('~O 

x 
:: lt~ { <:-, )dx ,. hM ~o /n (X<:l/x\-tt>. The analysis will not be in the same detail 

)1.-'\0 Jill) l(""o 

as for the inverse fourth power: in particular we only consider an Iono-

sphere without reflections ie. 

[l 

_~~ ________ -+ ______ ~~ _____ x 
1 

where we allow fqr ~ •. not necessarily = 1. 

t!. 

Now from Section 2 the law ~ ~ ~ot~)) is obtained by setting 'M Z -2. in 

the exponent 

to the GAE 

\r = fWd ti)~ 
equation 

of w where I.\) 

and 

There we &how that the general solution 

is the general solution of the wave 
lta. )1./) II, J.. ,( III l' e ! 3 (~o 1i .. )i l< ~ ~ ~'O)io (~) 

Remembering the lVl ,} is a. solution of the wave equation whenever to is, 

we can by integrating by parts, vvri te the general solution tr:: ~ wf - oj. 

L 

Hence, choosing ~ to: ~~.l( 0 (~o ~ l we can write the general solution of 

the GAB as 

J. rt ( ~ j f .L] tr :. [?> t~;ttl (10») 3l\e":0 ("0) - ~) - (-~ ~o;(o l~6) ) - ~ ) 
-4-fj~o)(4r.:/~.')\IJ <3 ' (~fh)(oV./x~,)'/J +-;1)- ~ ('3~H)>'<:II....:A/~o)l/l...j-B)J 

where + and j are arbitrary except for some obvious mathematical 
1 .J. 1 

properties. The motion LT ':t 3 ~'Lo It)l J' (~~o)l'o (;-o) J ~ ~ ') -d( "3~ol(a It.)3 J. ~ '\ 



40 

~ j 

:: ~o (1
Q

") 1 3 I r 0(10 (~~) ~ ~ d ] - a [ .co <! III-o} J + ~ 1 
(where "'0 ~ '"\ ~D)('O ), is from right to left. 0(0 is the travel 

time from ~ to 0 (we have obtained this result above for the case 

~o AI, ie. It~ 'i! (?') .: ~)(o). If there is much curvature in the pulse 
Jt .... o ) i 

(i,e. a high frequ~ncy motion) then the term ~ (I <.!' J}l.o)'" ~'w <.~~ ... ~ ') 

predominates in lr. But ,. <J') a(; p. eft x -4./) ie 'f -"'+ to<;' x t ! 

thus we have again, as we expect, a ray theory at the high frequencies 

(see Section 2, third page). A large pulse, at low frequency, however, 
I _1)( )·l.J1 

travels through the medium, moving always at the local velocity ~- ~~o ~ 

, without change of shape ie. U" = - a- C «." ()It /xo ')'3 .... ~ 1 
: - 3 [ 5 ~d.v. + d j . J J, 

The pulse ~'i)<,,"J4/)LQ)"3 fltdo(~..,)1-d)-f&.t~.)5 .. ~) moves in a similar 

fashion to the right. 

Let us suppose there is a driver fo (~ ... ~ .... ) moving in from the right 

in )(')leo J and reaching x. at ~."o Let ~o t:o):t ,'(olOUII) 1 
.j. ~)-~ (6(IO~o,j ·0) 

be transmitted into the Ionosphere while r. ~ -~.x\ is reflected back into 

;( '> to. At :(0 , the usual boundary conditions, yield 

(, f (t(o"-~) - d {Ill,. ... ~) ;a t (~.f. ~o;{,. ') ~ t (" -('\oi'" ') 

Solving, we get a first integral 

As increases with time. 
'J )-behaviour of the filter p ~ f!./y. , in Section 2} when driven from the 

high denSity region. There the travel time to infinity is ~inite and 

it is the reflections, returning always in finite time, ~~at give the 

convergence. But here the travel time to ~~o is finite so that, in 

this case it is the reflections off ~eb that give the stability., 

Equation (5.2) should be compared with (3.2). 

The second integral is 

,C.t,.:}) ~ 3(01.\ '- 2.01. a I €J..\ (e ~/",.- I) " i l.~ e ~/"' • ." I:' e -~" /u. ~" l.<f· !'<"") ""'" -'. (S. 3) 

Now we assume that before incidence there is no field in the medium 
u. '/..o (!-/)/o)!/:a ~' (~o('J.' lIo)!]:! 3(ot..~/,,~)lfl] 

where A is some constant. 

Now let us choose a point Then, as the wave trav-els at a 

finite velocity, the there exists a small time d~)O such that 
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Now where ~ is a number in the range [0, ~o1 , we have shown above that 

Also as 
. .. 

X ~.oJ~ can be supposed chosen small enough 

that .J )(' IJ .... J
o 11',0 U-o) 3 ~ d 4. "" •• 

.. J 'II olI J, ,. ) d [~. <- :0) 3 + d J.. A (rio (t ) J .j. ~ . 

J. .. J .a ) 
'f ~ J <- "-0 (1<;1 )" .... ~ = A 

.. I }If. J. Jr ) J ,lI ) 
But then do (t,) j 31 

( ,(. Gr_) 1 +- d) - ~ (r:I>J l}l./;,(o J ~ <l 
)( ~ I') It * J,. ~ .. :: «9 (~) A - A (,(9 ('i.) ~ ... ~) = - A ~ which equals 

zero only if .4 ... 0 (we have specifically chosen ~ ;It >0 )_ 

. .. in particular 

3 <!t<:l) ~ ~ '(o({I) = 0 .. 

:. (5.2) and (5.4) become 

1'@04- a) ~ e~ L~ e-~/"1-«1) t 1: ~ .. ~ox.)~ t-
~o ~ • (5.4) 

t a@o~~) = ;9 f:e~J~o d.~1 fo'i' e~~·/t.(o ~l\ r{)(~"+(.l.:lo)~" 
We remember that these expressions are true only for ()~ ~ ~ 2Ho ' .. at Zo(o 

the reflection off ~=O arrives at Xo • In addition, we remark that 

these expressions are also valid in the generalized function sense, 

though this is not obvious from the above derivation. 

In particular, let us look at a shock 

the unit Heaviside , arriving at }(o at time ~ - 0 • 

Then t (~+ ~o)j!o)::. U1tl) and ~ tf)~+~oJL"') is the Dirac delta ~(~). 
· f (5 4) t I ) u. J 1..d. d ) J ~ hll.o ) ... rom. wege ..,l1)<J(~o~d :: e..J .. an d(d.+~ :: l ... e. -\. , 

• J. ~ J., ~ 3' )1 There is then a w~ve tr:: '1J.. ( ~ - tlo <- I - (0) 1 ][ rio lio'\ 1 ~ I ( I., t~ .. ) 1 ~ ~ } - ~ (Ilotllo) \. ~ 

1. 

:: 1.A. tt - '1,,)[ ~o ,-l e N- ~11 )/u.. _ 1( '€..l'i-'t",Vu .• - i) 1 where 

~lt e elo (, - tio)l) is the time for a wave to reach a point "LX\:). 

J. 

In the front '1 "'ll Jwe have \T(X} \h) ::: (;0) 37 0 so that the shock structure 

in IT is destroyed by the ~Gime the wave reaches ~ ... (> • 

From we obtain 
. 

b ~ 'U. ("I - '1,.) ['>0 (~(O ') - j 
~- '"\~ '\/2.t<o 

e and in 
, ~~ 

the wave front b {x, ilL \ ;: ()'Q eX. I )to) Thus as ~ -'J t) } h ~J '-\)1.) -') en ! 

this type of behaviour was also noted for ~ 't '::. ~j)~)1+ in Section 3. 

There we suggested that shocks might give rise to Ionospheric events. 

Here there is an extra feature: the travel time ~IJ" 0 is finite (c etv) 

whereas for r~)4 it is infinite. This makes shock-generated Ionospheric 

events that much more likely. 
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On the other hand the growth due to 
<'i-"\-)/u 

l!!. • is unlikely to be 
~-"I"V'UI. physically significant: at most, e " can grow to an order of 

before the reflected wave begins to cancel it out. 

For a sinusoid driver 

we have ~II ~'<.~" ""~ ~ -=: r:."", flIo /'-4- Q.WDlo)I.](1.I.""cfo s~ w~ - t:bS~~ ~ e 'J/U(o ) 

and ~(~~+-~ ') =[ "'4~&I'O ] ('i/'Ltl.o ~ WYs ) 
\ ... (LtU ol .. ).. '2. e ... l. ~ w'a - Cotl.o 

This propagates from ~o into the Ionosphere as' the wave 
1 t'i-"iJi )/14lo ) 

V"c "\l ('1-ti)t) [ 1..L.\,)Mo '\.1 {(;,,))(l...,tloAU..W('1-,,\~) -L~t;""('i·'1~) + e 
J.f. ~l.O '<0) \ 

_ (1.. ~~-'-I~)/l.«~ -40 c..nW{I1-lI~) - S\:" W(I..f-~)l})1 
u.I 0(0 

where ~ll is as abov;. For high frequency IT t;r 'U ~-,\,,) Cfo)i ((lWI/\:))'-/1-+ (1.""«.,)''' J ~1~~{t.t-''h)1 
~U{q-~_')(:o))SI~~{4-'i~)] so that at X"'Xo we have perfect transmission. 

This is the familiar high frequency bias. 

From \.1") "" ~~ we obtain 
I r 1'-" 0('9 1 fA ~ lJC . ( , (11 ~ 1.\1£ ) /140 ) 
0::: "U lq- "\,, \ ~if;. ) j 11Ct.(9 \h\ W ~- "Ix) - l()S w(\f- ,,\,)1.') .,. E 

I + ~w.o) 4-

The WKB growth b o(.'f t. ~ X·
II

, is exact. We note that for 0 e (,!o/)&) 

(see in particular, Section 3) the motions ~ are perfectly WEB, while 
1-

those of b are not: here , with ~ .. L~) ~ the si t"L~ation is reversed. 

1. 

An interesting point arises as follows. We have above for p <c: ~o l i') '1 

that in the front of the shock Ij .. ~(t)(j) and \= ~o(~,,\-j .'.IT:: p'b 

which is the result for a wave travelling to the left in a constant 

medium ~ (see .eg. equations (4.1)). There is a similar result for 

p :. (! .. I'f. ) .... 

to show tr:l'-~~ 

to the right). 

in detail, we can use the results at the end of Section 3 

in the wave front (the minus sign is for a wave travelling 

The problem is to reconcile these results with the relation-

giving rise to a departi tion ! \t"4~ along a 

characteristic, as mentioned in Section 2. 

This can be done as follows. The characteristics are solutions of 
... 

dS ~ !'~dY. in the ){,~ plane. Typically for ~=(f>(~y we can draw 

characteristics ~ ~ - ~~ tiJ ~/, d.-x 

~ ______________ ~-r--~k 

• 
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An event at '/"':;'10 at time ::)-0 travels along the characteristic <:'., and 

reaches x. at ~ ... «~ [which is the travel time 11m "Y& ( ... ~! 
...... 0 

see Section 2): 

an event at x .. )I. at time ~ ::~. travels along the characteristic c, 

and reaches x-o at time rio +-~, etc. Along each characteristic db: ~cLr. 
tJC Now suppose there is a characteristic time ~ at Xo : then in the time 

~ 

"" 
from 

the wave will have progressed a distance 

l(~. If w is large then the distance tb: is small: then we can regard 

f as a constant and integrate db ... ~du- to get A ~ =- .~.A1r over 

and eventually h::~~ along the characteristic. If W is small, however 

ax is large on the scale of the medium and b· f~~~ is not closely 

approximated by ~: ~~. The pOint is then the following: as the shock 

impinges on ~~ , the high frequency components in its front activate xo: 

thus along the initial characteristic cu ) we have only high frequency 

signals and b;, \?> V' Along later characteristics, however, say c1 

or c~ ) the signals at are of lower frequency and hence b ~ r~~ 

cannot be adequately approximated by ~e ~IT ie. there is departi tion 

(This can be seen in the above results 
J... 'I ''1-\.1 'I ) J ~ "'t l.J.~lj,.)J1.J:J... 

'e Q- YlI) l-c(~ _ 2 ( "€; '"' ;,J)l.J lA. - \. ) b ~ 1.A. ti- '1" ~ ~(>(~o)" e. ~ 

for a shock, when ~-~~ ~o ie. out of the front). Clearly, and as we 

certainly require, the method of characteristics gives a ray theory for 

high frequencies. 

Finally we remark that in the steady state, the reflections off x ~ 0 

~ make the wave stand in the Ionosphere and no ~et energy from the driver 

passes beyond ~ This is the general result of Section 2 for density 

laws with a finite travel time \;W\ t"fr ()(..') These considerations are 
ll~() 

important in Goert~'s (see PhD TheSiS, Rhodes University) theory 'for the 

decameter radiation. 

Now let us consider the singular law 

travel times in both directions (ie. 

see Section 2.). 

~ ... ~o (~') , which has infinite 

hw.. 'rt (!-) ~ li\foo\ Gr {It) "'" a:> ~ 
_-')10 '/..-"1111 

A transformation 
}-< 5.5) 

6- ~ ~ l~o)C» 

linearizes the GAE V;-,t - f!' L tr'f1 = 0 to 

(5.6) has elementary solutions 

when w ...... 1. 

when \V ~ ! 

(,:l:; L 1- {loW)L )J1.j/z. 
)I.. --- (5.a) 
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(5.7) gives travelling waves: phase motions are obtained from 

\VS ;!:.ift)l (((1.~)L_')\/~" C+ sign to the left: - sign to the right). 

Hence it takes infinite time for the phase at ~ , say, to move to k-O 

or J(,,-.. The ph.8.se velocity is given by V"~ ~ ~),\\ ::: 

and the group velocity is 

:: [~~)1._ \1 i f'. 
'l.W 

~ :: ~o ("o/~) is a medium with 

(\rph v~,,} '" ~.\ = characteristic speed. 

We have the following limits ! 

which indicate that the veloci ty of energy transfer tends to zero as 

W -, 1'" while the higher frequencies can signal at speeds ~ {l-l ,the 

Alfven velocity (see remarks at beginning of Section 2 on ~-' group 

mobility). 

When w ~ i ,the elementary solutions (5.8) give standing waves, which 

taken individually, cannot transport energy. We will show that an 

harmonic driver outside an Ionosphere fot1·(!o/x. J 

does in fact excite only one of these motions (5.8) in the Ionosphere in 

a steady state, so that for w~t it is impossible to feed energy contin-

uously into -,(4. lI'o." Taken together with the \ilO') \r~:.. t> above, we say that 
\A)->1.J. 

the Ionosphere ~D~) has a non-zerO cutoff ~= t for energy transfer. 

Thus the singular densi ty ~ ~ (\0 ~) gives a hybrid harmonic performance: 

for Lo» i it behaves like a medium ~o(~)r wi th b~1 : for w ~ i it behaves 

like a medium with E <:. J • 

The critical frequency w ... i. has the following significance. The frequency 

w in & - time corresponds to a frequency Wo'" ~:o in ~ -time. Then ""~ i 
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at the Alfv~n speed ~:l On the other hand ~o is a characteristic time 

in the driver. When these two times are equal ie. ;'0;:& 1.. ~o lto , we get 

critical behaviour. Alternatively , as a speed over a frequency, 

gives a characteristic length in the pulse: critical behaviour occurs 

when this length is equal to the length of the Ionosphere ie. ~D_I ~\.\) =: 1t~, 

equivalent to ~. • ~~O~D. 

Consider the Ionosphere 

0 )Co 

when .I. 
w'> l. 

i U) ('i .. ~ .. JC.) ..,., 
('i- ~JC) 4. a 1.-

For have a, e (\0)1_ e.. ~l> 
,. '),.)ttl we \r:: 

;.., ( & .. ~/~o) 
ct, e.. ; LO l & _l#../.-..) 

... 41,.. ~ • 

where we are using frequencies w in e-time. 

For 0' x '!: 'Ito 

\, x\. 
~(\U & - IL 1)\ J( ) 1. e ,'L""~ T ,,1,,)1) 

\r~ e " of- b'l. JC 'L <.~. q ') 
, 

where" t«:." [(1..",,\1._ 1 J1 /2. is the (generalized) wave number. 

Continuity of tJ' and 

At>. ':- ~b 

l -.~ e.. 1w 
A ::- ~ -l\.f,) 

~e -L. e. 
~o )(0 

lW e iw 
l'o 

i~ t:. -i~ 
~o 

tr)t at 'to 

where 

1 
B 

illl 

gives (as in Section 4) • 

here 0\ :. (:~, 
} b = {b. \ 

b&,. 

[ 
1 -\ "- \~ ~o ~ :~ I~ ~o 1 ll<;>' e \. 

:: 'If) e 

... \It. 11\ "lio I 11&.1", It'O 

)'; t ( i - i Ie) e. i., - '" (i ... t ~) e J 

For a driver (<:t'l,. ... 1 ) mOving in from the right and no sources in the 

Ionosphere ( b,:"- 0 ) we must solve (~I) -=- A-I B (~.a. '> 

(- \ T 1..t (l.\)+~)) 

(,.l. t..i:('-"-Y.-)) 
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. " ~. I'.tuo) [ U,\ ~ 1 ~ i: i\.U I. (~& + Jt.ln ~ \) 
:. b~:: ~-~ (e 1, giving a wave t+t.i(",. Ie) ('J.'O ') e e. 0 • 

(41" h z.\{~+~) ( ""'411 • 
As IoU",,!) ¢I I b J::":O I .-. 1 as it should before comparing I( \"1.\ (w+¥o)) 

, 1. ~ro 

wi th the transmission coefficient 'X for the Ionosphere ~.: {\o (~./~):&. 

in Section 4, we must remember to denotmalize t4l in e -time to U:>o" ""/~o)lo\ 
. J 

in ~ -time etc). Also hM (w-\c.):: \,~ ~-[t~",,)a.-\l~/l.l. h~ 4)r l-(\_ l.. 1.-".-')]"0 
~4«> ~ ... (b "" .... 410 L 1.("""0)) 

so _ that the diagonal terms in A-I a above tend to zero as w .. 40 : in the 

language of Section 4, we say that the incompatibility across Xo is 

removable (as we expect). 

As in Section 4, we calculate b from &~.~ and eventually we obtain 

an average energy flux into the Ionosphere: t ~ (trb~) 
~ ,.'0 (i - (IIJ- (~&.- ~ )'1 l}--(S.10) 

, the As W4 \. , the flux 40 (we have shown above h~ ~:. 0 ): as w ... -GO 

lI3-'t i+ 
flux -J ~.h. 

(For high frequency, we have a ray theory ~:: ~I)' ~ ~ .. \r at ><0 : for a unit 

driver \7, i Aa.{V"b~),= ~ p".{V"'~ .. ). ~: which is the limit above). (5".10) is 

graphed in detail in Section 6. 

Now suppose tJ.) ~ t. 
Then in x., .. )/''O we still ba ve 

0<' x. ~}{Q we have ..r:: b, It t. e iw' 

where k.1 1: [1- ('Lw)
lL1t /7... 

As before the boundary conditions give 

~ B~ b :: A It 

where A, (}., 1> are as above for w) t and 

and ~ (2.\~) fl )(0 - ~ i- \«.' C 11. + ",-' '> 
_ ~o -\. -\,' (t -,,') 

- )(1) \. ~,,' ] 
~ _\I..' 

)(0 

For a driver Q".' in ,,-,;.e. we must solve 

--(5.\\) 

{ 
{- t. \ i· .... ' 

'10 Xo 
: 

-i-ILl I I) -t+~' , 
Je.., (1.-\~ le. ( • .,lc.') 

-e..,,~ x'o .... • ({ -i." It-') +L~)] r bl 1 
e-\'w ~'O ..... \ ('\. 0\0 \«...' +- l'W) lh --(S.1Z) 

which gives a set of 2 equations in 3 unknowns. 

Now for w ') t , the wave (see (5.9)) travels, and 

transports energy, to the right: but there are no sources in x <')(.0 ! 

For this reason we set bJ"'O. But for w ~.l; , (5.11 ) gives two standing 

] 
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waves and it is not obvious which combina tj on ofb, and b1 to choose. 

Let us follow Li&hthill (Phil. Trans. Roy. Soc. London A 252 397-430 (1960)): 

Lighthill replaces w by W-~E where £;0 ; the system behaviour for t. - 0 

is then obtained as the limitE" 0 • 

For w:: w- i 2. the two solutions in (5.11) become 
, .. ~ (. ,~) "'I. 

JC. i e. J'" f) e. t. e )( - 1. (\- t. ~- to ~ J J. 

l ••.• - .. 0 t ;, «l.{.w.;~ + ~!I.) + i'i£) 1. 
~ x" t,'-'" ~.. X 

1 '\. 1.(. Qi ~ 1 
Now for ~ L f., [ tl- ts.uJ~ ..... 4 s:.") oJ fl' (. ] t.~ (, -l&.tAI' ~ t.l ) \.1.J.1~4\.h4t'Jfor f. small enough 

1. 

(Note: we are using the branch of the radical (1-4~~"that gives positive 

) 
- 1 (1- 4-(w - t t)" ) \ 

values fbr t real. Thus we see that x ... corresponds to a 

movement (and a transfer of energy) to the right when € is any 

posi ti ve value • Clearly we must set bt :. 0 in (5.12). 

Then 

and the reflected wave 

'Liw e i1ol) 

[ 1+\(.,.' l-\W 
] 

which has magnitude : J for all \A.) 

1. , , 

As l. X .. io ~ e.' to ~ • t d . o~ lS a s an 1TIg wave, 

we see in detail that for '-oJ L i no net, energy can be passed into the 

Ionosphere continuously in the steady state (we mentioned this result 

at the begiIllling of the analysis of p:: p. <T) in this section). The 
. th d . Q.. .. ,'w tt) ~ !-o \ :: ." ilA3 (19" ~o)· . d . energy In e rlver _..... ~ lS carrle away In 

the reflection Q, '€.. iw (~- 'A.)~" ) which has magni tuder (-i. - It. , ) '- J. v.!) a ] t = 
for all .. \ (. 1 ( . t t' ) r (1. + \,' ) l. ~ w'L 

'Vol... 1. . as l mus • • 

Finally we tabulate some results (easy to derive from the above theory): 

for w..,..1a. 'v- <.. Xo) \ J 

lrLV "::._-----..,.. 
l\ ~ (2:~+\')1) J t :! 

w ~ i I \J" (to) I:: L W 
[(1 + k.')~ -I- \.\,)2.) \ 

The follOwing can be proved: hM 1 O"()(o\ 1 

l\"" \ I)'l.')o) I .1: 0 ~ 
~ .. o 

for w ~ i , 

[1-

=- \ (as we exp~ct) Il~ 
) 

to.., 1. !: 

Thus lu-t'J-o,lhas a maximum for tA):. i; at that frequency, however, there is 

no energy flow. Over the entire spectrum IV == i 4 00 ) the value of IIJ'"(v,,'\ 

doesn't change more than a factor ~ • The liJlo\ \ V-(lC'0) \ s 0 is a 
• W40 

particular case of the general theory for low frequency i.e. h, ~ 0 

(see middle of second page of Section 3). 
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We can make the following statements about the general density variation 

1\ 1. • v- ::: e"'1j ,- Suppose we look for elementary solutions to\.~) to 

the GAB 11")1.1 - ~1.\J"'l" = 0: then u.. must solve u." + (9 w } &. "" ::: 0 • 

The familiar change of variable \.p ~i" then gives -tct>')t.l- i. til'! ..... (~1.O)1.C. O .. ---{5.13) 

If l~"' is small, then (see eg. Mathews and Walker: Mathematical Methods 

of Physics,2nd Edition (Benjamin): p27) t~')1. ~ ~w)l and we get the 

familiar WKB solution (see eg. Mathews and Walker, ibid.) 

4': !: ~&o> t ~ = ! r~"" ~'It 

The condition (~l1)small i.e. \4>'"1 <: <. (,~}l. is then \~" 1 ::: (w ~ 1 ~<: f.¥W')~ 

ie. (~ ~ I « ~ ----<'5.\4-) 

Now f'iS a speed: hence ~ U is the rate of change of ~ as measured 

by an observer moving at a speed f' in the medium: in the characteristic 

time ~ 'I the observer will measure a total change ;,(~~) : (5.14) then 

requires this change to be very small compared to ~. 

Suppose on the other hand that I~'I is small. Then from (5.13),4>-:: i ~UJ)'1. 
ie. ~'~.:r~I.>.'»)~d.X and~ .. i. fr ~\.O\ltlA;,t)\. T'ne condition \~\\ small 

is then \ ~'l ~ If ~\A\'lj)( 1 (.(. pw ie.\ r ~"LIAl£lll I <. <. ~ (5'.15') (Clearly (5.15) 

can be obtained from (5.14) by reversing the inequality and integrating). 

If we are considering solutions in a particular region ~)~~'I then (5.15) 

(with the proper primitive) can be written 

Now when (5.14) holds, ~ is real and we get elementary solutions to the 

GAB which are travelling waves: under (5.16), however, ;, is pure imaginary 

and the waves stand. We interpret this in the following way: when a pulse 

impinges on a region )(\~x\t in which the change in ~ is gradual (ie. (5 .. 14) 

holds), the pulse generates (WKB) travell:L1'J.g waves in X
I
_.,)(lI which can carry 

the energy through the medium: when the change in {! is precipitous, 

however, (ie. when (5.16) holds) the medium can establish standing waves 

in xt ~ )( " in the characteris tic time and all the energy is reflected 

back towards the driver. 

Consider an Ionosphere 
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where P{;J..) increases monotonically to + OCI 

that the travel times liW\ (" [- (!o()(')l dJe' 
l)t" 

as " -'J 0 Now sup:pose 

A ) where A is a finite,positive constant. 

for" small enough ie. [,,1(0 pl...v dX' ~~A) {! which is L P when w ~ ~ 

Thus when the travel time is finite, there exist (small) frequencies ~ 

such that (5.16) is satisfied ie. such that standing waves are generated 

in ",.)t-o and hence there is no net transfer of energy into the Ionosphere 

in the steady state. 

We have shown then, that a finite travel time is sufficient to give the 

standing waves! it is easy to see, however, that it is not necessary. The 

full condition (5.16) should be used in investigating a general law p • 

We can apply these ideas to the particular laws ~:: f\ .. r:t)". (5.14) 
r requires 1.«' ~ (x -r+\) w (s.n), 

r 

If & ')' ie. - ; H .(.. <) t..lJ.en for any w we can find an x close enough to 0 such 

that (5.17) holds true: moreover the closer x is to zero, the more the 

inequality is emphasized. The WKB motions become more exact deeper into 

the Ionosphere (we have noticed this behaviour previously - see Section 4) 

~ and any energy which can get beyond ~-~9 into a region (5.17), will be 

carried on towards ~=O without reflection. Resistance to energy transfer, 

if any, occurs near X~Xo We notice that the greater d , ie. the 

steeper the medium, the higher the frequency needed to get energy past 

a particular point x : again we have the high frequency bias! 

On the other hand if t" ie. - i'+\ >0 then for every w we can find an x 

nedrO such that (5.17) no longer holds and such that (5.16) does hold. 

Thus for f <.1 , energy coming in from )I...,)to ,will always find in ( o) ~1:1 ). a., 

reflection point for energy. 

C 
The above ideas for P~(t) can be checked against the previous work for d~l) 

f' d <" 1. 4 1. l.(lIl .. )l. 1. t. ~ 
o=J an oc l ie. pl.~ piLi) J P ~~o ;- al\~r~po(~)3. We mention, in particular, 

that for the singular ~:: ~\) (~/), (5.17) becomes 14<'1\D)(0 w ,or if 1.)0 

is a frequency in e -time, I <. (. f.l;)¢. This estimates the critical 

frequency obtained previously. (",,-: ~). 
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Lastly we mention an interesting analogue of the analytic viability of 
1. '\ 1.'>"\' ... _1 

the GAE \T'J..~- {\o ()(o/~) V''j'l-o fo,. "": o,i2.,!.4, ... ~ W\:::<2:I Ut.1'\-1... 

We showed above that elementary solutions tr~ ~fw'i e. ifl exist for the GAE, 

where ~ solves" _(4)')1. +-~~ .. + C~~o e.;):'..'1'l. = 0 (S.il; 

We can convert this to a Riccati differential equation by setting 41~ L~. 

We get 

But Daniel Bernoulli (see Watson: Theory of Bessel Functions: Cambridge: 

pp 85-6) showed that the Riccati equation is solvable in terms of elementary 

functions for just these exponents V\ ~ ~ ~f x 
W\- \ 

( 
...... ..: r. t.t.!4 ·""'.«>~'AlIOt.\ ,,'I v, J ,..... / 

Liouville subsequently showed that, excluding the trivial case wpc~~· 0, 

only these exponents h give solutions in finite terms (Watson ibid.p87). 
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SECTION 6 

CALCULATIONS 

(i) GENERAL DATA 

Let us consider the variation of plasma density along a typical field 

line through 10 

o 
)(-

NOT TO ~C.ALE.. 

(Note: As indicated in the sketch, we refer to the region along the flux 

line between the Iosphere and ~~e Ionosphere, as the Medium.) 

It is understood that )( is set = 0 at that pOint along the field line 

where the density is a maximum in the Iosphere. Gledhill (Goddard Space 

Flight Centre Rept. (1967) X-615-67-296) shows that if the magnetosphere 

co-rotates with Jupiter, the plasma will be confined to a disk-shaped 

region making an angle of about 70 with the rotational equatorial plane. 

Thus, as it orbits about Jupiter, 10 will assume both positive and 

negative values of X. 

In his theory of the decameter radiation Goertz (PhD Thesis: Rhodes Univer­

sity) calculates the distribution of plasma along a field line! he obtains 

(typically) the following values:-

(i) A t about 1000 km above the cloud level of Jupiter the Ionosphere 

attains a maximum plasma density ~ )O~ particles Icc. 

(ii) At about 10,000 km above the cloud level the density has fallen 

t;: 5"X \0 '+/CL • We will refer to this region 1000 -t- 10,000 lan, of length 
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r;/ 9000 kIn as the IlIonosphere". 

(iii) Outside the Iosphere, the density is ~ lO/cc rising to a maximum 

Iospheric density ';t 103/ cc 

(iv) the flux tube is at a temperature between 10000K to 2000oK. 

Goertz's method for calculating the Ionospheric plasma distribution 

involves the simultaneous solution of the heat transport equations for 

the electron, ion and neutral gases along with the associated momentum 

and chemical equations for the ion and neutral gas densities. A collision­

less plasma model was adopted to calculate the density in the Medium. 

Inclusion of a 2-stream micro-instability in the Medium and recombination 

in the Iosphere leads to the formation of the plasma disk suggested by 

Gledhill. We will use Gledhill's equation (ibid: p16) for the distribu-

tion 

when 

of plasrro.in the Iosphere ie. [,!:I..]= exp {-l. x. (\")~ )tIO·b)x.~] ----({,. \) 
N~4~ T 

N is the density (particles Icc) at x (see fig. 5) 

foJ"""'lIl is maximum density (at )(:. 0 ) (partic les Icc) 

T is the absolute temperature., 

Now we will assume a magnetic field ~ 10 gauss in the equatorial plane 

at the surface of Jupiter. This value is often assumed in Jupiter work 

(see eg. Carr and Gulkis, Annual Review of Astronomy and Astrophysics, 

Vol (8) (1970): p605). Recently Kemp et. al. (Nature 231 169 (1971)) discovered 

circular polarization of reflected light from Jupiter: one interpretation 

(Kemp et al; ibid) of this discovery, implies a magnetic field in the order 

of 1000 gauss or greater. If this interpretation is correct, then the 

entire magnetohydrodynamic analysis, as given, will need drastic revision. 

We will, however, aSSl.lITle 10 gauss. Assuming that the external Jovian 

field is that of a dipole and using standard results, we have an under­

lying field at a radius r and a magnetic colatitude a • 
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of 

(where here B1). 10 gauss = \O-~ Tesla from the preceeding paragraph). 
(~$ ~,. I"4dlix 0 f ~,ltt' • "0,00011."".) 

The equation for ~he field lines is 

value of L varies from line to line: 10, as mentioned in Section 1, 

lies on ie. 10 orbits at about 6 x 70,000 = 420,000 km from 

Jupiter's centre. 

The length of the field line from Jupiter's centre to Io's orbit is 

~ 568,000 kill (use Angerami and Thomas, JGR~, no 21 (1964): equation 

(A.2) ) 

At 10, then, we have an underlying magnetic field 

.:: 4· 63. Yo lO-b Tesla 

At 4 , the foot of the Iosphere, the density is 10 particles/cc 

t 11:>"1 / .... :~ W' 1·68 X 10-a.o "~ I M' J assuming that the magnetosphere is a neutral, 

fully-ionized mixture of protons and electrons. 

Thus the Alfven speed VA at 'lo is 

Along the field line and at 0 0 (ie. 10,000 + 70,000 = 80,000 km from 

the centre of the planet), the colatitude is given from ~I~'le ~ ~ 

and ). 2.b )C... \ 0" J Tesla 

Also the density is S X \0 '" / ~ l ~ ~. '?IS X \.'0*'" k~ 1 .... 1 

-') / 1 • I 'C 1, Alfven ,speed = \.z.~ .. \0 / (",f ~ 10·' ~ 'l.~g )! 1t)·I; J 1, • '.l.~ x \D .... SlIt. -' Qo~ ( 

(Similar calculations for X 'Co 0 and at 1000 km in the Ionosphere , give 

VA ':0 -ou(. ~ 902..~ c:. respectively.) 

Thus we see that over the entire magnetosphere, our non-relativistic 

treatment is likely to be a good approximation. (t~t. l~~rfftl\i 9OdJ\tflj IS. 

(l- (v." 1(.)] i I ~hk h ,e'd~ ~r VA II' 4-~ Co • ectu4f'$ .q~~ ~, ) 

In the Iosphere, the important length for disturbances is in the order 

of ])10; diameter of 10 = 3000 km : Goertz (ibid.) uses 2 x DIo ie. 6000 km 

and then requires that V). ;(2. Dr.') is the important frequency. 

At 1(")(0 I VA / 2.. ~o til\. • ~"'lt It) ';(6000 lt l01 J ~ 5·5' ~ i: 

}/':L 0 where density = 103 particles / cc } VA ~'PIo ~ 
Ii:))i ., 

-34,)( Cal >lIO .:r.; • ~ Hi 
'I>~O x 1'0 

3 
At 

Thus we consider 10 to generate in the range .5 - 5.5 Hz (hence the value 

5Hz in Section 1). 
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At this point, we can conveniently check the applicability of the entire 

magnetohydrodynamic treatment. The Debye length h, is given by (see eg. 

Holt and Haskell: Plasma Dynamics, 1YIacmillan: equation (9.16) 

'n :' 
J 

Th h · 1 h L .5 (IS,()~ '\ '&. (ass1''T'r1;ng us at "0 , t e pOlnt of owest density, ::. Q.q ,uo .... ) t.ULW... 

T= 1500
0
K) = 84.5 x 10-5 t;t .85 x 10-3 km which is ~ <. 2 D

lo 
= 6000 km. 

Also the proton gyrogrequency (at 10) :a Vi ~ [ e.. B 1 =f !'!.,Jl10-
U1 x !,j'b3 Jt \1)""O 1 

"'If ""'1''''iO",1 G; )C. \ •• ., Jt 10·1.., J 
~ 70'11 ~, 5·5 Hl. Thus we have corrfidence in applying the magnetohydro-

dynamic method. 

A plot of Alfven veloci ty ~ along the 10 flux line should have the 

following shape 

- -

In subsection (i) we give the law (~MA'( 11:' ex~ [- l'bS )(~-blt x..1.1--{~. \) ,for 

the variation of plasma density in the Iosphere. We now show that this 

law can be adequately approximated by the inverse fourth power law 

" 10 +--=:---t--

1 0 
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Now ItJ_ A ,.:: \f~ll e< We will assume that the extent of the Iosphere 

103 --> 101 is de termined from (6.1) 

ie. 1O 
;: t!.lC.p {- ( "1. f>S x ,e>") )It. (~) '&. 1 

~ T 

For T = lOOOoK, -i:;his gives x~ ~ 41,500 kIn 

T = 20000 K ~~ 58,500 lan 

~ 
'1 x..o 4r 

We then calculate Xl from 10 
liC:''> 

~o 10 

to get J(. ~ 13,100 kIn for T = 10000K 

')Itl .". 18,500 lan for T== 20000K 

We can get some estimate of the degree to which 
'to 

.!:! = (liO) approximates 
No x 

(6.1) by calculating 

o 
For T = 1000 K, we get N l 

;t-&l(, 
= .632 x 103 Icc 

~l = .629 x 103 Icc 
'i;.~. 

Thus as both these numbers are close to ~03/cc, 
good approximation over the temperature range. 

gives a 

Now, as we mentioned above, Goertz's theory involves a characteristic 

length ~ 6000 lan. The scale length for the (smaller) Ionosphere, 

T = 1000oK, is ~ 41,500 - 13,100 = 28,400 '>7 6000 krn. Thus there 

should be little interaction between Goertz's waves and the Ionosphere: 

the energy from 10 will pass through the fil ter ~, .... )tl) ,wi th only a 

small reduction in amplitude. 

f 
Frequencies of the order of ,~Hz ( giving a characteristic time of 1 min., 

which is in the order of the time 10 takes to cross its own length: see eg. 

Drell, Foley and Rudeman, tTGR 70 (3131) (1965)), however, will have a 
length of t(VA~' -+ (VA)'l~ 1 ;;1 -, - : r'OIl ..... \\ 1 x ~ 

Z. 60 L 1.. (1/. 0) 

~ 1.09 x 104 km which should be well contained by the Iosphere. 

We can see this in more detail from the transmission coefficient 

l'XT\ r~ /r ( I-{~ol("-I\ + ... )1. ... (r;')L (l- A~ oI..(,.-i) ) to ] t 
l/. \.. oC,(r- \) 

where r:. ~ and (here) t:L .. (+ ~ ~ [\0)(0 ') (We remember that the calculation 
~I ~ 

of ~T was on the basis of a constant underlying magnetic field Bo : in 

thp. Iosphere, where the chief variation in l~b \ is through the angle e in 

(6.2), this is a good approximation). 
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When ([1- lQ1 0(( r- \)1;.: 1 <. <..,.. then 1 "X 1" I ~ r and there is no 
\. O(\. '--{~.4.)' 

interaction between the wave and the f'il ter. (6".4) can be written in the 

form ['it'~ CQfo.(."·\")/1.1 1~ c:<. 1 r /<..r_ d \. For both T = 10000K and 20000 K 
[.(r~ l)h1 j 

we have r=(Jlo/
lC
,) S' ~.lb.:. the above inequality becomes 1 S\~,.o~~BO( \ ~<.. t·"" 

Clearly it is sufficient to consider ie. 

Now an angular f'requency w in ~ -time becomes (see equations (1.4)) a 

frequency 

Also 

in real time t . 

"-Jr~ (4\) ')00) 

·~4 )C 10' 
( for the Ionosphere, T = looOoK.l 

::. 15. '8 -.) :». '11:\ 

ie. -,)"" 0.05 Hz (Hence the value .05 Hz in the "Introduction".) 

Goertz 1 S waves have "'~ 
.!. 

1. 
S- '» .05 Hz, but the 6b Hz waves have 

&0 =.017 ~ .05 Hz. 

Thus the f'actor tl in the total transmission 10." ct. \ a t the end of' Section 4 

should be 1t 1. 

(iii) THE MEDIUM 

We will show f'irst that the GAE U"-,v - ~l.v·11 ~ 0 (derived in Section 1 f'or 

a constant underlying field) is valid in the Medium and that a ray theory 

gives a good solution there. 

We have obtained p~ceviously that 

at Q. # -VA » \.1.~}( ,o8 m/sec . 

(for an extreme choice of' parameters Goertz calculates the point a~ with 

N = 5 x 104/cc to be at 7,000 km rather than at 10,000 km above the 

cloud level, as we are assuming: f'or 7,000 km the corresponding VA wou:d 

be 1 .. 38 x l05 KIn/sec = .46 c; it is against such an extreme case that we 

use .46 c in Section 1 (vide)). 

Now the length of' the medium = 568,000 - (length of' Iosphere) - 80,000 km 

= 568,000 - 50,000 - 80,000 = 438,000 km (50,000 km is the average 

of the values xo obtained in the previous subsection f'or 10aOoX ~nd 2000oK). 
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Thus the average gradient in wavelength over the medium is - [( yt) Go - ~141 '" )~ol 
~~.,ODO 

= .. ()-1..'I- '~4) l( lof -a- -"l.() where -v is (again) the frequency in the pulse. 
l.!.~9. 000 ..., -;;;.:;-

For -v = 5 Hz, -'l:§ = - .04. Thus in a unit length the wavelength will 

(on the average) 'hardly change. 

Also, the average gradient in the underlying field is (using values from 

subsection (i)) (\-l.~ - ,OO,,"b)XIo-
3 ~ -1.-q .l(1\~'-'\' T1ts\ .. /iIoo\ 

4'\',000, C)b"O 

Now the basic equations are, for polarization in the z. - direction, say, 

'B~ 1>';::1 = '2,>Oa 1--(.b·S') 'b.x ~ 

~ rtbe :: 
<b O"'t 

.)40'f (2))( -b:l 
(see equations (1.3)). 

These equations are derived for ~ , the underlying field, constant. In 

following through the derivation preceeding (1.3) in Section (1), it is 

seen that (6.5) remains true when ~ ~ '" ()(~ provided 1 V" ... d 160 { t '" \~o co ~~ , \ ... q; fl)}C. 

(we mentioned this result towards the end of Section (1)). 

Now l.e.t 1< be a typical wave number in the pulse. 

Then \ \J"l ~ \ ~ <. \~o 'D1r~~}t \ requires Qo \ Jt.\ Ii ~ 80) \ 
1 ( dA 4O"'1i1. 

:: ()4~f)! t~JI""') » \ 
1 (d 80 Id~ )Q,oJUAft ' 

Taking Nan average value 

and using lJdj.j f &3 e;rc ge 
H)l.~¥j • 

ie. 1 ~'I 
N ~ \ 0 /0.. \'1. r ~ \, 6 3 )( I 0 ~ / lIo\ 3 

-12 
= 2.9 x 10 Tesla/m obtained above, we 

then require 3.16 v ':>'> 1. For ~ ~ 5Hz, we have 3.16 x 5 = 15.80 so that 

we may use ( 6 • 5) f or ~. = ~ ()l) with confidence. 

Then eliminating, we obtain from (6.5) 

+ 

~~"I. 
The magnitude of the first term on l.h.s. of (6.6) is ~ \,~ 

..}'~1' 

where ~ is (again) the wave number: the magnitude of the second term on 

~.h.s., is ~ So \ (.:4 60) \ IIL\ 
;;:;f 6 A.~tA'fI 

Their ratio is (~()'L'L't..)/ ~l(~O) \\IC..\ ~ 
.po'i' .)oIoi 4" .1I1!K.~ 

~ \,,\ 

1 <U.)., .. ~ ... ,f' \ But we have 

shown above that this ratio is small for "" ~ 5Hz. Thus we can neglect 

the second term on the l.h.s. of (6.6). We have then in -the Medium the GAB 

I 
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Also, as we have shown above that the average gradient in wavelength 

is small (~ \ - -0,," \') for "'" ~ 5Hz, we have then, finally, that a ray theory 

gives a good approximation in the Medilun.. Thus all the energy escaping 

from 10, will be transmitted through the Medium and impinge on the 

Ionosphere at Q{J T'ne travel time (li. -JQQ~ will be rv ~3!/ooO 
.::. ((V,,) .... ~A ) ... ~1/1. 

_ BY'-, £)00 

- (H .. ~"'· ~~'l "-ID5' 
:. 5.6 sec. 

At this stage we must reconsider the approximations made in Section I of 

infinite conductivity and incompressibility. 

Lighthill (Phil. Trans. Roy. Soc. London A 252 397-430 (1960)) shows that 

both a more realistic equation for current in the plasma and the inclusion 

of a finite compressibility lead to a deguiding of energy along the field 

line. The current effect is more si.gnificant. Lighthill shows that if 

we incorporate a (large) Hall effect, then a disturbance in the plasma will 

spread out within a cone whose angle is !{r1.'ioln {14' /lI.J~ '\ where w is the uq~lar 

frequency of the disturbance and w~ is the ion (angular) gyrofrequency 

~ 1..1{ 'V \ (see subsection (i)) at 10. For frequencies ~ ~ 5Hz, this 

conical attenuation Qr"U.'~ (fo') :: 40 becomes significant and the 

wave loses amplitude along a field line: these ideas are important in a 

theory of the decameter sources (see Goertz and Deift, to be published; 

will be referenced in Goer~z, PhD ThesiS, Rhodes Ur~versity: see also 

subsection (iv)). 

(iv) Lastly we consider the Ionosphere 

--.---- -----')I 
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If we assume an inverse fourth power density variation we have in the 

above figure l~l/qo\ 

As 1. == 10,000 km'", this gives ~I == 10,000 x .27 eo 2700 km which is 

greater than 100e km. We need a variation that is less steep. For the 

inverse square we get l"l/d~ ::: (:)1.10/.0,,")1. ~ .07:· 4. == .07 x 10,000 == 700 lan. 
"" 1)11 ,,"J The law- ~:::~ .. <. 0/,,) ,on the other hand, would give ~I ~ 200 kIn, which is 

too small. We will use the inverse square law ~!<J)1. in what follows. 

Also we will assume that internal reflections are not important in the 

() 
':t. Ill. \l. Ionosphere see Section 3 : then we can extend ro ~o/~J to x~o-. 

Across Qo....:)o G, the magnetic field varies as ( ~Ch , 

&(010 

~ 
['S 0000 

.,.t:6.0 1
3 

~ 1-4-4 

1 1 

However [i G, /f~o 1\ \~ /. ) ~ ~ l~. \ :I. \. .,lCIO It 

Thus in the Ionosphere we will neglect the variation of ~ with .respect 
J 

to that in i" in Then the method of Section 5 is 

applicable. 

The law ~.t e°t.) '1 has a cut off at a frequency wo:z \. 

is in e -time (see Section 5). 

This corresponds (see (1.4), (5.5)) to a frequency 

:: (t') [1.1."!>X lOS ] ~_ 
1:;' IO,()OO t ~ t. 

~ If we now plot the energy flux from (5.10) 

Flu.'C :: ~ [ {- (bJo - ~ot w ~ ') i ) 1 

, where Wo 

[w" is an angular frequency in e -time) 

we obtain 

WO t:L~ / [?'"/"Ll 

-5 0 
t------------ ~ - -'-

·~1.5 . 5\ 
--------- e--

.,~ '~3 
-'--' 

\ '''1~ 
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To transmit 60%, say, of the incident radiation into the Ionosphere we 

need ~o~ .75 ie. ~ ) ,~~; = 1.5Hz. Thus not all of the frequencies 

.5 - 5 Hz generated by 10 will get into the Ionosphere. 

This result, together with the deguiding of (iii) is used to give the 

explanation of the decameter sources mentioned in the previous subsection 

(see (iii) for reference). 
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APPENDIX 

!t is easy to invert ~~)term by term to obtain 

~ «) "'+, -r.~-jAp,.) f'-P ...... t'S-.JAo"" -U) ... -·U. .... 1 <!'.-trco}"" 
~ Lo"", .. , ~o '\.l (u -.ro\e) e 0 e dAk 

"a Ie. ! ( .. -I \1 • 

.... Yo er.~ .. \, , 
_ ~o! C) ~0k.41 '\l{o.t -1.1.01( . .\ e -r-. (~-yo'" J ,-),olC. (;,-~ott.-u\ V. ] err ....... '" ~ ()\ \' 

~=O 0 oF) 0 (,,-1.)1. rl. I 

where 'U. is the uni t Heaviside, showing exp1ici ty tm t the ,,,-+'h wave reaches 

~ only after a time 'pow.. A consideration of the limit, 1,,,, j>l'\\could proceed, 
'S...,~ 

: pari passu, with a justification of the applicability of the final value 

theorem. Where ~; ")10 j , we will, however, consider the reduced 

problem tiwt ~~'6J) 
~ ..... 

The sequential solution indicates a general method for series: the problems 

encountered, however, are essentially those of the general limit, JiM P (~) • 
J-'JC» 

There is apparently a deep relationship betw~en the theory of Laplace 

transforms and that of series. 

The fnst term in (A.I) becomes J for j ~ 1 , 

where c. • and we changed the variable of integration 

=( ~ ,)"z. I 1/ (Gti-k-I)J (- <:.(.j-\f.;I)l k.~ (where r",~"L/. is 
a.c -14-1 \s..+ ~ [<..(.i-"~I ILl"'" I - ~ .. 

a modified Bessel function - see Bell, Special Functions for Scientists 

and Engineers, pl16 for the integral representation) 

= f ..... J rC(J-\~-')1 {C-<u-Ic.-\\l\<..!/(<:.(j-k._I)ltllC.. ... '], where we have in effect set 

( :! )'/a. I <...2) 'C fw. (:2;). The function ~~) may be termed a modified 
2. '2 \''''/l. 

Spherical Bessel function of the first kind (see Abramowitz and Stegun: 

Handbook of Mathematical Functions: Dover: p443~tkfunctions may be 

expressed in terms af elementary functions ega 

4- _c-o_s_h_-. (Abramowitz and Stegun ibid). 
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We may put all these results together to obtain 

where· the term j-IL-,::.o 

(j -'''-1~1I 1"'- ... ,., L [YO(j_,,-i)-u.] u. 

\c..! 'ic... ... I)~ 

is (trivially)included. H - 2-)(0 ere ~~a c _I. 'C ero .,,) 

i~ positive and ,I'l... I b '=' \!'.-r.\JOo c -tr.-roY- <.0 
'Z. ~ ... ro 

and we are only considering 

j ~ \ Let us denote this sum by trj for j ~o ar:d def'ine..,.o I: 0 

Similarly one can evaluate the third term in (A.I) to get 

l-roae>}.,j <,,-el)i<L ~bt!-k.)r<=-I;_,,-)]k"'\ 1{>\L(<.<.i- H_)] 
L I' '&0 "- ~ L' ..., t 

We denote this sum by Here 00'::'" -&"'"·/''0''''''' <::'0. 

The method we will use to demonstrate convergence will be to associate 

with the sequence {lIJ-S ,say, a power series i}(~) ..,. ~jO:o:lj IT.J' " 
110 • 

If' we f'orm the difference series Wj 'e U-J'~I - ~'J H~n in (J.).. 2.~.J w' 
->"0 ,) 

l ! )- I r :: z: -I v- - i ~CI -tor ~:t 0 • But unde::- certain conditions (with 

which we will concern ourselves) 

~ 

:: \,W\ L ..,. \\\~ ""0 ') ( ~~ 'I~ 
I 

J :: (\Jj~, ~ 11"j ) _ ~ l~ C~-\)\r, ;",,0 - ~ , Vj" 
3''''00 .) ..... .J ... t) j~(I) !-.\, 

.Iwhich 

~ is a f'inal value theorem. Clearly we are working in analogy 'With Laplace 

Transform theory, a !'act we could emphasize by vvri ting e -do for '2 ( «-

is some complex number). 

Now consider a summand in 

.I-, 
!:- (eu- ,)1 ro (qj- 'll ~ 

IIL_o 

As tC"i.) 

\T' 1 

(4.4 flL (<:.ti-\<.~d) ~ t.r<.tJ-\)) 
s to (((j- 1)1 

t: s/~k(~) , we have mat the summand is of exponential order. 
i! 
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Similar considerations clearly apply to th~ other summand in u-J. Thus .. 
{",J 'has a non-trivial transform ie. we can find a 'i.~o such that V-(l)~'t~';\T' l· J ... -
converges for alll ... lc\ 4. If.. All the properties ofl,.tbat have been used 

can be derived frbm the formulae for t. given on p444 of Abramowitz and 

Stegun (loc cit). 

11:1 

:: 

to .. ., e ~~-IL) 
"to l:'j., '!;-4 !w. .... ~ .... t 

Oc J I j-~ »4 "l&1 ?J z: - (-a. '\ .. ~ 
~:: 0 -:----;- e l"- •. ,\ .. 

10 40 

((o! L ~J 
'Nt ... 0 ~~ ..... , 

1-'1>\ 
<"'-t&)_ 

(J- ..... 1 ~ 

A ~ 8 

(110 

.... 1. 
where A : ¥o ~ 'l- ~ 

"''''C 

. )]-' ( c..U"k { f
tL

-, (Cfj-l~~ 1 ... f14 C c: (j-1'~ 11 

l-· .... l ... f (~'") 1 
((.~, 1. f j-"'-t 

((.\10\) 
J-w. 

• '" "' ... , 
L ~ (GW\) { f ... I (1.W\) - f-. (t ... ) 1 
1\~ 0 "'~ 

and 
~ 

dO 
l"'" e \0\\ (e."",,) { t (C~)l 'I: - ~1) ~ 't, (~IM)-

.... :0 

The inversion of the order of summation above requires justification: a 

proof can be constructed based essentially on the fact that a sequence 

of absolutely convergent numbers can be summed in any order. 

As (c...,) f {c..~'. t.esh (c..""",,) and <L~ ') fe. (c..lN'I) = st~" (c.. ...... ) 
-I 

can be 

summed to S e -~o I\_e~,,-el . 
4b "" t Also Z (_01.) '\ I'\"".p (c. ..... ) ':. COSh ( .. \'MO· Zo.i) IThis result is given on p445 of 

""0 ~ (c..1M ~"""l 1.' • 

Abamowitz and Stegun (loc cit), and ~&sh t~ (l_z.~i)'J,,) is sometimes referred 

to as the generating function for f". Actually the result is nothix.g 

more than a development of t.oCj"(c.~ (\-2.t&z)ilas a power series in c 
See Watson (Theory of Bessel Functions, p140 Cambridge University Press) 

for details. Differentiation of the generating function also gives 
l. 

& '" h t. <-1M (J - '2. 4 ~) & ] 

{j _2Co\c)i 

These results then give 

_1 [' 1 A:: ~ (l - ('-1.Q~)"l \_ee\,.t..(\wl.tl.1)"j + 

Similar considerations applied tv {u.j 1 give 

(- "0 0
0 ) )( J. 

2.. (1- 2.Q~)" ( 
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for small enough 1 ~ \ • 

As yet it has been unimportant to specily which branch of the square 

root we are using. For definiteness in the analysis wich follows, 

however, we take 0" Z,.Q ~)JL,. as that branch of the radical that assigns 
I 

a posi ti ve root to 1- z.~ 'l. whenever ~ is real and < La. 

We are interested in ~ (l) ~ u- Q) ... 14~) =- .4 ..... 3 .. ii 

Some canmust be taken in interpreting tills equality. 

Th.e function ~(~) on the l.h.s. represents a transform which is related 
OlD • 

to the transform p~) = 2. 'tJ p' where Pj" ,. ('3;). By the r.h.s. 
3~. J 

we understand an explicit expression for ~+A~B in terIDE of radicals 

etc. as above. The equality of l.h.s. and r.h.s. then means that for 

certain ~ , in fact \~\ small enough, the power series e£ 4u)converges 

and may be calculated by the expression u + A.. 15 Let us denote 

U "" A + t!. bye:.. 

Then 

... ,11._ ... : 

has no roots ~ J l~\' I real 

or complex, except ~.,) whichJmor~over)gives a dQubJe root. (We mention 

~ that this result is related to the fact thht the denominator of the transfer 

function HO) has no zeros with real part. ~o , except $- 0 which (again) 

gives a double zero.) Clearly then t is an analytic function of e for t~\~\· 

Thus 4('l:) , which equals E. for small enough \~l, can be continued to any t 

withJcJ~l. Now a power series can be continued right up to its first 

singularity. Hence ~(!) converges for allltl ~l Also by the uniqueness 

of the continuation we must have q~) /61 E. for all \ 1.1 <.. 1 

[ 

";1'0 ( Q- l.Q "l)t - ,) -- do ro ] 

Now f Q..) :;: I _ ~ e. ~ 4 <. ('-~Q ~)~ is a combination of terIDE in E. • 

The numerator can be expanded as a Taylor series .in a small disk about 

e~l os '60 [O-2.a l)t - '1- 40 ro _ ~oQ (1-~) _ ~o tt"t. 0_14~tla. (1_ cyL + .. _. 
( ,"'-I-l.. l..(l-l.A)~ 

Also we can expand l -::z. ~ +-c... (I - l.q ~ )'J.a. _ '-Q ( 2: -Ill. _. • ..p:::r. I 
t; e - 't.(,-2.4) + ..Lor J;; near • 

Thus Q-'l) Ftc' is analytic in a neighbourhood of 1. (we are defining 

Q-l-) F Li! ~ at c "\ by continuity). 
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Clearly then all these results can be used to prove that (l-c)q is 

analytic in a disk about ~.o with radius ') ) I where it is given, moreover, 

by 6-t) E. As o.-~) q is a continuous function wi thin its radius of con-

vergence we have," in particular, continuity at 1 = 1. Thus where 

{dJ·l· t1j +1 
~ 4j 1 is the first difference in {iJ 1 ,we have proved the existence and 

continuity of its transform d (!.) lL (~ -I) ~~) - ~ at 1 = 1. Hence we have 
it 

j~~tified the applicability of the final value theorem for l~j1. 

As )'0 e
r
• ~..! 0 , we can use the theorem as 

~ 

lilM P llJ';' ': h'"" ( ~(~\ (1- i)l :-

J-4'" z ... , 

"b'.q - l. r'," roo '" 

( 
lto':' 1 
--tI "I· 2.0.) " 

r ,- a ] 
t2.(a- 1a) 

= - ': 
1- a.. 

lr"-' p(~) 

which is f'o'L ... r ~ , the result already obtained for 

in Section 2. through an (as yet unjustified) application 
~...,.., 

'\. II\. 
2. (1-1..411. ) 

of the final value theorem. 

U j and lrj are IV j for large j 

As a technical point we mention that both 

This behaviour should be important in a 

perturbation theory. In detail, if we work with 

{-r1)Qo) ( \ \ i 
"'@ ) :: r b·H. ('.'LA ~)'" - t..r('.U-.)i ~ 

2. (l-1..Q l;) \-1; e. J-1~ e see that u(.t~ (1-~) is 
. I 

analytic at c = 1. Then the second difference in {ui1(defined as 

lb,j+'- b~1 where {~j1.t~,i ... -uj1 is the first difference in {un ) 

converges in a disk about ~ = 0 with radius ~ 1. Hence the final value 

theorem can be used to determine bb: Then by Cesaro 
(}:~j:.o bj)/j 11: ll.lj+,-uo)/j :~ 1,'11 \It UjNj Similar ly V"j IV j • (The 

convergence theorem, in the form we are using it now, can be regarded as 

the complex analogue of a theorem in Titchmarsh ( The theory of Functions, 

2nd edition p226, section 7.51: Oxford at the Clarendon Press). 
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GRAPH (1) (Re~er page 19). ( 
Fi1 ter response p (,-) vs rr ~or Iosphe:r-es of dif~erent 
dimensions r 9 r l - The overshoot referred to on po19, is 
largest ~or %;.e Iosphere r = -1~ r

1 
= -lOg in this case 

~/xo = 1'1/1'0 \c~ :fig p.13' is g:eea1;est" Evidently, in 

this2case the light region x ;> xl (cf p9l3) with density 
oCf- = (x /Xl)4« 1 is most sensitive to motions in the 
dense ( p 0= 1) r~gion x <xo ., 

.. ... 
;> 

. -
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GRAPH (2) (Refer text p.20). Response v(y) at ~ of the
5
filter 

(of fig p.13) to a gamma function driver y e-· Y at x 
for Iosphere's of differe~t dimensions r ~ rIO (Refe~ to 
text p.20 for parameterization of cur~es'. 
The signal emerging from ~ should be desteepenedg this is 
seen by comparing the dotted curve (Which represents a 
renormalization of y e-· 5y appropriate for the specific 
speed lSI at ~ when ro = ... l~ rl = -2) with the curve 

(-1 9 -29 .5, I), which is its measured response at ~. 
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GRAPHS (3) (Refer text ~.20). Response v(y) at xl of the filter 
(cf fig p.13) to sinusoid drivers f( ~ 0 - y) = A sin By 
(refer to text p.20 for parameterization of the curves) at 
the input x = XC. 
Evidently the response is capacitive ego the frequency 
B = 6 (curve (-1, -2, 6 9 1, .01)) excites an amplitude 
':;( 1 .. 8, while the higher frequency . B = 18 (curve -1, -2, 

18, I, .01) excites an ampl;tude ~ 2.1 > 1.8. 

Then again the li~ht region ( {3 2 = (Xc/X1)4 = (1/10)4, cf 
caption to Graph \1)) is more sensitive (curve (-1, -10, 18, 
I, .01)) reaching an ampli tude ~~ 8 at the same frequency 
18 as the region (-l~ -2), (curve -1, -2~ 18, I, .01), 
reaches 2.1. These results are in agreement with the 
qualitative discussion preceding p.20. 
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GRAPH (4) (Re~er text p.20). Response v(y) at xl o~ the ~ilter 
(cf ~ig p.13). to the slllg1e pulse 

o ... ..a 

f ( ~ 0 -y) = {I - 1,.·1. (y - 1T /8) } x i A sin By 3 at xo. 

( .~ is the unit Heaviside). Thefre~uency/densit.y dependences 
described in the caption to yraph (3) are agalll in evidence 
ego the response (-1, -10, 18 9 1, .01) of the lighter 
filter t ( ~ 6.0) is greater than the heavier (-l~ ·-2, 18, 
1, ,.01) which gives a response ~ 2 < 6.0 at the same 
frequency 18. Then again the filter (-19 -10) responds 
better ( ::::::--# 6.0) to the frequency 18 than to the lower 
frequency 6 (response ':::.::.. 4.1 <"6 .. 0 ) • 





GRAPHS (5) (Refer text pp~23-24). Response b(x~y) of a disconnected 
(cf fig p.23) Ionosphere to a driver v = fo~ (y - xc) sin 24y 
impinging on xi.. . 'rom the left. Here Xo = _.:±- 'J xl =-:: -1/8 9 

and the magnetic field distribution is plotted at successive 
time intervals I~y .~~:.: .0625~ which is a quarter of the 
travel tj~e (4 x ~0625 = .25) for a signal from Xo to xl. 

The signal steepens dramatically into the Ionosphere. At 
large times (y ~.5) nodes ~d antinodes tend to develop 
at x .~~ (- .17 9 - .25) and x ~ (- .14 9 - .20) respectively. 
The antinodes should be regarded as hot spots for possible 
instabilities feedLng off bo 

J 
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GRAPH (6) (Refer text pp. 30-31). Response I :/. -r-! at xl of a IiI ter 
(of top figltre on p.30 ) to a sin~moida1 exitation at X09 

vs C/. = -2 u} ~o Xo (ref'er texJtj p.31) for filters of dimen­
sions r = xolXl = 2, 49 6? 8. 
The general increase of each curve with 0( results from the 
high frequency bias of the system (cf captions to GBP~PHS (3) 
and (4» II The fluctuations 011 the curves are interference 
effects between Xo and 7"1. 9 as in op-tical fil tar theory. 
(cf text p.:?l). 

(The dashed line ex r = 10 'is needed in the parametric 
analysis on p.32). 
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