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ABSTRACT

Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) (African bollworm) is a typical noctuid

with a very catholic taste in food plants and whose larvae feed on a wide range of cultivated and

wild plants. It has been identified as the most polyphagous and injurious pest in South Africa.

Helicoverpa armigera is also a key pest of cotton in many parts of the world. This key pest

requires extensive control as it adversely effects yield and has built up resistance to synthetic

pyrethroid insecticides.

Cotton is an important crop produced by commercial and small-scale farmers in South Africa.

The local demand for cotton has not been exceeded yet, but to satisfy a demanding market, pest

control costs play an important role in cotton production. The threat of an insect pest that has

already shown resistance prompted the present study to investigate the possibility of resistance

to Bt-cotton.

Genetically engineered or Bt-cotton was introduced commercially in 1996 in South Africa. All

Bt-cotton plants contain one or more foreign genes derived from the soil-dwelling bacterium,

Bacillus thuringiensis (Berliner), which produces protein crystals. These crystals were isolated

and transferred into the genome of a cotton plant resulting in the plant producing it’s own protein

insecticide. In 1998, Monsanto (Pty) Ltd requested research into the geographic susceptibility

of H. armigera to the insecticidal proteins in Bt-cotton in SA.

Laboratory reared and field sampled populations of H. armigera were exposed to a diet mixed

with various baseline concentrations of the Bt-gene Cry1Ac freeze dried protein.  This study also
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determined the performance of H. armigera and Spodoptera littoralis (Boisduval) on different

Bt-cotton field cultivars containing different Cry-protein genes.

Results obtained indicated a significant difference in susceptibility in two field populations of

H. armigera to the Bt-protein Cry1Ac, even though the LD50,s in the 2003 season did not

indicate resistance. Bt-cotton cultivar 15985 BX controlled H. armigera and S. littoralis larvae,

the best followed in descending order by cultivar 15985 X, 15985 B and DP50 B. Results on  H.

armigera also indicated that the Cry-proteins in the plant parts of the different cultivars did not

diminish as the season progressed. The Bt-cotton cultivars induced retarded growth of larvae,

due to either a repellent effect or lack of feeding by larvae.

Widespread adoption of Bt-cotton by South African farmers led to regional declines in bollworm

populations, reduced insecticide use, and increased yields. Genetically modified crops therefore

contribute to a cost effective, sustainable, productive and efficient form of agriculture, with a

resultant positive impact on the environment. As the market for commercial Bt-cotton in South

Africa expands, it is recommended that a monitoring programme for potential resistant genes in

H. armigera should be implemented at least every 2 - 3 years. This will ensure that effective

resistance management strategies are utilised. Coupled  with this are the Biosafety Risks

regarding the effect of new proteins expressed in transgenic plants, which require further studies.
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FRONTISPIECE

Top: Helicoverpa armigera Hübner, (Lepidoptera: Noctuidae), 5th instar larva African bollworm.
Bottom Left: Healthy cotton plant.
Bottom Middle: Damage caused by a bollworm larva.
Bottom Right: Result of damage to a boll during an early stage of development.
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CHAPTER 1

GENERAL INTRODUCTION AND LITERATURE REVIEW

In 1516, according to historical documents a certain Barbosa (a Portuguese trader), met the

indigenous people in South Africa who grew cotton and wore cotton clothing. This was a type

of wild cotton, species which still exist today. The first cotton seed was planted in 1690 in the

Western Cape, more or less 40 years after the arrival of Jan van Riebeeck. Cotton, however,

prefers a warm climate and requires a substantial amount of moisture for the seed to germinate.

In 1846 Dr Adams brought seed from America and started growing cotton in the Amanzimtoti

district in Kwa-Zulu Natal Province. Between 1860 and 1870 cotton was planted on a relatively

large scale in both Kwa-Zulu Natal and the Cape Colony (Western Cape Province) due to the

demand for this fibre which had arisen as a result of the American Civil War. After 1870 the

large scale production of cotton in South Africa came to a virtual standstill and was only to be

continued at the start of the twentieth century.

In 1904 about 12 to 14 hectares were planted in the Tzaneen area (Fig. 1.1) and in 1905 a cotton

gin was erected in the area where cotton could be ginned and baled mechanically. In 1913 an

experimental station which was to provide farmers with advice was established at Rustenburg

under the direction of a Mr Taylor. Between 1913 and 1922 cotton was cultivated mainly in the

Transvaal Lowveld, what is now called Mpumalanga Province.

The co-operative movement with regard to cotton had its origin in 1922 when a co-operative and

a ginnery were established at Barberton. Already in the early stages of its cultivation, cotton

played an important role in the manufacture of explosives. In 1924 African Explosives erected

a ginnery at Umbogintwini in Kwa-Zulu Natal. In the same year a ginnery was also erected at

Magut (Kwa-Zulu Natal) by a Mr. Rouxliard and another in 1935 at Louis Trichardt by the

Lancashire Cotton Corporation Spinners of the United Kingdom.
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At this stage in South Africa there were as yet no facilities for either spinning or weaving and

the fibre was exported to Liverpool. Cotton was grown under irrigation in the Lower Orange

River area for the first time in 1927 and in the early thirties cotton production dropped with the

result that the next ginnery was only erected in the late thirties by Amaro at Standerton.

According to Section 102 of the Co-operative Societies Act (Act 29 of 1929) cotton was

officially declared an agricultural crop in 1939 (Cotton SA 2003; Http://www.cottonsa.org.za

(March 2003)).

Figure 1.1 Map of South Africa showing Provinces and historically important towns related

to cotton.

Cotton is a herbaceous plant which grows to about 1.4 m with a characteristic arrangement of

dimorphic branches (Eaton 1955; Van Heerden 1978). Growth of the monopodial main stem and
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sympodial vegetative branches is indeterminate (Gillham 1972). The sympodia or fruiting

branches grow outwards and produce several nodes, each node producing a flower. The

succession of fruiting branches, arising from the nodes of the main stem, follows a set spiral

course of three-eights of the circumference of the main stem. Leaves are formed on the

sympodial branches with two buds at the base of each leaf. The axillary bud produces a

vegetative branch and if the extra-axillary bud develops, it produces a further fruiting branch.

The bolls first ripen near the bases of the branches (Van Heerden 1978; Van der Walt 1988).

Growth is irregular, depending largely on the availability of soil moisture, so that fruiting forms

are produced for the greater part of the season, with peak flowering period occurring about 90 -

100 days after plant emergence. Predictably at the beginning of the season, buds are the most

abundant on the plants, but as the season progresses, flowers and bolls become relatively more

abundant and towards the end of the season the bolls are the most abundant fruiting form. All

stages of fruiting forms are present from about the fourth week after planting, but in varying

proportions (Van der Walt 1988). Cotton is a perennial plant and can be ratooned.

Van der Walt (1988) divided the fruiting forms of a cotton plant into twelve classes or categories

namely: (1) Growth tip, (2) Bud - bud barely visible, (3) Bud - calyx closed, epicalyx fully

formed, (4) Bud - yellow corolla protruding from the calyx, shorter or equal to the calyx, (5) Bud

- corolla prominent , unopened, longer than the calyx, (6) Flower - yellow, (7) Flower - purple,

(8) Boll - corolla lost, boll smaller than calyx, (9) Boll - boll fills calyx, (10) Boll - boll larger

than calyx, calyx split, boll shorter than epicalyx (structure can be suspended by holding tips of

epicalyx together), (11) Boll - boll as long as epicalyx (structure cannot be held by tips of

epicalyx), (12) Boll - boll longer than epicalyx, last category before boll burst. The maximum

boll size, contains the unripe seeds and fibers originating from the seed coats. The contents of

the boll are covered with a thick layer of tissue that harden during the last few categories before

ripening. The ripe fruit (referred as “boll burst”) is a dry dehiscent schizocarp of three to five

loculi, each containing eight to nine lint-bearing seeds (Van Heerden 1978). The lint-bearing

seeds eventually ripen and are harvested, mainly for the textile industry.

In South Africa cotton is one of the few agricultural commodities where local demand exceeds

production, thereby creating opportunities for new producers without the risk of causing a
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surplus. As a result of increasing exposure to international competition, producers have to

become innovative and productive. However, without a well-developed research service, the

cotton industry will not be able to survive growing international competition.

There is a growing need to increase the output of world agriculture if the demands of a rising

world population are to be met. The basis for this increase must be improved harvest yields of

major crops from existing cultivated land. One practical means of increasing yield is to protect

more of what is grown from loss to pests, especially insect pests. Insects are not only responsible

for massive direct losses of productivity as a result of their herbivory, but also cause massive

indirect losses due to their role as vectors for various plant pathogens. Currently crop protection

relies primarily on synthetic chemical pesticides, the basis of a ca. USZ 10 billion per annum

global pesticide market (Hilder and Boulter 1999). However, this chemical approach to crop

protection is coming under increasing pressure. A good deal of the criticism of the agrochemical

industry has an emotive rather than a scientific basis (Taylor 1994), nevertheless the view is now

widely held that such agricultural systems are unsustainable. This view is based on huge costs

in terms of non-renewable resources; efficiency in terms of the proportion of these resources

which actually reach the intended target; the environmentally unacceptable consequences of the

preceding criticisms, such as contamination of food chains and water sources and the growing

consumer dissatisfaction with the publicly perceived consequences of high input agricultural

practices. Total pesticide usage is in the decline worldwide, largely due to major reductions in

usage in the European Union (EU) as a result of regulatory and public opinion pressure (Hilder

and Boulter 1999).

The industries’ preferred solutions to this situation tend to be based on risk reduction, rather than

use reduction, e.g. the development of more target-specific compounds with less persistence in

the environment and the extension of integrated crop management systems (IPM). The benefits

however which have accrued to agriculture from the use of synthetic pesticides should not be

belittled, but there is clearly an urgent need to develop partial substitution technologies which

would allow a much more limited use of synthetic pesticides and yet provide adequate protection

of crops within the sustainable agricultural framework.
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Genetically engineering inherent crop resistance to insect pests offers the potential of a user-

friendly, environment-friendly and consumer-friendly method of crop protection to meet the

demands of sustainable agriculture in the 21st century. Genetic engineering of crops offers the

prospect of many advantages; not just widening the potential pool of useful genes but also

permitting the introduction of a number of different desirable genes at a single event and

reducing the time needed to introgress introduced characters into an elite genetic background.

Transgenic crop technology may soon prove to be the most important development in crop

protection since the discovery of chemical insecticides. In cotton this technology is on the verge

of being widely used.  For over 50 years the bacteria, Bacillus thuringiensis (Berliner) that

contains a gene that produces a toxin against certain insects, has been formulated and is applied

as any other insecticide.

The development of insecticides based on the delta-endotoxin protein of B. thuringiensis has

increased in response to the need for efficacious, environmentally safe and selective pesticides

with unique modes of action.  Although it is highly selective in that a certain Bt-strain produces

a protein that is only toxic to a specific group of insects, advances in formulation and genetic

engineering and the discovery of Bt-strains with a broader spectrum of activity have resulted in

new microbial products with increased potency and greater stability.

Bt-cotton is one of the first crop protection products arising from this biotechnology. All Bt-

cotton plants contain one or more foreign genes derived from the soil-dwelling bacterium,

Bacillus thuringiensis and are thus transgenic plants. The insertion of the genes from B.

thuringiensis cause cotton plant cells to produce crystal insecticidal proteins, often referred to

as Cry-proteins (Hardee et al. 2001). The Cry1A transgene was determined to be present as a

single copy by probing a Southern blot of C312/531 genomic DNA (Southern 1975) with a

Cry1A DNA probe. The Cry1A chimeric protein which expressed, has been reported as virtually

identical to native Cry1Ac, sharing its pest activity spectrum as well as 99% of its amino acid

sequence identity (MacIntosh et al. 1990; Perlak et al. 1990). These insecticidal proteins are

effective in killing some of the most injurious caterpillar pests of cotton, such as larvae of the

African bollworm (Helicoverpa armigera Hübner) in South Africa. When the insect eats these

Cry proteins, its own digestive enzymes activate the toxic form of the protein. Cry proteins bind
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to specific receptors on the intestinal walls and rupture midget cells (Hardee et al. 2001).

Susceptible insects stop feeding within a few hours after taking their first bite, and if they have

eaten enough toxin, die within 2 or 3 days, without ingesting further food. The Bt-gene, modified

for improved expression in cotton, enables the cotton plant to produce this Cry protein. The first

varieties of Bt-cotton produced in the United States contained one Cry protein gene - Cry1Ac

(Chapters 2 & 3) (Hardee et al. 2001).

Bt-cotton allows the producer to use less insecticides during pest management, which in turn

decreases the potential damage to non-target organisms. Furthermore, it increases the useful life

of pyrethroids and other synthetic toxins, increases the potential of biological pest control agents,

reduces pesticide run-off into aquatic ecosystems, reduces adverse effects on humans, reduces

labour costs and increases profits (Sachs et al. 1996; Matthews 1997; International Cotton

Advisory Committee 2000). 

Bt or transgenic-cotton is protected from lepidopteran pests until late in the season when the

plants cease vegetative growth and begin fruit-set.  At this stage cotton plants do not have enough

insecticidal protein to protect them against these pests and one or two chemical sprays may be

needed. Consequently the complex of other insect pests on cotton still has to be controlled

chemically where needed. This however would increase the overall production costs of Bt-cotton.

Pests that would need additional chemical control are e.g. cotton aphids, jassids, red spider mites,

cotton stainers, thrips and white flies (Hardee et al. 2001)

Generally the biggest disadvantage in the production of Bt-cotton is the cost of the seed and

technology fee (which is the cost of the patent). This disadvantage is nevertheless outweighed

by the benefits listed above (Kirsten & Gouse 2002; (Cotton SA 2003;

Http://www.cottonsa.org.za (March 2004)).

However, as with all registered insecticides, there is the threat of the development of resistance.

Development of insect resistance to the endotoxin proteins of Bt is an issue of intense

contemporary concern among farmers and agricultural policy makers.  In South Africa synthetic
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pyrethroid resistance occurs in the African bollworm and was investigated during the period of

1992 to 1995 by researchers at the Agricultural Research Council, Plant Protection Research

Institute, Pretoria, South Africa, (Van Jaarsveld et al. 1998).  These results underscore the need

for a management programme to prevent resistance development against Bt.  Regardless of any

management strategy, base-line data are essential to monitor possible changes in population

sensitivity to Bt-based products. 
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1.1 ECOLOGY OF HELICOVERPA ARMIGERA AND GENERAL FEEDING

BEHAVIOUR PATTERNS ON COTTON

Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a typical noctuid whose larvae feed

on a wide range of plants and has been identified as the most polyphagous and injurious pest in

South Africa (Annecke & Moran 1982; Van der Walt 1988). In many parts of the world H.

armigera is a key pest of cotton and is no less so in South Africa. Consequently, it has been the

subject of considerable study and significant progress has been made in the development of

integrated pest management strategies for cotton in South Africa (Mumford & Van Hamburg

1985).  The vernacular name “American bollworm” for H. armigera is an unfortunate misnomer

which became entrenched because it was initially misidentified as a conspecific of the North

American Heliothis zea (Boddie). Helicoverpa armigera occurs in the Old World, especially in

Africa, Australia and India, but not in the new World, while the reverse is true for H. zea and the

other important North American species Heliothis virescens (Fabricus) (Pearson & Maxwell

Darling 1958; Annecke & Moran 1982; Van der Walt 1988). 

For a long time spray thresholds for H. armigera were based on surveys of the eggs in the field,

but egg counts were found to be an unreliable criterion, due to high mortality rates of egg

populations and larval counts were shown to be more reliable indicators of the pest (Kfir & Van

Hamburg 1983). The current  spray threshold is set at 5 larvae/ 24 plants and 12 eggs/ 24 plants,

with larvae from about the third instar counted as two (Basson 1986; Nel et al. 2002). The shift

to H. armigera larvae as the key stage for the implementation of control programmes dictated

a need for a better understanding of the biology of the larvae, particularly a description of the

feeding habits of the larvae and the damage they cause to cotton under field conditions.

The adults are typical noctuid moths with nocturnal habits of flight, mating and oviposition. The

female moth is stout bodied. A reddish-brown colour and somewhat bigger than the more

greenish males (Jayaraj 1982; Van der Walt 1988). The number of eggs laid per female in the

laboratory culture averaged about 1400 (Van der Walt et al. 1993). In the field, eggs are laid

singly on plants, mainly during the early evening (Taylor 1982). On cotton, eggs are laid mainly

on leaves, with preference for young leaves when the plants are still young, but favouring the
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fruiting forms in older plants (Mabbett & Nachapong 1984). Most eggs are laid on the top third

of the plants (Basson 1987). The oviposition sites bear no obvious relationship to the plant parts

which are fed on by the first instar larvae. The larvae are full-grown after about 14 - 18 days and

burrow into the soil where they overwinter or pupate, the pupal stage lasting about 11 - 14 days

(Van der Walt 1988). Mature H. armigera larvae vary widely in colour from shades of yellow-

green, pink to brown to almost black (Taylor 1982). They are recognised by a fine white mid-

dorsal line, edged with black, as well as lateral markings, including a creamy white stigmatal

line. Five larval instars were found by rearing H. armigera in the laboratory, on an artificial diet,

with the larval instars lasted about 3.5, 2.5, 2.1, 2.7 and 2.5 days respectively (Van der Walt

1988; Van der Walt et al. 1993).

The distribution of H. armigera on cotton plants is influenced by the distribution of fruiting

forms and the distances moved by the larvae (Van der Walt 1988; Wilson et al. 1982). Plant

density and the time of season are the two key factors which not only determine the state of plant

growth, but also influence the feeding pattern within-plant distribution. The larvae mainly occur

in the upper third or at least in the upper two-thirds of cotton plants (Van der Walt 1988).

Younger larvae up to the third instar, feed mainly in the upper third of the plant and the older

larvae, (fourth and fifth instars), feed between the upper two thirds of the cotton plants. Only a

very small proportion of larvae fed in the lower third. For most of the season the larvae remain

in the upper two-thirds of the plants. Van der Walt (1988) also investigated the movement of

larvae within a cotton plant and found that as most of the eggs are laid in the upper third of cotton

plants and up to 90 % on the younger leaves, the majority of newly-hatched larvae move to the

stem terminal bud, thereby increasing their chances of finding suitable food. Apart from the

obvious fact that it would take small larva much longer to move a given distance than it would

take a larger one, the limited movement clearly indicates that the smaller larvae tended to stay

on the fruiting forms which they encountered initially. The first two larval instars moved between

closely grouped feeding sites at the branch tips, whereas the later instars also fed on fruiting

forms more widely separated on the branches, even moving between branches. Movement of H.

armigera larvae between adjacent plants is also known to occur (Mabbett et al. 1980).  Annecke

& Moran (1982) stated that H. armigera larvae have a “...catholic taste in food plants, preferring

flower buds, flowers and developing fruits...”. Van der Walt (1988) also found that all H.

armigera larval instars preferred fruiting forms over leaves and that the number of leaves fed on
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was negligible and seldom amounted to more than “nibbling”. Apparently the larvae used the

leaves mainly to move between fruiting forms.

Once thought to be identical with Heliothis zea (Boddie), the corn-ear worm or cotton bollworm

of the new world - thus, the firmly established misnomer, American bollworm - Heliothis

armigera (now Helicoverpa armigera)  is distributed all over Africa, southern Europe, the Near

and Middle East, India, Central and Southeast Asia, Japan, the Philippines, Indonesia, New

Guinea, eastern Australia, New Zealand, Fiji and some other Pacific islands. However, it is

probably not indigenous to southern Africa (Annecke & Moran 1982). 

   

Because of its wide distribution and very catholic taste in food plants, preferring flower buds,

flowers and developing fruits, the African bollworm is probably the most polyphagous and

injurious pest of agriculture and home gardens in South Africa.

1.2 CONTROL STRATEGIES OF HELICOVERPA ARMIGERA OVER THE PAST

TWENTY YEARS

There has been a noticeable tendency in South Africa since 1982 to reduce the number of

insecticidal applications each season, following a research programme initiated by S.W.

Broodryk during 1982 (ARC-PPRI, Annual Report). Instead of applying pesticides by rote

according to the calender, attempts were made to spray only when populations of the key pest,

African bollworm, were sufficiently high to pose a real threat to cotton and only when the plants

had reached a state of growth at which the injury sustained would be reflected in the yield. To

achieve this, scouts were trained to search for and count bollworm eggs on plants according to

a carefully worked out sampling technique. The decision to use an insecticide was made when

a certain threshold number of eggs per plant was exceeded. By this method it proved possible to

reduce the number of insecticidal applications in the Groblersdal area over a few years from as

many as 16 to as few as six to eight, with no loss in yield (Cotton SA 2003;

Http://www.cottonsa.org.za (March 2003)).
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During the period that the research was done, it was noticed that many bollworm eggs produced

parasitoids instead of larvae, and that many young bollworm larvae perished from various causes,

suggesting that a still greater number of eggs per plant could be safely tolerated. But the rate of

parasitism and the mortality rate of the larvae varied greatly between 0 and 50 % and even

higher, so that no simple correction factor could be applied. Instead, research was based on

scouting for bollworm larvae instead of eggs, and new threshold injury levels were tested and

set. The yield from two seasons when this technique was used strongly suggest that three or four

insecticidal applications per season may often be sufficient to produce a satisfactory cotton crop

(Annecke & Moran 1982).

The chemical registrations for the control of Helicoverpa armigera on cotton in South Africa are

revealed in Table 1.1 (Bot et al. 1988; Vermeulen et al. 1990; Vermeulen et al. 1992; Nel et al.

1993; Krause et al. 1996; Nel et al. 1999; Nel et al. 2002). The application of the registered

products are based on: (1) the checking/scouting of 24 plants at random in a 1 - 15 ha cotton

field,  weekly from 6 weeks after plant emergence. Apply a registered product when  economic

threshold is reached or exceeded (threshold value of 5 larvae/24 plants), (2) checking/scouting

of eggs per plant, apply a registered product  if 12 eggs/24 plants are exceeded.
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Table 1.1 Chemical products registered during 1988, 1990, 1992, 1993, 1996, 1999 and  2002 for the control of Helicoverpa armigera on cotton

in South Africa.

PESTICIDE / ACTIVE
INGREDIENT

FORMULATION CHEMICAL
CLASS

REGISTRATION
YEAR

APPLICATION DIRECTIONS

Unless otherwise indicated - directions are for high volume
applicationTYPE GRAMS

ACTIVE
INGREDIENT

alphamethrin EC

SC

100 g/R

100 g/R

pyrethroid 1988, 1990 * Apply from flowering peak (10 - 12 weeks after plant emergence) to first boll
split. Weekly applications are desirable up to the 18th week.

Preventative treatment: weekly programme and fortnightly programme. Ground
application: apply 200 R spray mix/ha.

Aerial application: apply in 30 R water.

Corrective treatment: when egg threshold is exceeded.

Ground application: apply 200 R spray mix/ha.

Aerial application: apply in 30 R water.

alphacypermethrin EC

SC

UL

100 g/R

100 g/R

2.5 g/R

pyrethroid 1992, 1993, 1996, 1999,
2002 

1992, 1993, 1996, 1999,
2002

Apply from flowering peak (10 - 12 weeks after plant emergence) to first boll
split. Weekly applications are desirable up to the 18th week.

Preventative treatment: weekly programme and fortnightly programme. Ground
application: apply 200 R spray mix/ha.

Aerial application: apply in 30 R water.

Corrective treatment: when egg threshold is exceeded.

Ground application: apply 200 R spray mix/ha.

Aerial application: apply in 30 R water.

Preventive treatment

Ground application: apply by means of Micronair model AU 5000 atomisers
only.

Bacillus thuringiensis var
kurstaki

SC 17 500 IU/ mR bacterium 2002 Preventative treatment: apply when egg and larvae thresholds are reached and
before larvae reach a length of 7 mm. To be applied only before square
formation.
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PESTICIDE / ACTIVE
INGREDIENT

FORMULATION CHEMICAL
CLASS

REGISTRATION
YEAR

APPLICATION DIRECTIONS

Unless otherwise indicated - directions are for high volume
applicationTYPE GRAMS

ACTIVE
INGREDIENT

beta-cyfluthrin EC

EC

25 g/R

50 g/R

pyrethroid 1992, 1993 *

1996, 1999, 2002

Apply as for alphamethrin.

Use lower spray volumes on plants smaller than 60 cm. 

beta-cypermethrin EC 100 g/R pyrethroid 2002 Apply as for alphacypermethrin.

bifenthrin EC 100 g/R pyrethroid 1988, 1990, 1992, 1993,
1996, 1999, 2002

Apply as for alphamethrin.

cyfluthrin EC 50 g/R pyrethroid 1988, 1990, 1992, 1993,
1996 *

Apply as for alphamethrin.

Use lower spray volumes on plants smaller than 60 cm.

cypermethrin EC 200 g/R pyrethroid 1988, 1990, 1992, 1993,
1996, 1999, 2002

Apply as for alphamethrin.

cypermethrin-high cis EC 200 g/R pyrethroid 1988, 1990, 1992, 1993,
1996, 1999 *

Apply as for alphamethrin.

deltametrin EC

TB

25 g/R

0.5 g/tablet

pyrethroid 1988, 1990, 1992, 1993,
1996, 1999,2002

1996, 1999, 2002

Apply as for alphamethrin.

Apply as for alphamethrin.

Preventative treatment: weekly programme.

Ground: dosage rate depends on infestation level.

deltamethrin/endosulfan SC 2.5/475 g/R pyrethroid/organ
ochlorine

1999 * Preventative treatment: Ground and Aerial: dosage rate depends on plant height.
Apply only in the period 1 January - 28 February. Ensure good coverage of upper
third of the plants.
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PESTICIDE / ACTIVE
INGREDIENT

FORMULATION CHEMICAL
CLASS

REGISTRATION
YEAR

APPLICATION DIRECTIONS

Unless otherwise indicated - directions are for high volume
applicationTYPE GRAMS

ACTIVE
INGREDIENT

endosulfan WP

EC

ULV / UL

SC

475 g/kg

350 g/R

250 g/R

475 g/R

organochlorine 1988, 1990, 1992, 1993,
1996, 1999, 2002

1988, 1990, 1992, 1993,
1996, 1999, 2002

1988, 1990, 1992, 1993,
1996, 1999, 2002

1988, 1990, 1992, 1993,
1996, 1999, 2002

LV. Ground application. Aerial: in 30 R of water.

LV. Ground application. Aerial: in 30 R of water.

Aerial application only: Dosage depends on plant size.

Apply as for alphamethrin.

esfenvalerate EC

EC

50 g/R

200 g/R

pyrethroid 1988, 1990, 1992, 1993,
1996, 1999, 2002

2002

Apply as for alphamethrin.

Apply as for alphamethrin.

fenvalerate EC 200 g/R pyrethroid 1988, 1992, 1996, 1999,
2002

Apply as for alphamethrin.

fluvalinate EC 240 g/R pyrethroid 1988, 1990 * Apply as for alphamethrin.

indoxacarb SC 150 g/R oxadiazine 2002 Preventative treatment: weekly spray programme. Do not apply more than 5
times/season. Addition of wetter/sticker is recommended.

permethrin EC 500 g/R pyrethroid 1988, 1990, 1992, 1993,
1996, 1999, 2002

Apply as for alphamethrin.
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PESTICIDE / ACTIVE
INGREDIENT

FORMULATION CLASS REGISTRATION
YEAR

APPLICATION DIRECTIONS

Unless otherwise indicated - directions are for high volume
applicationTYPE GRAMS

ACTIVE
INGREDIENT

profenofos during 2002 referred
to also as profenofos (premium
grade)

EC 500 g/R organo-
phosphorus

1988, 1990, 1992, 1993,
1996, 1999, 2002

Apply appending on plant size in 100-200 R water/ha on a weekly basis or
according to scouting information.

Apply as for alphamethrin.

tau-fluvalinate EC 240 g/R pyrethroid 1992, 1993, 1996 * Apply as for alphamethrin.

tau-fluvalinate/thiometon EC 72/200 g/R pyrethroid/organ
ophosphorus

1993, 1996 * Ground application in at least 200 R water. 

thiodicarb SC 375 g/R oxime carbamate 1988, 1990, 1992, 1993,
1996, 1999, 2002

Apply as for alphamethrin.

tralomethrin EC 36 g/R pyrethroid 1992, 1993, 1996, 1999,
2002

Apply as for alphamethrin.

zeta-cypermethrin EW 100 g/R pyrethroid 2002 Apply as for alphacypermethrin.

* This product is no longer registered for the control of H. armigera on cotton in South Africa.
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Basson (1987) showed that valid agricultural practices reduced pest control costs and prevented

the development of pesticide resistance. This programme was based on integrated control

strategies which exploited the natural enemies of the bollworm to the full, but did not pretend to

be the ultimate solution to cotton pest control. Depending on further experience and the

introduction of new pesticides, further adjustments and modifications need to be made. This

programme deviate slightly from the recommendations on pesticide labels. Effective pest control

in cotton is based on the following practices: (1) scouting for the number of bollworm present

in the field; (2) choice of the correct pesticide; (3) the planning and implementation of an

effective spraying strategy. It is usually not necessary to apply insecticides within the first 8

weeks of emergence of the cotton seedlings. Scouting should commence at seedling emergence

and intensify from 6 weeks after emergence. Scouting should be done at least once a week,

although twice-weekly inspections would be the ideal, until the end of the growing season - about

20 weeks after seedling emergence. The economic threshold level set during this time was an

average of 5 larvae per 24 plants (larvae smaller than 5 mm ignored). From plant emergence to

7 weeks (i.e. to first flowering stage); no control for African bollworm is necessary. Seven weeks

to 11 weeks after plant emergence (first flowering stage to peak flowering stage); chemical

control usually commences during this stage and it is especially important not to use synthetic

pyrethroids or pesticides that will stimulate red spider mite populations. Twelve weeks to 20

weeks after plant emergence (peak flowering to start of boll burst stage); is the important phase

in the development of cotton. Synthetic pyrethroid sprays should be limited to a maximum of 2 -

3 sprays during this period. Twenty one weeks to harvesting (after first boll burst to harvesting),

usually requires no pest control.

Van Jaarsveld et al. (1998), published results of, H. armigera resistance, to different synthetic

pyrethroids, of different field populations in South Africa. Following these results the Resistance

Working Group of the Agricultural and Veterinary Chemical Association of South Africa

(AVCASA) asked the Registrar of Act 36 of 1947 to stipulate an additional clause on the labels

of all synthetic pyrethroid pesticides registered for controlling H. armigera in South Africa

(Farmer’s Weekly 1994). The following modifications/additions were implemented on all

synthetic pyrethroid labels with effect 1995: (1) synthetic pyrethroids may only be applied to

cotton during the period January 1 to February 28, (2) they may not be applied to other crops

more than twice in a growing season, (3) if pyrethroids gives poor control, the crop may not be
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resprayed with another pyrethroid, not even at a correct dosage. Instead, a product from another

chemical group must be sprayed (Table 1.1). By following this regulations, the selection pressure

favouring the onset of resistance development, will be reduced - not only in H. armigera but in

other pests as well.

1.3 CONVENTIONAL BACILLUS THURINGIENSIS PESTICIDES

The biological insecticide B. thuringiensis has been used for more than 50 years to control

lepidopteran pests on a variety of crops. Strains of the bacteria are also used for control of certain

Diptera (Burges 1982) and Coleoptera (Zehnder & Gelernter 1989). The development of

insecticides based on the delta-endotoxin protein of B. thuringiensis has increased in response

to the need for efficacious, environmentally safe and selective pesticides with unique modes of

action. Advances in formulation and genetic engineering, and the discovery of strains with a

broader spectrum of activity, have resulted in new microbial products with increased potency and

greater stability. In addition, crops such as cotton (Perlak et al. 1990), tomato (Fischhoff et al.

1987), and tobacco (Stone & Sims 1993) was genetically modified to express many types of B.

thuringiensis delta-endotoxins.

Bio-insecticides like Bt that are sprayed on crops may perform as well as synthetic insecticides

in very limited situations, but the performance of Bt-insecticides has been inconsistent in many

instances. The erratic performance in cotton is attributed to four reasons, the toxin is rapidly

degraded by ultraviolet light, heat, high leaf pH, or desiccation; larvae must eat enough treated

plant tissue to get a lethal dose of toxin; since the toxin has no contact effect, the sites where

bollworms feed are difficult to cover with the foliar-applied sprays; and Bt Cry-proteins are less

toxic to older larvae.
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1.4 TRANSGENIC COTTON: AN HISTORICAL OVERVIEW

Since the first reports of transgenic plants appeared in 1984 (Horst et al. 1984), there has been

very rapid progress directed at using this new technology for the practical ends of crop

protection. Genetically engineered cotton was introduced commercially in 1996 and since then

has been widely adopted in the cotton growing industry, e.g. by 1999/2000 12 % of global cotton

fields consisted of transgenic cotton (International Cotton Advisory Committee, 2000). The first

commercially available Bt-cotton, INGARD (Australia) and BOLLGARD (United States), were

released in 1996 (Olsen & Daly 2000).

The gene that produces these protein crystals was isolated in the 1980's by MONSANTO (Pty)

Ltd. and was transferred into the genome of a cotton plant with the result that all the cells of that

plant produce its own protein insecticide. The CryIA gene was found to be the most appropriate

for use in cotton. It will adequately kill the vast majority of the major lepidopteran pests on

cotton during the major part of a season. The pests include the African bollworm, the Spiny

bollworm (Earias biplaga (Walker)), the Red bollworm (Diparopsis castanea (Hampson)),

Plusia looper (Anomis flava (Fabricius)), Lesser armyworm (Spodoptera exigua (Hübner)) and

the Cluster caterpillar (Spodoptera littura (Fabricius)). These are all pests on cotton in South

Africa. Importantly non-target organisms are not influenced when they fed on transgenic-cotton

(Sachs et al. 1996).

A cotton plant modified to produce Cry-protein within the plant tissues that larvae feed on,

overcomes most of the limitations, mentioned above. The plant-produced Bt-proteins are

protected from rapid environmental degradation since they are not directly exposed to the

environment and hence ultra violet light.

Different Bt-strains produce different Cry-proteins and there are hundreds of known strains. Most

Cry-proteins are active against specific groups of insects, like the lepidopteran species S.

littoralis attacking cotton in South Africa . However, resistance remains a problem and a variety

of factors may influence the rate at which bollworms become resistant to Cry-toxin in Bt-cotton.
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These factors include: (1) the number of generations of bollworms exposed each year to Bt-

plants containing the same or similar toxins; (2) the percentage of each generation exposed to Bt-

plants containing the same or similar Cry-toxins, the mortality level that Cry-toxin causes among

bollworms carrying one copy of a resistance allele and one copy of a susceptible allele (the

mortality level is determined by the Cry-toxin concentration in the plant, which in turn may

determine the functional dominance of the allele affecting resistance); (3) the frequence with

which Cry-resistance alleles are expressed in the bollworm population before exposure to Cry-

toxins and the dominant or recessive nature of the resistance alleles; (4) the migration patterns

of bollworm moths; (5) the survival advantage or disadvantage that resistance allele(s) offer

bollworms in the presence and absence of Cry-toxins; (6) the number of susceptible moths

available for mating with moths carrying resistance gene(s).

Regardless of any resistance management strategy, resistance monitoring, or susceptibility and

effective monitoring is an activity generally accepted as an integral tool to measure successful,

Bt-cotton cultivation.

1.5 TRANSGENIC COTTON IN SOUTH AFRICA

Cotton contributes around USZ 50 million annually to the national income of South Africa.

Approximately 100,000 hectares are planted to cotton, mostly in hot, dry areas of the country.

These farms are planted by about 1,500 commercial scale and 3,600 smallholder farmers (Cotton

SA 2003) (Table 1.2).

Cotton has been a major crop for resource poor farmers in the semi-arid Makhatini Flats, for over

40 years. Since passing the South African GMO Act (Genetic Modified Organisms Act) of 1997,

and while the rest of Africa and other developing countries continued debating about

biotechnology, these smallholder farmers began planting genetically enhanced Bt-cotton.

As part of the South African government strategy for an export-driven economy, small-scale

farmers are now strongly encouraged to produce cash crops such as cotton. Nearly 98% of the
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smallholder cotton production in South Africa is from approximately 3,000 small-scale farmers

in Makhatini Flats, KwaZulu-Natal Province and 500 in Tonga, Mpumalanga Province.

Since 1998, smallholder farmers in Makhatini Flats have been farming a genetically modified

cottonseed variety, NuCOTN 37-B with Bollgard. This variety contains the Bt-gene that confers

resistance to bollworm and reduces the need for insecticides to control this pest complex.

Adoption of the Bt-variety has been rapid. In 1998/99 there were 75 farmers, growing less than

200 ha of Bt-cotton. In 1999/00, this rose to 411 farmers with little under 700 ha, and in 2000/01,

to 1 184 farmers with about 1 900 ha. Thus, in only three years, 60% of the cotton producers in

Makhatini, representing almost two thirds of the area, have adopted Bt (Bennett et al. 2003). In

three seasons (1998/99, 1999/00 and 2000/01), there has been a reduction in the average number

of sprays per season (from 11 to four sprays) for Bt-adopters.  Cotton farmers on the Makhatini

Flats who switched to Bt cotton in 2002 increased their yield from 640 kg/ha to 980 kg/ha, 53

% more cotton (Buthelezi 2003). This earned them an additional income of  R 1,190/ha plus a

saving of R 430 on spraying cost/ha. Their total income from dryland cotton was R 1,620/ha

(US$ 1=ZAR6.39 (2003)).

Managing crops is easier and the ongoing risk of bollworm attacks, the major pest of cotton, has

been drastically reduced. This will inevitably affect costs. Bt-cotton farmers have benefited from

lower production cost due to less pesticide and labour costs, as well as a significant yield

increase, between 27 - 48 %. Although the seeds cost more, the lower production cost, combined

with higher yield, provides the farmer with higher gross margins of an average USZ 50 per

hectare  (Cotton SA 2003; Http://www.cottonsa.org.za (March 2003)).

Rapid adoption of Bt-cotton by 92 % of small holders for the 2002/2003 season has resulted from

the sharing of positive communication by word of mouth. A reduction in labour and pesticide

inputs coupled with higher yields and gross margins, have already assisted in improving farmers’

lifestyles in the especially the Makhatini Flats.  These emerging observations, along with first-

hand experiences, provides potential users of this technology, especially in developing countries,

with useful information to enable a rational choice of adopting or not adopting this new

technology. 
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Table 1.2 Cotton production and seed production (yield) in South Africa between 1992/93

and 2002/03.

MARKETING

YEAR

 UNDER IRRIGATION

(ha)

      DRYLAND     

(ha)

 AVERAGE YIELD (kg 

seed per ha)

1992/93 19 048 28 711 1 065

1993/94 7 240 27 886 862

1994/95 11 258 55 941 974

1995/96 19 038 35 096 1 037

1996/97 17 609 72 809 1 160

1997/98 15 954 67 017 746

1998/99 20 361 69 578 1 065

1999/00 31 263 67 356 1 222

2000/01 10 486 40 282 1 258

2001/02 18 539 38 153 1 529

2002/03 9 791 28 897 1 280

The number of hectares cotton planted each year in South Africa, depends largely on the

availability of financing and the cotton price. The main reason for the decrease in number of

hectares cotton planted during the 2002/2003 cotton season, is mainly due to the poor estimated

prospects during planting time. Many cotton hectares (irrigation and dry land) have been planted

to maize, wheat and sunflower due to more attractive returns from these crops in relation to

cotton. The cotton industry has re-affirmed it’s objective for 30 % of the domestic crop to be

derived from emerging farmers by the year 2005, as cotton growing lends itself ideally to

cultivation by small-holders and could play an important role to settle and enlarge the developing

sector in rural areas.  
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Figure 1.2 Legislation, guidelines and drafts with reference to the cultivation of Bt-cotton

in Africa.

The “Cartagena Protocol on Biosafety to the Convention on Biological Diversity”, which aims

to regulate trade in genetically modified organisms (GMO’s), came into force on 11 September

2003 after five-year-long negotiations over trade advantages and disadvantages. In accordance

with the precautionary approach contained in Principle 15 of the Rio Declaration on Environment

and Development, the objective of the Protocol is to contribute to ensuring an adequate level of

protection in the field of the safe transfer, handling and use of living modified organisms

resulting from modern biotechnology that may have adverse effects on the conservation and

sustainable use of biological diversity, taking also into account risks to human health, and

specifically focussing on transboundary movements. At the moment, there is no international law
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other than the Cartagena Protocol to govern the environmental impacts of GMO’s (Science in

Africa 2003, Http://www.scienceinafrica.co.za (November 2003)).

When it comes to implementing and regulating the Protocol, however, developing nations are

faced with all kinds of handicaps - for a variety of reasons. For instance, the Protocol depends

on full information for its effective implementation - it requires a labelling and traceability

regime too be negotiated once it comes into force. The poverty of developing countries,

especially the least developed among them, mostly in Africa, remains a crucial handicap: they

are simply to poor to allocate adequate resources for biosafety. Even more worrying is the fact

that, should a risk occur, these countries will find it hard to muster the financial and technical

capacity needed to combat it. Risk assessment in the South also becomes complicated because

of the complex tropical and subtropical environments. A micro-organism under contained use

functions optimally at high temperatures. If it escapes into the open environment in the North,

it is unlikely to survive the winter cold. But in the hot tropical and subtropical environments of

the South, it may survive and flourish indefinitely. The South should, therefore, put in place

biosafety systems that restrict contained use only to laboratory conditions from which escape of

GMO’s is impossible (Fig. 1.2).

A more intractable issue, of course, is trade and environment. Trade rules favour the North, and

the international agreement on Trade-related Aspects of Intellectual Property Rights - or TRIP’s-

makes GMO’s especially problematic for the South. TRIP’s puts the burden of proof of

innocence on the person accused of the infringement of a process patent. This could spell trouble

when a GMO cross-pollinates with the unmodified crop of a smallholder farmer and his crop

becomes contaminated by patented genes. Absurdly, the farmer is assumed to be a process patent

infringer. The culprits - the wind and insects - cannot be summoned to court as witnesses.

However, at the insistence of the South, there is now a commitment to negotiate a liability and

redness regime under the Protocol in case of damages caused by GMO’s (Biosafety 2003,

Http://www.biodiv.org/biosafety/faqs.asp (November 2003)).

According to Green et al. (2003), a purchaser of Bollgard™ (Bt cotton) in South Africa is under

obligation to sign a license agreement, stating that for every 100 ha of Bollgard cotton planted,
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a refuge of either 20 ha sprayed non-transgenic cotton, or 5 ha unsprayed non-transgenic cotton

will be planted. The small-scale farmers on the Makhatini Flats, however, may neglect planting

this refuge and a possible ‘alternative’ that could act as a refuge area. However the possibility

that genes introduced by genetic engineering may “escape” (be transferred via pollen) to wild

or weedy related species growing nearby becomes now cited as one of the major risks of GMO’s.

Gene flow between crops and wild species from which they derived, however, is a well-

documented natural phenomenon (Traynor 2002).Through this long-established mechanism for

gene transfer, any gene in a cultivated crop of plant, irrespective of how it got there, can be

transferred to it’s wild or semi-domesticated relatives. Some other concerns regarding the safety

of new proteins expressed in transgenic plants are the unintended, deleterious effect on other

organisms including birds, insects, browsing animals, and soil organisms in the local

environment. This however is a Biosafety Risk Assessment and inherently a critical component

for future studies.  

1.6 RESISTANCE MANAGEMENT IN AUSTRALIA

Conventional Bt has been used in Australian cotton for the control of Helicoverpa spp. since

1989 (Forrester 1994). It started with the use of less than 10,000 litres and increased to 200,000

litres by 1994, but still represents only about 0.5 of a spray in cotton which normally receives 6

to 8 conventional insecticide sprays for Helicoverpa control each season. 

The differential resistance risk of H. armigera and H. punctigera, in Australia has clearly

indicated the critical importance of ecology in resistance management. These two sibling species

have similar biochemical capabilities for metabolic detoxification of xenobiotics (Forrester et al.

1993) but there has been no recorded resistance to any insecticide in H. punctigera despite H.

armigera having developed resistance to virtually every insecticide used against it in any

quantity. Forrester et al. (1993) indicated that this difference is probably due to the highly

migratory, polyphagous nature of H. punctigera compared to the relatively oligophagous and

facultatively migratory H. armigera. It is suggested that the large pool of unsprayed susceptible

H. punctigera is so vast that it effectively swamps any resistance which develops in the

intensively sprayed cropping areas. In other words; H. punctigera effectively ‘manages its own
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resistance’. A possible resistance management strategy for H. armigera on transgenic or Bt-

cotton, would rely on continual dilution of rare resistant mutants by large numbers of unsprayed

susceptibles allowed to breed in designated refugia areas. This high dose/high immigration

resistance management approach would essentially maintain resistant H. armigera individuals

as rare, functionally recessive heterozygotes. Two other factors were critical for the success of

this strategy: (1) strains of conventional Bt with different toxin profiles (e.g. Bt subsp. aizawai)

were used on non-transgenic alternative crop hosts of H. armigera (e.g. sorghum, sunflowers,

grain legumes, maize, tomatoes, oilseeds) and (2) development of transgenic alternative host

crops of H. armigera (especially sorghum and maize) should concentrate on toxins other than

those from Bt. The successful Australian IRM (Insect Resistance Management) strategy for

summer field crops has become a model for the resistance management of Helicoverpa spp.

(Forrester et al. 1993). The success of the strategy for conventional insecticides has left a legacy

of confidence and credibility which can be tapped for any future resistance management efforts

centred on Bt and/or transgenic cotton (Forrester 1994).

According to Benson’s (1971) hypothesis for the management of resistance through the large

scale release of susceptible insects into the pest population, even if it meant ‘sacrificing some of

our food to the right insects, those with susceptible genotypes’, is the only long-term solution to

IRM as it ‘controlled the evolution of pest species’. It is important to note that Benson’s

hypothesis and the example of nature’s own highly successful IRM strategy for H. punctigera

have remarkable parallels with Roush (1994b) suggestion for a resistance management strategy

for transgenic-cotton. Roush (1994a) suggests a high dose/refugia resistance management

approach which essentially maintains resistant H. armigera individuals as rare, recessive

heterozygotes and that the small refugia area would act as a dilution source for any resistant

individuals which survive on the transgenic cotton. For this strategy to work the concentration

of toxin in the plant should be high enough to kill most heterozygotes and the refugia should be

both temporally and spatially contiguous with the transgenic-crop. Cotton is the ideal refugium

crop as it remains an attractive host for the same period as the transgenic-crop. Therefore,

growers should leave a small refugium area on each farm. The viability of this technique depends

on the high level of toxin expression in the plant and is critical for the long-term viability

(Forrester 1994).
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The current recommended resistance management strategy for Bt-crops is a high expression

(dose)-refuge strategy (Gould 1998; Shelton et al. 2000). This strategy is designed to work best

where resistance is due to a single recessive gene and expression of toxin is high enough to kill

all or nearly all heterozygotes. The refugia are composed of non-transgenic plants that will

support sufficient homozygote susceptible insects to outnumber and breed with resistant insects.

1.7 AIMS OF STUDY

As the agronomic use of B. thuringiensis products increases, appropriate management

programmes are important to ensure their efficacious long-term use. The type of resistance that

evolves to Bt can be quite distinct, depending upon the species, selection regime, or geographical

origin of the founder colony (Heckel 1994, Tang et al. 1997). It is therefore important to take

initial surveys  of the insect susceptibility to Bt to establish a baseline for monitoring possible

changes in population sensitivity to Bacillus thuringiensis based products. 

MONSANTO (Pty) Ltd., one of the world leaders in the development of transgenic plants,

approached the Plant Protection Research Institute of the Agricultural Research Council, to

assess the natural variability of the African bollworm in susceptible response to Bt in different

cotton production areas in South Africa. Therefore, the objectives of this study were to sample

field populations of H. armigera in different geographical areas in South Africa, the mass rearing

of the different field populations, the evaluation of the field strains together with a susceptible

laboratory strain to determine baseline concentrations of the purified endotoxin Cry1Ac (Chapter

2), incorporated in the artificial diet and the determination of a candidate diagnostic

concentration (Chapter 2). The above mentioned objectives were performed during the 1998

cotton season to determine baseline dose-concentrations where a mortality range of between 20 -

90 % was obtained. This dose-range formed the background for repeated studies during the 2000

and 2003 cotton growing seasons in South Africa. With this information a background for the

implementing of appropriate resistance management and product use strategies is discussed in

Chapter 4.
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An extension of the study involves the evaluation of different transgenic-cotton strains for the

control of H. armigera and Spodoptera littoralis when exposed not only to artificial diet with

incorporated Bacillus thuringiensis protein, but to different Bollgard cotton cultivars which

contain different strains of B. thuringiensis, cultivated in the field and the expression of Bt-gene’s

in different plant parts (Chapter 3). Future management strategies are also discussed in Chapter

4.
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CHAPTER 2

GEOGRAPHIC VARIABILITY IN THE SENSITIVITY OF HELICOVERPA ARMIGERA

TO BT INSECTICIDAL PROTEIN CRY1Ac

2.1 INTRODUCTION 

During the 1998 - 1999 cotton season, the Plant Protection Research Institute of the Agricultural

Research Council was contracted by Monsanto to perform baseline laboratory studies to

determine the geographic variability in the sensitivity of H. armigera to Bt-insecticidal protein

Cry1Ac. This was performed to establish a geographic baseline for comparison with future

population responses to the increased Bt-cotton cultivation in South Africa. As any kind of

chemical insecticides, the value of Bt could be seriously diminished by widespread development

of insect resistance to Bt-toxins. Recently, several common species of pest insects have evolved

resistance to Bt, indicating that biological pesticides can suffer the same fate as chemical

pesticides (Gould et al. 1995). The type of resistance that evolves to Bt can be quite distinct,

depending upon the species, selection regime, or geographical origin of the founder colony

(Heckel 1994). Therefore, it is important to take an initial survey of the insect susceptibility to

Bt to establish a baseline for monitoring possible changes in the future. Similar studies were

conducted by (Wu & Guo 1997) in China, (Stone & Sims 1993) in different states in the USA,

(Luttrell & Knighten 1999) in the southern and western states of the U.S. Cotton Belt, (Wu et al.

2002) in northern China and (Akhurst et al. 2003) in Australia.

This study form the background for implementing appropriate resistance management and

product use strategies in agriculture, especially in cotton cultivation in South Africa. Reported

here are results of the dynamics of H. armigera susceptibilities to Cry1Ac during the 1998, 2000

and 2003 seasons. 
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2.2 MATERIALS AND METHODS

2.2.1 GEOGRAPHIC SAMPLING

Five different field populations of H. armigera, were sampled in different geographical areas in

South Africa, during the 1998, 2000 and 2003 cotton seasons (Table 2.1). Larvae (instar 4 - 5)

were collected in glass vials (10 cm x 1.5 cm) containing an artificial diet (Shorey & Hale 1965),

which were sealed by an absorbent cotton plug. Vials were kept in cooler boxes, within a

temperature range of 9 - 13 0 C, during transport to the ARC-PPRI, Rietondale Campus.

No sampling took place in Weipe during the 1997/1998 cotton season, no sampling of Makhatini

population in 1999/2000 cotton season and no sampling of the Roedtan population during

2002/2003 cotton season. The reason for the sampling actions not performed were due to lack

of a suitable number of specimens in the natural populations available in the field.

The identity of randomly selected adults from the different field populations, were verified by

the Biosystematics Division of ARC-PPRI and accessioned in the National Collection of Insects

in Pretoria, South Africa. Approximately 360 specimens of H. armigera larvae were collected

in each area, with most specimens being in the fourth or fifth instar of developmental stage.
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Table 2.1 Field populations of Helicoverpa armigera sampled (±360 in each area) in different  geographical areas in South Africa and tested
for susceptibility to the purified endotoxin MVP II Cry1Ac. Helicoverpa armigera specimens were also sampled on different host
plants during the study period.

LOCALITY

GPS

COORDINATES

SAMPLING DATES

1998 Host Plant 2000 Host Plant 2003 Host Plant

Hartswater* -27.7500 E 24.8000 S 19-03-1998 MaizeC 09-02-2000 LucernC 14-15 January CottonC1

Weipe** -22.3561 E 29.9866 S Not sampled - 01-02-2000 CottonC1 14-01-2003 CottonC1

Roedtan*** -24.4900 E 29.0800 S 04-02-1998 CottonC1 24-03-2000 Grain sorghumB Not sampled -

Groblersdal**** -24.9891 E 29.2832 S 25-02-1998 CottonC1 22-03-2000 CottonC1 08-01-2003 CottonC1

Makhatini

Flats*****

-27.3589 E 31.6144 S 25-26 March CottonB1 Not sampled - 17-02-2003 CottonB1

*  - Northern Cape Province B - Dryland

**  - Limpopo Province C - Irrigated

***  - Limpopo Province 1 - Conventional = Non Bt-cotton

****  - Mpumalanga Province

*****  - Kwa-Zulu Natal Province
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Figure 2.1 Cotton production areas in South Africa and sampling localities of Helicoverpa

armigera field populations.

2.2.2 SUSCEPTIBILITY TESTING

Larvae of the ARC-PPRI susceptible laboratory strain were used as a control.  The H. armigera

neonate larvae were selected from a 25-year-old laboratory culture, reared at the insectary at

Rietondale Research Station. This culture has never been exposed to any insecticides, but field

sampled specimens were incorporated during 1991.

The susceptible strain and all field sampled populations were reared by ARC-PPRI at the

Insectary, at Rietondale Campus, Pretoria, South Africa. All populations were reared under

optimal conditions, and monitored by means of a thermohygrograph, at 25 +/- 2 °C, RH 65-70%
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and exposed to a photo-period 16:8 (Light: Dark). The insects were reared on a modified  meridic

larval diet (Shorey & Hale 1965) in which dry, powdered kidney beans were substituted for

soaked pinto beans.  (Table 2.2). The eggs were deposited by the females on cloth netting. The

netting with eggs was disinfected by soaking for 10 minutes in 2 % formaldehyde, washed under

running tap water for 10 - 20 minutes, drip-dried and placed in lidded glass jars for the eggs to

hatch. First-instar larvae were transferred (singly or in groups of two or three) to the larval diet.

About 10 g of the diet was forced into 100 x 25 mm glass tubes with a domestic cake syringe

(nozzle diameter 13 mm) and the tubes were stoppered with absorbent cotton wool plugs.

Because the larvae are cannibalistic, only one larva per tube normally survived to pupation.

Table 2.2 Composition of the modified artificial diet as described by Shorey & Hale (1965)

for rearing Helicoverpa armigera larvae in the laboratory.

INGREDIENTS QUANTITY

White kidney beans (powdered)*     360    g
Brewer’s Yeast       48    g
Methyl-4-hydroxy benzoate         3    g
Agar, Commercial Gel**       20    g
Ascorbic Acid         4.8 g

Sorbic Acid         2.1 g
Formaldehyde         1.1 mR

Distilled water     1 000 mR

The water was boiled with the ingredients stirred in and left to cool for 30 minutes. After cooling,

the gelled medium was used as explained in the text.

* - Phaseolus vulgaris L.

** - The agar is superfluous and can be omitted from the diet.

The pupae were disinfected in a 0.2 % sodium hypochlorite solution. As adults about 15 male

and 15 female moths (in which the greenish males are distinct from the brownish females) were

placed in oviposition cages. The cages were 5 litre Perspex jars containing a layer of vermiculite

and a Petri dish with cotton wool pieces soaked in a 7 % sucrose solution to feed the moths. The
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females deposited their eggs on the cloth-netting lids of the cages and these were collected every

second day.

Larvae of all field sampled populations were reared through to the F1-generation. By then

sufficient test organisms were available. Neonate larvae from each population were used in the

evaluations.

2.3 LABORATORY BIOASSAYS WITH THE FREEZE DRIED PRODUCT MVP II

FOR THE DETERMINATION OF BASE-LINE CONCENTRATIONS

The freeze-dried product MVP II with the 20 % active ingredient Delta endotoxin Cry1Ac,

Bacillus thuringiensis were supplied by the client (Monsanto SA (Pty) Ltd), for incorporation

into the artificial diet to determine the susceptibility of H. armigera to this product.  The PPRI

susceptible laboratory reared population was used to determine base-line concentrations, ranging

from approximately 20 - 90 % mortality. Different amounts of the endotoxin were weighed and

incorporated into the artificial diet (Table 2.3). Approximately 3 g of the diet was put into a glass

polytop vial with a single neonate larva and closed with an absorbent cotton wool plug. Mortality

was recorded 6 days post-exposure to determine a base-line concentration range.

Table 2.3 Base-line concentrations of Cry1Ac used in an artificial diet to determine         

  susceptibility of the laboratory population of Helicoverpa armigera.

Amount of Freeze dried product MVP II

Cry1Ac

Amount of Active ingredient in diet

µg/g

1.   0.001 g/100g diet         2

2.   0.004 g/100g diet         8 

3.   0.016 g/100g diet       32

4.   0.064 g/100g diet     128

5.   0.256 g/100g diet     512

6.   Untreated Control
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The base-line concentrations were evaluated for each population sampled in the different areas

with 6 replicates of 15 larvae per replicate per concentration/dose. Exposed larvae were kept in

a culture room under the same controlled conditions as the susceptible laboratory population (see

Chapter 2.2.2).

The susceptibility of the different field populations and the susceptible laboratory population

were evaluated by incorporating the purified endotoxin into the diet. This was performed by

mixing the product in different concentrations (Table 2.3) into the slightly heated artificial diet

(45 - 50 oC). Three grams (3g) of the treated medium were placed in a Petri-dish.

Untreated diet was used as a control. After the diet had cooled, a single neonate was transferred

onto the diet, with a fine camelhair brush, and closed by the Petri-dish lid. With the

predetermined dose-range (during 1999), exposures were repeated during 2000 and 2003, with

field populations sampled during the applicable cotton season (6 x replicates with 15

larvae/replicate for each dose/concentration = 90). Mortalities and developmental stages were

recorded 6 days post-exposure (1998 & 2000) and 5 days post-exposure during 2003. Although

the temperature, humidity and photo-period cycles were kept the same throughout the study

period (1999 - 2003), it was found that the artificial medium became too dry for larval

consumption on day 6, therefore mortality assessments were performed 5 days post-exposure.

 2.3.1 GROWTH INHIBITION RESPONSE EVALUATION

Larval weight on day 5 post-exposure in response to the Cry1Ac protein was evaluated for all

H. armigera populations, over the study period (1998, 2000 and 2003). A candidate diagnostic

concentration was also determined and refers to a concentration of Cry1Ac which can prevent

at least 50 % of a population developing to the second instar within five (5) days, (Wu et al.

2002). In a similar study the diagnostic concentration was also calculated for H. armigera, but

was determined as the development time to the third instar over a period of 5 - 7 days (Wu &

Guo 1997). Due to the difference in development of H. armigera susceptible laboratory
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population in South Africa, the criteria for a diagnostic concentration differs from the study

conducted in China.

2.4 STATISTICAL ANALYSIS

Multiple comparisons between the populations were performed using Probit analysis (Van Ark

1983). Tests for parallelism, LC50 and LC90 concentrations and comparison of slopes were

performed. Abbot’s formula (Abbot 1925) was used to calculate percentage control. In

computing the effectiveness of insecticides, when an actual count of the living and dead insects

in both the treated and untreated plots, or checks, is available, it is obvious that the insects which

die from natural causes must be considered (Abbot 1925).

2.5 RESULTS

Data regarding mortality obtained when H. armigera neonate larvae exposed to different

concentrations of the purified Cry1Ac Bt protein, incorporated into the artificial diet of H.

armigera, are shown in Table 2.4. Natural mortality totals reflected in Table 2.4, when neonate

H. armigera larvae were exposed to the untreated diet during 1998, 2000 and 2003 varied

between totals of 1 - 14 in all populations. The Roedtan population during 1998 reflected the

highest (14/90 = 15.51 %), and natural mortality from the Makhatini Flats population was (9/90

= 10 %). According to Van Ark (1981), natural mortalities of up to 15 % is acceptable in

entomology studies.

Mortalities obtained with the susceptible laboratory population during 1998, with increased

concentrations, ranged from 27 (2 µg/g), 78 (8 µg/g), 80 (32 µg/g) , 90 (128 µg/g) and 90 (512

µg/g) respectively (a total mortality of 90 reflects 100 % mortality). When Cry1Ac was

incorporated during the 2000 season mortalities ranged from 51 (2 µg/g), 88 (8 µg/g), 89 (32

µg/g), 89 (128 µg/g) and 90 (512 µg/g). The trend continued during the 2003 season, with

mortalities ranging from 56 (2 µg/g), 81 (8 µg/g), 90 (32 µg/g), 90 (128 µg/g) and 90 (512 µg/g).

These base-line concentrations 2 µg/g, 8 µg/g, 32 µg/g, 128 µg/g and 512 µg/g, used during the
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1998 season, were sufficient to control the susceptible laboratory strain with mortalities ranging

from 30 - 100 %. No significant differences were evident (Table 2.5).

The Weipe field population was only evaluated during 2000 and 2003 due to lack of a number

of specimens available in the field. Mortality results obtained during 2000 were 35 (2 µg/g), 72

(8 µg/g), 84 (32 µg/g), 86 (128 µg/g) and 89 (512 µg/g), followed by the 2003 season with

mortalities ranging from 58 (2 µg/g),  69 (8 µg/g), 81 (32 µg/g), 83 (128 µg/g) and 83 (512 µg/g)

respectively. The susceptibility of this population decreased slightly over the  two seasons, but

although statistically different (Table 2.5), a lower LD50 concentration (0.35 in 2003 and 2.56 in

2000) was determined for the 2003 season, therefore no positive tolerance level could be

detected. Mortality results obtained with the Hartswater, Roedtan and Groblersdal field

populations did not differ significantly over the study period, when Cry1Ac was added to the

artificial medium.

Mortality results obtained with the Makhatini Flats population, during 1998 and 2003 resulted

in a significant difference (Table 2.5), but a lower LD50 was also determined during the 2003

season (1.20 in 2003 and 8.74 in 1998), therefore no tolerance levels could be determined.
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Table 2.4 Mortalities (six replicates x 15 = 90) with Standard Deviations (SD), obtained 6 day post-exposure (1998 & 2000) and 5 days post
exposure (2003) on different dates with different populations against different concentrations of Cry1Ac Bt protein.

CONCEN-
TRATION

OF

CRY1Ac

POPULATIONS 

SUSCEPTIBLE WEIPE HARTSWATER

1998 2000 2003 1998 2000 2003 1998 2000 2003

NO SD NO SD NO SD NO SD NO SD NO SD NO SD NO SD NO SD

Untreated 1 0.37 1 0.37 8 1.11 - - 2 0.75 5 0.69 4 0.75 1 0.37 2 0.47

    2    µg/ g 27 0.96 51 1.99 56 1.25 - - 35 2.79 58 2.9 37 1.34 28 2.43 52 0.75

    8    µg/ g 78 1.29 88 0.47 81 1.38 - - 72 0.58 69 1.5 57 1.26 63 1.89 74 0.94

  32   µg/ g 80 0.75 89 0.37 90 0 - - 84 1 81 0.95 80 1.25 85 0.69 77 1.46

128   µg/g 90 0 89 0.37 90 0 - - 86 0.75 83 1.07 80 1.11 86 0.75 82 0.94

521   µg/g 90 0 90 0 90 0 - - 89 0.37 83 1.07 90 0 89 0.37 88 0.47
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Table 2.4 Continued

CONCEN-

TRATION

OF

CRY1Ac

POPULATIONS 

ROEDTAN GROBLERSDAL MAKHATINI FLATS

1998 2000 2003 1998 2000 2003 1998 2000 2003

NO SD NO SD NO SD NO SD NO SD NO SD NO SD NO SD NO SD

Untreated 14 0.47 1 0.37 - - 3 0.5 1 0.37 6 0 9 0.5 - - 4 0.74

    2    µg/ g 34 1.25 21 1.26 - - 38 1.6 45 2.22 60 2.65 25 1.07 - - 46 2.75

    8    µg/ g 70 1.37 68 0.94 - - 68 1.97 85 0.69 83 1.07 54 0.82 - - 67 1.77

  32   µg/ g 79 0.68 89 0.37 - - 62 1.7 90 0 83 1.07 70 0.75 - - 70 0.94

128   µg/g 88 0.47 90 0 - - 78 1.53 90 0 87 0.5 76 0.75 - - 66 0.82

521   µg/g 87 0.47 90 0 - - 90 0 90 0 90 0 88 0.47 - - 84 0.82



39

Table 2.5 Susceptibility (LD50) of different populations neonate Helicoverpa armigera

larvae to Bacillus thuringiensis (freeze dried protein), incorporated into an

artificial medium, during 1998, 2000 and 2003.

POPULATION
1998 2000 2003

LC50
(µg/g)

Slope =
SE

LC50
(µg/g)

Slope =
SE

LC50
(µg/g)

Slope =
SE

Susceptible
(Lab)

3.14 ± 1.51 1 ± 1.38 1 ± 0.77

Makhatini
Flats

8.74 ± 1.68 Not evaluated 1.2 ± 0.74

Roedtan 4 ± 0.91 4.08 ± 4.33 Not evaluated

Groblersdal 3.2 ± 0.93 1.46 ± 1.46 0.43 ± 0.25

Weipe Not evaluated 2.56 ± 0.95 0.35 ± 0.28

Hartswater 3.65 ± 0.84 3.83 ± 1.11 0.77 ± 0.39

The susceptible population during the three years 1998, 2000 and 2003 showed LD50's of 3.14

µg/g, 1.00 µg/g and 1.00 µg/g and slopes of ±1.51, ±1.38 and ±0.77, respectively. This

represents a 3.1-fold difference in susceptibility but is not significant different (Table 2.5). The

LC50,s in the Makhatini Flats ranged from 8.74 µg/g (1998)  to 1.20 µg/g (2003); this

represented a 7.3-fold significant difference in susceptibility.  The Weipe field populations also

represents  a significant 7.3-fold difference in susceptibility with a LC50 of 2.56 µg/g during 2000

and a LC50 of 0.77 µg/g during 2003. This however does not result in a positive resistance level

because the LD50 concentration during 2003 were lower than in 1998 and 2000 respectively. The

susceptibility of the Roedtan field population ranged from 4.00 µg/g (1998) to 4.08 (2000) with

no significant difference in susceptibility. The LC50,s in the Groblersdal field populations ranged

from 3.20 µg/g (1998); 1.46 µg/g (2000) and 0.43 µg/g (2003); this represents a 2.2-fold and 3.4-

fold difference in susceptibility, with the most susceptible population in 2003. The Hartswater

field populations showed  LC50, s of 3.65 µg/g (1998); 3.83 µg/g (2000) and 0.77 µg/g (2003);

this represents no difference in susceptibility over the study period.
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The results of the laboratory trials over the study period indicated that the purified B.

thuringiensis endotoxin protein incorporated into the diet, provided excellent control even at very

low concentrations. No significant differences in susceptibility were detected in most populations

against the purified Cry1Ac protein (p # 0.01, Bonferoni ranked t-test). These results confirm

that no sign of resistance build-up or positive tolerance levels could be detected in the sampled

field populations, when exposed in the laboratory to the purified endotoxin Cry1Ac.

Figures 2.2 - 2.7 depict the percentage control obtained on day 6 with H. armigera neonate

larvae, with different populations, over the study period, when exposed to the base-line

concentration range of Cry1Ac, incorporated into an artificial diet. These corrected mortalities

(% control) were determined using Abbott’s formula (Abbot 1925). The Standard Deviations

(SD) are also reflected in the figures and were very low throughout the study period. These

results confirmed the results on mortality analysed in Tables 2.4 and 2.5, but Fig. 2.2 - 2.7 reflect

the percentage control.

Fig 2.2 illustrates the results for the susceptible laboratory population. Percentage control over

the three test seasons 1998, 2000 and 2003, increased from 30-58-60 (2 µg/g), 85-98 and

decreased to 90 (8 µg/g), at 32 µg/g it was 90 % for 1998 and 100 % during 2000 and 2003. At

128 and 512 µg/g, the control was 100 % during all three seasons. Figure 2.3 (Makhatini Flats)

population depicts mortalities of 18-58 % with 2 µg/g, 1998 and 2003 and 57-75 % with 8 µg/g.

With 32 µg/g 78-80 % were obtained, followed by 84-75 % with 128 µg/g during 1998 and 2003.

With the highest concentration 512 µg/g 98 and 95 % were obtained during 1998 and 2003.

Results in Fig. 2.4 - 2.7 followed the same trend in all the populations in the respective test

seasons. The determined base-line concentrations (1998); 2 µg/g, 8 µg/g, 32 µg/g, 128 µg/g and

512 µg/g gave mortality responses ranging from ± 20 - 90 %. This are clearly graphically

represented in all figures. Therefore to achieve successful control of H. armigera larvae in the

field a concentration of between 8 µg/g and 32 µg/g would be sufficient when expressed in Bt-

cotton plant parts. 
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Figure 2.2 The percentage control obtained in Helicoverpa armigera neonate larvae (susceptible laboratory population), during 1998, 2000
and 2003 cotton seasons, when exposed to different concentrations of the purified endotoxin protein Cry1Ac, which was
incorporated into the artificial diet. Correction factor: Abbot’s formula (Abbot 1925).



42

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

2  u g /g 8  u g /g 3 2  u g /g 1 2 8  u g /g 5 1 2  u g /g

B AS E L IN E  C O N C E N T R AT IO N S

%
 C

O
N

TR
O

L

1998 2003

Figure 2.3 The percentage control obtained in Helicoverpa armigera neonate larvae sampled in the Makhatini Flats, during 1998 and 2003
cotton seasons, when exposed to different concentrations of the purified endotoxin protein Cry1Ac, which was incorporated
into the artificial diet. Correction factor: Abbot’s formula (Abbot 1925).
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Figure 2.4 The percentage control obtained in Helicoverpa armigera neonate larvae sampled in the Roedtan area, during 1998 and 2000
cotton seasons,  when exposed to different concentrations of the purified endotoxin protein Cry1Ac, which was incorporated
into the artificial diet. Correction factor: Abbot’s formula (Abbot 1925).
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Figure 2.5 The percentage control obtained in Helicoverpa armigera neonate larvae sampled in the Groblersdal areas, during 1998, 2000
and 2003 cotton seasons , when exposed to different concentrations of the purified endotoxin protein Cry1Ac, which was
incorporated into the artificial diet. Correction factor: Abbot’s formula (Abbot 1925).
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Figure 2.6 The percentage control obtained in Helicoverpa armigera neonate larvae sampled in the Weipe area, during 2000 and 2003 cotton
seasons, when exposed to different concentrations of the purified endotoxin protein Cry1Ac, which was incorporated into the
artificial diet. Correction factor: Abbot’s formula (Abbot 1925).
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Figure 2.7 The percentage control obtained in Helicoverpa armigera neonate larvae sampled in the Hartswater area, during 1998, 2000 and
2003 cotton seasons , when exposed to different concentrations of the purified endotoxin protein Cry1Ac, which was
incorporated into the artificial diet. Correction factor: Abbot’s formula (Abbot 1925).
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2.6 GROWTH INHIBITION PROPERTIES OF CRY1Ac

Normal development of H. armigera larval stages, reared in the laboratory, were defined as: egg

stage (3.4 days), neonate larva to 1st  instar (3.5 days), 1st larval instar to 2nd instar (2.5 days) and

2nd to 3rd instar (2.1 days) (Van der Walt et al. 1993). Various concentrations of Cry1Ac (Table

2.6), added to the artificial diet, indicated that larval development on untreated diet (control)

versus treated diet differ.

Table 2.6 Larval development stages (%) recorded on day 5, when exposed to different

concentrations of Cry1Ac (incorporated in an artificial diet) in the laboratory. The

results are reflected as the totals of 1998, 2000 and 2003 seasons (n = 450, 5 x

populations). 

CONCEN

TRATION

DEVELOPMENTAL STAGE 

DEAD NEONATE 1ST INSTAR 2ND INSTAR 3RD INSTAR 4th INSTAR

Untreated 1.3 0.2 0.2 6.4 53.8 38

    2 µg/ g 40 27.6 31.8 0.7 0 0

    8 µg/ g 83.8 13.1 3.1 0 0 0

  32 µg/ g 97.1 2.9 0 0 0 0

128 µg/ g 98 2 0 0 0 0

512 µg/ g 99.6 0.4 0 0 0 0

Results in Table 2.6 indicated that neonate H. armigera larvae exposed to the untreated (control)

diet, showed normal development. In this study 53.8 % larvae developed to the 3rd instar and 38

% to the 4th instar within five days. When neonate larvae were exposed to 2 µg/g Cry1Ac, only

0.7 % reached 2nd instar. A 1.3 % natural mortality in the untreated control diet was recorded,

whereas 40  - 99.6 % mortality was recorded with increased concentrations of 2 µg/g, 8 µg/g, 32

µg/g, 128 µg/g and 512 µg/g. At 8 µg/g Cry1Ac added to the diet, development of H. armigera,

stopped at the first instar, when only 3.1 % of exposed larvae, were able to develop followed by
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no further development. When 32 µg/g, 128 µg/g and 512 µg/g Cry1Ac were added to the diet

no larval development was recorded.

At a concentration of 2 µg/g added to the diet, only 0.7 % of the total number of larvae (450 , 5

x populations x 3 seasons), could survive and develop to the 2nd instar within 5 days. According

to these results, an estimated diagnostic concentration/dose would be recommended at #2 µg/g

Cry1Ac  protein (Table 2.6). Wu et al. (2002) reported a diagnostic concentration of 1.0 µg/ml

diet (liquid artificial diet). Results in Table 2.6 clearly indicated that increased concentrations

of Cr1Ac, led to growth retardation and lack of development. Results further show that Cry1Ac,

incorporated into the diet, at the lower concentrations (2 µg/g and 8 µg/g), exhibited some anti-

feeding properties and a repellant effect at the higher concentrations (32 µg/g, 128 µg/g and 512

µg/g), where no development was recorded.

2.7 DISCUSSION

Having conducted monitoring in the laboratory of field sampled H. armigera populations,

sampled in the different cotton production areas in South Africa, (Table 2.4), results indicated

a significant difference in the susceptibility to the Bt-protein Cry1Ac, over the study period

(1998, 2000 and 2003), in the Makhatini Flats and Weipe field populations. This however does

not result in a positive resistance level due to lower LD50 concentrations determined during the

2003 season. In the field populations sampled in Roedtan, Groblersdal and Hartswater no

significant differences over the study period were indicated, therefore no negative susceptibility

levels could be found. In China, when different field populations were evaluated, a slight

increase in LD50 concentrations was found, during the study period 1998, 1999 and 2000 (Wu

et al. 2002). They therefore concluded no general tolerance or susceptibility movement among

Chinese H. armigera populations, from 1998 and 2000.

Results during the study period in South Africa did not confirm the presence of resistance, but

demonstrated that the field populations evaluated were susceptible to the Cry1Ac protein and that

a movement towards resistance in the H. armigeara field populations was not found. Due to the

anti-feeding properties exhibited one can also assume that cotton containing a Bt-gene would not
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be the preferred food source in the field. Tabashnik et al. (2003) reported that after seven years

of large-scale planting of Bt-crops, resistance of H. armigera in the field can not be reported. In

particular monitoring H. armigera in northern China for three years, revealed no increases in the

frequency of resistance despite widespread adoption of Bt-cotton.

Results from 2000 and 2003 in balance with the initial base-line concentrations determined in

1998, provided important information on the susceptibility of H. armigera, field populations in

South Africa. This was the first study performed in this country, since the commercialization of

Bt cotton in 1996 in South Africa. To ensure the continued effectiveness in years to come, of

Cry1Ac Bt cotton (Bollgard™), continued monitoring for potential resistant genes in H.

armigera should be a long term objective. This is of great importance as the market for the

commercial Bollgard™ cotton expands. Continued collection and analysis of such data at least

every 2 - 3 years are critical to the development and continual assessment of resistance

management strategies.
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CHAPTER 3

EVALUATION OF DIFFERENT TRANSGENIC COTTON STRAINS

3.1 INTRODUCTION

In South Africa cotton is one of the few agricultural commodities where local demand exceeds

production, thereby creating opportunities for new producers without the risk of causing a

surplus. As a result of increasing exposure to international competition, producers have to

become innovative and productive to maintain profit margins. There is a growing need to

increase the output of world agriculture if the demands of a rising world population are to be met.

The basis to meet these demands is to increase and improve harvest yields of major crops on

existing cultivated land. One practical means of increasing yield would be to protect more of

what is grown from loss to pests, especially insect pests. Genetically engineering inherent crop

resistance to insect pests offers the potential of a user-friendly, environment-friendly and

consumer-friendly method of crop protection to meet the demands of sustainable agriculture in

the 21st century.

Genetic engineering of crops also offers the prospect of many other advantages; not just

widening the potential pool of useful genes but also permitting the introduction of a number of

different desirable genes at a single event and reducing the time needed to introgress introduced

characters into an elite genetic background. Bt-cotton allows the producer to use less insecticides

during pest management, which in turn decreases the potential damage to non-target organisms.

Bt or transgenic-cotton is protected from lepidopteran pests until late in the season when the

plants cease vegetative growth and begin fruit-set. After fruit set the cotton plants do not have

enough insecticidal protein to protect them against lepidopteran pests and one or two chemical

sprays may be needed. The aim of this part of the study was to determine performance curves of

Helicoverpa armigera (Hübner) and Spodoptera littoralis (Boisduval), when exposed not only

to artificial diet with incorporated Bacillus thuringiensis protein, but to different Bollgard cotton

cultivars which contain different strains of B. thuringiensis, cultivated in the field. 
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3.2 MATERIALS AND METHODS

During this study five cotton cultivars (4 x Bt-cotton cultivars) + (1 x standard cotton cultivar)

were evaluated. During the first sampling interval performed on 18 January 2000, only leaves

and squares were sampled and during the final sampling action on 18 May 2000, no leaves were

available for sampling and evaluations were performed only on squares and small bolls. Three

different plant parts (leaves, squares and small bolls) of each cotton cultivar were evaluated.

3.2.1 TEST PLANTS

< DP50 - a non-transgenic recurrent parent, a commercially standard cotton cultivar

< DP50 B - the original transformant of 15985 with Bollgard (Cry2Ab)

< 15985 B - a segregant containing only Bollgard (Cry1Ac)

< 15985 X - a segregant containing only Cry X

< 15985 BX - containing Bollgard (Cry1Ac) and Cry X were used during this study. 

The cotton cultivars 15985 X and 15985 BX (expressing two different Bacillus thuringiensis M-

endotoxins), have not yet been granted regulatory approval for movement into commerce during

2000. A modified Cry1A gene encoding a chimeric Cry1Ab/1Ac toxin (Hofte & Whiteley 1989,

Perlak et al. 1990), and a modified Cry2Ab gene encoding a Cry2Ab toxin (Widner & Whiteley

1989, Dankocsik et al. 1990) are expressed in these cotton plants.

Terminal leaves, squares and young bolls of each cultivar were tested against both lepidopteran

species. All test material were collected either prior to or on the day of exposure, to ensure

freshness and thus attractiveness for neonate larvae to feed on. In the field the different plant

parts of each cultivar were placed separately in clearly labelled paper bags, which were placed

into a plastic bag and sealed. The bags were placed in insulated cooler boxes for transport to a

monitored cold room (0-4 0C) until fed to neonate larvae. This was the best way to ensure that

the plant parts stayed fresh and palatable when fed to neonate larvae. Similar methods were used

by Greenplate (1999); Greenplate et al. (2002a) and Chitkowski et al. (2003).
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3.2.2 TEST INSECTS

HELICOVERPA ARMIGERA NEONATE LARVAE (AFRICAN BOLLWORM)

Neonate larvae of H. armigera (Hübner), were selected from the same susceptible laboratory

culture as described in Chapter 2.2.2.

SPODOPTERA LITTORALIS NEONATE LARVAE (COTTON LEAFWORM)

Spodoptera littoralis larvae were field collected (± 200, in different instars). Sampling were

performed on green beans as host plants and  took place  in the Marble Hall district

(Mpumalanga Province).  Larvae were transported to the laboratory on fresh green bean leaves

as food source and were transferred immediately onto the artificial medium for further

development. Larvae were not reared on a S. littoralis artificial diet as described by Navon

(1985) but reared on the same diet as H. armigera in the same culture room.  This modified

artificial diet described by Shorey & Hale (1965) proved to be suitable for mass rearing of

different noctuid species, including S. littoralis. 

3.2.3 BIOASSAYS

Cotton plant parts were placed singly in clean plastic containers (75ml) of which the bottom was

covered by approximately 3 mm of a 2% agar/water solution in order to prevent dessication of

plant parts.  A single neonate larva was transferred onto the plant part with a fine camelhair brush

and checked for movement before the container was sealed with a ventilated plastic lid. All

containers and brushes used, were either rinsed with or dipped in 90% alcohol before use. Each

exposure consisted of six replicates of 15 larvae each for each plant part for each cultivar. In this

part of the study five cotton cultivars (4 x Bt-cotton cultivars) + (1 x standard cotton cultivar)

have been evaluated. All plant parts were fresh and in good condition when used during

exposures. Due to the difficulty in finding a natural population of S. littoralis in the field,

sampling was done late in the season. This resulted in only one evaluation with the F1-generation

reared in the laboratory. 
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3.2.4  OBSERVATIONS AND EXAMINATIONS

Three day post-exposure larval mortality counts and development on leaves were recorded and

fresh leaves were supplied as required. The squares and small bolls were inspected for freshness

and were replaced when necessary.  To avoid unnecessary handling and thus damage to larvae,

no readings were taken on squares and small bolls on the third day.  Six days post-exposure

larval-mortalities, larval-development and  larval-mass were recorded on all plant parts.

Surviving larvae were weighed as a group per replicate on each plant part of each cultivar. Where

larvae were too small to weigh mass average was taken (Van der Walt et al. 1993). All test

material was placed into plastic bags, sealed and taken to ARC-Plant Protection Research

Institute, Roodeplaat Campus and incinerated.

3.2.5 STATISTICAL ANALYSIS

Statistical analysis were performed using the statistical program GENSTAT 5 (GENSTAT 5

Committee 1993).  The data was analysed by Analysis of Variance (ANOVA), testing for

differences between cultivars.  Abbot’s formula were used (Abbot 1925) to calculate percentage

control.

3.3 RESULTS

3.3.1 BIOLOGICAL EFFICACY DATA

HELICOVERPA ARMIGERA

During the 2000 cotton growing season leaves, squares and bolls were collected from five

different cotton cultivars.  Data obtained on the total number exposed and mortality counts (6

days post-exposure) when H. armigera neonate larvae were exposed to different plant parts of

five cotton cultivars are shown in Table 3.1.
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Table 3.1 The exposure dates, plant parts exposed, number of Helicoverpa armigera larvae

exposed and the mortalities obtained 6 days post-exposure, on five different

cotton cultivars.

Exposure

Date

Plant

Parts

Total
Number
Exposed

MORTALITY OF LARVAE

DP50

Standard/Control

DP50 B

Bt-cotton

15985 B

Bt-cotton

15985 X

Bt-cotton

15985 BX

Bt-cotton

Total Total Total Total Total

18-01-2000

Leaves 90 24 44 56 41 62

Squares 90 19 70 79 82 85

Total 180 43 114 135 123 147

18-02-2000

Leaves 90 14 26 29 46 37

Squares 90 24 68 66 81 84

Bolls 90 61 83 88 88 88

Total 270 99 177 183 215 209

07-03-2000

Leaves 90 14 37 27 47 51

Squares 90 41 67 73 87 85

Bolls 90 61 83 90 87 88

Total 270 116 187 190 221 224

24-03-2000

Leaves 90 16 54 42 46 51

Squares 90 24 79 63 80 85

Bolls 90 76 84 86 88 90

Total 270 116 217 188 214 226

11-04-2000

Leaves 90 25 34 39 53 61

Squares 90 40 81 65 86 83

Bolls 90 73 88 85 90 89

Total 270 138 203 189 229 233

03-05-2000

Leaves 90 4 32 38 33 60

Squares 90 33 65 72 71 80

Bolls 90 67 83 88 86 90

Total 270 104 180 198 190 230

19-05-2000

Squares 90 56 86 72 88 90

Bolls 90 74 90 89 90 90

Total 180 130 176 161 178 180
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Mortalities recorded on the standard/control cotton cultivar (DP50) were 24 on leaves and 19 on

squares (43 total) for total plant parts. These results were recorded on 18 January 2000 and no

bolls were sampled at the time on any of the cotton cultivars, due to the young age of the plants,

no bolls were yet produced. During the last exposure 19 May 2000, no leaves were sampled, for

exposure, on any of the cotton cultivars, because the available leaves were hard and no longer

palatable to larvae (Table 3.1).

Mortality on DP50 B (Bt-cotton cultivar) was recorded on 18 January 2000 as 44 on leaves, and

70 on squares. This already showed a big difference in the mortality rates between DP50

(standard/control cultivar) and the Bt-cotton cultivars (Table 3.1).

On 11 April 2000, the mortality on leaves, squares and bolls were 34, 81 and 88 respectively and

on 3 May 2000 32, 65 and 83. On 19 May 2000, in the absence of leaves 86 and 90 on squares

and bolls respectively. Mortality results obtained with the Bt-cotton cultivar 15985 B followed

the same trend as the cultivar DP50 B with only significant differences during the last 3 events.

The Bt-cotton cultivars 15985 X and 15985 BX resulted in much higher mortality rates

throughout the season. From Table 3.1 it could be seen that there were no differences between

the mortalities on 15985 X and 15985 BX by May 2003. The larval mortality on 15985 X and

15985 BX was between 98 and 100%  for all observations. To bear these results out, further

statistical analyses were performed.

Results obtained throughout the season after exposing neonate H. armigera larvae to different

plant parts of different cultivars were analysed by ANOVA for differences between cultivars and

sampling dates and the cultivar-versus-sampling date interaction (Table 3.2).
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Table 3.2 Analysis of Variance of Helicoverpa armigera mortality counts.

SOURCE OF VARIATION DEGREES OF FREEDOM

CULTIVAR

DATE

CULTIVAR/DATE

RESIDUAL

*C-1 ˆ 5-1 = 4

**D-1 ˆ 7-1 = 6

(C-1)(D-1) = 24

N-(C-1)-(D-1)-(C-1)(D-1) = 175

TOTAL ***N-1 ˆ 210-1 = 209

*C = 5 Cultivars

**D = 7 Dates

***N = 5 x 7 x 6 replicates = 210 experimental units

The cultivar-versus-date interaction was highly significant (P<0.001) (Table 3.2). This is

interpreted that different mortalities of neonate H. armigera larvae were exhibited during the

season on the different cultivars. This did not indicate that the Cry-protein diminished in the plant

parts during the season. The mortalities varied slightly and in some cases increases as the season

progressed (Tables 3.1 and 3.2).

The mean separation was also performed using Fisher’s Protected T-test LSD (Least Significant

Differences) at the 5% significance level on the interaction table of means (Table 3.3). This

means that the mortalities of neonate H. armigera larvae on the different plant parts (leaves,

squares and bolls) differed significantly during the season, but did not decrease. This is in

contrast to Greenplate (1999) and Greenplate et al. (2000a), who reported that plants of different

Bollgard varieties express the Cry1Ac toxin less in fruiting structures than in terminal growth

or newly expanded leaves, and the level of the toxin decreases as the plant mature. The results

obtained in South Africa support results reported by Chitkowski et al. (2003), that they observed

no differences in mortality attributable to plant age.
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Table 3.3 The  mean mortality of neonate larvae of Helicoverpa armigera exposed to the

different plant parts of different cotton cultivars sampled on seven intervals

throughout the season. Means are based on the sixth day total plant assessments

(n = 270/cultivar).

COTTON

CULTIVAR

EXPOSURE DATES CULTIVAR

MEAN

18-01-2000 18-02-2000 07-03-2000 24-03-2000 11-04-2000 03-05-2000 19-05-2000

DP50

(control)

7.17 d* 16.50 d* 19.33 c* 19.33 d* 23.00 d* 17.33 e* 21.67 c* 17.76

DP50 B 19.00 d 29.50 c 31.17 b 36.50 b 33.83 c 30.00 d 29.33 a 29.9

15985 B 22.50 c 30.50 c 31.67 b 31.83 c 31.50 b 33.00 c 26.83 b 29.69

15985 X 20.50 b 36.00 b 36.83 a 35.67 b 38.17 a 31.67 b 29.67 a 32.64

15985 BX 24.50 a 34.83 a 37.33 a 37.67 a 38.83 a 38.33 a 30.00 a 34.5

Date Mean 18.73 29.47 31.27 32.2 33.07 30.07 27.5

SEM
Cultivar

42

SEM
Date

30

SEM
Cultivar/Date

6

F probability P<0.001

LSD (5%)
Cultivar

1.01

LSD (5%)
Date

1.19

LSD (5%)
Cultivar/Date

2.67

* - (within a column) means with the same letter do not differ significantly at 5% level.

The highest mortality of H. armigera was recorded on cultivar 15985 BX (cultivar effect, 5%

LSD = 1.01) (Table 3.3), when the total plant observations were analysed. No significant

differences between cultivars 15985 X and 15985 BX on 07/03/2000, 11/04/2000 and 19/05/2000

were detected when evaluated within the cultivar-versus-date interaction. Interpretation based

on performance of the cultivars in controlling H. armigera neonate larvae, based on total plant

results, indicated that cultivar 15985 BX caused the highest mortality, followed by cultivar 15985

X, 15985 B and DP50 B (Table 3.3). Results of similar studies conducted in South Carolina and
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Louisiana (USA) also confirmed that the Bt-cotton cultivar 15985 BX performed best in

controlling H. armigera (Chitkowski et al. 2003, Gore et al. 2003).

During this study (2000) on day 6 post-exposure, on leaves, squares and bolls, all surviving

larvae were weighed and the average mass per larva was determined (Table 3.4).

Table 3.4 The exposure dates, plant parts exposed, number of Helicoverpa armigera larvae

exposed and the average mass/larva noted 6 days post-exposure.

Exposure

Date

Plant

Parts

Total

Number

Exposed

AVERAGE LARVAL MASS

DP50

Standard/Control

DP50 B

Bt-cotton

15985 B

Bt-cotton

15985 X

Bt-cotton

15985 BX

Bt-cotton

(g) (g) (g) (g) (g)

18-01-2000

Leaves 90 0.00394 0.00229 0.00048 0.00075 0.00097

Squares 90 0.00729 0.0005 0.00033 0.00215 0.00017

Total 180 0.00562 0.0014 0.00041 0.00145 0.00057

18-02-2000

Leaves 90 0.00655 0.00121 0.00153 0.00258 0.00174

Squares 90 0.0035 0.0002 0.00067 0.00017 0.00221

Bolls 90 0.00458 0.00017 0.00017 0.00017 0.00017

Total 270 0.00488 0.00053 0.00079 0.00097 0.00137

07-03-2000

Leaves 90 0.0064 0.00153 0.00256 0.00104 0.0014

Squares 90 0.00384 0.00051 0.00054 0.00017 0.00046

Bolls 90 0.00464 0.0017 - 0.00017 0.00017

Total 270 0.00496 0.00074 0.00283 0.00046 0.00068

24-03-2000

Leaves 90 1007 0.0016 0.0023 0.00401 0.00134

Squares 90 0.00452 0.0004 0.0004 0.0016 0.00017

Bolls 90 0.00286 0.00017 0.00061 0.00017 -

Total 270 0.00582 0.00072 0.0011 0.00193 0.00076

11-04-2000

Leaves 90 0.0061 0.00206 0.00189 0.00102 0.001

Squares 90 0.01057 0.00051 0.0014 0.00172 0.00222

Bolls 90 0.00471 0.00017 0.00046 - 0.00017

Total 270 0.00713 0.00091 0.00125 0.00137 0.00113

03-05-2000

Leaves 90 0.00399 0.00103 0.00168 0.00082 0.00017

Squares 90 0.00203 0.00034 0.00023 0.00025 0.00017

Bolls 90 0.01756 0.00017 0.00456 0.00022 -*

Total 270 0.00786 0.00051 0.00216 0.00043 0.00044

19-05-2000

Squares 90 0.0032 0.0025 0.00212 0.0025 -

Bolls 90 0.01537 - 0.00017 - -

Total 180 0.00929 0.0025 0.00115 0.0025 -

* - Larvae to small to weigh
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Van der Walt et al. (1993) reported normal average mass of larvae on day six of development
as 0.02 g.  Results obtained with the standard/control cultivar DP50 reflects a much lower
average mass/larva ranging from 0.00203 g obtained with surviving larvae on squares during 3
May 2000 to the highest 0.01756 g on bolls on the same date. All average weights obtained
during the season were below the normal reported average, on the standard/control DP50 cultivar
but, the normal weight reported was determined with larvae laboratory reared on an artificial
medium (Van der Walt et al. 1993). With reference to this study laboratory reared larvae were
exposed as neonates to different plant parts (normal field situation).

Larval average mass obtained with the Bt-cotton cultivars DP50 B and 15985 B ranging from
0.00017 g on different dates, to 0.0025 g on squares (DP50 B) on the last event and 0.00256 g
on leaves (15985 B) on 7 March 2000.  A decrease in average larval weight could clearly be seen
between the standard/control cotton cultivar (DP50, 0.00786) and the two Bt-cotton cultivars
DP50 B, 0.0025g and 15985 B, 0.00283g respectively.

Average larval mass obtained with the highly efficient two Bt-cotton cultivars 15985 X and
15985 BX were recorded as 0.00017 g on various dates with the highest average mass 0.00401
g on leaves (15985 X) on 24 March 2000 and 0.0022 g on squares (15985 BX) on 11 April 2000.

Although mortalities between the Bt-cotton cultivars 15985 X and 15985 BX differed
significantly from the other cultivars DP50 B and 15985 B, a difference on the larval weight
could not be recorded.

Results however showed retarded larval growth on all Bt-cotton cultivars.  This explicit
characteristic showed clearly that Bt-cotton plant parts also had a repellent effect, because no or
minimal feeding occurred in most instances.

SPODOPTERA LITTORALIS

An opportunity was created by Monsanto (Pty) Ltd, to test the efficacy of the different Bt-cotton
cultivars in controlling S. littoralis. On one occasion only (Table 3.5), the same evaluations with
the five different cotton cultivars as described in (Table 3.1), were performed with S. littoralis,
neonate larvae from a laboratory reared population. Specimens were sampled on green beans as
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host plants and took place  in the Marble Hall district (Mpumalanga Province, South Africa) and
reared through to the F1- generation, which was used during this study.

The same plant parts as used in the H. armigera studies (leaves, squares, bolls), were used during
this exposure performed on 02 May 2002. Although results obtained with the standard/control
cultivar DP50 and the Bt-cotton cultivar DP50 B were comparable, within the exposures to leaves
and squares; leaves (DP50 -3), (DP50 B - 7) and squares (DP50 - 20), (DP50 B - 8), no significant
differences could be found (Table 3.6). This results also showed that no differences were obtained
between DP50 (standard/control) and the two Bt-cotton cultivars DP50 B and 15985 B. Total
number of specimens controlled with (DP50 (standard/control) - 49); (DP50 B - 58) and (15985
B - 63), showed therefore that this Bt-cotton cultivars cannot successfully control S. littoralis.
Results obtained with the Bt-cotton cultivars 15985 X and 15985 BX showed much higher
mortalities of (158) and (182) respectively. This numbers resulted in % mortalities of (15985 X -
58.5 %) and (15985 BX - 67 %). Compared to results of H. armigera, this Bt-cotton cultivars
cannot control S. littoralis to the same extent as H. armigera.

 

Due to the single event evaluation only, it is impossible to predict what would happen in a full
growing season. The results Table 3.5, however reported here should be regarded as a reference
study for further evaluations in South Africa. Chitkowski et al. (2003) reported positive results
from field studies of different Bollgard cultivars in controlling Spodoptera frugiperda (J.E.
Smith) and Spodoptera exigua (Hübner).

Table 3.5 The exposure dates, plant parts exposed, number of  Spodoptera littoralis larvae
exposed and the average mass/larva noted 6 days post exposure.

Exposure

 Date

Plant

Parts

Total

Number

exposed

MORTALITY OBSERVATIONS

DP50

Standard/Control

DP50B

Bt-cotton

15985 B

Bt-cotton

15985 X

Bt-cotton

15985 BX

Bt-cotton

Total Total Total Total Total

02-05-2000

Leaves 90 3 7 19 39 41

Squares 90 20 8 11 56 58

Bolls 90 26 43 33 63 83

Total 270 49 58 63 158 182
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The data was analysed by Analysis of Variance (ANOVA) testing for differences between
cultivars (Table 3.6). The ANOVA F-test indicated highly significant differences (P<0.001)
between cultivars exposed on 2 May 2000, for each plant part as well as on the total plant. Mean
separation of cultivars was analysed using Fisher’s Protected T-test LSD (Least Significant
Differences) of means at the 5% significance level.

Table 3.6 Analysis of Variance of Spodoptera littoralis mortality counts.

SOURCE OF VARIATION DEGREES OF FREEDOM

CULTIVAR

RESIDUAL

*C-1 ˆ 5-1 = 4

**N-C ˆ 30-5 = 25

TOTAL N-1 ˆ 30-1 =29

*C = 5 Cultivars
**N = 5 x 6 replicates = 30 experimental units

Table 3.7 shows the mortality means and significant differences between the cotton cultivars
when S. littoralis neonate larvae were exposed to the different plant parts (leaves, squares and
small bolls). This is interpreted that the different cultivars controlled S. littoralis significant
differently on the once off evaluation. 

Table 3.7 Mortality means and significant differences between the cotton cultivars when
neonate larvae of Spodoptera littoralis were exposed to the different plant parts.
The exposure took place on 2 May 2000 and the totals are based on the sixth day
assessments.

COTTON
CULTIVARS

TOTAL/PLANT LEAVES SQUARES SMALL BOLLS

DP50 (control) 8.17 b* 0.50 c* 3.33 c* 4.33 e*
DP50 B 9.67 b 1.17 cb 1.33 b 7.17 d
15985 B 10.50 b 3.17 b 1.83 b 5.50 c
15985 X 26.33 a 6.50 a 9.33 a 10.50 b
15985 BX 30.33 a 6.83 a 9.67 a 13.83 a
SEM 1.42 0.79 0.684 0.462
F probability P<0.001 P<0.001 P<0.001 P<0.001
LSD (5%) 4.14 2.3 2 1.35
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* - (within a column) means with the same letter do not differ significantly at 5%.

Generally cultivar 15985 BX exhibited the highest rate of mortality, although not significantly
different from 15985 X, except when analysis was performed on small bolls. Although cultivar
DP50 (control) generally had the lowest mortality counts, it did not differ significantly from
cultivar DP50 B and 15985 B when analysis were performed on the total plant mortality counts.

Although the results expressed in Table 3.7 shows significant differences between the Bt-
cultivars 15985 X and 15985 BX to all the other cultivars, this is not definite proof that these two
cultivars are adequate in controlling S. littoralis neonate larvae due to the fact that evaluations
were performed on one day only. To be able to prove the efficiency of the Bt- cultivars more
replicates throughout the season are required.

Table 3.8 The exposure dates, plant parts exposed, number of Spodoptera littoralis larvae
exposed and the average larval mass determined 6 day post-exposure.

Exposure

 Date

Plant

Parts

Total

Number

exposed

AVERAGE LARVAL MASS

DP50

Standard/Control

DP50 B

Bt-cotton

15985 B

Bt-cotton

15985 X

Bt-cotton

15985 BX

Bt-cotton

(g) (g) (g) (g) (g)

02-05-2000

Leaves 90 0.00403 0.00276 0.00342 0.00134 0.00126

Squares 90 0.0015 0.00155 0.0016 0.00201 0.00064

Bolls 90 0.00085 0.0009 0.0008 0.00201 -*

Total 270 0.00213 0.00171 0.00193 0.00179 0.00095

* - Larvae too small to weigh

Figure 3.1 depicts the percentage mortality obtained when S. littoralis was exposed to the
different cotton cultivars.
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Figure 3.1 The percentage mortality obtained on 2 May 2000, after exposure of Spodoptera littoralis neonate larvae to different
plant parts of the different cotton cultivars. Results are based on total mortality assessed 6 days post-exposure.
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3.3.2 PERCENTAGE CONTROL (ABBOT’S FORMULA)

The percentage control of larvae on the cotton cultivars, were also determined using Abbot’s
formula based on total counts (6 x replicates) on day 6. Mortality of H. armigera were shown
depicted in Figures 3.2 - 3.4 for leaves, squares and small bolls respectively, throughout the
cotton growing season.  Figure 3.5 depicts the percentage mortality on the plant parts lumped
together (total) throughout the cotton growing season for H. armigera neonate larvae. In
computing the effectiveness of insecticides, when an actual count of the living and dead insects
in both the treated and untreated plots, or checks, is available, it is obvious that the insects which
die from natural causes must be considered (Abbot 1925).

In Fig 3.2 it was immediately apparent that the percentage larval mortality on leaves of the
different cultivars varied. On three of six sampling dates the larval mortality on DP50 B cultivar
was the lowest (15, 8, 25) on 18 February, 11 April and 3 May 2000 respectively. The highest
larval mortalities were obtained on cultivar 15985 BX  on 18 January, 7 March, 11 April and 3
May 2000 as 55, 50 55 and 60 were recorded.

In Fig 3.3 it is clear that no obvious difference between cultivars DP50 B and 15985 B were
experienced in mortalities when H. armigera larvae were exposed to squares. Although
differences occurred on two dates (24 March and 11 April) no other differences were apparent.
It is clear that cultivars 15985 X and 15985 BX expressed the Bt-genes best, therefore resulted
in the highest control of between 70 and 100 % control.

In Fig 3.4 higher % control was experienced with again cultivars 15985 X and 15985 BX,
performing best. This trend in results were also experienced in Fig. 3.5 when totals of all plant
parts were depicted.
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Figure 3.2 The percentage control obtained during the cotton growing season, after exposure of Helicoverpa armigera neonate
larvae to leaves of the different cotton cultivars. Results are based on total mortality assessed  6 days post-exposure.
Correction factor: Abbot’s formula (Abbot 1925).
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Figure 3.3 The percentage control obtained during the cotton growing season, after exposure of Helicoverpa armigera neonate
larvae to squares of the different cotton cultivars. Results are based on total mortality assessed 6 days post-exposure.
Correction factor: Abbot’s formula (Abbot 1925).
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Figure 3.4 The percentage control obtained during the cotton growing season, after exposure of Helicoverpa armigera neonate larvae
to bolls of the different cotton cultivars. Results are based on total  mortality assessed 6 days post-exposure. Correction
factor: Abbot’s formula (Abbot 1925).



68

0

10

20

30

40

50

60

70

80

90

100

18/01 /2000 18 /02 /2000 07 /03 /2000 24/03 /2000 11/04 /2000 03 /05 /2000 19 /05 /2000

EXPOSURE DATE

%
 C

O
N

T
R

O
L

Dp 50 B 15895 B 15985 X 15985 B X

Figure 3.5 The percentage control obtained during the cotton growing season, after exposure of Helicoverpa armigera neonate larvae to
all plant parts (leaves, squares and bolls) of the different cotton cultivars. Results are based on total mortality assessed 6 days
post-exposure. Correction factor: Abbot’s formula (Abbot 1925). 
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3.4 DISCUSSION

All Bt-cotton cultivars cultivated during the cotton season provided good control of H. armigera
bollworm larvae. Mortality on terminal leaves  was low, because they did not feed. Despite the
fact that H. armigera larvae preferred squares as their optimal food source (Van der Walt 1988,
Annecke & Moran 1982), mortality on squares was also high. The high mortality which occurred
on the small bolls was related to the fact that small bolls are also not an optimal food source for
neonate larvae and thus natural mortality could occur as a result of starvation (Table 3.1).

Although results showed significant differences between the Bt-cultivars 15985 X and 15985 BX
to all the other cultivars, this is no definite proof that these two cultivars are adequately in
controlling S. littoralis neonate larvae. Evaluations with S. littoralis were performed only once.
To be able to prove the efficiency of the Bt-cultivars more replicates should be done throughout
the season.

Greenplate et al. (2000b), Jackson et al. (2000), Stewart et al. (2001) all reported that the cotton
cultivars containing more than one Bt-gene, enhanced levels of lepidopteran control when
compared with the current single-gene transgenic varieties in laboratory and field studies.

In conclusion for this study it is clear that there is generally no difference in the expression of the
Bt-gene throughout the cotton season and that the cotton cultivars 15985 X and 15985 BX were
the most effective in controlling neonate larvae of H. armigera.

The efficacy of and the B. thuringiensis content in Bt-cotton decrease as cotton plants age (Olsen
& Daly 2000). In a study conducted by Greenplate (1999), CryIAc values decreased from 57.1
:g/g dry weight 53 days after planting to 6.7 :g/g 116 days after planting. Mean terminal CryIAc
values decreased from 163.4 :g/g to 34.5 :g/g dry weight over the same time period.  Greenplate
(1999) concluded that CryIAc levels in fruit and terminals of Bollgard cotton decline steadily
over the growing season with higher CryIAc levels in the terminals than in the fruit throughout
the season.
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Olsen & Daly (2000), argued that it is not only a decrease in the concentration of CryIAc, but also
physiological changes in cotton plants and environmental factors that alter the toxicity of  Bt-
cotton over time, e.g. an increase of tannin content in older cotton plants decreases the efficacy
of CryIAc.

Concerns by the scientific community have been expressed on the use of only one Bt-gene.  It is
possible that the insects will become resistant to this gene in the same way as they do to
insecticides (Chapter 4). 
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CHAPTER 4

RESISTANCE MANAGEMENT

4.1 BT-TOXIN INTERACTION AND RELATIVE CONTRIBUTION IN NEW
COTTON STRAINS

Insect resistance management (IRM) regimes for Cry1Ac-expressing cotton included, mainly the
implementation of non-Bt-cotton refuges to preserve susceptible individuals and dilute resistance
alleles (Gould et al. 1994, Roush 1994a,b). The refuge was considered to be most effective if
resistance was functionally recessive and if concentrations of toxin in plants were sufficient to
kill all or nearly all heterozygous individuals for the resistance allele (Roush & McKenzie 1987,
Roush & Daly 1990). While these so-called high-dose criteria were assumed for extremely
sensitive species like Heliothis virescens and Pectinophora gossypiella (Saunders) (Bartlett et al.
1995, Gould 1998, Henneberry et al. 2000), species like Helicoverpa zea and Heliothis armigera
(Hübner), (New- and Old-World bollworms, respectively) are inherently less susceptible to
Cry1Ac and could not be included in the high-dose scenario (Greenplate et al. 1998) (Cotton
Research and Development Corporation 2000). However, it was suggested that even if high-dose
requirements were not fulfilled, a refuge will generally be beneficial in diluting resistance alleles
(Roush 1994).

The utility of toxin mixtures has been considered as a strategy for resistance management (Gould
1986, Tabashnik 1989, Roush 1997, 1998, Greenplate et al. 2003) with the potential to delay
resistance development, especially if the toxins in question independently demonstrated high-dose
characteristics in planta and if target insects did not exhibit cross-resistance (Gould 1986, Roush
1997, 1998). Roush (1998) suggested that co-expressed, or pyramided, toxins provide value in
delaying resistance even in circumstances where high-dose criteria for both toxins are not met.
Gould et al. (1992) suggested that it may be, even in the face of a threat of cross-resistance, if the
activities of two pyramided toxins are independent and additive in nature, and if the expression
of both toxins leads to the expression of a high-dose effect for the combination, these pyramided
toxins can also delay resistance, even with a possibility of cross-resistance, if combined with the
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effective use of refuges, and if introduced prior to the development of significant resistance to
either toxin.

Cotton varieties which simultaneously express two different Bacillus thuringiensis M-endotoxins,
have been developed. Although not yet granted regulatory approval for movement into commerce,
these cotton varieties have demonstrated enhanced levels of lepidopteran control when compared
with the current single-gene transgenic varieties in laboratory and field studies (Greenplate et al.
2000, Jackson et al. 2000, Stewart et al. 2001). A modified Cry1A gene encoding a chimeric
Cry1Ab/1Ac toxin (Hofte & Whiteley 1989, Perlak et al. 1990), and a modified Cry2Ab gene
encoding a Cry2Ab toxin (Widner & Whiteley 1989, Dankocsik et al. 1990) are expressed in
these plants.

A comparison of amino acid sequences revealed that Cry1Ac and Cry2Ab share <30 % identity
(Crickmore et al. 1998). The relationship between Cry2Ab and Cry1Ac in terms of lepidopteran
resistance management is being explored. Akhurst et al. (2002) and Akhurst et al. (2003)
demonstrated no cross- resistance to plant-produced Cry2Ab in a Cry1Ac resistant H. armigera
population. Although no studies to determine cross-resistance of H. armigera populations in
South Africa, to the different Bt-cotton strains, were performed to date, results discussed in
Chapter 3 revealed that the different Bt-cotton strains can adequately control H. armigera up to
2003. 

4.2 ALTERNATIVE HOST PLANTS

For Bt-cotton technology to be preserved, build-up of resistance to the Bt-toxin or toxins
expressed in the transgenic cotton plant has to be prevented. An important resistant management
prevention/requirement includes the necessity, that every field of insect-resistant crops must have
an associated refuge of non-GM crops in order for the insects to develop without selection to the
insect-resistant varieties. According to Mallet & Porter (1992), the susceptible genes in the
bollworm population can be conserved by planting ‘refugia’ or ‘toxic-free’ non-transgenic-cotton
plants on the same cultivated land. Resistance in bollworm populations can occur if bollworms
reach maturity in a field of Bollgard cotton because of the presence of a tolerant gene within their
populations (Green et al. 2003a).
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If only Bt-cotton is available to larvae and generation after generation fed on these host plants it
can give rise to potentially resistant larvae and the survival of the resistant/tolerant gene in the
population will be ensured. However if a refuge is planted or alternative natural hosts are
available so that movement of moths occurs from transgenic-cotton to alternative non genetic host
plants the build up of Bt-resistant lepidopteran pests can be prevented. As moths migrate,
susceptible males and females from non Bt-plants could mate with males and females that fed and
reached maturity on Bt-cotton. The moths maturing on the Bollgard cotton, are potentially more
resistant or tolerant towards the gene, and they have a higher probability of mating with a
susceptible individual from the larger population of moths originating from the refuge area, or
with moths from any other host plant from the surrounding natural bush or field. The probability
of establishing this tolerant gene pool therefore, becomes much smaller since this interaction
could cause sufficient genetic dilution to counteract selection for resistance against the effect of
the toxin expressed by transgenic cotton plants (Green et al. 2003b).

According to Green et al. (2003b), a purchaser of Bollgard™ (Bt-cotton) in South Africa is under
obligation to sign a license agreement, stating that for every 100 ha of Bollgard cotton planted,
a refuge of either 20 ha sprayed non-transgenic cotton, or 5 ha unsprayed non-transgenic cotton
will be planted. The small-scale farmers on the Makhatini Flats, however, may neglect planting
this refuge and a possible ‘alternative’ that could act as refuge hosts. 

 

Annecke & Moran (1982), reported alternative host plants for H. armigera larvae, such as Ricinus
communis, mainly in the northern parts of South Africa, Chicorum intybus, mainly in the Eastern
Cape and Gossypium hirsitum (wild cotton) in the cotton growing areas of South Africa.

Green et al. (2003), reported evidence that on the Makhatini Flats in Kwa-Zulu Natal, South
Africa, the four bollworm species making up the bollworm complex on cotton, African bollworm
Helicoverpa armigera (Hübner) (also called American bollworm), spiny bollworms Earias
biplaga (Walker) and Earias insulana (Boisduval) and the red bollworm Diparopsis castanea
(Hampson), maintain natural populations on alternative host plants. Green et al. (2003), reported
that African bollworms were found on eight plant species, namely, Abutilon austr-africanum
(Hochr.), Abutilon guineense ((K.Schum.) Baker f. & Exell), Acanthospermum hispidum (DC),
Cienfuegosia hildebrandtii (Gärcke), Corchorus trilocularis (L.), Hibiscus vitifolius (L.), Justicia
flava ((Vahl) Vahl) and Pavonia burchellii ((DC.) R.A.Dyer). These plant species could be
divided into the following groups: (1) pre-cotton alternative host plants: C. hildebrandtii,
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Hibiscus calyphyllus (Cav.), H. vitifolius, J. flava, Sida dregei (Burt Davy) and Sida cordifolia
(L.); (2) alternative host plants during the cotton-flowering phase: A. austro-africanum, A.
guineense, Sida rhombifolia (L.) subsp. rhombifolia, Malvastrum coromandelianum ((L.) Garke)
and Melhania forbesii (Planch. Ex Mast.); (3) post-cotton alternative host plants: A. hispidum,
Hibiscus cannabinus (L.) var. cannabinus, H. vitifolius, Hibiscus praeteritus (R.A. Dyer) and S.
dregei.

Most of the plant species identified as bollworm hosts were widespread across the Makhatini
Flats, especially Abutilon spp., Hibiscus spp., Sida spp. and C. trilocularis. C hildebrandtii, were
abundant in small areas or patches of natural veld (Green et al. 2003). The number of host plants
found in the possible refuge area (veld or fallow fields) (5%) exceeded the number of host plants
found in the Bt-fields for all species groups except A. austro-africanum, indicating that these
areas could be considered as an alternative refuge to non-Bt cotton. Bollworms found on
alternative host plants indicated that these plants could serve as an alternative to cultivated cotton
plants later in the season. The constant presence of weeds and indigenous plants that act as hosts
for the bollworm complex provided a year round source of food for the bollworm complex. The
bollworm populations arising from non cotton host plants were thus likely to interbreed with
bollworms exposed to the Bt-gene in Bollgard™ cotton (Green et al. 2003).

4.3 ALTERNATIVE METHODS AND IMPLEMENTATIONS FOR RESISTANCE
MANAGEMENT

Various methods have been suggested and some implemented to slow the possibility of insect
resistance to Bt-cotton:

< The use of non-transgenic-cotton within a transgenic-cotton field to provide refuge for
susceptible moths (25 % non-Bt cotton). Peck et al. (1999), found that resistance to B.
thuringiensis developed faster in areas where refuge fields were changed randomly than
in areas where the same refuge fields were used from year to year. The success of using
mixed stands of Bt- and non-Bt-cotton, depended on the size of the susceptible
populations, adult mobility (Halcomb et al. 1996), amount of larval movement (Halcomb
et al. 1996; Peck et al. 1999), feeding and the proportion of resistant to susceptible
individuals (Halcomb et al. 1996).

< Preservation of crop refuges to allow homozygous susceptible insects to breed with
resistant insects to produce heterozygous susceptible insects (Halcomb et al. 2000).
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< Adding additional Bt-genes to increase the number of endotoxins (Benedict et al. 1993;
Sachs et al. 1996; Matthews 1997; Hilder & Boulter 1999; Peck et al. 1999).

< Combining insecticidal proteins with insect resistant plant traits (pyramiding), e.g. Sachs
et al. (1996) found that pyramiding of CryIA(b) with the high-terpenoid trait increased
resistance to tobacco budworm H. virescens and improved the durability of CryIAb in
cotton. Greenplate et al. (2003) reported that in a study, where transgenic-cotton
expressing two toxins encoded by different modified Bt genes, Cry1Ac and Cry2Ab,
results showed a substantial increase in toxicity to H. virescens and H. zea, over the
Cry1Ac-only cotton. Comparison of mean responses showed Cry2Ab to be the major
contributor to the total insect activity in the two-gene cotton plants.

< Using tissue-specific expression of B. thuringiensis, e.g. expression in the reproductive
fruiting plant organs and not in the leaves (Benedict et al. 1993; Sachs et al. 1996).

< Low dose expression in protected plant parts, rotating or eliminating specific B.
thuringiensis products through time (Benedict et al. 1993; Sachs et al. 1996).

< Production of low sub-lethal doses in some or all plants to promote interaction with
natural enemies and sequential introduction of cultivars that produce different insecticidal
proteins for which different adaptive strategies are needed by the target insects (Sachs et
al. 1996).

If taking the following  factors, that might influence the rate at which lepidopterans can become
resistant to Bt-cotton, into consideration, the success of managing and/or preventing resistance
development are pliant. The factors are: (1) the number of generations of bollworms exposed each
year to Bt- plants containing the same or similar toxins; (2) the percentage of each generation
exposed to Bt-plants containing the same or similar Cry-toxins, the mortality level that Cry-toxin
causes among bollworms carrying one copy of a resistance allele and one copy of a susceptible
allele (the mortality level is determined by the Cry-toxin concentration in the plant, which in turn
may determine the functional dominance of the allele affecting resistance); (3) the frequence with
which Cry-resistance alleles are expressed in the bollworm population before exposure to Cry-
toxins and the dominant or recessive nature of the resistance alleles; (4) the migration patterns
of bollworm moths; (5) the survival advantage or disadvantage that resistance allele(s) offer
bollworms in the presence and absence of Cry-toxins; (6) the number of susceptible moths
available for mating with moths carrying resistance gene(s).
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4.4 GENERAL DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

Bollgard™ cotton, or cotton containing the Bt-gene, has the ability to control the bollworm
complex (Frederici 1993) and the introduction of Bollgard™ cotton varieties, (NaCotn37Baand
NaCot35B), to the South African cotton industry offers an effective means of controlling the
bollworm complex (Helicoverpa armigera, Diparopsis castanea and Earias insulana). The
reduced need of insecticides when planting Bollgard™ cotton created new management
opportunities for commercial and the small scale farmer, in rural communities, where insecticides
are costly and difficult to apply effectively. Consequently the complex of other insect pests on
cotton still has to be controlled chemically where needed. This however would increase the
overall production costs of Bt-cotton. Pests that would need additional chemical control are e.g.
cotton aphids, jassids, red spider mites, cotton stainers, thrips and white flies (Hardee et al. 2001)

Before introducing Bt-cotton to the South African market the efficacy of such cotton against H.
armigera larvae, was well-known in different countries in the world, but laboratory studies and
field studies were also needed for South African environmental circumstances. These test were
performed during 1998 in the laboratory on artificial diet, to which different concentrations (2
µg/g, 8 µg/g, 32 µg/g, 128 µg/g and 512 µg/g) of the Bt-protein Cry1Ac was added and larvae
exposed too. H. armigera larvae were also allowed to feed on leaves, squares and bolls of
different cotton cultivars (expressing different Bt-genes). In all tests neonate H. armigera larvae
were used and mortalities and subsequent larval development were followed. 

When using test results from exposing larvae of H. armigera to different plant parts, the results
may be wrongly interpreted because the favourite larval food (neonate - 2nd instars), was squares
(Van der Walt 1988) and not leaves or bolls thus the highest mortality was obtained on squares,
indicating that the favourite food of neonate and subsequent larval stages was squares. Thus it
does not mean that the Bt-gene was expressed the highest in squares only (Chapter 3).

Olsen & Daly (2000) and Greenplate (1999), indicated that Cry proteins decreased as cotton
plants matured (Chapter 3). This could not be proofed during the part of this study (Chapter 3)
as percentage control of larvae feeding on all plant parts remained high throughout the season
(Chapter 3) (Fig. 3.1 - Fig. 3.5). Although cultivar-versus-date interactions were significant (P
< 0.001) (Table 3.2) no decline in the mortalities of larvae were found, as plants matured
throughout the season. Therefore no decline of the Cry protein over the cotton growing was
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experienced. A study conducted by (Van Jaarsveld 2000) (E1999/008C) for Monsanto (Pty) Ltd,
also concluded that even with ratoon (stand-over cotton) Bollgard cotton in the Limpopo
Province, South Africa, no decrease in mortalities of H. armigera was shown.

Results of laboratory monitoring of the susceptibility of H. armigera field populations (Chapter
2) indicated no increased LD50 values of the tested larval populations over the study period (1998,
2000 and 2003). Results however during this study period in South Africa for the effectiveness
of Cry1Ac, did not guarantee a total absence of resistance to the Bt-gene. The results also
demonstrated that the field populations evaluated, were susceptible to the Cry1Ac protein and that
a movement towards resistance in the H. armigera field populations was not indicated.

The key to managing resistance in H. armigera to insecticides were to vary the control practices
so that the selection pressure would be insufficient for the insect to develop resistance to any one
control measure. This could also be true when Bt-cotton varieties are used as a control measure
against H. armigera. It is already recommended that within a Bt-cotton planting approximately
20 % of a field should be planted to non-Bt-cotton to allow for exchange of genes with bollworm
from non-Bt-cotton. The role of alternative bollworm host plants in the vicinity of Bt-cotton could
also play an important role. This should therefore be the basis for long term, sustainable pest
control in cotton.

Current (GM) Genetically modified crops, in conjunction with conventional agricultural practices,
can contribute to a cost effective, sustainable, productive and sufficiently safe form of agriculture.
Reduced use of insecticides could lead to cost effectiveness and less impact on the environment.
It also opens new crop production levels for both commercial and small scale farmers.
Widespread adoption of Bt-cotton led to regional declines in bollworm populations, even after
taking into account reduced insecticide use. Bt-cotton led to long term suppression of bollworms.
Transgenic crops open up new avenues for pest control. One practical means of increasing yield
would be to protect more of what is grown from loss to pests, especially insect pests. Genetically
engineering inherent crop resistance to insect pests offers the potential of a user, environment and
consumer-friendly method of crop protection to meet the demands of sustainable agriculture in
the 21st century.

Cotton and thus Bt-cotton is only one of many host plants of H. armigera (Green et al. 2003a).
On cotton the preferred food for neonate larvae are squares but older instars (2 - 5) feed on all
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plant parts. If neonate larvae are killed throughout the season on Bt-cotton, this could lead to a
decline in larval populations reaching maturity on cotton. When H. armigera is controlled, cotton
yields increase, this was already shown under insecticidal control and were also apparent where
Bt-cotton was grown (Broodryk, pers comm. 2003). If Bt-cotton represents an important part of
a pest diet, the pest is not too sedentary, and its reproductive potential is not too high, then
declines can be observed. Effective Bt-technology in cotton represents an effective and safe
means of controlling the major pests. This results in increasing yields, more efficient land usage
and reduces the environmental impact of pest control in cotton production. Since cotton is grown
on approximately 2.5 million hectares in Africa, most of which comprises small plots of less than
10 hectares, the introduction of Bt- cotton across Africa has the potential to dramatically increase
cotton yields among smallholder farmers, thereby improving the quality of life of a great number
of people. The successful and rapid adoption of this more expensive technology in the Makhatini
Flats provides a model for smallholder cotton farmers in Africa and across the world, and testifies
to the incredible benefits that can be achieved through the responsible implementation of
agricultural bio-technologies.

The significant reduction in time taken for crop management and water collection necessary to
make up the pesticidal sprays means that the women and children (who would usually undertake
this task) have more free time for other activities, including education. By freeing up time
traditionally spent on farming, greater opportunities exist for the family. They can grow other
crops and spend more time in school. Benefits to the community are expected to result from these
gains. The public and the environment also win from the health perspective since pesticide
reduction use means less production, shipment, storage and exposure to chemicals. This is said
to be one of the major advances (Cotton SA 2003, Http://www.cottonsa.org.za (March 2003)).
Commercial farmers likewise has to increase yield and cut costs to remain profitable farmers and
meet market demand.

The commercial growth of genetically modified Bacillus thuringiensis cotton cultivars can be
recommended and offers a practical alternative in an IPM programme and could lead to
considerable potential benefit for the cotton industry of South Africa. Bt-cotton have come to stay
and the benefits will only continue as long as they are managed wisely. However, how long Bt-
cotton remains effective may depend upon how well growers and pest managers follow resistance
management guidelines. Improper usage dramatically decreases the effective life of a product.
If Bt-cotton are carefully managed, their effectiveness may be extended for many years. But if
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the technology is abused, bollworms will quickly become resistant. Preserving the effectiveness
of Bt-cotton is one way to keep pest management costs at the lowest level.

Biotechnology is a very new field, and much about the interaction of Living Modified Organisms
(LMO’s) with various ecosystems is not yet known. Some of the concerns about the new
technology include its potential adverse effects on biological diversity, and potential risks to
human health. Potential areas of concern might be unintended changes in the competitiveness,
virulence, or other characteristics of the target species; the possibility of adverse impacts on non-
target species (such as beneficial insects) and ecosystems; the potential for weediness in
genetically modified crops (where a plant becomes more invasive than the original, perhaps by
transferring it’s genes to wild relatives); and the stability of inserted genes (the possibilities that
a gene will lose it’s effectiveness or will be re-transferred to another host). While advances in
biotechnology have great potential for significant improvements in human well-being, they must
be developed and used with adequate safety measures for the environment and human health.

To ensure the continued effectiveness, of Bt-cotton in years to come, continued monitoring for
potential resistant genes in H. armigera should be a long term objective. This is of great
importance as the market for the commercial Bt-cotton expands. Continued collection and
analysis of such data at least every 2 - 3 years are critical to the development and continued
assessment of resistance management strategies. Together with these concerns regarding the
safety of new proteins expressed in transgenic plants are critical components for future studies
in Biosafety Risk Assessment.

This present study on the effect of Bt-cotton cultivars on H. armigera, holds great promise for the
control of this key insect pest on cotton. The knowledge and results obtained in the laboratory has
to be transferred to the field and already supports field data where increased yields when using
Bt-cotton was obtained in spite of using less insecticidal sprays (Broodryk, Olivier pers comm).
The information of this new technology and the use of it, should also be extended to all farmers
and the general public, in that way they should understand why genetic engineering is important
and why legislation and thus the responsible use of Bt-cotton, and the maintenance and cross
breeding of H. armigera gene pods are critical. The “once off” results with Spodoptera littoralis
should be extended and other lepidopteran pests also tested.
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As other Bt-cotton cultivars become available and efficacy and resistance monitoring needs to
be done, this study will serve as a benchmark for South Africa.
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