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CORRECTIONS
p. 9: Iine 21: Instead of "differentition" read "differentiation'.
p. 12: Line 22: ",..... whenever w is;; the reduced equation ...."

p. 53: Line 16: "Vy ...... = .32x 10° m/sec"
= .1llc

Lines 21 and 46: "1.23 x 10° n/sec = 4L c ...
.... even for VA 4T ¢ equals .9@ ..... n

p. 543 Instead of ”.40” read " 410” on the figure.
(Last 1line) "ﬁ pc) (xo0/x )4

p. 55: Iines 16 and 18: Instead of"lonosphere'read "Iosphere" ' Afé
Line 25: " ¥ 1,09 x 1(55/1m which should ....."
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INTRODUCTION.

Decameter radiation was first observed from Jupiter by Burke and Franklin
(7R 60, 213, 1955). In 1964 Bigg (Nature, 203, 1008, (1964)) found that

Io exerted a profound effect on the radiation.

The majority of the early theories teo explain the origin of the decameter
emissions, attributed the radiation to an emission process occurring at

or near the electron gyrofrequency or the plasma frequency (for a review
see eg. Warwick, Space Sci. Rev. 6, 841 (1967)). More recent work centred
around the question of how Io modulates the emission (see the article of
Carr and Gulkis (Annual Review of Astronomy and Astrophysics Vol 8 (1970))

for a detailed review).

The theories assume either that Io generates the decameter radiation
locally (see eg. Gledhill Nature 214, 155, (1967)) or that Io generates
a disturbance that propagates through (1arge) distances in Jupiter's
magnetosphere to the séurce of the decameter radiation, possibly the
Jovian Ionosphere (see eg. Goldreich and, Lynden-Bell Ap. J. 156 (1969)).

An objection to Gledhill's theory is that there is no apparent source
for the high densities required by the model. Goldreich and Iynden-Bell
argue that the decameter bursts are due to micro-instabilities initiated
by a curreﬁt of kev electrons flowing along the magnetic flux tube that

passes through JIo and into the Ionosphere.

A conspicuous success of this theory is the explanation of the conical
beaming observed for the decameter radiation, the highly asymmetrical
longitude dependence of the bursts, however, (as remarked by Carf and
 Gulkis (ibid)) is not explained. (See Goertz, PhD Thesis, Rhodes
University for a critical discussion of the theory of Goldreich and Lynden-
Bell).

Goertz (ibid) takes up an older idea (see eg. Carr and Gulkis, (ibid)

p614) that Io generates hydromagnetic disturbances in Jupiter's magneto-
sphere, which are guided (Alfvén waves) along Io's field line into the
Ionosphere: the Alfvén velocity is given by 50/2%0{3t (in usual MKS units),
so that (see eg. Warwick (ibid)) the waves slow down and stecpen (ie.

decrease their wavelengths) close in to the denser Ionosphere. This



localization of energy can couple to any of a number of instabilities

and so generate and/or amplify the decameter radiation.

This thesis considers the transmission of Alfvén waves from Io to the
JTonosphere. Various simplified laws for the variation of plasma density
are analyzed and juxtaposed to simulate a realistic density variation
along the Io-Jupiter flux line. Apparently the Ionosphere is pervious
only to high enough frequencies, in excess of 1 Hz. On the other hand
the magnetosphere cannot guide the high frequencies efficiently. The
Iosphere (that region of the magnetosphere in the vicinity of Io)

excercises no containing control over movements faster than = .05 Hz.

The analysis is megnetohydrodynamic and both transient and harmonic

behaviour is examined.



SYMBOLS

The following is a list of (non-standard ) symbols used regularly in the

text. A definition of the symbol may be found on the page indicated.

fanaz;inth;]
e, ¢
a lbl c, qD

A, B

FF.fs

He

ki

N)MMAK
» biw)

r°) qo

p 26
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p 53
p 14

p 43

P9

52

amplitudes of harmonic waves

filter parameters

driver parameters; also used (see eg. p 26) for coupling
matrices; also used ( see eg. p 40 ) as general (integration)
constants

normalised magnetic field: b is also used as a filter
parameter, see p 18

coupling matrix

diameter of Io 2% 3000 km

energy transfer parameters

filter transfer function

(generalized) wave number: see also p 57

coefficient for standing waves

particle densities: alsohb,p 54

L[ ae) |

Ionoephere parameters

Ionosphere parameter

filter/transmission parameter: aiso used(p 52) as the
distance from Jupiter's centre

filter parameters: T, is sometimes used to denote the
radius of Jupiter, see eg. p 5

radius of Jupiter g 70,000 km.

Laplace variable: also used (p 35) to denote distance
cormnection matrix: also absolute temperature ( see eg.
p 52)

distance variable: also used (p 48) as a characteristic
function

normalized velocity
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the coordinate in Cartesian x-direction

filter parameters: the roles of x and =, are sometimes
interchanged (see eg. fig.3,p 23%: also p 54(ii))

usually used to denote normalized time: sometimes used

1o denote Cartesian y-direction eg. p 8

a travel time: 4o = Mel2

a travel time: see also p 41

filter/transmission parameter ,

filter parameter: also used (see P 40) as a parameter for
the law (= fete ) .

specific speed: also (5.=@(&\(p 26),{{’{5&3(1) 16)

normalized density

filter parameter

exponent in the density law P=L’°/~3s

magnetic field ratio

filter energy parameter: also used in Section 5,see eg.

p 43, as a normalized time: also used as a magnetic
colatitude,p 52 '

travel time Xo =3 X

used in the body of the thesis(Sections 2-5) for the travel
z(i,-h\ : used in Sections 1 and 6 as the MKS permezbility
Po = bE X107 Heary/m

used generally as a length variable: see also p 39

filter parameters

a characteristic plasma density

normalized time: see also p 34

travel time x, »x

used generally as a phase: see also p 48

transmission ratio: also Xy p 30

frequency: see also V., p 54



SECTION 1.

BASIC EQUATIONS

In conventional MKS symbols, the magnetohydrodynamic equations are
(see eg. Alfvén and FE1thammar (1963): Cosmical Electrodynamics 2nd Ed.
Clarendon Press, Oxford: Alfvén uses CGS units).

(1) vx ? - Juof

(1i) vx © - -2Boe  with p.H-o0
(431)¢ DP/pr = TXB —wp + F

(iv) —2fhe = wi¢P)

(V) p = oeonst P°

(vi)7 - c(E+ ¥xB)

Denote the above equations (1.1) (1) e (w_).

W

Here displacement currents are ignored in Ampére's law (1.1 (i)); P/p.
is the convective derivative %+ + .V 5 Pt ‘f{ conserves energy
for reversible adiabatic motions; o is the electrical conductivity and
-

¥ is the totality of non-electrical, ndn-pressure forces acting on a

unit volume of plasma.

We will assume that Jupiter's external magnetic field is that of a dipole
inclined at an angle of 10° 4o the rotational axis. (see eg. Morris and
Berge (1962): Astrophys. J. 136 276-282). Io rotates at an L value
approximately equal t0 6. The corresponding L shell has a radius of
curvature in the order of (6xr)/2 = (6X710,000)/L = 210000 km

where o= 10,000 m ig Jupiter's radius. Clearly wavelengths much smaller
than 2x ('xxz»o,ooo‘;g 1,200, 000 bn will not feel the curvature in the
dipole lines. Now we calculate (see section 6) a maximum Alfvén velocity
of .46c = .46 x 300,000 = 138,000 km/sec along a field line. With 5 Hz
this gives a wavelength 138,000 + 5 = 27,600 km << 1,200,000 km. Thus we
are at liberty to straighten out the Io-Jupiter flux line in the analysis.
In detall we mark out a Cartesian reference frame, in which the To-Jupiter
flux line unfolds onto the x-axis., The zero of x is in the Iosphere and
the Ionosphere is located at both large, positive and large, negative
x-values. The y-axis, pointing away from Jupiter,is in a meridian plane

of the dipole and the z-axis completes a right-hand system with x and y.

Of course the dipole field underlies the x-direction.
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The above approximationé are particularly suitable in the Iosphere and

the Ionosphere, where the total curvature in the field lines is small.

The majority of our considerations will be in this frame of reference
unravelled from a spinning dipole. We will make the approximation that
the equations (l.l) hold true in'ﬂme@ccélerafing) frame. It is under-
stood that the usual rotational forces are included in.';'. The error

in Maxwell's equations can be estimated by regarding the acceleration

of the frame as due to two effects: the (constant) motion about Jupiter's
rotational axis and the 10° tilt of the magnetic to the rotational axis.
The work of.Trocheris (Phil Mag. Ser. 7 40 no. 310 Nov 1949 pll434154)

can be used to show that the former effect is of the order NP4 where 5L

is the angular velocity of the frame, D is a scale of interest and ¢ is
the velocity of light. For phenomena on Jupiter (Sl = 1.76 x 10_4 rad/sec)
influenced by Io (p = 420,000 km = radius of Io's Jovian orbit), we have
2D = (1.76 x 1074 420,000)/3 x 10° = 2,46 x 1074 whier is very small
compared to 1. Also it is clear that the latter effect can influence

only those events less frequent than {0 . In particular for 5Hz, we

have /5 x (2K ) = 1.76 x 10-4/101t = 5.6 x 10—6 which is again very

small compared to 1. The approximation is good!

-y
Now we are including in F gravitational, ceantrifugal and Coriolis forces.

@he tilt of the dipole is neglected as an apparent force). The first two
are derivable from a potential ¥ (See Gledhill (1967): Goddard Space Flight



Centre Report X—615—67—296) which is unaffected by motions of the Io flux

line as measured in the rotating frame of Jupiter.

Conversely we will be able to find motions of the flux line largely

s

independent of VY.

Iehnert (Astrophys. J. (1954) 119 647) measures the ratio of Coriolis

force to magnetic force by the parameter Xo = S2/w  where §) is again

the rotational velocity of the planet and w is the angular frequency of

some hydromagnetic motion, For Jupiter £l = 1.76 x ]_O—4 rad/sec, so that

for 5 Hz,X= (1.76 x 10‘4) / (2T x5) =5.6 x 100 e 1. The insignificance
of the Coriolis force in the Jovian context affords a considerable simpli-
fication as may be seen from the following. The Coriolis force is given

by zf(\?xﬁ) where U is the plasma velocity as measured in the rotating
frame and { is the angular velocity vector of the planet. For the moment

we turn the Cartesian x-axis back into its original dipole, retaining

(local) y- and z-directions in an obvious manner. Now clearly motions r:
of the flux tube will couple through . . At the Iosphere we would expect
two circularly polarized characteristic wave modes. At the point

approximately half way along the tube between Io and the Iénosphere,

where the field direction is in the magnetic equatorial plane, there will
be significant coupling from v, to the longitudinal motion Voo Thus a
non-trivial Coriolis force would severely alter the character of waves

moving in from Io.

Motions on the scale of Jupiter's radius, however, will be affected. (fol-

lowing Lehnert ibid.)

The preliminary analysis will be for an incompressible, infinitely
conducting plasma, assumptions which we will reconsider in a later section.
(see Section 6.) Infinite conductivity implies E +(¥xB)=0 with its
familiar interpretation of freezing the flux lines into the plasma. Also,
we want to investigate = Yoo , & non-constant function of x, so we

interpret incompressibility as v.& #)=o rather than the usual v. ¥ = o

With these approximaticns, and using a vector identity, the equations (1.1)

reduce to:



(1) 28/ = v xB)
(i1) v.@=0
(iii) t >V /b =

(iv) v.&3)-0 -

P -
~ v (B 2pe 3P+ N) 4+ <'/,;,3(1§.v\ )

which we refer to as equations (1.2) ((i) ... (iv)).

We will be interested in solutions to (1.2) such that V(87/ape +P+ )=o,
Now as remarked previously, AP is independent of the motions of the flux
tube. Also, we will be regarding ® as a solution t0 the remaining
equations (1.2). Thus Yp= ~V(B‘/2fo“‘3') serves to define P for particular
motions in Jupiter's ¢ —environment. That P does not couple back into

the equations is precisely the analytical convenience in assuming incom-

pressibility.

The first results will be appropriate for a region of the magnetosphere,

such as the Iosphere, where the underlying magnetic field does not vary
gignificantly. In the Cartesian frame we thus have an underlying f; = (Bo,o,o)
where Bo is a constant. We look for pla}rle x-solutions such that the
operators %3 t®%z:=0 , Then incompressibility implies that ¥ vi is

a constant. At a large distance from a source v is zero and so v, = 0

for all x is the consistent solution. V. ®8=o0 implies that B_is a
function of time alone. But Paraday's law (1.2) (i) in the x-direction
gives ?-5%" <o ,as H =& o B_ = constant = B_. It is easily showm

that in the y and z directions Faraday's law also gives By 4, = Be®% 4y
33,/0*‘ - go’bv,/‘bx
- s o . - = Bo
Momentum conservation (1.2) (iii) gives T2y 4w 51—0‘3:3'4*
Ty = )g—,"_ P
There is no coupling of the transverse y and z wotions, as we .expect on

physical grounds. We will consider the y-motions

by £y = Bo Py 1

L3
f (b\rgét = (504“,\ fbba/,bx r

where we have set by = By' Clearly these equations represent a factorization
of the familiar incompressible, perfectly conducting Alvén motions into

partial waves. Indeed, we can substitute t0 obtain 2 V3/jxt = Mo¥/g! 2oy Sort
= \i,. 7;:? where VA = B /U-'o‘f)”‘ is a (1oca1) Alfvén velocity. We can
call such an equation, with varying *f and hence varying VA’ a generalized



Y

Alfvén equation (GAE). The field b_, however, satisfies
,:4;(5;\ = g.": Z(4%)  which cammot {e reduced to GAE in a non-trivial
way. This incompatibility of by and Vy motions will in general invalidate
such theorems as sthe equipartition of energy eg. we will see that the
kinetic energy i_fu:;' will not in general equal the magnetostatic energy
£#3) in the wave. At this point it might be thought that the crucial
parameter is VA’ giving equal weight to variations in BO and T"L". That
this is not so is seen from (1.3) which remains a good approximation for
Bo = BO(X), provided the characteristic region of charge for Bo is large
compared to a wavelength (see Section 6.). But then d%¥="*fwy gives
a scale change in which (for T a consta.nt) the motions of by and v_ are

compatible and Alfvén.

Thus through BO = BO(X) we can at most slow down (or speed up) a wave: to

change its character we must vary S N

We will use normalized variables = Yy / (B:én?:)v" , b~ b /) B,

g L)t , p- (16 /5 )50  where f, is a characteristic plasma
density. Here @ /ye'@u’is an Alfvén velocity: v, ® 4 p are dimensionless
while 4 has units of length.

The equations become be = p'
4 “ B 15)
Ba - V—:.. ?

coupling t0 V- P Uy, =0 where all subscripts indicate partial differen-
tition. We note that p is an inverse speed i.e. a normalized time per

unit length: we will call it the specific speed. We refer to P‘ , however,

as the (normalized) density.
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SECTION 2.

* b ‘
THE DENSITY TAW § =(3°) (TRANSIENT BEHAVIOUR)

We can make the f&ollowing classical comments from the theory of partial
. The

characteristics dy=tpax imply through Riemann's method (see eg.

differential equations about the pair b« =p vy

, ba o= v
Sommerfeld: lectures on Theoretical Physics: Vol VI Partial Differential
equations in Physics: Academic Press) for hyperbolic equations, a finite
commmication velocity (5" . Now (as in optics) vw -p vy, =0  gives

a ray theory only for the higher frequencies, the lower frequencies being
denied a § group mobility. In fact the magnetiosphere should whistle
at the hydromagnetic frequencies. Also, along a characteristic, we have
db = 240 : for equipartition of energy we would need d (bt pv)= 0,

Thus there is a departition :vdp in the wave.

In this thesis we will investigate the particular law (= (’“’/g where x,

is a scale length, for various positive values of the exponent 3.
At various stages in the theory, however, and in particular in Section 5,
we examine the relevance of phenomena prédicted on the basis of the
particular law, to a general ¢ variation. Before proceeding with this
gection the reader might find it convenient to refer to Section 6 where the
relationship of the law ("%\gto a physically likely density variation along

the Io flux line, is discussed.

In oex ¢xe , then, we have typically
4

»

P = Q"/ st

» X
o >y
' X
Now @"‘ is a specific speed:hence ’J%(ﬂ‘L@ﬁ)qx is a time for signalling

B . o -3
from X —Xex ., Integrating we obtain for &1, )= ié‘s" [ =04 ]

5 . »
Thus if §and we imagine (-(2) extends up to x=0 , lim WpGd = Xm,

X5 0

But if &y, 1w Tev . . The law 5=1 is then the dividing line

L L2 o)
between laws with finite and infinite travel times Tg(e+). The physical

significance is as follows: when &§<«1 a signal entering (= e 7Y
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from the right (see, in particular, the JTonospheric calculations of Section 3)
will reach ®<o0 din finite time, feel the immobility of the (ini‘initely)
dense region x 2 o , reflect back and set up a standing wave in oex<x,
Thus no net energy can be passed into such an (idealized) Tonosphere in
a steady state. When &>1, however, (e» is infinite and the wave never
reaches x=o {0 generate a reflection, and energy can be continuously
fed into the Ionosphere from the right.
1 -3

If we consider the travel time to infinity ;&) - L pax » 3{3‘ =y )
the situation is reversed (we imagine here that p- Q"/Qg extends from

Xexo $0 + 00 ). Then lim 6;(x): 3% when $¥1  and =eco when <1 . J-1
again gives the dividing line.

Evidently it is analytically wise to regard §-1 as a singularity: one

way Of accomplishing this, which will prove particularly convenient in

the later analysis, is to write 8= "/m-1  for wma1 and then 8-\ is
obtained only as the lim &‘“/m-;\ . We have
m- oo
e T
and 4 =)
\ R V .
° 1 ” °
. .
so that 8»1 for w-1 and o¢821 for -seme o,
[T/
Now under a change of variable ¥ = 3 {pdx = & (m-1) ["" /xu/...,y]
the GAE Ui = po vy, =0 becomes Uy, -0y, 4 2 -0

which is an important equation in Riemann's unsteady one-dimensional gas
dynamics. (see Somerfeld: Lectures on Theoretical Physics: Vol II:
Mechanics of Deformable Bodies: p.265 et seq: Academic Hess). Sommerfeld
(ibid) references Bechert with a lemma : if w golves Wy - Wyy + (\M/Q wy =0
then u = -;- DwLg 2%, solves v, - vy, 2} /g vy = 0

5%

Now the general solution for weo o

xl;._v‘g\j*'?u-‘ = 077"093":0)
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the wave equation, is known: clearly then by induction, we can obtain

the general solution for the densities w=» 0,22, t4 ... eg. 1if w solves
g )

. ? 10 o2 N
the wave equation v= § ;‘; solves wmer t § 3y (15%3) ° oyl w

it

solves wm=4 : on*the other hand fw‘zd‘i f‘:; ai solves =-1
etc. (We will mention a beautiful connection between the analytic
viability of Riemann's equation for #=o,22,tu,.... and the Bernoulli-
Liouville (see eg. Watson: Theory of Bessel Functions p.85 et seq:
Cambridge University Press) theory for the solution of Riccati's equation

in elementary terms).

The densities wm=3,4,... give & : wme-y-u.., give §et ., We will now
begin a detailed study of the case w =2 & p=&/)" or Pi" @o/ydY , the
inverse fourth power density law. We remember that as J§»v , the travel
time (e is infinite. On the other hand lim ©;0 - %= . x, is
finite i.e. there is a finite travel time to infinity. (Note: the finite
travel time 1}:};@ Op 6D = xp arises because the Alfvén velocity Pu‘

gets arbitrarily large. This will imply a signalling velocity greater than
the speed of light, which is impossible. The detail is that in P> vy = bx
we have conserved momentum non-relativistically. Clearly we must be
circumspect in using the physics Vix —@ Vyy=o ). Also g = %/«

(Where we have chosen the plus sigrl).

Now as g—}{f" is a solution of the wave equation Wge —wyy = © whenever
w is the reduced equation Uy —vyy ““"‘l/g = © has a general
solution %; Teyve) s % 3@ -¥) where ¥ 4 9 are arbitrary except for

some obvious mathematical requirements.

Then the GAE vy, ~@7Vyy © V- (%4)"vyy = o  has a general solution
x ‘1 O+ xhY) re g6 —x3/) . Por x>othe wave = {3+ x/¥) moves and increases
to the right: x g (3~ %A moves and decreases to0 the left.
Also we notice that the solution »3 +x3 to the GAE would be given by a
WKB method: x%s/x , as a primitive of the specific speed - &4 is
the generalized phase, while x, inversely proportional to a fourth root of
gr=®e /0%, is the WKB growth factor. We might say then that
Ptz %o/ is accurately a WKB medium. Of course, for a high frequency
ray theory we have v oec t% (4 b %+ for any density law ¥ (as

obtained by Alfvén and Falthammar (ivid) p.87)

We consider an Iospheric veriation of (-\ as in fig (1)
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»
e -figm.
‘ pe A
B )
1 P osny
— it ]
o
] . !
For % ¢% |, g=1 . POr =»x ,p-@ = &/x), a constant < 1.
S For xe £x 2x. , B= (re/x)® . Io generates somewhere to the left of

%o o We will sometimes refer to the region =->x% as the filter. For

convenience we change scale as follows:

for X £ Xo set

'g = X 2y
X, & x & ox, set g = " /x
%, & % set B os (ax —2[h X

The variable ¥ increases continuously with * through % and x, . A%
Lo, T = %o = —%o , At «, N 2RI AR R TR Also we have

5.2 %, 20 .

The preceding remarks on the speed =4 mean that the general solution
to the GAE in ¥.->x% , is given by § where w is the general solution to

the wave equation wge -wyy <o

Thus we must solve the equations

Wy -5y =0 in ot %t g, (2.1)

in £ %
U",,g - Uyy =0 s,

The equations couple at the boundaries X, %%, where we demand continuity
of v and vy, conditions which are conveniently obtained from the eéuations
Uy=by and f*vy = v, using Feynman's method (see Feynman, Lectures on
Physics, Vol II, Chapter 33-3). In detail, the method would give us contin-
uity ofrand b . But if the necessary limiting operations are inter-
changeable - a condition we will certainly assume - then vy = by gives

the continuity of v; . While the condition on v may be regarded as obvious

[
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for comnected bodies, that onb precludes the existence of surface currents

at v or x, .

In the normalized. variables the boundary conditions become

,
at L v ('g.-; 33 = "ib w G:,‘ﬂ
U ( g.-, a} = -.’gi‘ w G:' 33 + l/go w? (20*'33 (2 1\
and at x, Mgy w g5 y) = v 1)
Sy wen, ) F ) vy (BT 2 g ont )

Now we assume that Io generates a wave i G-%) travelling to the right in
%+ % . The wave reaches %=% at time yeo so0 that f(ﬂso for $£>%,
but as we include shock waves in the analysis f G.) is not generally assumed
equal to zero. Where necessary, the reader should interpret in the sense
of generalized functions. We will say that the driver ¥ decays if
L f®) exists and equals zero. This 1at1:e:r" condition will be assumed

go-m
where appropriate in the theory.

We will use the Laplace Transform method for its ease in incorporating
initial conditions. Also at this stage ‘'we can mention that a non-trivial
convergence problem arises in the analysis which seems to have a natural
resolution in the Taplace Transform method. At a later stage it is
convenient to adopt a more direct, physical approach. In what follows

all attempts at mathematical rigour are abandoned. There should be no
difficulty in providing the justification for the method. As in all

transform techniques this is probably best given a posteriori.

The equation Vgy - Vyy = © for %+%. transforms in time to

‘}J\-‘—‘;’l -s*T e - SV, 0N - vy (,04) where v is the transform of v, and %vo

is the Iaplace variable..

But vig,o8) = @) and vy le 09 = - T'w).

LAY | et5 e Play -5 which has a general solution
d¢* e ;f(?: f@> ’ PECERA L% ) h A aRr
T o= e fo. & Fpnap + Ae D LB e , where A an

-~

. . © L esv
are functions of $ yet to be determined. TLet us set ‘i = f. e f(’Q,»\r‘)d.n' \
Now U@) is bounded as ¢ - -o , so we must have A =- $ . Then where

5 - 5 Y e lsns e
Vo = TE,We get T ®) » e [ e Pundu r fe T - Ye
for %¢%e .

In the region %,> % wg-w,, =0 transformsto d ® _3*% =0
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. — -%% -5 % %% %%,
which solves to w = [ Wo ®© - w, e Wy © - w, e ot

et % -1%%, e,

- e e 5%,

-t
where W is the transform of w and w, « @ (€)Y , w, = D),
For % %%, Vgg-i, -0 transforms to ;—’—;&53"“"3 o, giving

T A 084 4 8esI 8 ypere A/B are again constants. Here the
boundedness of U as % increases implies B=0© and where u,= T,
we get U= v, e T

We refer to the totality of expressions for U and ©® in the three regions
as (2.3). The boundary conditions (2.2) transform to
Vo x We/g TNy - M we 2 BN

- , &)
Uis wa /e M v“/zz w, ¥ Ji Bl = U0

It is now a matter of algebra to substitute (2.3) into the four equations

(2.4) and solve for the four unknowns v,

Eventually we obtain vy = -@%)N" () W e~ E _ cas)

U’, > wé "\9) -

’ 4

where H- r_‘ o) - c ) -
/(,] 4295088~ 43" $.'%%~ © 25(%, ‘2.0)

The factor (§,- ‘553 in (2.5) is the time for a pulse to move from ¥, t0 X, .
%f‘i‘-%,)

This explains the delay e in the response at % to a driver at % .
Now .f would give the field at x. if there were no filter «#-x and B-)
for all x . Thens§ would give its derivative. (It is true but not
trivial that sf gives the transform of the derivative of ‘f in the theory
of generalized functions as well.) In anticipation of later results
we choose to0 regard this product sf as the systems driver, rather than
i alone. The implication is that the Iosphere is a generalized A.C.
device. Following engineering usage, QCS’) is called the system lransfer

function. Let p(y) be the inverse transform py)- £ {fi@]l .

In investigating ¢ty) we will apply the initial and final value theorems
of laplace Transform Theory to !—-i(s) . These state, respectively, that

under suitable conditions lim peyye Ly < A6) and i pewdy s lim sHey |

Yy o S 0 Yoo Lo

We must emphasize that the reader interested in rigorizing the theory
would justify the applicability of these two thecrems, particularly the

latter, as a very central result.
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At a later stage we will consider an already-mentioned and related

convergence problem. In what follows let us measure zero time from

g * Ga' YD).

~

Now for the shock f(’g-xﬂ = AL (%-%3-9)  (where U is the unit Heaviside),
f«'- Co e fE-Dar = §F e Udr = Vs o.sf =1, Thus H is,
within a factor, K the response of the system to a shock input. We have

14 29028 )~ bs*6 5, ~e T3 L _Latga, —25t (v Sy 4 of)

= —28Y(2r4er) Fo63)

Hence Vim FYCO I A G 4%r)
Also Ay, bey) = _u_.:” o
g0+ 1o
Thus for a shock input, lisa vaE,,g\ = Zz"té,‘w Ty S I/H-(ia
and ;Q_‘;,::4 8,y = ?o/?f jT; .S‘M When(m i.e. Xo = X, and
there is no filter, 8\12 v&,y) = :is::* @y = which we

certainly expect. When %3 %, a,15 small so that u*@.,g\ ~ o2
for large y . The physical picture is that of two non-growing waves
of amplitude v ) moving in opposite directions in the filter x,-»x
coupling to the unit driver and a reflected wave of amplitude ~ %1 at
%,, and coupling to a transmitted wave of amplitude mr2 at some distant
point =, . Clearly no net energy passes the point % . We begin to
form the idea that it is difficult for enérgy 10 escape continuously
from the Iosphere, at least at the lower frequencies. To interpret
3:':: v(g,4) = */x, we remember that the shock W triggers a wave
x‘?ta:r:‘/k\ moving to the right in the filter from %= . At 9y = o+
(in the original time scale) we must have . fa =1 to match boundary
conditions, The phase x» in { will reach « at time vy = %,-%. . Thus
at time y= (%.-%.),the zero of the shifted scale, we have U (E) = », f(x.)
¥ (‘}.\= ?-:7', . The larger x ,the more the wave can grow in its
passage from x.. The physics in the growth is guite elementary: towards
%, the medium is getting lighter. To balance the forces in the wave
front, the decrease in inertia implies larger velocities. On the other

hand, aVv-wave moving from «» %0 v. , will decrease,

In systems engineering, p)is sometimes called the weighting function or
the memory function. This is because v(4,3) is proportional to the
convolution of the driver sf with #H¢) « £{3»l . It follows that events
in the driver 313 Pe-9 = £ s T} which occur at a time y can be

recalled to an extent pily'-4) at a time (4-y) later. Hence memory
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function! The significance of the result lim pre) = = Yier v gryemstao
is that the system has infinite memory. Morse-;jer, it remembers remote
events equally. If everything of significance in the driver occurs in
finite time, so that %Uf@.“‘a\'i becomes small, then the system will
eventually recall each event equally and it remembers them in a simple
sum. Now physically, events are changes ;’-J{féo“%ﬂ in the pulse so that
only a driverf with net variation can permanently affect the Iosphere.
Thus a pulse with f(2.)- ;’f,,"’"_‘,, fe)= o will eventually be forgotten,
while a shock, with its interpretation as a generalized function, will
be remembered. Apparently, then, very low frequency motions can sustain
convective movements perpendicular to the field lines, particularly as
v increases WKB away from the Iosphere. Such motions might produce

an ex-Ilospheric trigger for Sonnerup and Laird's (see JGR (1963) 60 no 1
pp 131-139) interchange instability.

We initiate now a systematic investigation of
BE) = *fouzasXi-zas) -e#®) ’ where po =2@&-7.) 0

(Note: do not confuse this Mo with the permeability p. of free spacejthe

latter has been rormalized out of the equations in (1.4)), is twice the
travel time for the filter « -x% . In particular we will interpret it
as the time for a signal to leave x, , be reflected from % and return
to # . If we take s large enough we can expand Heras

o
Be) = o T oy et e Mews
Xz O

ICID N CED M

where r =29, 2o ,fo = Y29, co, Yo = ~“Yyweg, = -nndo

As 'g,e% ¢o

y Tiet20

If the filter were 1o extend beyond X, , so that §-3:=("=~/,,Jz for all x % xs,
then -2%, =2x, would be the time required for a signal from <, to

be reflected from infinity and return to x, (see previous discussion on
finite travel times). Similarly -2%, = 2%"/4: gives the time for
signalling and return to X, . Thus -ro = ='4¢ (-r, = %) gives a natural
frequency for the filter we—>oo (xi»@)., Of course Inivir.| . Clearly

these ideas tie in with the above interpretation of p. .

Each of the terms w in He) represents a wave arriving at %, at a (shifted)
time por . The waves are generated by successive reflections back and
forth between «» and %, , as is familiar in optical filter theory. The

first wave is proportional to 5/(9;.-,)(9-“\ , the second wave creates an
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impression which is é, factor 3"/(_5& Y s- D) of the first, and so on.
Now .“‘/(sm;is-r.’) s [_7?8:’—;,][;:*,“ - ;’:7] has an inverse laplace transform
m.\tc"’é- e™] . This functionlc'g—?&—s fc"‘ﬂ.. c"‘é] is a typical element

in the total memory of the system: the element operates from one wave to
the next. We can now understand the mechanism of the total recall implied
by ‘_{:o p{y) » constant ¥ o0 ¢ as rneo, e ™3 increases with 3 and so remembers

theédistant past. On the other hand e will emphasize recent events.

A corollary of the infinite memory e is that it is not obvious that the
behaviour of the system is convergent. The problem comes into relief

L
(;#3 as a mechanical system. With a2 mass

when we analogize the facter
mo, a friction V.,and a spring constant ke we would require e =~ =%<0
and ‘.'.E% =r-r, ¢ 0o » Thus the analogy requires %«o a negative spring
constant, giving an unsitable system. Thus there is no local physics to

give us the intuition for stability.

Apparently stability must come from the co-operative behaviour of the entire
filter. We see that as ¥, is negative in(‘w%z_m the wave K will oppose
the effect of the wave (x-1) ete. A term e™3will, on reflection, generate
waves proportional to —eUR) gng Cryopny e TTely- A9 (amongst
others). The non-trivial problem (see Appendix) is that all these waves
converge for large y . Physically we may expect the Tosphere to act as

an underdamped system with overshoot.

In the appendix we show (essentially) that we can write

P = v
ANy s lreeed e
© Yo xco L(;-:)}' fc (r-e- ‘ﬂ { Yu {elru-ny - ‘fh.-nt c(’r-u-'\—_“ 2
’, 44
15, e
[l i<
) b (v faadl
4+ (" LS QO) 'E_:‘a '_;_T e i’c- “r- “ﬂ rh. (C - u)]
—_2.t)
. 2.5 Ty Y L . - {rs- l’o\"’ e = 7,?-_ r,’— . ir 71y
where oL o (‘_‘*rﬁz z, ——L—;.'f:' < O) = Zrr, 20 , = ) T’, ;—'_: 4 0O

T is a normalized time T- ;.g—o and the notation [7) gives the largest
integer ¢7%. The first term in (2.6) is defined as zero for 7:6 .

The functions fK are modified spherical Bessel functions of the first
kind. We have Y _(z) -~ (?-23”" I (%) . These functions can be expressed

Y
\‘-t'_

in terms of elementary functions eg. [@) - Ainh (%%3 (see Appendix).
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For T4\ we get
-1

p(r)z[————-] (r.e.")“'y:,ro;ﬁ'f"r} giving p@© = ~nfe = 8o

L )

giving, for a shock input, ;._;;* v(g, P=-283% = 2, which we have obtained

~

previously.

It is possible to prove the following facts about -s&) for -« .

Certainly -pt¥is positive in the range. It has a maximum value rnr,
-%

0

at T-0 and a minimum value Lr.r,\e(i',ﬁ%’(where dorr =% >V ) at

Y= [Vaetnrry) In (/00" £ 1. Alg0 we have from the final value
theorem ;u_:f; e = b (2nn /) = f‘% .We can then establish the
following inequalities for the maximum and minimm values: (nf.) 4e

which gives the overshoot. Also we have

JIGIDE

2
< (YT T & N
ot T,
- 1- a5"
__P(f\'gﬁ.‘.{&oﬁ' °ie

do

LIE R P (] o )/ ei'*a el"&a
We have, of course  (nr) &, OO0, gy 22 A 2 (rr
1+ de
We can draw a sketch
P(’Y) b A= oo
k r.r.z‘, do TS
° , T
2z ﬁ
(=) 5 N [ Yool
e, (4,3 2 ]er\
gl R E-)
M H 1 Ay
2 |
-~
£
-
H fig @)
(=t ry) — M
£y
}.
) z N ” e‘l- de 3
where we remark that (n) T is not necessarily less than { ° b=
o ° {4 Ro

Graph (1) plots peoy- £7{§ ©Y] for various values of %o & r,
The properties of ptrimentioned above for v¢| are displayed in the
curves. Unless «. = &~ < 3  is large, there is very little oscillation

in the response for -« =»1 ie. the driver is cancelled almost immediately

by the first reflection.

o JQ/H- do\
<

N &

](r. ro)

The physics is as follows: When the travel time m. is small, which occurs

for a given X,when X, ¥x., the reflection w=)contains as up-to-date, though

inverted, image of the wave keo and cancellation will be complete: when
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Mo 1is large ( >> %o for the givAen ¥o) Significant events can occur
in ¥so0 of which x»*! has no immediate cognizance; the time Mo for
information to be communicated vecomes important and it takes that much
longer for a steady state to be achieved. Clearly we can extend these
ideas to show that the filter will track accurately any motions in the

driver s‘_.f which are slower than M.

Another view of the problem is that perturbations should take a time Mo

to die out.

»

In Graph (1) we see that the asymptotes of -p(™) increase with Inl: this is
to ‘be expected for a given driver acting on progressively lighter media
Go ¢« 5 < 4), (In reconverting to 4=po ¥ it should be remembered
that me 1is different for each of the three curves.)

-8B
Graph (2) shows the response of the filter to a driver f(’?,'zﬂ = Aye 3

The numbers attached to the curves are r,,n, B,A, respectively: thus eg.

-1,-2,.5, 1 gives the response of an Iosphere f=-1,6r =-2 to a
driver y e"’é& . To see the desteepening of the waves we must normalize
the driver 35'52’ by the specific speed ’ 3 at * for each Iosphere re n.

The dotted line on the Graph (2) represents this normalization for the
case To=-1 , = -2, The growth of the response with respect to the

driver is of course the WKB effect.

Graph (3) shows the response of the filter to a driver f(?.-ax = Asw 3;

The first four numbers attached to each curve are as in the preceding
pafagaph: the fifth number is the time interval used in the numerical
integrations. Clearly the filter is capacitive, letting in the higher
frequencies. This may be regarded as evidence for a more general coupling
theory which we will congider under the harmonic analysis ( see Section 4).

Also, as expected, it does not take many oscillations to reach a steady

state. Graph (4) gives the response to the single pulse ‘f(’@,—-:ﬂ=[lv’u.(g‘ %\]*
x{AsaBy],  where Al is the unit Heaviside. The numbers attached to -

the curves are as in Graph (3).

We defer a full w,n - parametric analysis of p@) to Section (4).
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SECTION 3

e, |
THE DENSITY TAW P =(2%) (TRANSIENT BEHAVIOUR) (CONTD)

If we displace tﬂé driver in Section 2 from the high to the low density
terminal of p-(xnifand reverse its direction, Wé move from a consideration
of the Tosphere to a consideration of the Ionosphere. Clearly much of the
physics, particularly after a time pm- and into the steady state, will be
the same, In the total problem, however, there are features specific to

the Tonosphere. In this section we will briefly discuss two of them.

Firstly, in the Ionosphere, it is sometimes permissible to neglect
internal reflections. Yor example, the decameter instability (which gives
rise to the observed radiation in Goertz's theory) might eat up the pulse
before it can reach and be reflected from the lower Ionosphere. Or perbaps
viscgous effects at the lower Ionosphere/upper Atmosphere are severe

enough to damp out the return wave. The convenient picture is clearly'

¢
LY
)i
By
X
! I
Xy Kyw &

With x,»o the travel time m. (given byl (1 - 2Vwhen % 4o ) is infinite so
that we have formally precluded reflections off x, . (note that here x.<o:

compare with Iosphere).

Now consider a driver u'=ﬁxs~ﬁ)nwving in from the left and arriving at
%o at time y=o0 . There will be a reflected wave f.t9 back into xexs
and a transmitted wave xégf;gx into the Ionosphere. In analogy with a
pulse moving along an increasingly heavy string, x.g(g1+3\ propagates

(slower and slower) to the right, diminishing WKB in size with the distance.

If we require continuity of v and v, at %=x we get

fo (3"“\ v T, (yr2e) = 2 3o (20 +3) \
’ f {3.]

- ro (.3-)‘;\ + f\ (‘a ¥ %o) ¥ Jo Cro¥ld = * 3;(104—33
solving to

3]1)‘5 r3
°

fo g lovy) = € i {fag-le®™ e (50
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which gives an explicit physics. The filter responds only to variations
gﬁ(L@-xo\‘; in the driver, as emphasized previously. If g{é(f° (y-»)
becomes small, the integral in (3.2) ceases to change and tke factor
e 3o reduces (G <o!) the field % gix~+y) at %, to zero. Thus for a
shock f,(y-%) = Wy (U the unit Heaviside) we have %o g (xovy) = 3%
-;"3’ ° ., On the other hand we anticipate capacitive behaviour.
Indeed for a sinusoid f{, cy-%o)= antow) wWe geb %o g e*3) < 3¢ 4ih o4+ 9)

- Am 4 tosé e Mixs where & = aww ].;'and ve beny

w
e —
[m‘él‘lxx&
As ¢3¢ increases with the frequency w , the capacitive behaviour is
apparent. Moreover the behaviour is critical around w=o as may be

seen (for &, =1) from

s ¥
r ’
3 &)9/
o3 =
‘;a/ /'//"-—_-—_#-_-——___¢7 Qs w‘.)' *
&7
4
/
4
L
o [ 2 % : it
3L 1 d L 2

The relevant physics is in the basic equation vy = b, . At steady state,
or at low frequency, by 2o . Thus % 2 o. But the heavy region near
%,:0 is immobile. Hence V=0 for all x . It is wonderful how the
mathematics compacts this physics into the formula ASOL""Z + 3y : from
the second equation (3.1) we see that in a steady state g xo+y\ can ohly

be zero.

Yling

Pinally we remark that the decay ¢ from .4y in the Ionosphere

is in contrast to the initially growing response e~ ™3 tc a similar

shock in the Ilosphere (sge Section 2). The reader will find that detailed
consideration of this point gives an additional, non-trivial insight into

the workings of the filter.

The second feature specific to the Ionosphere is tle uncertainty in
boundary conditions. As with the mathematical theory for the Earth,
there are difficulties with the plasma condition at the lower Ionosphere.
Nevertheless there is likely to be a rather narrow region of precipitous

decrease in plasma density towards the upper atmosphere. In a picture
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(St fig

pel

%y oL, °

2
we can model this effect, be it crudely, by discomnecting @, from (%)
and making it small.

There is the following important physical consequence: the convected
velocity field v enlarges into the light medium @, . But the electric
field B, is given by vy Be(seeSection 1) proportional to v : thus,
basically to conserve energy, the Poynting term E, b makes b small in the
region ¥»x, , We have then that x» is a significant reflection point for
b —-field and there is accumulatlon in xexs. This is obviously of
importance for an instability whlch relles for its basic physics on Fermi

type collisions between particles and magnetlc field.

We could analyze the Ionosphere in fig. (3) using the laplace Transform
method of Section 2. There are additional technical difficulties due to
the disconnection at %y which fragments the modified spherical Bessel
functions ¥, . It is particularly apt to say that we would be concerned
with a theory of functions which bear a derivative relationship to the

f:’, as the associated Legendre functions ?f\oto the functions ﬁ}ﬁ .
We prefer, however to look directly at the waves, as in the previous
paragraphs. The method is straightforward: the wave v = x 3°(§JA‘+3}
reaches % at a time 4, = *o(1=%)transmitting the wave H,Lg—GMS into x»v
and reflecting the Wa";re % g,{y- L") back into xex, . Again matching
boundary conditions we get

ng, (y- PRI

- canthY
= e"% (Pnﬂ-‘ )‘o‘/fé‘ fa e 3 (o o : 3

_._.(5.\(\ * )
. Ly~ RlZed) 3
3 (;;»‘4 g 2 3 ((j;\, 38 K

At a timezjgthis wave will reach ¥, and so on. (From our experience in the

Tosphere we expect the method to converge).

The Graphs (5) give a dynamic portrayal of the passage of a driver

v o= i%—xoy s (26 )
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2 ]

into an Ionosphere ¥o = "% %> T3 , Also we

3
have set pi» 1 : as (‘:—5)‘ = (‘;‘;i” }=4, this constitutes a discomnection of
_—yP
3.

The curves plot b=field as a function of distance in the filter ¥ »x. ,

1 ) - =3 * 3
at successive time intervals of approximately 4= t49 = 3 CGEAT "/c;ﬂ
= (%) = o253 | The b field increases towards the higher

densities at x,: -3 «~ -5 | as mentioned briefly in Section 2. (b is

.ealculated from the above method as bay-= J: v da~7
Alfvén and Palthammar (loc cit) observe that the increase is basically a

statement of the conservation of energy. In addition, the waves steepen
towards % ie., the wavelength decreases and there is a localization of.
energy in space. It is at points of the medium where the localization has
been sufficient to accumulate a large field energy per unit particle, that

instabilities will be initiated.

We remind the reader that the frequency of the pulse in the medium is
that of the driver: there is a change only of wave number, not of freguency.

The product ¢v is a non-linearity in space, not in time!

An important feature is tle development of nodes and antinodes ( at ¥ -2F, ¥-47,
Aoms and xy-2, ¥-wresp) An instability which feeds off b should have hot
spots approximately at the antinodes. It is meaningless 1o extend a

magnetohydrodynamic analysis beyond this point. ,

Tastly we mention that the phenomenon-orientated physicist should not be
$00 hasty in dismissing the low frequencies as uninteresting. This is
because every real pulse is finite and contains a non-trivial spectrum of
freguencies in the front and the tail. Though the body of the wave be at
low frequency and without incident, the onset (and decay) of the wave
should register as an Ionospheric event. The extreme case is the shock
WUog) : the response e¥  grayels from % as the pair wv= () & deo (379
Cand be (-2)e*F oo where y, - % (1-%)and y-y, is thus the travel time
from %=x, 10 x=x, . In the wave front {i.e. y<y ), beuu)= "4 |
giving accurately a WKB increase. Also there is the associated steepening /

localization. Thus we should see at successive times, (with X = -1 ):
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One must expect, as mentioned previously, that close enough to x=o,b
couples to an instability. Movements at low frequency must not be

dismissed, a priori, as influencing the decameter radiation.

Also low frequencies reveal a fundamental difference between the
characteristic motions of the filter and those of its surround. In the
medium x<¥s , a motion v= [ (y-2) = W[y -&-xeY) is possible: but
across the boundary at x.,the wave feels the increasing inertia of the
medium and such U -motions are progressively damped. Thus in x-x.

only motions with wv,<oare possible. e flux law 15 =by then gives

B3=o for *e¢xs | but b;%o for x»x . Thus in xe<=. the plasma can
move steadily and maintain a constant tilt arcdan b = arcian (esg,)

say, in the field lines: in £>x, ,however, plasma motion will continuously
stretch the lines. Verily, then, the flux in x»x, 1is anchored at heavy

X0 while that in xe<¥e if uncoupled from «., 1is free.

We mention that the Ionospheric flux lines, sitretching out from the immobile
base x%0 to gain the tension to reduce the motions v , eventually assume
a mon-triviel $ilf = achn b« ekl flaog) O Vue 2T cacdanz,
Detailed consideration of this point for a polarization b, gives an
explanation of the "lead" of Io's effect at Jupiter from its dipole flux
tube (see Goertz and Deift, to be published: will be referenced in Goerta,
PhD thesis, Rhodes University).
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SECTION 4

4
THE DENSITY IAW P =(¥) (HARMONIC BEHAVIOUR).

In this section w:é look for harmonic solutions in a filter.

4
4
'fi g&)
PR o
U S
b, L
d P ﬁ'P"P‘ i
! . Looe T , where @;[‘{’f_:"_]is not necessarily L
We assume that in
N 9
X & Xy ’ U= a, e w (g-fof‘) + 0133“’(3*9"“) W“‘h b = '°s?‘° em(g-»ﬁvc) + O;Fo B“‘“(a "’ﬁs")

jus(y- PomaAe ., dwfyd ferd laly - flodo
XERER o s b PO ERSAY Ly TR ey £) ), b (rex- ) ez

x, 42 , v o=

e i'»( %—?.?!i‘) + cte‘”(%*ﬁ"?"‘\ N:'H'\ b. -f—l?'eoe;w(%’ia]?‘,) + ‘-‘-P'PD < Suy (3‘ 5!(’0"‘)

p ta.n

and examine the coupling at »x. andx, . (The actual field is obtained,
as usual, by taking real parts). The reader will notice that we use
amplitudes "o dn x %, "b°  din wex &% ,"<"in v «x" | respectively:
also, a subscript | indicates travel to the right, "2 to the left. We

require w #o

Coupling is obtained, as always, through continuity in v -dnd v .

At %o we then obtain Aa = Beb
a,
where a = (g.) , b= A
A- [ m ~TW Poxs e topa¥o ] B = e c.‘wp,xo ‘o e-fubpaxa
. N b
N ~Wpto N oo s Bs: - 222
(-v!UPb\ e bo (uﬂ?o) o (!_ A‘:.u?sle)e .w? o (14 iu?v‘o\c MP il
. 1w Po¥o . u‘h’?u‘ ~{ Bgn ' :
i A“[L:wlfw ] o por ) » , 8- S R RS DR s
. -lw o ~1wPexo . . o
Ew po) & e (ziwpora) (13 G poro) efpens o fopote

We denote all the formulae by (4.2)
.A.'t X, We obtain ?,b* Cc mhue c = (5:) X (csa;n\ b: (i';\’ ,
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H) (507‘0‘/#‘ -{w Boxe™ /e ‘w3 »* ¥
B ¥, € - P Joxe /%y c e fpo . fwiPo 2y
- 1
' 7 . oy LYY ) oo oo X4 G pupers
(1 = {w poxo'Ae e 5 (H‘ cw poxsla, 1€ ? o P,lgo) e.wM" {whpe ©
and '
. : : 1 1wPoP oy iw (24
- R iad = 4 a1 e e TF e bt

- ! (H' Aw Pexo /*’:3 € C ==

B fwped | Qiwgp) e P ~topeps
= Lw pofs ¢

= : z3
(2_ o Pox»") (-] 2w Poxo‘ /y..} t wf :n x, €

We denote all these formulae by (4.3).

The total filter performance is given by e=Ta where T= c”'e, 3A, T

may be termed the connection matrix. Clearly we have from (4.2), (4.3)

that T exists for w30 ., Hence we have that the only solution for
Ta=o (or T'eeo ) ig the trivial a=e (ere=o) . Thus a driver a3

will always leak through the filter: conversely the filter is never a

perfect magnetohydrodynamic mirror. Also,the invertibility of T makes

it impossible to set up a standing wave in the filter by driving it

only from one end.

Consider firstly an Ionosphere g
o bgE)
—_—
Be
] » X
75 o

We drive from X<xe {a,=1) and there are no sources in the ILonosphere
@%'—5. Then from (4.2) the transmission problem, in particular,
requires the solution of A a.) = Bo(2Y for b, .

fw Lgs poxd/e) | o U0 LY Bexe) ( _riwpoxe

— ¢ =iw Fvo Ao
ratio = X = transmitted wave/driver e 2'wgors 7/ + iwpore = [“’i’m{-@’;,b,; 4(ugd\‘3f ]ew

We get bixe )“; %o , The transmission
(where o< & - amcos| mw/cuf-b\‘u'/u.)‘]{] <« ¥ Y, which, for p.=\checks with a
formula (and a graph 1% 1)}in Section 3. We can understand the high
frequency bias, specifically as it appears in the coupling problem, as
follows: Ala.) = Bo ¢ expands to
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—w Poxo N a, e dw Poxo - b. e = Y- P Y
\ . 1% BoXo
(—l:w ?;) e_-iw@oX« + (5“3903 a, eﬂd@oxb = (- w Pbioy e 'b,
. . -lwapy "0 Bo X
Por good transmission a,%e. But then a: ¢ poxe boxe 2P 004
., —{wpox . lopora . .. . .
(iwpda, e P o-bopr)be st be compatible. This is only possible if pow>> 7

Now pew is the wave number of the driver to the left of xe . But in
Section 3 we showed that a shock (Wl'bh v, =0 \ is damped (v <®) on
crossing into the Ionosphere : moreover, for a given fp.,this generation
of wave-number is proportional to 2, . Thus the inequality £, << P
will be true if the additional curvature in the pulse as it slows down
in the Ionosphere, is small compared to the wave-number in the driver:
dynamically, as tx=b the inequality makes the motions b, compatible
across the boundary and there is no need to excite other motions, like
the reflected wave, to restore continuity to the physics. We get good
‘bransmission’. Conversely at low frequency: (a:ad hence small wave number)
the effect of the medium predominates generating motions b in the
Tonosphere entirely different from the driver: these motions can only
be maitched in a strong reflection. In terms of lengths we say that only
those wavelengths f:’:w which are much smaller than the Ionosphere (length

%o ), are transmitted.

With this behaviour we should contrast the coupling problem from the

lower Ionosphere into the upper Atmosphere

g
A
Pepe(r)
fpe P
—» X
*, ©
Y <
With b=1 and ¢a»o we must solve B,G) = ¢ (“5\ for <, to
get <, 3‘.“( 3-'?..!\ = { 2w fio ‘u‘/’l, ‘] o, e:‘w%(% 4"“1-‘5"/"'3 at x =x
14 iw (&o(ﬂaiu -l-i‘o‘/zt-) v

. T
The transmission ratio X equals & Poxe 2 Yry Lwpe (Po +x/2))

’/[u?.(};s‘]which is equal to 1 only when B, = (’,?3)x ie. when the density is
comnected at * . The reader will recognize */Ci»piy) as the trans-
mission ratio for the non-dispersive filter (see eg. Alfvén and Filthammar,

loc cit, p85 et seq).
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The physics is obvious from the preceding paragraph: to get through a
filter vwmmodified, a pulse must have significant variation in a character-
istic length of the medium. But here the meduim changes in zero distance.
Clearly the disconnection introduces an irremovable incompatibility
across X, . At best, high frequency in the ioncsphere can remove the
variation in x<x (and w A>xe , if any) : a reflection {-% =

2
=

- ?'(,’:‘D;

from % , however, always remains.

Macroscopically, the coupling problem appears as the off-diagonal terms
in the connection matrix. If the incompatibility of motions across the
boundary is removable the off-diagonal terms in the matrix should

become small with frequency.

i 2l Boxo Y -}
Thus at ¥e , A - < ( zoogs T ’;3 (uwpe) ©
. ro
i —rtu Poxo d 4w w
(.z:‘wﬁo\ e i (‘ Hwpo *)
[ wwpPeYe
-} —
€ p- ¥o © . But at %, B C =
~viwhoto )
! rS e . Lo
r . ..(wfio(?'" + g,‘-/,gh ‘;gw?c(;&.xﬁ x.;./z.')) . n._,p- (Pu.- ?*‘) ( 1~ l't-o@c(puh- ;:xxs
= ( 25w po xp* 2w (‘50"0"
» *
|. e ~i%?o (f‘nh - Yb"/ﬁx\ ( - W fm({\\iw' lo‘/)h\) e U»?o(p;!, +e /‘A (-—\ Flw po (X + PRI LY
H
iw Pe o* 20 us e Xo©
© [ R N S N R A } o py (PR - 2D (-— ( prxy = %o le) }
ro ( 1 Xt € 2 %™
w
e—m.,‘go (poxr = xot/xY ("((“»"’ ~_,,‘;-,,,"‘)) . w Po (prxr 4 %072,) ( Cpixs + 2/0) ) J
. 3 txnl
2¢p

Only when pi,=’%5&.(ie. R = L?w&hl) does the incompatibility disappear.

But then the medium is recomnected at %, .

The‘above results have been concerned with coupling per se. Additional
features arise when we allow two coupling points to interfere, as in the
filter, fig (4). It is sufficient to consider a recormected filter, driven
from the right
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3

as in the Iosphere. If we solve (ﬁ'\:T(:L,\ for @. , we obtain
. > Py Y ¢ }?ﬁ“\ I'l-\l(edc" ?a*\\
Q, eiwcﬂ'?"‘“} = [-(‘Lw‘(savo‘/x‘\z/f“, liwggxﬂ(li l;mﬁﬁyq’/x,\ . et ”N%o]] ¢ 3 e

at Re

. 2 _1tw Be .f&‘\é.m
giving a transmission ratio %, * f(w poxo”/x,) /(1 - 2w paaY{ 14 2Twpe /) = Mo 3'}-

As discussed in Section 2, fay, * poxe (1= ¥o/x) i the travel time for a
pulse from ¥ to = @ Pey.)w is then naturally the (high frequency)
lag across the filter. (Note: Yo* foWhere po 1is from Section 2).
Also, as we expect from general theory, “X; can be obtained from the
Iaplace Pransform (set f EM' 5.0 foxd/y,  Bc %oPo 5= iw din equation

(2.5) of Section 2).

Now we can expect that low frequency pulses with their large wavelength,

are unable to take advantage of the non-zero length (t-¥) of the filter

to remove the incompatibility pekss) % o : indeed we obtain
[P ”“”\’ which is the transmission coefficient for a filter
w0 >0 T . . .
{whee ¢= (= 4N p
L)
p= ?°t“/x \ &~ driver
S S | ’
po L |
T Lo -] ] - X

The high frequency pulses, however,are transmitted through X, , couple
to the wave x e™ (37 Bx/x)  ynich grows WKB to a factor (*/\at
where it is transmitted: formally |l x, =r (of course *™4, &1

AY =¥ &0
with equality only for rel & «»<x, and there is no filter).

These two results give the limits of response for the filter: in a theorem,

2r .
rr is not

2 €1%| &4r for all w . The increase with w from
monotonic: there is an interference pattern superimposed on the coupling

high frequency bias. This may be seen in Graph (6) where we plot
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oz - 2wBo¥s  for various values of r= e/, . (ﬁ,\is the number
of f, ~wavelengths in the characteristic length X, ) From optical
filter theory we expect the local maxima (see eg. graph (6)), r= B2
o &1, 190, 2.8, . etc) to occur when the initial reflection off
Xo is 1800 out of phase with the first reflection off x, .

Indeed, we can show in detail that the phase difference between these
alr-1)
14 7

and K ¢ &« ?/; | The product. «#Cr-Ds 2w P Y, is the lag due to the

reflections is given by "= - (e + where dan g =

displacement of the coupling points x. and X (see above) and ¢ is
an additional phase due to incompatibilities in the media across the
boundaries at % and %, : as <o «€ w ¢must become constant for large

X . PFor r=8 , we obtain

R}, Y= - 3L 2.y + N\ T
R=181, N . — Au7 % (2.0 )Y R
K= 115, Y = -i1F .77 2 (2.6 + It

which agree substantially with the values «= 13,14, 2-% from the graph.

For large «, when ¢« constant =w, the "local mexima are given approximately
by &{+-)=nT nan integer. Clearly, then, the variation in |%.| given
by U-mi(r«?)){“is due to the path length between x and <. , while

that due to (l- 3%(?:;\9.]‘(‘;:‘_’)", which dies out with «(eC wY large, is
essentially a coupling phenomenon. For interference 1o be significant,

we must be able to fit at least one [, -wavelength into the filter X.—x %
when r is small, it can happen that these small wavelengths are available
only at frequencies high enough to overcome the coupling difficulties.

Then the interference will have little amplitude: this effect is seen

for re2, reb on the graph (6)

Graph (6) can be used to initiate a plausible parametric analysis of Xv.
Where results have been rigorously proved, we will indicate it., Now
amongst the four parameters ¥.,x., o ,w only the combinations &~ -w poxo
and r= ¥/, are physically significant. Immediately we see that for w
and o only their product, the wave number, is important. Thus it is

sufficient to regard w as constant:

Fix ., x, and vary %o
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Then v is constant and « is proportional to {.: the situation is identical
to varying the frequency into a prescribed filter and the curves on

graph (6) can be used directly. Now we can show that the filter regarded
as an Ionosphere (ie. driven from the 1eft), has a transmission coefficient
porportional o %, : in fact 1Xﬁmr %Xs/c*. Thus an Ionosphere at fixed
temperature, and hence of approximately fixed extent, will shift its
performance unmodified, up and down the frequency scale depending on the
valﬁe of the density ie. depending on the physiéal density of the plasma

production.

Fix x and its density fopr = ‘59!;?\" and vary =xe.

P
. 1.
P Y .
z/ ' tM-' e
4___§Z7 ‘ ]
[ "
T 1
L 1Y o
Thus «F = 2w @“zfﬁ * is constant. The dashed line on Graph (6) plots

dr=10 . As r «lx.|, we see that {%+) increases with x, .
Physically by increasing x. with % and @.,Q‘«:/x.‘)l fixed, we are making
the output region of the filter (ie. x ¢ xo ) lighter: the decreasing

inertia should let through larger velocities v .
(The above variation has been rigorously proved.)

Pix o and its density Po and vary x .

§
s
/.,{";’
P b‘{
*;*’ | i -

Lo hd
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Then « is constant and * oL V\x\” . From the graph we see that 1%yl
will increase as x,-20 . In interpreting this result we remember that

as X-0 +the region xvx, is becoming heavier: clearly then, a unit move-
ment in x> = sghould produce a larger response in a medium ( < "’u) that
is, relatively, becoming lighter. Now if we have an Iosphere of a given
temperature, so that x. is fixed, then transmission from Io will be better,
the higher the density at x-o . Thus from a consideration of trans-
mission alone, apart from considerations of generation, we see that a

significant To effect requires a substantial Iosphere.

Iastly, fix the density p. at x, and the density p.<2) at x, and vary x

B
Q\.;La 3 1 } 1\
o {1/ ]l N
gl )
1 I !
P | L.,
1 ' o

Then r is fixed and « varies proportional to x. : again the situation is
that of varying the frequency into a given filter. Thus to vary the
temperature and hence the extent of an Ionosphere of prescribed density
limits fo and po (*- /,_‘)i, is to move its performance ummodified along

the frequenéy scale.

The final consideration in this section is energy flux. Before proceeding
we must make the energy concept precise in the magnetohydrodynamic context:

using the basic equations vy = b, and p*v, = bx  Wwe get

(%‘ + L‘;{‘)& = bhy 4 ptvuy = bu rwbe = (0,
‘o.
T ey s O ——— e

Equation (4.4) is the Poynting theorem neglecting displacement currents:
L'/, is the magnetostatic energy, #°%% is kinetic energy and «bv) < bE,
is the Poynting energy flux, The familiar interpretation of (4.4) is
that a non-zero gradient in the flux (—wb ), which implies an unequal
flow of energy into and out of an elemental length Ax ,>Will lead to an

¢ b + @‘\Ax

accumulation of energy in the length given by 43 T

»

Apparently an electrostatic energy Eo_‘li"_" is wunimportant in magnetohydro-

dynamics: indeed, neglecting displacement currents, we get from Ampéres

-

law in (1.1) (i)‘ o = V.(vxBd) = ‘7-[-—‘——.s1 - -[‘lf’

<* 2o K ety
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where the lazt equality conserves charge. Hence feo . Thus,
magnetohydrodynamic motions cannot alter an existing charge distribution:
consequently the electrostatic energy €a)El' cannot change in a magneto-

2
hydrodynamic prockss and we neglect it.

From (4.1), we see that in a wave medium ( X<Xo, say) a pulse v= a e TR

travels with be ~poa, &M "FX) " yhnich is the familiar result giving

equipartition of energy poivt . \i&“ . In the filter, however, a wave
kS
Box e @ Y Po) st travel with b -b, (PR + W) @S0 (B pextia)
Y 2 L g 2 2 u .
as P:.‘.z__"j = B (*er3) and oF/y = o &+ L. there can be

equipartition of energy only for large W ie. in a ray theory. (cf Bazer and

Harley, Geometric Hydromagnetics (1963): JGR 68 no.l pl4a7-174). Indeed for

small @, 1% >> p* WV | (we remember from Section 3 that the filter

generates wavenumber Vx and hence by : in fact by = ¥x = b e {3 pe/x)(i ‘ﬁgﬁ}
, Where (—x‘w[sa#s‘/x) is due to the curvature in the driver and the 1

H £ ) :’/I)
is the effect of the medium. When w is small b= [byay o~ b g8 *F

Tuw
can grow large in the long period ™/w ). The fact that Ibl»» v} for
low frequencies, is important in the later theory. ‘
4 . Y (y+ M]
¢ 5] c‘ - - 9‘ Lt/ yie *
It is interesting to follow N AR [“w‘ AR ”‘3

into the filter

: i 2 Bo {202, )"
TR LY

b L

7 ! > x

Taking real parts, we have the waves y
vr ¥ <o<)[-w (y+ (soxe"/x.ﬂ £ L= [L@L:_‘?‘)l + ix'} Y oese (wcj s uaf..,xp'/x 4¢)

where hw g = </ua0 M cd <o If x is small, then as the wave
approaches x. % o biends to l’i"_x’ﬁt\ws wiy* G;ﬁ-‘)and the motion become
WKB (near %X, the wave has steepened to a wavelength small with respect

to the scale of the filter and the physics follows).
The energy density is proportional to
*f‘vW; = (8%3 ;_!‘-o,.\ ¥ %‘ tosta~d 3 (g‘ 4 ;lw;\)cb&'z(')wgﬂ

[w'neto A= w(3+@»oxo"/x”) s a lecal time for a fixedzx]

é B = -~ g&aXos/x
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Y i,
= (% L)+ {{j-’;—_L + (‘{ + 2o) cooqu]t v (8% 3 %) sit2d } wsiar 4 )
L% d
where (osq = L[S7s (87t i) wsig] /[(9‘/1. + s (0% LN (8Nt Ysitag]

5 ) . . i
and LT S [(Bt/" * {“’q gﬁ\hﬁj /[ ( 6+ w528 (et Vo)) +( 87 4 -,'-,,\,tY sintig ]

Thus at a fixed point x there is in a period a maximum energy density

proportional to (&% + 1.), [L%’ + (€ ;‘wq(usw))l + (24 ;’w;‘)‘m#m)“

1 ] y ] i
(0T [r) 4 (BT oy ) \
This function increases as - % . Thus at a fixed frequency, the time
averaged energy density at a point increases into the Ionosphere. Verily
then the energy is localized as it slows down into the higher densities!

P Y b3 Y 3
The energies fF and 2 reach maxima (-9;‘] and [9 ’L“" ] , respectively,

in the period % . Individually they increase into the Ionosphere owing

to the localization but close to =06 the ratio magnetic energy/kinetic
energy = !* (;iwf decreases to 1. (We have shown above that near x, % O
the motion becomes WKB). An important parameter in Goertz's theory (see
PhD Thesis, Rhodes University) of the decameter radiation is the

mgnetic energy per particle = (?_:%.—2:‘ )/?t = x> (13 x‘/[(pgm\‘xo"']\.
This quantity decreases, however, as x->©0 1into the Ionosphere and it is
not obvious that the waves from Io give rise to significant Ionospheric
events. The discussion of possible Ionospheric iﬁstabilities which can

generate and/or maser decameter radiation, is delicate (see Goertz, ibid).

The problems of energy transfer from Io to the Ionosphere can be gauged
from the following preliminary discussion (see Section (6) for d'etails).

Consider the density along Io's flux line

] AEIEA

'?
>
[
z
S
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R
i

-

Xw

losphere Jonosphere
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(note the location of %,x in the Iosphere (cf. fig (4)): -5y is the
distance variable in the Ionosphere, measured from the right so that

$=d,<0 when p=>P ).

S

) Bo
Now from (1.4) we see that time t is normalized t0 § = Gopnt b »

where B, is a magnetic field and Y, is a qharacteristic density. If

we work out the details of the normalization of equations (1.3) we see
that the choice of T, is arbitrary, but B. must be the underlying
magnetic field in the direction ofx,ifxis to retain its significance as

a length., We find it convenient to choose Y, the same for normalization
in the Iosphere and the Ionosphere: in fact we will have ¥, * fo) .

Then po=! but Pe= {‘%&}é}i It is clear then that a frequency w in Io-
time 3y corresponds to a frequency w's w B/ B, Y\ in the Ionosphere
( 8, is the field at Io: Ban, is the field in the Ionospherenesr Jupiter).
Let < = %y . Then wawn, . ‘

Now consider a pulse v = e W peb) (from Io) travelling to the

right in x << : Y gives To-time. Then at x we have a transmitted wave

ae Fooly - e *o) = { [(1“) f"“""‘t/"‘ P/[(Hu‘w PoxoA(1-1iw povet/i)) - e Mokt ]] e i%?em}e;w(%‘ B
(use previous expression for -Xy but set (-xe}= %o and t—x0-» = : then

4, pe" = poxs (1~ 'i“’\ is the travel time).

Now we will show (see Section (6)) that a ray theory is valid in *e-4de
for the freguencies of interest. Tet v = a'e "8-Pi)  po the wave at

s= 4, ( 4" 1is Ionospheric time: of course wy = Wy ).

Now we have noted previously that in a ray theory there is an equipartition
of energy ie. Il = p* jui? . In fact one can show more viz. b=-gVv
for a wave travelling to the right x. - 4, , Wwhich is the relation for
a wave travelling in a constant medium @ (see equations (4.1)). Now

if we remember that the time average over a period of [{Aetbd(Rewd)]

is % Rel(bo*) - -p iy, , we obtain from (4.4) the conservation of energy
2 (erth) o

ie. p” phvl® is a constant. As p~' is an Alfvén velocity and P'Nl"
is proportional to the kinetic energy we see that for high enough frequencies
the ‘Poynting theorem reduces to the familiar ideas (see eg. Rossi: Optics:
Addison Wesley: pp4-56-467) of energy flow for (constant) wave media.

Removing the normalization, then,high frequency energy conservation gives

V, 1 15)* = constant, where V, is the local Alfvén velocity, ¥ the local
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density and vy the convected transverse velocity field (nere the subscript

3 indicates the y -direction, not a differentiation). Then for %.-4,

we have —e& ‘f [_§_°_ 'l o]G‘ : = _&_J’:L ?(4’\ &J_ . 1a'l £ 5 ] .‘
(yo»f“)vl,. L] (po P )t ] (Q"'f-\ 3 } (()‘67‘3{ }, or 4!

=

. In)

"; -‘/4 % -‘:' )
Mo bou o la'ls el b (4o Pactor Pe * is the familiar varietion (see 3rd

page of Section 2) « Y  when the underlying field does not change: a

change in the field reflects through ”\o% = (‘%f_»ﬁ ).

fw' ( \(‘ ¥ PO"D) , .‘w’(q'« ?ndo}{ z;‘m‘poda }
e = a € ———

- u
At d ,we have a transmitted wave o' 4 N1 tiwpeds

(use the result obtained previously for the Ionosphere

£

> A )
»

If we assemble all the factors, we obtain as a response t0 a pulse
pe et Wl Pepixd ei@“‘a’-"’e°?-*) Vst ly' 4 Pods/s)

in the Iosphere, a wave wv= a"se
where la")ldol = k.- 5, - Fy
and  F = e ma, /e s U'w’fo‘le\\

Fos mg™ pt

Fy = l“‘”f”"“&/"'?‘/[(u Tiw o ¥e Y 120w poret )-q:”"”""-“° ] l .
Associated with the v will bea b = -—a (Ppedo/s 4 o) et (y'+ Pody /s).

&*
The average energy flow into the Ionosphere is then given by L Retvb )

= po la'dl) gnich is equal to the kinetic energy at dp -

. . . 3 -
The following limits are available: lm lrdal= | la*do) = ©, L ]V(elélsz‘ b, ‘(1\,)
W50 w30 ) w=I® ° R

and lim Jbaanls Ceplx (" Poﬁi 1<(¥,, Q‘/xo)t}

w30 s
1% "
= (Mo ') _—
1 O 1) r

. 3
b than| = (e o B (nt e®Y o) - en nhy )
We see immediately that for energy transfer there is a total system bias
(except for an interference effect in Fy : see |%.|) towards high frequency.
This is not entirely obvious because if k‘/(l*”(""/xe'}‘) >(R)de %o/, ¢
2_,,,(,3.13’ | b)) has a low frequency bias (we remember that low frequencies
can generate large magnetic fields in the Ionosphere): as lv| has a high

frequency bias it is a matter of detail whether the filux i fe wb')
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is favoured by low or high frequency. We get, above, 2 e Cobt )= ";"1*’”@«3\“:
apparently the magnetic field energy due to tine wavenumber effect of the
Ionosphere(ie. the(%\ in\v:_;l_: + .:;] ) is not transportable. The energy
due to ta"i® IN_‘*:L/EF L.q - la")t p;qt,‘/L , however, is portable as we see in
v, Re ) = {«(%]V@Mtf =4[ * |_a_ﬁ_:|_.9‘+ p.w_-éf:‘](we remember that the factor

v, in ':_l\e(vk‘) is a number obtained in calculating the time average):

in fact we see that the generalization of the egquipartition of energy

in a wave medium, becomes the equipartition of portable energy in the

medium  p, (de)" .
S

All these considerations, however, are naive: the higher frequencies are
not guided efficiently along the field lines (see Section (6)): this

important effect should be incorporated in F, .
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SECTION 5.

L
3

Y 1 ‘o Y o‘x‘
THE DENSITY IAWS £'= f )7 anp = g ()

In Section 2 we s\ingled out the law Pt= G?\»as an analytically convenient
density variation with an infinite travel time s-xs0 ie. 1in the
notation of Section 2, lwm Yy e . In this section we consider
s (*/ which has a f?:r:ite travel time Lt_:’ W = %/} = 3%
(see Section 2) and the singular density p = (*e/.) . We remember that
P = /4) is the dividing line between densities with finite travel
times and those withinfinite travel times (in the model 3<V and &>
respectively). p=(*/x) itself has an infinite travel time L'-';L Tpx) =
- l‘.i‘o f::(-p)dx ,;,i.o %5 In (o/y=ew. The analysis will not be in the same detail
as for the inverse fourth power: in particular we only consider an Iono-

sphere without reflections ie.

A
P’P i’\% o € Po&?)‘
/
1
. po .
° Ra T ’

where we allow for .- not necessarily = 1.

Now from Seétion 2 the law g =§ ’-,‘-‘)_%is obtained by setting m= -2 in
the exponent 6' = ;’:_", - 3 . There we show that the general soluti‘on
to the GAE  wvie = po e /0“3,,: Vas = Lf’:”:_é'}} vy <0 is a primitive
v= fwdgY of w where w is the general solution of the wave
equation Wy, -wWyy = O and ¥ =+ * 3 ((‘:"‘»3“’ "2t 3poco Cfo)’/’ .
Remembering the Wy, is a. solution of the wave equation whenever w is,
we can by integrating by' parts, write the general solution v = Ew; ~w,
Hence, choosing § = 3@-%(;"5633 we can write the general solution of
the GAE as

4 3 3 L
U= [ Ibte (2)? P (3 (B’ -3) - P (3poxa (2) " y) ]
+[3 Pova AN q (3paxe(zrxa) +3) - g (3poxe M%)’ Ly
where f and ¢ are arbitrary except for some obvious mathematical

. . 1 N
properties. The motion v = 3 poxs (i\’ 3' (399,{6(%°35 *3) "3(39"”‘(3&33‘3\
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1 1]
z a[ (‘03 3 [',(c ‘ ;a] — 3[-{. G’&o‘)’ + 31
(where o = 3 Lo s ), is from right to left. %o 1is the travel

time from % to © (we have obtained this result above for the case

fo =V ie, |NV\ Ty 0 » 3%}, If there is much curvature in the pulse
(ie. a high frequgney motion) then the term oo (%/up) q' (&) *83
predominates in v . But te) < gt R %7 de eV oo x 3

thus we have again, as we expect, a ray theory at the high frequencies

(see Section 2, third page). A large pulse, at low frequency, however,
travels through the medium, moving always at the local velocity @' = P;’(},‘%’).q’
without change of shape ie. v = =g{ e (*/x\? +y)

z -3 [ S?‘“’ "'33 N N
The pulse oLy (%/xg) 3 P (e (£,) 0= ay-f@a,(\f‘y‘.a) moves in a similar

fashion to the right.

Let wus suppose there is a driver fo (3»,(5.:0 moving in from the right
F)
in x»x  and reaching x, at y=o . Let s @«53 1'(9!0(}.)5 4 3)-3 ICAN *5)
be transmitted into the Ionosphere while f¢y-g.%\ is reflected back into
s xs. At % , the usval boundary conditions, yield
)
9 ((ad—g\ - é (s ¢3‘) = :ﬁ) (y+ Bots) o f‘ (y-8ete)d

10.. 2 1 \ (.5.\)
g‘;b 8 (a(o&é\ = fﬁc ‘rb (a4 fbo x20) - @Q' ﬁ (‘j" p,xn)

LHR("’ &3/210 I“ '3/2!(9

e

Solving, we get a first integral 3 (eio+ 3\ = 3@ e r(?)"‘“")d‘} -!
“/Dta

As f,;o > e increases with time. This is reminiscent of the (5.1
behaviour of the filter p = Q’olﬂ‘_ in Section 2, when driven from the

high density region. There the travel timec to infinity is #afinite and

it is the reflections, returning always in finite time, that give the
convergence. But here the travel time to x-eo 1is finite so that, in

this case it is the reflections off x=o that give the stability..
Equation (5.2) should be compared with (3.2).
The second integral is
4 e Yy g “ "
§ory) = G0N + uaa'@(,\(e”/“" Yo ke dy' fo g7t/ f,ju Jae e 4y~ (5.3)

Now we assume that before incidence there is no field in the medium
TR N AR CACPALE IR (T

&4
Sooge A (e (i) ] where A is some constant.
»

Now let us choose a point o<¢ x ¢x, . Then, as the wave travels at a

finite velocity, the there exists a small time 3*>o such that
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S IR R 7R s T do G5O by
Wy (/) gl (e & xed T4y ) - g & g ) =o.

Now where & is a number in the range (o, %4} , we have shown above that

3@) = AW) . Also as x ""%H‘ can be supposed chosen small enough
u, : 3 LI »

that oo (£ 4% < %o o g [ (XY ey ) e A (G (E) 2 yT)
?3'(49(5:)§ +a°) = A

B NI N3y e 7y ™)

ut then o (£7)3 ' (e (5) +y7) ~g (% 3
ol X\ 2Ny 2 4 i

= ,(;3 A -4l @4 30) = - Ay ) which equals

zero only if A~ o (we have specifically chosen 3*>o ).

o8& gV 0 for e Bk S in particular
3(5»’) = 8‘(«.‘5 =D -
S (5.2) and (5.4) become

ﬁ'@“a\ . e‘ﬂ/ld' 1’3 c"é/’ua d ﬁ(a 4@,1,}4_&
= 4 (5. L)

e 3@°+a‘): xlq ;36%]'&10 da’ ’o‘ie“% /u° :-’8“ fn(%“‘l&.xO\da' .
We remember that these expressions are true only for ofy¢2dsiat 24
the reflection off x=v arrives at . . In addition, we remark that
these expressions are also valid in the generalized function sense,

though this is not obvious from the above derivation.

In particular, let us look at a shock fe (e pex) « ULy P°(x"'°)), u

the unit Heaviside, arriving at X at time y =-o.

Then f, 3+ PoXo) = Uiyd and %”ol it Q)*Po*ﬁ is the Dirac delta 5\(3\.
< from (5.4) we get o« a‘(uoea‘, s e 3o and 3@.4«3\ =z z(e“”“’- \).
There is then a wave v = AL [y-wolr~ G‘aﬁ]fdo §°\§ q' Cde (g‘ﬁla)- 1(%{%5\:;3}]

x L4 =M - Y= » :
=W - ’113[(;\,\’ e(\i RO - 2(1’-“ ks i3'.‘ where

Y
y, = oo (1~ &Y)is the time for a wave to reach a point xex, .

L
In the front 4«4y ,we have vi{x, %\ = (%,)*» o so that the shock structure

in v is destroyed by the time the wave reaches x-=o .

-1 Q"'\x\/ %o
From wvi=bhy we obtain b WM-4D) pof)? = *

and in

the wave front b (%1 4,) = p. (f/x,b-”:‘ . Thus as x=° , b(4,4,) » ©°

this type of behaviour was also noted for pr= ¢4) in Section 3.

There we suggested that shocks might give rise to Ionospheric events.

Here there is an extra feature: the travel time %e=o is finite (=4¢)
)

whereas for (;Bq it is infinite. This makes shock-generated Ionospheric

events that much more likely.
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SRR
On the other hand the growth due to = fas

H-“‘\’/uu

is unlikely to be

physically significant: at most, e can grow to an order of

wls/rde
®

. e Dbefore the reflected wave begins 4o cancel it out.

a

For a sinusoid driver T, (y+ pexd = W 4+ pelx-xD) sinfy po e - xe)]
we have s 3‘@‘”‘3\: [{w oo /“@_wdo)'-](uan Su wy - coswy + @ 3 /2us )

and g(dg-lv!a\ = 2wy ] (ze‘dlu.. '—Z‘O:)w‘a - 41..\“’23

V wa ) wis

This propagates from x, into the Ionosphere as the wave
U‘l'q’\/uo

1
ve U (H-4.) [_‘_&"‘_‘1 {(56\3(7_94., M w(y-y,) - 05 w44 + & )
1+ @ Ko) Q2 YT styeuny - s W8 %) )]
w o

where y, is as abov;e.. For high frequency v e U gy-4 Ay [Qwver/ |, puorat ] 39 b4 Y]
T UH- ) S U-Y) so that at x=% we have perfect transmission.
This is the familiar high frequency bias.
From uv,=by we obtain
20 ¥y %o 3 . . _
b= U y-ud [m] {po(‘ ) g(v_w«,, S w (4-4) = cos wly-4,) +¢

The WKB growth b «+v3% < x"? ig exact. We note that for p = ¢° /"

(ku)/u,)

(see in particular, Section 3) the motions v are perfectly WKB, while
those of b are not: here, with ) ‘L?)% the sitvation is reversed.
An interesting point ariseé as follows., We have above for p= Po L? fi ,
that in the front of the shock v+ (i‘)(f’ and 3 = po(;-‘.\'i A vz ph
which is the result for a wave travelling to the left in a constant
medium B (see eg. equations (4.1)). There is a similar result for

p= ()" : in detail, we can use the results at the end of Section 3
to show v>-pb in the wave front (the minus sign is for a wave travelling
t0 the right). The problem is 10 reconcile these results with the relation-
ship 4b + 2pdv giving rise to a departition % vdp along a

characteristic, as mentioned in Section 2.

This can be done as follows. The characteristics are solutions of
ay = *pdx in the x,y plane. Typically for g=p.(%) we can draw
characteristics ay = - P Cf)": ax

3
. J

\
oo +3, -

Y
o 4

S

-
3¥ da(‘ ’(;5‘3;
3
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An event at ¥axe at tiine y=o ‘travels along the characteristic <. and
reaches Xe at yeas [ which is the travel time Ll:; Y ): see Section 2]:
an event at xs¥ at time y=% travels along the characteristic <.
and reaches x=o tat time 4 +j, etc. Along each characteristic db- el
Now suppose there is a characteristic time ‘;‘f at %o : then in the time

2 the wave will have progressed a distance dx= -8'dy = -7 (F)= Fh
from x. . If w 1is large then the distance dx is small: then we can regard
$ as a constant and integrate dba pdvr to get ab = P av  oyer dr=2ax
and eventually b=pv along the characteristic. If w is small, however

dx is large on the scale of the medium and b* {B8v  is not closely
approximated by b= pv . The point is then the following: as the shock
jmpinges on *» , the high frequency components in its front activate x,:
thus along the initial characteristic <. , we have only high frequency
signals and bs p v . Along later characteristics, however, say ¢
or ¢. , the signals at are of lower frequency and hence b = [pav
cannot be adequately approximated by L:@u- ie. there is departition
at lower frequencies. (This can be seen in the above results
L AUy -9, [ ey @92 _ 5 ( A -\3], b= U f4-4) @o(‘io\‘% e@“j’ym
for a shock, when 4y-4,>e ie. out of the front). Clearly, and as we
certainly require, the method of characteristics gives a ray theory for

high frequencies.

Finally we remark that in the steady state, the reflections off X 2o

make the wave stand in the Ionosphere and no net energy from the driver
passes beyond «e . This is the general result of Section 2 for density
laws with a finite travel time 1:.?0 D¢y . These considerations are

important in Goerts's (see PhD Thesis, Rhodes University) theory for the

decameter radiation.

Now let us consider the singular law p = Po (f-f\ , which has infinite
travel times in both directions (ie. K T = Jim Oty = @ 3
2310 R B

see Section 2.).

. = |
A transformation u= inX },( 5.5\

&= 3/poxs
linearizes the GAE Vig - pruyy =0 10
Ve -Upg = Viu—1(54) . '
(5.6) has elementary solutions v . xi e e * b[{ee-11"/2]) (5.1)
when w3 . \
r= el (= Di-@w) e RPN

when ., ¢ L
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(5.7) gives travelling waves: phase motions are obtained from
g g
wo e (e="/2) (4 gion 40 the left: - sign to the right).

Hence it takes infinite time for the phase at x, , say, to move to x=o

-l
W P

or X=ss, The phase velocity is given by Uy = (.%>h = 1w Q?ﬂ &) . 3{-———-;—;—;31-
4 Y Qud -1t
and the group velocity is : [y )2
L
axy o4 dw g7t By 7Y o
V;’ = (Aa)s = Al aw -1 *A) P - : ________[““ o~ P .
B= po(®/) is a medium with
(vph V;DJ“ p ™' = characteristic speed.
We have the following limits : lim wvm = W oy W p”
w4+ PR -]
lim X -1
wsis vy =e ST

which indicate that the velocity of energy transfer tends to zero as
w1+ while the higher frequencies can signal at speeds « p” , the
Alfvén velocity (see remarks at beginning of Section 2 on p=' group
mobility).

When w43: , the elementary solutions (5.8) give standing waves, which
taken individually, cammot transport energy. We will show that an

harmonic driver outside an Ionosphere ﬁe(_xo/x)

does in fact excite only one of these motions (5.8) in the Ionosphere in
a steady state, so that for wei it is impossible to feed energy contin-~
uously into xex, . Taken together with the lim Vg =o above, we say that

wo i
the Ionosphere po(¥) has a non-zero cutoff w=1% for energy transfer.

Thus the singular density p= p» & gives a hybrid harmonic performance:
for w»; it behaves like a medium fso(f;"\r with 5»' : for w ¢ i it behaves

like a medium with 8 <1 .

The critical frequency w=j; has the following significance. The frequency

. . 2, . - 2
w in e-time corresponds to a frequency w.=> oo, in 4 —-time. Then w= 3
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gives ;‘13, = 2pexe , Now 2(PBe¥) is the time for the motion «, 0= Xo

at the Alfvén speed P." . On the other hand i,o is a characteristic time
in the driver. When these two times are equal ie. L, = * Poxe , We get
critical behaviour. Alternatively %L , as a speed over a frequency,
gives a characteristic length in the pulse: critical behaviour occurs
when this iength is equal to the length of the Ionosphere ie. fs'/ = ¥s,

equivalent to &, = poxe,

Consider the Ionosphere

i
when w?>»3: .
V) [§°)) oxk)
For xwxe we ha N N
Or A% Xe We ve uvs ' tw (&4 %/%)

R —luy
e a e w(s —%/x2) ba, ®©

where we are using frequencies w in ®-time.

For e X & Ao
' o &-ieinx) . Y lwe +wing)
Uz by xv € : + Lt x € (.‘S.q\
k3
where = [a@w)-11%/2 is the (generalized) wave number.
Continuity of u and vy at xo gives (as in Section 4).
EY) by
Aa = Bb where here a = (q;\ ) b= (bt_\
N . i I D™ } olelax
A= e--uo e R = ' € Yo*c_\ n e ‘
J
Iy . N ¥ lt\ﬁ
_two oW W '» 2 . it lr\xo -1 . e“ °
ol = < xo'-(i"“ye‘ X (4 +1%) J
. 2 . wd . . { 'klu{
A"=[5~°] W g™ e B~ - ! xol Cie adetehxe —xo @Y 1
, = L
2iw : —ltw -lw [a‘) ] R ik lnve RS R "
L\("':C { e il __,(;”"({"t"-)e )(b"C )

For a driver (q,_ ) moving in from the right and no sources in the
by

-
Ionosphere ( b, =0 ) we must solve Y = AR Ci..\

0w+ wln o)

[Av. ] e - v lnto) (-1 4 2 (wee)) e Cs 2 Cuomy)

&iw

"

c—t’(w-&wlw") (12 vi{w-¥d) e'i(w-u“h\(uziluﬂm)

N
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,  ifo- elug) w1 a3 w ((wetelngX))
R W [ ¢ giving a wave [u;;cm n)] ) € e ° 0.
IS ’

1B 2ilw+n) . . y .
As weew N ]b“f:—,-:l — 1 as it should (before comparing Mw/(uu(wou\)

with the transmission coefficient X for the Ionosphere (= Poles)”

in Section 4, we Iust remember to demsrmalize w in © —time t0 We = “Y(poxs)

in y -time etc). Also ull;:\w (- = ‘\o\:b w - ((@-%“'Ti/z'& .J;iw wii=(1- &, 1Y}
so .that the diagonal terms in A'B above tend $0 zero as wwse : in the
language of Section 4, we say that the incompatibility across x is

removable (as we expect).

As in Section 4, we calculate b from by»vx and eventually we obtain
an average energy flux into the Ionmospherez L R Cub™)

‘ - o [1-fom (00-4) )] —(510)
As w-3%, the flux—o (we have shown above lim v, =0 ): 88 w = o , the
flux =» 8+/, e
(For high frequency, we have a ray theory b=gv =p,v at x. : for a unit
driver v, 4 M(ob’)= P Rbv") = £ which is the limit above). (5.10) is
graphed in detail in Section 6.
Now suppose w ¢ i. ‘

x . x
. . fw(e- 5. (s + .
Then in xwx, we still have vr:= a, & + Qq, © xe) but now in

1

) . .y 1 w
oext¥ we have o= b, ¥t e™?® x ¢ L b, xb e™® (.1)

where we [1- cms‘]{ /7_

As before the boundary conditions give

Beb = Aa Lo
1-le { !
1) Ye "9
where A,e,b are as above for w>i and Be = B el
“iad 1!
Xo (3;’\*') Xy [€ T 23]
-1 ) ~ivw Loa!
and B‘ = (—2-:,) r £ (‘1;‘“"‘3 —Xe
° Stoe? , TR
g, R () P

For a driver aq,>' in x%x. we must solve (‘f‘\ = AT, (‘;‘;\
LT %t ] €™ 7Y ((-i4) iw) e xS (=) #iw) b,
Ziw [c'iw 7 (1) ) Hiw) e ™ M (4 e+ 0w) th T (5.12)
which gives a set of 2 equations in 3 unknowns.

21w

L Y —ln
b, x? e e ) (see (5.9)) travels, and

Now for wy % , the wave
transports energy, to the right: but there are no sources in x < xe !

For this reason we set b=o0. But for ws % , (5-11) gives two standing
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waves and it is not obvious which combination of b, and b, to choose.
Let us follow Lighthill (Phil. Trams. Roy. Soc. London A 252 397-430 (1960)):
Lighthill replaces w by w-t& where g>o ; the system behaviour for €=o

is thenobtained as the limit £*0,

For w=w-iEt the two solutions in (5.11) become
«i ei®® g8 L L (- u tw-ie™ .
f xlogiwe gfe  ti(Cutyugt) s RIE)T
4 e 3 ui g
Now for wet, [ Q-uww'suetdd #ie e (1-ut 080 (“"""“"E'for ¢ small enough
1
(Note: we are using the branch of the radical (I-u*") that gives positive
Y. e 1.)'&
values for Zreal). Thus we see that x - b0 corresponds to a

movement (and a transfer of energy) to the right when € is any

positive value. Clearly we must set =0 in (5.12).
. ban' viw el
1+ e AN we { ]
e e _—
Then Y. X = (%) Lo siw \
and the reflected wave a, e w(®7&) _ (=t =) ,,,'w] eM® & o~ %)
[(w,_ PR'Y) 4w
L 1 .
which has magnitude =1 for all W , As b x*'™ e'™® ig a gtanding wave,

we see in detail that for we¢3i , no net energy can be passed into the
Jonosphere continuously in the steady state (we mentioned this result
at the beginning of the anaiysis of f=f+(3) in this section). The
energy in the driver a, e'W®+E) < efwles %) ig carried away in

. N . 3
the reflection a, e'® ®= %) which has magnitudefti- )"+ w® ] e

L(i*‘“—')t"‘ w?

for all w¢ Y (as it must!).

Finally we tabulate some results (easy to derive from the above theory):

by ’ 1
for wvi , Wl = — = 1wt [rw- (ewr-)i]R
0 pwsa) ]
2 i
»Y & 2
w*i , ol = 22 = W l- - ew) 1
[+ eyt v wi)?
The following can be proved: bWm Juwxan] =1 (as we expect), him lvwal= (2
W wo it
liwm \ulrad| = 0 3
WSO
1
2 Yrpanlso for w<¢ i N EL, fvtxal <o for wri,

dw

Thus ‘vuo\]has a maximum for w=%; at that frequency, however, there is
no energy flow. Over the entire spectrum w=} — o | the value of lu(x\l
doesn't change more than a factor r"{v . The i}'n\ Lrtdleo 45 a

s >0

particular case of the general theory for low fregquency i.e. L:, 30

(see middle of second page of Section 3).
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We can make the following statements about the general density variation
P‘ . Suppose we look for elementary solutions v = ey al)  to
the GAE Vie-$' Vyy=0 : then w must solve u"» @ u =0

The familiar change of variable us=<'? then gives ~@'1'+ i ¢" +@w'=0——{513)

If 18] is small, then (see eg. Mathews and Walker: Mathematical Methods
of Physics,2nd Edition (Benjamin): p27) ) % (pwd’ and we get the
familiar WKB solution (see eg. Mathews and Walker, ibid.)

d': tpe | = t[pwax
The condition ($")small i.e. 14"} << w)  is then [&"]-= (“’%Ql ce pu
ie. !M—:-(3 B e p—50)

Now [f‘is a speed: hence ';s ‘:_5 is the rate of change of P as measured
by an observer moving at a speed (3" in the medium: in the characteristic
time @ , the observer will measure a total change H(3 ? €y : (5.14) then

requires this change to be very small compared to f.

Suppose on the other hand that 1#'1 is small. Then from (5.13), ¢"= { (pw)
ie. ¢‘-.chms‘4x and & ‘i [f gw*ex¥y - | The condition 14| small

is then '] = lf(@w\‘“lu pw ie. | r@‘mdxl << g —_—{515) (Clearly (5.15)
can be obtained from (5.14) by reversing the inequality and integrating).

If we are considering solutions in a particular region x'<x" then (5.15)
(with the proper primitive) can be written

[: prwdx << | pat)- o (3.10)

Now when (5.14) holds, & 1is real and we get elementary solutions to the
GAE ﬁvhich are travelling waves: under (5.16), however, ¢ is pure imaginary
and the waves stand. We interpret this in the following way: when a pulse
impinges on a region x'sx" in which the change in f is gradual (ie. (5.14)
holds), the pulse generates (WKB) travelling waves in x'-x" which can carry
the energy through the medium: when the change in f is precipitous,

however, (ie. when (5.16) holds) the medium can establish standing waves

in x'»x* in the characteristic time i and all the energy is reflected

back towards the driver.

Congider an Ionosphere b




49

where p¢ increases monotomically to +« as x>0 , Now suppose

s

that the travel times lim {CFeenlde o lim [ pa) ax
) Y] o X0 x
< A, where A is a finite,positive constant.
15 ¥o &) @Yax' ¢ ° ) \
Then where Xexo [ f, (?1“')1/;;(x3 - & [ o ] pene ‘: patddet < A,
for x small enough ie. L’“ pho ax’ ¢wA) B which is ¢ B when w <% .

Thus when the travel time is finite, there exist (small) frequencies w
such that (5.16) is satisfied ie. such that standing waves are generated
in x< % and hence there is no net transfer of energy into the Ionosphere

in the steady state.

We have shown then, that a finite travel time is sufficient to give the
standing waves: it is easy to see, however, that it is not necessary. The

full condition (5.16) should be used in investigating a general law f .

We can apply these ideas to the particular laws p = i (‘53: . (5.14)
(5.1

: [y
requires | <e¢ BoXe (x -5'4-;) w

If §» ie. -f+1¢o then fof any w we can find an x close enough to © such
that (5.17 ) holds true: moreover the closer x is to zero, the more the
inequality is emphasized. The WKB motions become more exact deeper into
the Ionosphere: (we have noticed this behaviour previously - see Section 4)
and any energy which can get beyond *=x. into a region (5.17), will be
carried on towards x=o0 without reflection. Resistance to energy transfer,
if any, occurs near x=x . We notice that the greater d , ie. the
steeper the medium, the higher the frequency needed to get energy past

a particular point x : again we have the high frequency bias!

On the other hand if &4\ ie. -¥+ >0 +then for everyw we can find an «x
near ® such that (5.17) no longer holds and such that (5.16) does hold.
Thus for 8¢l , energy coming in from xv* , will always find in ( 6,% ) a

reflection point for energy.

The above ideas for po(?}x can be checked against the previous work for {=2,
T=1 and §e3 se, pre pe &, Pre par (%) ana g p:(,’i—")% . We mention, in particular,
that for the singular p= Po (’j_:}, (5.17) becomes ¢t poxow  , Or if w°

is a frequency in & —time, 1 <¢w® , This estimates the critical

frequency obtained previously. (w*=: 1)
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Lastly we mention an interesting analogue of the analytic viability of
"/

the GAE Vix - (\ol("”/"-\t Vyqg =0 ror mz p, 2, 4, .. L Mz@® @ Awr,

We showed above that elementary solutions v-<*% e’ exist for the GAE,

where ¢ solves® -@) +{&" 4 [we L";‘?}n‘]l =0 —— (5.13)

We can convert this to a Riccati differential equation by setting d'= ig.
We get g"* wipo (39)% =g — (50%8),

But Daniel Bernoulli (see Watson: Theory of Bessel Functions: Cambridge:
PP 85—6) showed that the Riccati equation is solvable in terms of elementary

functions for just these exponents wn= 2 of x (m= 0,2 14

T mE® 121\:1.\}
m= )

TR

Liouville subsequently showed that, excluding the trivial case wpex. = ©

3

only these exponents h give solutions in finite terms (Watson ibid.p87).
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SECTION 6

CAT.CULATIONS

~

(i) GENERAL DATA

Let us consider the variation of plasma density along a typical field
line through Io

1 ;zg(55
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(Note: As indicated in the sketch, we refer to the region along the flux

line between the Iosphere and the Ionosphere, as the Medium. )

It is understood that X is set = O at that point along the field line
where the density is a maximum in the Tosphere. Gledhill (Goddard Space
Flight Centre Rept. (1967) X-615-67-296) shows that if the magnetosphere
co-rotates with Jupiter, the plasma will be confined to a disk-shaped
region making an angle aof about 70 with the rotational equatorial plane.
Thus, as it orbits about Jupiter, Io will assume both positive and

negative values of X.

In his theory of the decameter radiation Goertz (PhD Thesis: Rhodes Univer-
sity) calculates the distribution of plasma along a field line : he obtains

(typically) the following values:~

(1) At about 1.000 km above the cloud level of Jupiter the ILonosphere ** et

attains a maximum plasma density % o'  particles /cc.

(ii) At about 10,000 km above the cloud level the density has fallen to
o sxx&V&..We will refer to this region 1000 -—» 10000 km, of length
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2 9000 km as the "Ionosphere'.

(iii) Outside the Iosphere, the density is =@ 10/cc rising to a maximum
Jospheric density % 103/00
(iv) the flux tube is at a temperature between lOOOOK to ZOOOOK.

Goertz's method for calculating the Ionospheric plasma distribution
involves the simultaneous solution of the heat transport equations for

the electron, ion and neutral gases along with the associated momentum

and chemical equations for the ion and neutral gas densities. A collision-
less plasma model was adopted to calculate the density in the Medium.
Inclusion of a 2-stream micro-instability in the Medium and recombination
in the Iosphere leads to the formation of the plasma disk suggested by
Gledhill, We will use Gledhill's equation (ibid: pl6) for the distribu-

tion of plasm.in the Iosphere ie. [-31 ]: exp {'1"(*3“"5$5’}}-————{b!)
qu.! T

when N is the density (particles /cc) at X (see fig. 5)

N is maximum density (at x=o ) (particles/cc)

T is the absolute temperature. .

Now we will assume a magnetic field 2 10 gauss in the equatorial plane

at the surface of Jupiter. This value is often assumed in Jupiter work

(see eg. Carr and Gulkis, Annual Review of Astronomy and Astrophysics,

Vol (8) (1970): p605). Recently Kemp et al. (Nature 231 169 (1971)) disccvered
circular polarization of reflected light from Jupiter: one interpretation
(Kbmp et al; ibid) of this discovery, implies a magnetic field in the order

of 1000 gauss or greater. If this interpretation is correct, then the

entire magnetohydrodynamic analysis, as given, will need drastic revision.

We will, however, assume 10 gauss. Assuming that the external Jovian

field is that of a dipole and using standard results, we have an under-

lying field at a radius r and a magnetic colatitude © .

mag nr.h‘c,‘ axis
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> 1
or  Be g} = 8 (dY Geresnt —(62)

(where here B®= 10 gauss = 10* Tesla from the preceeding paragraph).
(F.:s RN? s radis of Jq.‘?gf * 70,000 km .\
The equation for the field lines is ra LR, si'®—*63)and the

value of L varies from line to line: Io, as mentioned in Section 1,
lies on L ~¢ ie. Io orbits at about 6 x 70,000 = 420,000 km from

Jupiter's centre.

The length of the field line from Jupiter's centre to Io's orbit is
2 568,000 km (use Angerami and Thomas, JGR 69, no 21 (1964): equation

(A.2))

3
At TIo, then, we have an underlying magnetic field 4 Bo(gn‘fx‘)

b Tesla

= 4 b3 vO7
At % , the foot of the Iosphere, the density is 10 particles/cc
T o7/ v 68 X107 kahw’ , assuming that the magnetosphere is a neutral,

fully-ionized mixture of protons and electrons.

Thus -the A:Lfvén Speed VA a-t {b is Rﬁﬁ = Lb2 fo’b v 34 % 70‘ w faee

[(bk e S« 1re8xyp” tO) R
¥ .ne,

Along the field line and at @, (ie. 10,000 + 70,000 = 80,000 km from

the centre of the pla.net), the colatitude is given from sm's ¢ %

ie. costp ¥ S/ and . B = 103 L?,\’ (32 + 0N = J2e xro?

Tesla |,
Also the density is sxw“/ec = 232 Xw7 i/l
- E
Alfyén speed = VI %10 ’/[b”m_, L Y - S L N R T

(Similar calculations for x=o and at 1000 km in the Ionosphere, give

Yy = .one ¢ -o2bc respectively.)

Thus we see that over the entire magnetosphere, our non-relativistic

treatment is likely to be a good approximation. (the 1mportant duantity va
[\-—Qfalz)li , which  even for Up»-83c | eduals cavs 2§ )

In the Iosphere, the important length for disturbances is in the order
of Dy =diameter of Io = 3000 km : Goertz (ibid.) uses 2 x D, ie. 6000 m
and then requires that VA/(LDQ is the important freguency.

At KeXo Vs /Z-D; = '“‘“‘D’/(sooono}] X 55 ME

IS
At w20 where density = lO3 particles /cc Va/fp, = X (o3) <10” & .5 ne
6000 %10

Thus we consider Jo to generate in the range .5 - 5.5 Hz (hence the value

bHz in Section 1).
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At this point, we can conveniently check the applicability of the entire
magne tohydrodynamic treatment. The Debye length h, is given by (see eg.
Holt and Haskell: Plasma Dynamics, Macmillan: equation (9.16)

ho: bax 0% fl Cr- e, N-ew?)
N

Thus at % , the point of lowest density, h = &4 x1o® ('SDD3 (assumlng
P = 1500°K) = 84.5 x 1072 & .85 x 107 km which is << 2 D = 6000 Im.

Also the proton gyrogrequency (at Io) = W =[ - L’bx 1wy b‘!xvp’b}
LA Mpreton %k x 10717

oy 9> 5542, Thus we have confidence in applying the magnetohydro-

dynamic method.

A plot of Alfvén velocity VA along the Io flux line should have the
following shape
Yat -

g -

~3

(ii) THE ICSPHERE.

In subsection (i) we give the law [ﬁ ] exp {zzegxote T 4oy for

MaL ™

the variation of plasma density in the Iosphere. We now show that this
law can be adequately approximated by the inverse fourth power law

. bd . W
ie. po= o Uered ie. 8 . (*2/) where M. = N (x0)
N(/¢c)
»

1)
[

2 ’o,
AR VIR
1 !
e —
1° > %
A=D 'S E 2
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Now  Mua. = 10%cc . We will assume that the extent of the Iosphere
107 = 10% is determined from (6.1)

ie. :-;':3 = exp {— (2.8 x n::") > (3‘03‘3
For T = 1000°K, shis gives % & 41,500 km
T = 2000°K % & 58,500 km
We then calculate %, from %’? - :% - Lf’“ﬁ“
to get % % 13,100 km for T = 1000°K
%, % 18,500 km for T== 2000°K
We can get some estimate of the degree to which ﬁ = Cée\;’ approximates
{+]
(6.1) by calculating Nl s N, exp {-1.“ 21078 2 c,‘y}
X 3% T
For T = 1000°K, we get N| = .632 x 10° /co
%y
: o} 3
T = 2000 K N| = .629 x 10° /cc
R £ 1
Thus as both these numbers are close to los/cc, :l’i - C‘?Bb gives a
‘ °

good approximation over the temperature range.

Now, as we mentioned above, Goertz's theory involves a characteristic
length 2 6000 km. The scale length for the (smaller) Ionosphere,

T = 1000°K, is ¥ 41,500 - 13,100 = 28,400 ¥ 6000 km. Thus there
should be little interaction between Goertz's waves and the Ionosphere:
the energy from Io will pass through the filter x, =¥ , with only a

small reduction in amplitude.

i
Frequencies of the order of e Hz ( giving a characteristic time of 1 min.,
which is in the order of the time Io takes to cross its own length: see eg.

Drell, Foley and Rudeman, JGR 70 (3131) (1965)), however, will have a

(VAX; + 03 < = ‘o . of
length of { 5 Wa)e ]/‘;’a‘ = (=0 3(:‘/52\

~ 1.09 x ILO4 km which should be well contained by the Iosphere.

We can see this in more detail from the transmission coefficient

Xe| w P T e ey (FY (- mien )t
where reze and (here) ww(iw pexey . (We remember that the ca;’lculation
of X, was on the basis of a constant underlying magnetic field B, : in
the Iosphere, where the chief variation in |8%) is through the angle © in

(6.2), this is a good approximation).
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When [["‘”’ ‘(""K’]/ud <e 6':),then el » ¢ and there is no

interaction between the wave and the filter.(6'.4) can be written in the
. o .

form [ P4 V' Lo 2/t . For both T = 1000°K and 2000°K

Fe AT .
> ’ 3 1 3 b8 AL
we have LY LR S PV U YR the above inequality becomes | &'_'1_0*73__‘ PYETE N

Clearly it is sufficient to consider | ,%; ‘< QY| ie. ®&>» -19

ie. Twsxe >3 -79,

Now an angular frequency w in Y ~time becomes (see equations (1.4)) a

frequency =~ = W Ba , in real time +t .
W
po B
3 ¢
Also fo = Yi;(":} i Sozwdee & X g@-"ﬂ !P_‘%Q I[(%“} }Ko
, = vk wry (uy,500) ( for the Ionosphere, T = 1000°K. )
CJA\V_ 3 x> !g;ﬂ
z2 15,8 w2 5 .74
ie. Vs 0.05 Hz (Hence the value .05 Hz in the "Introduction”.)

A
Goertz's waves have ~v= 5§ >> ,05 Hz, but the s Hz waves have

& =.017 ¢ .05 Hz.

Thus the factor F, in the total transmission la"q,| 2% the end of Section 4
should be % 1.

(iii) THE MEDIUM

We will show first that the GAE ww-p'vy, =0 (derived in Section 1 for
a constant underlying field) is valid in the Medium and that a ray theory

gives a good solution there.

We have obtained previously that ar %, Va e-3txw® m/sec
at @, Vs - 1:23x 10° misec .
(for an extreme choice of parameters Goertz calculates the point @, with

N =5 x 1-04/00 to be at 7,000 km rather than at 10,000 km above the

k4

cloud level, as we are assuming: for 7,000 km the corresponding VY, would
be 1.38 x 105km/sec = .46 ¢; it is against such an extreme case that we

use .46 ¢ in Section 1 (vide)).

Now the length of the medium = 568,000 - (1ength of Iosthere) - 80,000 km
= 568,000 - 50,006 - 80,000 = 438,000 km (50,000 km is the average

of the values xs oObtained in the previous subsection for 1000°K and ZOOOOK).
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2y, - Ua/)
Thus the average gradient in wavelength over the medium is —|_v "®° ® "°]
438,000

3
- - 4-28--3L) x 10 A —10
&Ld3F,000 W = hY

For =~ =5 Hz, - %g = - .04. Thus in a unit length the wavelength will
(on the average) hardly change.

where < is (again) the frequency in the pulse.

Also, the average gradient in the underlying field is (using values from

. . -3
subsection (1)) . (b = sooubYxio & —ta xi't Tesla/m

438,000, OB

Now the basic equations are, for polarization in the 2 - direction, say,

8 i *»%»_;
E

X %5
2 b, . 2V
»rof  @x A

(see equations (1.3)).

These equations are derived for 8. , the underlying field, constant. In
following through the derivation preceeding (1.3) in Section (1), it dis
seen that (6.5) remains true when 8,2 B, (x) provided A %g« lhor"g}\

(we mentioned this result towards the end of Sectiom (1)).

Now let « be a typical wave number in the pulse.
Then | v, %{%‘ | ce [Bo2veg, | requires 8o IL\/(,{&,)

arerage \

BD = . { \’\
ol il o R A DA AW VA0 A A B
l("&/dw‘)qoenrgf \
Taking N an average value ie. N & 10°/c P = 148 x10" gu.a/,,ﬁ
and using \{‘ﬁ'\‘w,] swserage = 2.9 x 1072 Tesla/m obtained above, we

then require 3.16~ »> 1. For -~ % 5Hz, we have 3.16 x 5 = 15.80 so that
we may use (6.5) for B = B¢y with confidence.

Then eliminating, we obtain from (6.5)

Bey DV . 2w
A R A

2
_B_‘.. et
Mo !

where K 1is (again) the wave number: the magnitude of the second term on

|

The magnitude of the first term on l.h.s. of (6.6) is

I.h.s., 1s ¢
. ’ '}‘D'f I(J—. An)‘,f

Bl But N
. ut we nave
l ( )4\7! raqe 1

shown above that ‘thlS ra’slo is small for ~% 5Hz. Thus we can neglect
the second term on the l.h.s. of (6.6). We have then in the Medium the GAE

Their ratio is (S Bo b )/ B ( (42 {ey

Ax 'agerage
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B 2y > Ve
— [— = 1
po ox 2t

Also, as we have shown above that the average gradient in wavelength

is small(ai-'ﬂﬂ§ for ~* 5Hz, we have then, finally, that a ray theory
gives a good approximation in the Medium.. Thus all the energy escaping
from Io, will be transmitted through the Medium and impinge on the

Ionosphere at & . The travel time (w -@.) will be 7= w38,000
876, 09 O (VaYes +WVadasl/,

(23 4 - 38y < 10°

= 5.0 sec.

At this stage we must reconsider the approximations made in Section 1 of

infinite conductivity and incompressibility.

Iighthill (Phil. Trans. Roy. Soc. London A 252 397-430 (1960)) shows that
both a more realistic equation for current in the plasma and the inclusion
of a finite compressibility lead to a deguiding of energy along the field
line. The current effect is more significant., Iighthill shows that if
we incorporate a (large) Hall effect, then a disturbance in the plasma will
spread out within a cone whose angle is arsin (W/w; ) where w is the asgular
frequency of the disturbance and w{ is the ion (angular) gyrofrequency

ER ¥V H (see subsection (i)) at Io » For frequencies 5, 2 5Hz, this
conical attenuation  aresin (%5 x 4° vecomes significant and the
wave loses amplitude along a field line: these ideas are important in a
theory of the decameter sources (see Goertz and Deift, to be published:
will be referenced in Goertz, PhD Thesis, Rhodes University: see also

subsection (iv)).

(iv) Lastly we consider the Ionosphere

e ol lo’/«

5110 ee

eout

4, = 10,000 kw
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If we assume an inverse fourth power density variation we have in the

above figure (M/,)\ = (’”:—;?“3 . < -1
As 4, = 10,000 km, this gives 4, = 10,000 x .27 * 2700 km which is

greater than 100C km. We need a variation that is less steep. For the
inverse square we get (%/a4)) = Exog N x o7 v 4, = .07 x 10,000 = 700 kum.
The law- f7=f 4> on the other hand,would give 4, & 200 km, which is
too small. We will use the inverse square law ot () in what follows.

Also we will assume that internal reflections are not important in the

Ionosphere (see Section 3): then we can extend (*oz (e /AY 10 x=o-.

> - - B \ ?O’DDD 3 ~
Across R,- @ the magnetic field varies as (_;:\ - [m] A

i i
However [‘1‘)5:./.5Q ]‘ . (‘5'/.,—,,,,») & .

Thus in the Ionosphere we will neglect the variation of B, with respect
$0 that in Y in  V, - ® /st + Then the method of Section 5 is
applicable.

The law o *4) has a cut off at a frequency w,=4i , where w,

is in © -~time (see Section 5).

This corresponds (see (1.4), (5.5)) to a frequency [t;)_; Q/A\oo]

s s
. ) [!-l‘sx'o ] & \ue
;;‘ 10,00 0 ~ *

If we now plot the energy flux from (5.10)
Flux = e [ 1 (e = G- ’;Ai}l
[wa is an angular frequency in 8 —time)

we obtain

wWe Flos / (Bofy)
S 4% ]
YA -1
s 63
\ R
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To transmit 60%, say, of the incident radiation into the Ionosphere we

need Wo> .75 ie. V7V n‘oi;_{ = 1.5z, Thus not all of the frequencies

.5 - 5 Hz generated by Io will get into the Ionosphere.

This result, together with the deguiding of (iii) is used to give the
explanation of the decameter sources mentioned in the previous subsection
(see (iii) for reference).
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APPENDIX

CONVERGENCE OF d) = £ { Her ]

~

Tt is easy to invert W@®term by term to obtain p@l = «t-(ﬁ@)}

® + - - \‘\ §-Mok - _ - Q_“ o 3"
e S

! (m-1yt
f"‘o Qr‘g
o © ~ra (4= §-poe - —u\t W trardu
’N’Zuo “o“"u,la’f‘“““ re (g = po 1) L [‘.a_{‘%)':;‘:_]e dia —(A. 1)

where AW.is the unit Heaviside, showing explicity that the w™* wave reaches
%, only after a time pox . A consideration of the 1imit,’§prmcould proceed,

. pari passu, with a justification of the applicability of the final value

theorem. Where ¥; =Med , we will, however, consider the reduced

problem lim py;)

4®

The sequential solution indicates a general method for series: the problems
. encountered, however, are essentially those of the general limit, lim  pey).
da@

There is apparently a deep relationship between the theory of ILaplace

transforms and that of series.

: ' J "Il o~ rgilo (-"‘3 “""}9
The first term in (A.1) becomes  {or 31, KZ:“(o e A I (_p,(_,—n alut N
- ! eV 4
= Z o Ko“‘ -ra)l"("“-‘\ '1""\)"’ [T |
r=o fo (pdi=u-N=uY w
w! Qesd! du
j"""’/“’ Wz \ i~
ow r° C),rol..l-v.-l\ u}‘ (23] (r qr,\udu ‘;},u—u-)\] e (r u.}:a(g ) g‘( \ oy e~ 2:

-l

. =lrardpo Rt . . .
where ¢ = » o and we changed the variable of integration

3 P at Y

from w 0 v = 2u - pogg-n-1y O W s ¥/ (o) when k=) * o,

T IV
Again for q-u-xno 5 U-w*) o o integrates by parts to
-e( ‘_u-‘\ ~d¢-u~»\m
T et 3) { Ll—w"") o
r H . - eti-w-y) ! .
) Tees, tetinen) [t D/ (Whel“.e I“”’; 18

g modified Bessel function - see Bell, Special Functions for Scientists

and Engineers, pllé for the integral representation)

=1, , [eui-en] {C"cu""‘w“3/[c(3-t-'5/1]“'}, where we have in effect set
3 TGS = £, te). The function fey may be termed a modified

Spherloal Bessel function of the first kind (see Abramowitz and Stegun:

Handbook of Mathematical Functions: Dover: p443 ﬁﬂ\cfunctlons may be

expressed in terms of elementary functions eg.

f @ - s;’nke/z L P@ys -shhr ) coshy (Abromowitz and Stegun ibid).
A 2
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1 “ ~e(i--Vw . . 2%
Similarly | (-w") € aw 7 foledeN o T e o yao
[c(;.v\d.-\"]

We may put all these results together to obtain

J_,‘ PETN - o i _.\ G-u-l}/}lc . e R rola
Tee Ko memmfeCierd [T e (e a] w )

e o

an

! Aean!

= =" b
z X, Z e

N et N e (3=~
VIR ) W

wro e (C Q-l“')] { fu e (j-w-1) fk»-l ( 3
~2%s < rrr,
tra+r ) (ra+ e\
is positive and ¢ '/p b = ©IfeVe . ztnrY .o and we are only considerin

P ! 2 e J re

170

J= v\ . Iet us denote this sum by v; for j»o and define w,: o .

where . the term j-v-v=0 is (trivially)included. Here e¢a =

Similarly one can evaluzte the third term in (A.1) to get
ray 7! ("" e b)) -] " fledno)

kK=o

We denote this sum by u; ,i =0 . Here ao> *""™/r4r <O,

The method we will use to demonstrate convergence will be to associate
with the sequence {v;3 , say, a power series U@ - ZM z‘ vy

If we form the difference series w;= vy, ~vy, ten T @) - _Z 2 wy
3ev

But under certain conditions (with

»

: Li-i)'\?‘ -3v for o

which we will concern ourselyes) [im SE) - i 2 2w = Z w; -
21 P ETEEEL i=e
J
) w. - ~
“M ;2: J = i\n (U:,“ - U’°\ = (\tm U' 3- RN ‘m‘ U‘j‘ ‘m (¥ ‘)V‘
kRl -] Jae J"” J.\g 21

,Which
is a final value theorem. Clearly we are working ir analogy with ILaplace
Transform theory, a Tact we could emphasize by writing &~ for z («

is some complex number).

Now consider a summand in vy

l Z‘:\ _(i‘:)__:‘l ekﬁ’n-@ (C(j‘-k-l\‘]k“l ‘f‘,. [L(j-k-l)] ‘

_ ° o esn)!
‘ Z A CYTRRN s Y TV (an f, @) 70 for 220)
e f @ T o T el e R Ben) )
¢ %, Ceti-n)
¢ © f [c(.}-\)'] Zj::, (:?::‘ (j—u—a\‘ut Las beo)
& feg- Y, -0 Z_c f ;ﬁ{;f] ¢ ©G-9] P RG- e““'“”.
As L) )

= sinh (@) , We have that the summand is of exponential order.
z
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Similar considerations clearly apply to the other summand in V; Thus

1v] has a non-trivial transform ie. we can find a ¥,»e such that ¥Fa)- Z 2} oy

ine

converges for all 3, 1vl<e, . All the properties oﬂ that have been used
can be derived from the formulae for §, given on p444 of Abramowitz and
Stegun (loc cit).

L4 @™ N
Por Ihle¢i, we have T@ = 2 Ty o= 2 vy (as v, - 0)

Jz» . Jdet

o ¥ o v 3l @ P p o)™ (| (G0 - T, CeiooT]

)

© 1 \? Jomet .
¥ Z;0 2 Z,., zf'.% e““ )™ L Py, o 2 Cem) ]

w

L
o
o

© L)
: (S“\ L j-m4)
Z z 23 —_— e LL»O { fs'\”\”‘ Lem) = r]-m (cm\}

e b Emes d-m 3}

© & e Y
%22 =Y e ew)” {f,, ¢ewd < f, em]

MTO n»l n!
= A+ B
P Vo
where A ¥, 2 e 2 (%9 ) { £, o= o)

ma> 9 N o

and
B -% f Z™ e ew) { £, cwmy- f el

mso

The inversion of the order of summation above requires justification: a
proof can be constructed based essentially on the fact that a sequence

of absolutely convergent numbers can be summed in any order.

As (‘cm\'f.'(f-m\. tosh cew) and Cew)d ’f, (ew) = siah(ew) | R can be
summedto B= %o/ gevt) |

Also Z (~az} ewd ! f @m\-eosk[wwzai)i]f[‘his result is given on p445 of

nso

Abamowitz and Stegun (loc cit), and eesh [om 0-2a 9™ is sometimes referred

to as the generating function for f,‘ . Actually the result is nothing
more than a development of essh [cwm - wu"}as a power series in 2 .
See Watson (Theory of Bessel Functions, pl40 Cambridge University Press)

for details. Differentiation of the generating function also gives
L -3

Z (".“__)2 ) Lcw\\)“u f (ewm) = inh ‘:U'“ U-2a z)ﬁ]
n! "

Ao

G -2a 2)?
These results then give

1

2 %, '.Z. 1 ~
A= X_;_.? (‘_ (‘_lqz)‘][‘_ze‘_’co_n‘wu‘] + -LP [I+ (1-2a2) ][l'_eth—c(i-zu‘t\‘]

Similar considerations applied to {u;}] give

) | |

<

E T (—f°0° [ P — X Ij T —
2 0-2a2)"

Sz ebreliraa®yt j- g gbme G-2a )t

J
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for small enough |2} .

As yet it has been unimportant to specify which branch of the square
root we are using. For definiteness in the analysis whch follows,
however, we take ()- za2)*as that branch of the radical that assigns

. i L
a positive root t0 1- 2ar whenever 2 is real and < za

We are interested in 4@ = T @) + TE) = A+B + T
Some carsmust be taken in interpreting this eguality.

The function 4 on the 1.h.s. represents a transform which is related
to the transform Pp@E) = g_ 2l s where p; =?PLy;) » By the r.h.s.
we understand an explicit expression for @+2+48 in terms of radicals
etc. as above. The equality of l.h.s. and r.h.s. then means that for

certain 2 , in fact 1x) small enough, the power series ef q() converges

and may be calculated by the expression QT+A4 38 . Let us denote
u+A+® by £,
Then E = Loreas) ! - !
bY Q-Znili -2 35*‘0'7#!3‘ :- -2 eb-l.(i~la-§3{

¥, .3 Y - 1 N
+ f [I-(,l"ZQ‘tX"][l- zcb&c(l—zaﬁ“ ] + ?;-:' [l 3 (1-2a%) £)[ - 2 e;-g_(i-zat)* ]
- ¥ - e .

/I e’ ., ar ro . N ’Q’.*ro\" it el
We recall that o<¢a = —==m=5 < 2, b= —mgg <0 e —om v0
. My -

Also it can be shown that !-2e®“®***" has no roots z,1=14¢ 1 real

or complex, except =), which,moreover,gives a double root. (We mention
that this resuit is related to the fact that the denominator of the transfer
function H®) has no zeros with real part %o , except S*© which (again)
givés a double zero.) Clearly then E is .a.n analytic function of 2 for lzle¢l.
Thus §(@), which equals E for small enough lz|, can be continued to any 2
withlelel. Now a power series can be continued right up to its first
singularity. Hence 4(2) converges for alllzl«l . Also by the uniqueness

of the continuation we must have 3@~ E for all ‘el «j .

Yo (Q=2a B -0) —aor,
Now F@&) = f | - = e““,-z,ut] is a combination of terms in E .

The numerator can be expanded as a Taylor series in a small disk about

¥,
Z=2) as Yo [(}-Za 33i -~ ’1-5 —~apfp = ng“ (}.'ES =~ -—-——————Kb at(hzé) ' a- E)L+"’
(-2a0" 2(1-2ad°
Also we can expand |- eb*c (mza®Yn, ,.'("_";_a)(z-ﬂ‘ +--- for 2 near 1.

Thus ¢-2) F(&Y  is analytic in a neighbourhood of 1. (we are defining

0-2) F(=) at =1 by continuity).
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Clearly then all these results can be used to prove that (I-t)q is

analytic in a disk about 3=¢ with radius » 1, where it is given, moreover,

by 8-¥YE ., As 4-¥)F is a continuous function within its radius of con-
vergence we have, in particular, continuity at 2 = 1. Thus where

{d;1+ 14, - 4;1is the first difference in 14,1 , we have proved the existence and
continuity of its transform d@)=(i-")3@ - ‘%' at = 1. Hence we have

Justified the applicability of the final value theorem for [d;}.

As ¥, 3'3? o , We can use the theorem as

¥o 4
™ POy o lim (4G 1- aﬂ = lw B G-2) = (t-zn"‘] ) )
Jawo ’ -1 P -
[1__--\_2‘ = 2 (1-2a)
- 2a

Yot -2 r't o
-o P » which is the result already obtained for

hia pry in Section 2. through an (as yet unjustified) application
MEX

of the final value theorem. As a technical point we mention that both
u; and v; aremj for large ; . This behaviour should be important in a

perturbation theory. In detail, if we work with

se) - & Tolo) [ \ . ) 1
u = H bee(1-1a ®) "t boe G-2at)s -
20-2a3) Li-ee™s _ I-2e J‘,Ne see that G a-3Y  is

analytic at % = 1., Then the second difference in {u,-l(defj_ned as
ib;,, - 853 where {4;1. {upa-uj} is the first difference in (Wil )

converges in a disk about % = O with radius > 1. Hence the final value

theorem can be used to determine b® = i‘:; b} . Then by Cesaro
Z. . 43/ Win-ud/p 2V oawiny . Similarly v w g . (The

convergence theorem, in the form we are using it now, can be regarded as
the complex analogue of a theorem in Titchmarsh ( The theory of Functions,
2nd edition p226, section 7.51: Oxford at the Clarendon Press).

e s e s e



GRAPH (1) (Refer page 19). ,

Filter response p (‘T’) vs T for lospheres of different
dimensions r_, r,. The overshoot referred to on p.1l9, is
largest for %hs osphere r_ = -1, r, = -10: in this case
% /%, = 1,/r  \of fig p.13} is greatest. Bvidently, in
this, case the light region x > Xy (er p,lB) with density
< P® = (x /% )" << 1 is most selisitive to motions in the
dense (/5 = 1) region X<K .
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GRAPH (2) (Refer text p.20). Response v(y) at x, of the filter
{ef fig p.13) t0 a gemma function drivér y ey at x
for Iosphere's of different dimensions r_, r.. (Refer to
text p.20 for parsmeterization of curves).
The signal emerging from X ghould be desteepened: this is
seen by comparing the dotted curve (Which represents a
renormalization of y e—+9Y appropriate for the specific
speed ﬁ%l at x, when ry = -1, rp = ~2) with the curve

(«1, ~25 «Hy 1), which is its measured response at X -
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GRAPHS (3) gRefer text p.20). Response v(y) at x; of the Filter

cf fig p.13) to sinusoid drivers £( £ " y) = A sin By
(refer to text p.20 for parameterization of the curves) at
the input x = xg.

Evidently the response is capacitive eg. the frequency
B =6 {curve (-1, -2, 6, 1, .Ol)) excites an amplitude

¢ 1.8, while the higher frequency B = 18 (curve -1, -2,
18, 1, .0l) excites an amplitude =~ 2.1 > 1.8.

Then again the light region (;32 = (xb/x1)4 = EV10)4, cf
caption to Graph (1)) is more sensitive (curve (-1, -10, 18,
1, .01l)) reaching an amplitude 228 at the same frequency
18 as the region (-1, -2), (curve -1, -2, 18, 1, .01),
reaches 2,1, These results are in agreement with the
qualitative discussion preceding p.20.
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GRATH (4) (Refer text p.20). Response v(y) at x; of the filter
(cf fig p.13). 0 the single pulse

£ ( %O_y)= {1- u y - ‘ff/B)gx {AsinBy}a‘bxo.

( % is the unit Heaviside). Thefre uency/densi‘l:y dependences
described in the caption to Graph (3% are again in evidence
eg. the response (-1, =10, 18, 1, .01) of the lighter
filter, { = 6.0) is greater than the heavier (-1, -2, 18,
1, .013 which gives a response =z 2 < 6.0 at the same
frequency 18. Then again the filter (-1, ~10) responds
better ( = 6.0) to the frequency 18 than to the lower
frequency 6 (response = 4.1 <.6,0).
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GRAPHS (5) (Refer text pp.2%-24). Response b(x,y) of a discomnected

(cf fig p.23) Ionosphere t0 a driver v = foﬁ(y - Xo) sin 24y
impinging on x_ .‘rom the left. Here xo = -, x3 = -/8,

and the magnetic field distribution is plotted at successive
time intervals Ay =z ,0625, which is a quarter of the
travel time (4 x .0625 = .253 for a signal from X, 0 X;.

The signal steepens drametically into the Ionosphere. A%
large times (y > .5) nodes snd antinodes tend to develop

at x 2= (- .17, ~ .25) and x == (- .14, - ,20) respectively.
The antinodes should be regarded as hot spots for possible
instabilities feeding off b.
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GRAPH (6) (Refer text PD. 30-~31). Response ?}i?fat x; of a filter
(ef top figure on p.30) %o a sinusoidal exitation at x_,
vs ol = =2 LWy X, (refer text p.31l) for filters of dimen-
gions r = xo/x1 = 2, 4, 6, 8.
The general increase of each curve with oL results from the
high frequency bias of the sysitenm (cf captions to GRAFHS (3)
and (4)). The fluctuations on the curves are interference

effects between x, and Xy as in optical filter theory.
(ef text p.31).

{The dashed line ¢ r = 10 is needed in the parametric
analysis on p.32).
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