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ABSTRACT 

 

Lantana camara Linnaeus (Verbenaceae), commonly known as lantana, is a highly 

invasive weed in many parts of the world. In South Africa it is naturalized in several 

provinces where it invades pastures, riverbanks, mountain slopes and valleys and 

commercial and natural forests, forming dense, impenetrable thickets. Chemical and 

mechanical control methods are expensive, labour intensive and provide only temporary 

relief as cleared areas are rapidly reinfested by seedlings and coppice growth. A 

biological control programme was initiated in South Africa in the 1960s, but despite the 

establishment of 11 agent species, it was considered to have had limited success. Several 

factors are thought to restrict the impact of the biocontrol agents. Firstly, L. camara 

occurs in a range of climatic regions, some of which are unsuitable for the establishment 

of agent species of tropical and subtropical origin. Secondly, L. camara is the result of 

hybridization between several Lantana species, forming a complex of hybridized and 

hybridizing varieties in the field, which match none of the Lantana species in the region 

of origin. This causes partial insect-host incompatibility, displayed as varietal preference. 

Thirdly, parasitism appears to have significantly reduced the effectiveness of several 

natural enemies. In spite of all these constraints, biological control has reduced invasion 

by L. camara by 26%. However, the weed is still very damaging and additional natural 

enemies are required to reduce infestations further. 

 

A flea-beetle species, Alagoasa extrema Jacoby (Coleoptera: Chrysomelidae), was 

collected from several sites in the humid subtropical and tropical regions of Mexico, and 

imported into quarantine in South Africa and studied as a potential biocontrol agent for L. 



 iii 
 

camara. Favourable biological characteristics of this beetle included long-lived adults, 

several overlapping generations per year, and high adult and larval feeding rates. 

Observations from the insect’s native range and studies in South Africa suggest that A. 

extrema would probably be more suited to the subtropical, rather than the temperate areas 

in South Africa.  

 

Laboratory impact studies indicated that feeding damage by A. extrema larvae, over a 

period spanning the larval stage (16 to 20 days), reduced the above-ground biomass of L. 

camara plants by up to 29%. Higher larval populations resulted in a higher reduction of 

biomass.  

 

Varietal preference and suitability studies indicated that A. extrema exhibits a degree of 

varietal preference under laboratory conditions, with one of the white pink L. camara 

varieties proving the most suitable host. This variety is one of the most damaging 

varieties in South Africa and is particularly widespread in Mpumalanga Province. 

 

Although A. extrema proved to be damaging to L. camara, laboratory host range trials 

showed it to be an oligophagous species, capable of feeding and developing on several 

non-target species, especially two native Lippia species (Verbenaceae). The host 

suitability of these species was marginally lower than that of L. camara and the potential 

risk to these indigenous species was deemed to be too high to warrant release. It was 

therefore recommended that A. extrema not be considered for release in South Africa.   
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

1.1 Distribution, weed status and taxonomy 

Lantana camara Linnaeus (Verbenaceae), commonly known as lantana, is a highly 

invasive weed that originates from South and Central America (Stirton 1977; Spies 1984; 

Baars and Neser 1999). As a decorative ornamental, several varieties (cultivars) of 

lantana have been widely distributed throughout the tropics, subtropics and warm 

temperate regions of the world. Lantana has at present an almost cosmopolitan 

distribution and is rated as one of the world’s worst weeds (Holm et al. 1977). In South 

Africa it is naturalized in regions of the Limpopo, Gauteng, Mpumalanga and KwaZulu-

Natal provinces, as well as the southern coastal regions of the Eastern and Western Cape 

provinces (Baars and Neser 1999) (Fig 1.1).  

Fig. 1.1: Distribution of Lantana camara in South Africa. 
(Map drawn by L. Henderson, Plant Protection Research Institute).
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Lantana invades pastures, riverbanks, mountain slopes and valleys and commercial and 

natural forests, forming dense, impenetrable thickets (Cilliers and Neser 1991; Baars and 

Neser 1999). Together with this aggressive growth, lantana also suppresses surrounding 

plant species through allelopathy, and therefore interrupts regeneration processes (Gentle 

and Duggin 1997a) and reduces the biodiversity of natural ecosystems (Baars and Neser 

1999). Lantana is poisonous to animals and, if consumed, can cause photosensitivity of 

mucous membranes, liver and kidney damage, paralysis of the gall bladder, intestinal 

haemorrhage and death within 1 to 4 days in cattle, sheep and horses (Kellerman et al. 

1996). In 1996, the impact of cattle mortalities from lantana poisoning in South Africa 

was estimated to be in excess of US$ 160 000 (Kellerman et al. 1996). 

 

Lantana camara presents a complex taxonomic problem owing to the considerable 

variation in the plant’s morphological characteristics and physiological and genetic 

composition. Stirton (1977) and R. Sanders (unpublished data – in Day and Neser 2000) 

suggest that L. camara is a hybrid species and part of a complex, consisting of several 

species of Lantana, all morphologically similar, but with visible variations in flower 

colour, spininess of the stems and hairiness of the leaves. As a result of hybridization, 

there is no naturally occurring species that matches any of the lantana varieties occurring 

in South Africa, or elsewhere in the world (L.S. Smith, unpublished data – in Day and 

Neser 2000). Ongoing field hybridization results in the continuous production of new 

varieties (Spies 1984; Cilliers and Neser 1991). This has led to the description of 

hundreds of different varieties (cultivars) (Spies 1984). The varieties can be 

distinguished, either morphologically by differences in the flowers (size, shape and 

colour), leaves (size, colour and hairiness), and stems (degree of spinescence) (Smith and 

Smith 1982). Physiologically they can be distinguished by differences in rates of growth 

and general vigour (Spies and Stirton 1982a,b), chromosome numbers (Spies and Stirton, 

1982a), degree of toxicity to livestock (Everist 1974, Hart et al. 1976, Kellerman and 

Coetzer 1984, Swarbrick 1986), and fertility and cytology (Spies and Stirton 1982a,b,c 

Spies 1984, Spies and du Plessis 1987). Wells and Stirton (1988) stated that no two 

individuals in hybrid colonies were the same and that each was unique. Day and Neser 

(2000) reported that over 650 recognised horticultural varieties are in existence 
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worldwide and Graaf (1986) estimated up to 40 occurring in South Africa. Table 1.1 lists 

the 10 most important and widespread varieties in South Africa (J-R. Baars and C.J. 

Cilliers, pers. comm.). These varieties are traditionally used during laboratory culturing 

and the screening of potential biological control agents in South Africa. 
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Table 1.1: A list of 10 of the most important widespread Lantana camara varieties in 
South Africa. 

Lantana 
camara 
variety 

Distinguishing morphological 
characteristics 

Mature 
flower 
colour  

Collection Site 

Grid 
reference 

Location 

163 LP* Shoot tips hairy and spiny; 
leaves very hairy; main stem 
with few spines 
 

Light Pink 30º 09’ 08.4”S 
30º 49’ 39.7”E 

nr. Scotsburgh, 
KwaZulu-Natal 

150 O Scrambling shrub, shoot tips 
hairy, spiny and reddish in 
colour; leaves small and hairy 
 

Orange 29º 38’ 45.9”S 
31º 07’ 39.5”E 

nr. La Merci, 
KwaZulu-Natal 

015 WY Shoot tip spiny; large broad 
dark hairy leaves; main stem 
spiny 
 

White 
(Yellow 
throat) 

25º 02’ 21.6”S 
31º 02’ 19.8”E 

nr. Sabie, 
Mpumalanga 

010 DP Shoot tip spiny; leaves small, 
dark and hairy; main stem very 
spiny 
 

Dark Pink 25º 37’ 08.3”S 
30º 31’ 12.1”E 

nr. Waterval-
Boven, 
Mpumalanga 

029 WP Shoot tip spiny; large broad 
dark hairy leaves, main stem 
spiny 
 

White 
Pink 

25º 08’ 10.6”S 
31º 00’ 09.0”E 

nr. Hazyview, 
Mpumalanga 

009 LP Shoot tip spiny; leaves hairy; 
main stem spiny 
 

Light Pink 25º 35’ 13.7”S 
30º 27’ 08.5”E 

nr. Sycamore, 
Mpumalanga 

017 O Shoot tip hairy, spiny and 
reddish in colour; leaves hairy 
and small; hairy main stem 
with few spines 
 

Orange 
Red 

25º 03’ 17.1”S 
30º 57’ 03.6”E 

24 km east of 
Sabie, 
Mpumalanga 

021 LP Shoot tip hairy; leaves broad 
and hairy; main stem spiny 

Light Pink 24º 59’ 30.2”S 
31º 14’ 34.8”E 

8km east of 
Sabie, 
Mpumalanga 
 

113 DP Shoot tip hairy; dark hairy 
leaves; main stem spiny 

Dark Pink 27º 53’ 37.0”S 
31º 38’ 27.6”E 

50km sth of 
Pongola, 
KwaZulu-Natal 
 

018 DP Very hairy shoot tip; woolly 
leaves; main stem hairy with 
few spines 

Dark Pink 25º 07’ 04.9”S 
30º 45’ 39.2”E 

nr. Sabie, 
Mpumalanga 

*Varieties are named according to their collection waypoint number and mature flower 
colour abbreviation. 
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1.2 Control Options 

1.2.1 Chemical and Mechanical control 

Herbicides and mechanical control methods are expensive, labour intensive and provide 

only temporary relief as cleared areas are rapidly reinfested by seedlings and coppice 

growth, and are therefore only effective with continued follow-up treatments (Baars and 

Neser 1999). Controlled low- to moderate-intensity fires appear to reduce invasions by L. 

camara, and can be an effective, preventative management strategy (Gentle and Duggin 

1997b). However the use of fires might not always be a suitable option as infestations are 

often near to, or in, indigenous forests, grazing lands and plantations.  

 

1.2.2 Biological Control 

Since the initiation of the biological control programme against L. camara during 

1961/62 (Baars and Neser 1999), 20 insect species have been released as biological 

control agents against this invader in South Africa (Table 1.2) (Julien and Griffiths 1998; 

Baars and Neser 1999). Despite the establishment of 11 of these species (3 of which were 

already present in South Africa prior to deliberate introduction) (Julien and Griffiths 

1998), the biocontrol programme was considered to have had limited success (Cilliers 

and Neser 1991; Baars and Neser 1999). Almost from the onset of the programme it was 

realized that biological control of L. camara in South Africa would be hard to achieve 

(Neser and Annecke 1973; Cilliers and Neser 1991). This was proven to be the case, as 

not only did several of the introduced species fail to establish, but those species that did, 

were relatively ineffective (Cilliers and Neser 1991). The limited success of the 

biocontrol programme on the whole, can be attributed to a number of factors, some of 

which are discussed below. 
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Table 1.2: Natural enemies released on Lantana camara in South Africa and their current status. 
Natural enemy species  Origin Main 

releases 
Mode of attack Status Damage inflicted 

Coleoptera: Cerambycidae      
Plagiohammus spinipennis (Thompson) 
 

Mexico via Hawaii via 
Australia 

1973 Stem-borer Not established - 

Coleoptera: Chrysomelidae      
Alagoasa parana (Samuelson) Brazil via Australia 1985 Leaf chewer Not established - 
Octotoma championi (Baly) Costa Rica via 

Australia 
Central America via 
Australia 

1978 
1995 

Leaf miner Establishment unconfirmed Unknown 

Octotoma scabripennis (Guérin-
Méneville) 

Mexico via Hawaii via 
Australia 

1971 and 
1974 and 
1981 

Leaf miner Established in the moist, warm 
eastern range of lantana. 
Abundant in localized inland 
areas 

Extensive defoliation, 
but localized 

Uroplata girardi (Pic) Paraguay via Hawaii 
via Australia 

1974 
1983 

Leaf miner Established, abundant in 
KwaZulu-Natal coastal regions. 
Present in low numbers in warm, 
moist inland range of lantana 

Extensive defoliation in 
coastal regions 

Uroplata lantanae (Buzzi and Winder) Brazil via Australia 1984 Leaf miner Not established - 
Uroplata fulvopustulata (Baly) 
 

Costa Rica via 
Australia 

1978 Leaf miner Not established - 

Diptera: Agromyzidae      
Calycomyza lantanae (Frick) Trinidad via Australia 

Florida USA 
1982 
1989 

Leaf miner Widely established in low 
numbers, heavily parasitized 

Unknown 

Ophiomyia lantanae* (Froggatt) 
 

Mexico via Hawaii 1961 Fruit miner Widely established and abundant 
but heavily parasitized 

Low impact on seed 
viability  

Diptera: Tephritidae      
Eutreta xanthochaeta (Aldrich) 
 

Mexico via Hawaii 1983 Stem galler Not established 
 

- 

Hemiptera: Miridae      
Falconia intermedia (Distant) Jamaica 1999 Leaf sucker 

 
Newly released Unknown 

Hemiptera: Tingidae      
Teleonemia elata (Drake) Brazil via Australia 1972 Flower and leaf sucker Not established - 
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Table 1.2 continued 
Teleonemia scrupulosa (Stål) Mexico via Hawaii, via 

Australia, via Mauritius 
Florida, USA 

1961, 
1971, 
1984 
1989 

Flower and leaf sucker Widely established in large 
numbers across the entire range 
of lantana 

Severe damage 
sporadic, complete 
defoliation and abortion 
of flowers in 
subtropical regions 

Leptobyrsa decora (Drake) 
 

Colombia and Peru 1972 Leaf sucker Not established - 

Lepidoptera: Gracillariidae      
Cremastobombycia lantanella (Busck) 
 

? ? Leaf miner Widely established, present in 
low numbers, heavily parasitized 

Unknown 

Lepidoptera: Noctuidae      
Autoplusia illustrata (Guenée) Colombia via Hawaii 

via Australia 
1984 Leaf chewer Not established - 

Hypena  laceratalis* (Walker) Kenya and Zimbabwe 
via Hawaii 

1961 Leaf chewer Widely established. Larvae are 
only active during late summer 
and autumn and are often 
parasitized 

Considerable damage to 
seedlings and new 
growth 

Neogalea sunia (Guenée) California, USA  
California, USA  

1962 
1969 
 

Leaf chewer Not established - 

Lepidoptera: Pterophoridae      
Lantanophaga pusillidactyla (Walker) Mexico via Hawaii 1984 Flower, fruit and seed 

chewer 
Widely established, but present 
in low numbers, possibly high 
levels of parasitism 
 

Unknown 

Lepidoptera: Pyralidae      
Salbia haemorrhoidalis (Guenée) Florida and Cuba via 

Hawaii 
1962 Flower and fruit feeder 

 
Widely established in low 
numbers 

Unknown 

Lepidoptera: Tortricidae      
Epinotia lantana* (Busck) Hawaii 1984 Flower-peduncle and 

shoot-tip borer 
Widely established Unknown 

* Insect species already present in South Africa prior to deliberate introduction. 
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1.2.2.1 Effect of climate 

Lantana camara varieties occur over a broad range of climatic regions in South Africa, 

ranging from the winter rainfall regions of the Western Cape, to the subtropical and 

tropical southern and eastern regions of KwaZulu-Natal and Mpumalanga, and to the dry, 

frosty winter highveld regions of Limpopo, Gauteng and North West provinces (Fig. 1.1) 

(Henderson 2001). The most severe infestations of L. camara are found in the subtropical 

and tropical areas, but the plant is able to cope very well in areas with cold winters and/or 

low rainfall by abscising its leaves. Most of the biological control agents originated in 

tropical to subtropical regions and establishment of these species in cold inland regions 

was not very successful. The periods of leaflessness have a substantial impact on the 

biocontrol agents’ population numbers, especially leaf-feeders, when no food is available 

during this time. This is firstly due to an inability to cope with harsh winter temperatures, 

and secondly, these insect species, being of tropical origin appear to have no 

mechanisms, such as pupal or adult diapause, to overwinter without food. It seems that 

harsh winter conditions reduce populations either to extinction or to levels so low that 

they are unable to build up rapidly enough in spring and summer to have any real effect 

on the plant. Most agents established in South Africa are found in discrete areas, with 

climate considered as the principal contributing factor to their distribution, as many areas 

contain more than one L. camara variety, and varietal preference is therefore less likely 

to  be the limiting factor (Day and Neser 2000). 

 

There is some evidence that cold adapted ‘strains’ of these agents might have evolved in 

their native ranges. Several ‘strains’ of an insect species might evolve in its native 

country, each strain adapted to a specific set of environmental and physiological 

conditions. In Australia, Calycomyza lantanae (Frick) (Agromyzidae) was initially 

presumed to have established in Northern Queensland only, and it was suggested that the 

fly was unable to survive through the subtropical winters elsewhere (Willson 1979, 

Waterhouse and Norris 1987). However, in 1981, C. lantanae was found to be 

established in New South Wales and Taylor (1989) suggested that a climatically adapted 

strain may have arisen. Climatic maladaptation may also explain the delayed 
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establishment of C. lantanae in the inland areas of South Africa (Cilliers and Neser 

1991). 

 

1.2.2.2 Effect of original host species and varietal differences in Lantana camara 

Lantana camara is the result of hybridization between several lantana species, forming a 

complex of hybridizing varieties in the field. None of the Lantana species in the center of 

origin resembles any of the lantana varieties occurring in South Africa. This means that 

the varieties that introduced insect biocontrol agents encounter in the field, could be 

genetically far removed from the naturally occurring Lantana species. Therefore 

incompatibility or partial incompatibility is to be expected (Baars and Neser 1999). Scott 

(1998) (in Day and Neser 2000) suggested that varieties of L. camara in different 

countries may have originated from different Lantana species, as DNA studies have 

shown that varieties found in Hawaii, for example, are different from those found in 

Australia. These differences in varieties between countries may partly explain why some 

agents have established in some countries but not in others (Day and Neser 2000). For 

many years entomologists have surveyed, sampled and collected potential agents from a 

number of lantana entities (including Lantana urticifolia Miller, Lantana tiliifolia 

Chamisso, Lantana hirsuta Mart.and Gal. and Lantana fucata Lindley) in Mexico, the 

Caribbean and Brazil (Day and Neser 2000). Through DNA studies, Scott (1998) 

indicated that L. camara varieties in Australia have the closest affinity to L. urticifolia 

and L. tiliifolia. Day and Neser (2000) state that agents collected from host species 

closely related to the relevant L. camara varieties are more successful in establishing and 

that future research should give priority to collecting potential agents from the closest 

related species. At this stage it is still unknown as to which Lantana species the South 

African varieties are the most closely related, and further research is still needed in this 

regard.  

 

It has been reported that different lantana varieties have influenced the performance of 

several insect biocontrol agents and that preferences for certain varieties of lantana are 

displayed (e.g. Teleonemia scrupulosa and Calycomyza lantanae) (Radunz 1971; Harley 

and Kassulke 1974; Harley et al. 1979; Cilliers 1987; Cilliers and Neser 1991). To 
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overcome this problem a suite of insect natural enemy species, adapted to all the varieties 

will be needed to control L. camara (Cilliers and Neser 1991; Baars and Neser 1999). 

Insect agents currently established on lantana in South Africa do not exert sufficient 

control on all varieties and additional natural enemies are thus required.  

 

1.2.2.3 Effect of parasitism 

Parasitism appears to significantly reduce the effectiveness of several natural enemies. 

Oosthuizen (1964) reported that in Hawaii, numbers of the agromyzid seedfly Ophiomyia 

lantanae (Froggatt) were kept in check by two hymenopterous parasitoids. In South 

Africa, Cilliers (1987) found a number of parasitoid species belonging to four families, 

emerging from samples of O. lantanae infested fruits. Although the influence of these 

parasitoids was not quantified, they seemed likely to have had a considerable effect on O. 

lantanae populations. The leaf-mining agromyzid fly, C. lantanae is widely established 

in the subtropical and temperate regions of South Africa, but observations indicate that 

the insect’s impact is reduced by extensive larval parasitism (Baars and Neser 1999). 

Cremastobombycia lantanella (Busck), a leaf-mining gracillariid, is also widely 

established in South Africa, but populations never reached outbreak populations as it 

suffers extensive parasitism (Baars and Neser 1999). Numbers of the noctuid moth, 

Hypena laceratalis (Walker), thought to be native to southern Africa, are kept in check in 

South Africa by pathogens and several parasitoid species that attack the larvae 

(Oosthuizen 1964). In contrast, this insect is a very successful biological control agent in 

Hawaii (Julien and Griffiths 1998), which is probably due to the absence of African 

natural enemies (Cilliers and Neser 1991). Extensive parasitism by native generalist 

parasitoids might be the reason why Eutreta xanthochaeta (Aldrich), a stem-galling fly, 

failed to establish in South Africa (Baars and Neser 1999), as high rates of parasitism 

have also been reported in other countries where it has become established (Daun and 

Messing 1996). 

  

1.2.2.4 Other factors 

Cilliers and Neser (1991) proposed several additional reasons, although unsubstantiated, 

for establishment failures. These are i) herbicidal or mechanical destruction of sites 
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before the newly released agents had a chance to become established and to disperse (e.g. 

Octotoma championi Baly, Uroplata lantanae Buzzi and Winder, Neogalea esula 

(Druce)); ii) numbers released were below a minimum threshold for populations to 

survive (e.g. U. lantanae, E. xanthochaeta, Telenemia elata Drake, Lantanophaga 

pusillidactyla (Walker)); iii) predation, especially of eggs by ants (e.g. Alagoasa parana 

Samuelson); and iv) unsuitable microhabitats (e.g. A. parana). 

 

1.3 Discussion 

Despite these several constraints, the biological control programme against L. camara has 

resulted in some reduction in the severity of the weed. Van Wilgen et al (2002) calculated 

the potential condensed area that is suitable for invasion by L. camara in South Africa, to 

be 44 663 km2. Without biocontrol, 100% of this area will become invaded by the year 

2095.  Currently, lantana has already invaded 18 414 km2

 

 (41.3%) of this potential 

suitable area. Without the biocontrol agents released up until 2000, the invasion of 

lantana would have been 67.3% (van Wilgen et al 2002). Thus, biocontrol has reduced 

potential lantana invasions by 26%. This portrays a better than expected scenario, in that, 

in spite of only 11 of the 20 agents released, and that most of them are found only in 

discrete areas, a 26% reduction in invasion has nevertheless been achieved. 

 

The biological control programme in South Africa was suspended in 1986 (Cilliers and 

Neser 1991) and revived in the early 1990s with renewed resources. Van Wilgen et al 

(2002) estimated the economic cost and benefits of biological control of weeds at a 

national scale in South Africa. It was calculated that the benefits (in terms of stream flow 

gain, land value and biodiversity) and costs (biocontrol research) between the initiation of 

research on the biological control programme against L. camara up to the year 2000 was 

22:1. The benefit of preventing invasion by L. camara in South Africa (in terms of 

economic use of water, biodiversity and preservation of value of land) for the year 2000 

was US$67/ha/yr (van Wilgen et al, 2002). The monetary impact of the released agents is 

therefore much greater than anticipated, and the motivation to preserve the value of land, 

provide compelling reasons to continue with the programme.  
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Leaves are the centre of resource production, and therefore an important target for 

biocontrol (Baars and Neser 1999). Cilliers (1987) reported that the natural enemies 

established in South Africa, notably the three leaf-feeding species, O. scabripennis, U. 

girardi and T. scrupulosa, periodically do defoliate lantana stands, but fail to sustain 

these levels of damage. This niche is therefore in need of additional herbivore pressure 

and new leaf feeders, that might make use of this resource more successfully, should be 

considered. However, the leafless period that  L. camara undergoes during winter is a 

major obstacle for leaf-feeding insects. Species that are able to overcome this period by 

either going into winter diapause or by seeking shelter and being able to withstand food-

shortages, and then being able to rapidly build up population numbers during the growing 

season, would make use of this niche more successfully. Several insect species are 

currently being studied and screened in quarantine as potential biocontrol agents for L. 

camara, among these are the petiole-boring weevil, Coelocephalapion camarae 

Kissinger; and the leaf-feeding flea-beetle, Alagoasa extrema Jacoby. The adults of both 

of these species are long-lived and able to withstand periods of food-shortages, unlike the 

leaf sap-sucking mirid Falconia intermedia (Distant), where the adults and nymphs need 

to feed continuously on leaves. Falconia intermedia, in spite of spectacular damage and 

very high population numbers in its first summer of release, was only able to over-winter 

in sheltered areas where leaves were available throughout the winter months, while the 

numbers at many of the other release sites have dwindled (Heystek, unpublished report). 

 

1.4  

Aims of study 

This project focused on the pre-release host specificity screening of Alagoasa extrema as 

a biocontrol agent for L. camara in South Africa. Another congeneric flea-beetle, A. 

parana Samuelson, was released in South Africa in 1985, but did not establish. Several 

reasons for this failure have been proposed, including ant predation on the eggs, 

unsuitable microhabitats (see above) (Cilliers and Neser 1991) and insufficient numbers 

released (Cilliers, pers com). Alagoasa parana is an univoltine species that overwinters 

as newly emerged adults and produces offspring the following spring/summer. This 
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overwintering phase was thought to be a good strategy to enable the insect to overcome 

the dry, leafless winter period in the inland areas of South Africa, but in spite of this it 

still failed. Observations on A. extrema in the laboratory indicated that this insect 

produces more than one generation per year, although no marked reduction in egg-laying 

and feeding was observed during winter in the temperature-controlled glass house. 

Photoperiod therefore doesn’t seem to have an influence on oviposition, although in the 

field, low temperatures and leaflessness might cause the adults to seek shelter and reduce 

feeding and egg-laying. Should A. extrema be able to cope with unfavourable winter 

conditions, then it might prove to be a more successful biocontrol agent for L. camara 

than A. parana, as it would be able to rapidly build up population numbers with its 

successive generations during the summer. Alagoasa parana was also released in 

Australia in 1981 and persisted for 2 years until the site was destroyed by fire (Julien and 

Griffiths 1998). In recent times, the flea-beetle has been imported from Brazil and 

released in Australia for a few consecutive years in an attempt to achieve establishment, 

as mass-culturing of the insect proved too problematic. However, this was unsuccessful 

and due to a reduction in budget and a shift of focus towards stem attackers, A. parana 

became a low priority agent and the project was discontinued (M.D. Day, pers. comm.). 

 

The overall aim of this research project was to determine the suitability and potential of 

A. extrema as an additional biocontrol agent against L. camara in South Africa. Chapter 2 

describes the biology of A. extrema, reared on one of the more common varieties of L. 

camara (029 White Pink) (see Table 1.1). However, to justify the cost involved in 

introducing a particular biological control agent, it is important to demonstrate that the 

agent is capable of reducing the biomass and/or altering the pattern of resource allocation 

to lower the reproductive potential and/or the competitiveness of the target weed. The 

potential impact of A. extrema larval feeding on the growth of L. camara, at least under 

quarantine laboratory conditions, was investigated (Chapter 3). In order to avoid the 

problems that have plagued the success of previously released agents in the field, 

preference for, performance on and compatibility with field varieties of L. camara was 

studied under laboratory conditions (Chapter 4). Chapter 5 investigates the host 

specificity of A. extrema under quarantine laboratory condition and assesses the 



 14 
 

 

possibility of releasing the flea-beetle as biocontrol agent against L. camara in South 

Africa. In the final discussion (Chapter 6), conclusions are made on the suitability and 

potential of A. extrema as a biocontrol agent for L. camara in South Africa. 
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CHAPTER 2 

 

BIOLOGY OF ALAGOASA EXTREMA 

 

2.1 Introduction 

The noxious weed Lantana camara is, despite being the subject of biological control 

since the early 1960s, still an invader species of major importance in South Africa.  

Van Wilgen et al. (2002) calculated that L. camara has currently invaded 41.3% of the 

area that is suitable for potential invasion. Even with the impact of the 11 established 

biocontrol insects on L. camara stands, notably the periodic defoliation by the three leaf-

feeding species, O. scabripennis, U. girardi and T. scrupulosa, these levels of damage are 

not maintained (Cilliers 1987) and L. camara stands are still expanding. Extra herbivore 

pressure, in the form of additional biocontrol agents, is needed to limit further spread.  

 

Lantana camara has been the target of biocontrol in 29 countries, with variable success 

(Broughton 2000). Crawley (1986, 1989a, 1989b) rated L. camara as the most successful 

target of weed biocontrol in several countries, but also the most frequent unsuccessful 

target species because of failures in many other locations, with different insect species 

contributing to the success in different countries. This inability to predict success is 

attributed to high genetic variability of L. camara and the weed’s ability to populate 

diverse habitats (Broughton 2000). In her review and evaluation of L. camara biocontrol 

programs, Broughton (2000) found leaf-, flower-, and fruit-feeding insects to be the most 

successful biocontrol agents. But this author also suggested that new defoliating species 

should not be considered, as artificial defoliation experiments by Winder (1980) and 

Broughton (1999), showed that lantana was able to survive continual defoliation for at 

least 1 to 2 consecutive years. Winder and van Emden (1980) found that attack by insects 

reduces plant growth more than an equivalent amount of artificial clipping. Broughton 

(2000) admitted that the effects of plant competition (intra- and interspecific), drought 

and frost on lantana in combination with insect defoliation were unknown. Continuous 

seasonal attack by leaf-feeding insects should eventually weaken lantana’s ability to 

survive and reduce its reproductive output. Baars and Neser (1999) argued that leaves are 
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the centre of resource production, an important niche, and as the established biocontrol 

agents are unable to maintain their levels of attack, additional agents targeting this niche 

should be considered. Additional pressure on this niche might tip the scales in favour of 

biocontrol.  

 

The success of established leaf-feeding biocontrol agents in South Africa has been greatly 

reduced by the leafless period that L. camara undergoes to survive winter. The leaf-

sucking mirid Falconia intermedia (Distant) is a good example. Within its first season of 

release, impressive damage and population build-up were found at several release sites. 

After the following winter, no insects could be found at several of the sites, while 

survival was possible only in areas where leaves were present throughout winter which 

permitted population build-up during the following summer (F. Heystek, unpublished 

data). Leaf-feeding insects, which are able to endure L. camara’s leafless period, would 

be suitable candidates for release.  

 

Currently several leaf-, stem-, and flower attacking insect species are being studied in 

quarantine as potential biocontrol agents for L. camara in South Africa. Among these are 

the polymorphic alticine flea-beetle Alagoasa extrema Jacoby. Several alticine species 

have proved to be valuable biological control agents, e.g. Agasicles hygrophila Selman 

and Vogt for the control of alligator weed (Alternanthera philoxeroides (Mart.) Griseb) in 

the USA (Vogt et al. 1979) and Australia (Julien and Griffiths 1998); Longitarsis 

jacobaeae (Waterhouse) for the control of tansy ragwort (Senecio jacobaea L.) in Canada 

(Harris et al, 1984); and Lysathia n. sp. for the control of parrot’s feather (Myriophyllum 

aquaticum (Vell.) Verdc.) in South Africa (Cilliers 1999). 

 

A literature survey revealed 10 Alagoasa species and their known host plant species 

(Table 2.1). The host ranges of these Alagoasa species include plant species from 4 

families, but are mostly limited to the Verbenaceae and Lamiaceae; none of the plant 

species are economically important species. Begossi and Benson (1988) state that tropical 

American alticines, especially the subtribe Oedionychina (to which the genus Alagoasa 

belongs), feed mainly on a few genera of the families Verbenaceae and Lamiaceae, with 
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some also using Acanthaceae, Bignoniaceae, Boraginaceae, Cruciferae, Onagraceae and 

Solanaceae.  

 

Table 2.1: Published host plant records of Alagoasa spp. 
 
Alagoasa sp. 

 
Host Plant  
Family 

 
Host Plant 

 
Locality 

A. parana 
 
 

Verbenaceae Lantana tiliaefolia¹ 
L. glutinosa¹ 
L. camara¹ 
 

SE Brazil 
SE Brazil 
SE Brazil 
 
 

A. bicolor Verbenaceae Aegiphila matinicensis² 
Clerodendrum aculeatum³ 

SE Brazil 
SE Brazil 
 
 

A. apicata Verbenaceae Aegiphila sellowiana SE Brazil 4 

 
 

A. areata Verbenaceae Duranta plumieri SE Brazil 4 
 
 

A. decemguttata Bignoniaceae 
 
Cruciferae 
 
Verbenaceae 

Tabebuia caraiba
T. impetiginosa

4 

Gochnatia barrossii
4 

G. polimorpha
4 

Callicarpa reveesii
4 

Lantana camara
4 

L. lilacina
4 

 
4 

SE Brazil 
SE Brazil 
SE Brazil 
SE Brazil 
SE Brazil 
SE Brazil 
SE Brazil 
 

A. florigera Verbenaceae Aegiphila lhotzkiana SE Brazil 4 
 
 

A. cf. pantina Acanthaceae Justicia aff. Klenii
Thunbergia alata

4 

Lantana lilacina
4 

 
4 

SE Brazil 
SE Brazil 
SE Brazil 
 
 

A. scissa Acanthaceae Justicia aff. klenii SE Brazil 4 
 

A. sexplagiata Verbenaceae Lantana camara Brazil 4 
 

A. trifasciata Verbenaceae Lantana camara
Stachytarpheta cayenensis

4 Brazil 
4 

¹ Recorded by Winder, Sands and Kassulke (1988) 
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² Recorded by Virkki (1982) 
³ Recorded by Virkki (1980) 
4

 
 Recorded by Begossi and Benson (1988) 
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During a survey and collection trip for natural enemies of L. camara in the tropical and 

subtropical parts of Mexico, notably the provinces of Yucatan, Tabasco and Veracruz, 

adults and larvae of A. extrema were observed feeding on leaves of plants of an orange-

flowering Lantana species. A number of adults and larvae were collected and brought 

back to South Africa for screening as a potential biological control agent for L. camara. 

 

A thorough knowledge and understanding of the biology of a potential biological control 

agent is essential. Under controlled quarantine glasshouse conditions, behaviour and 

performance of the insect on its natural host plant (the target species) are studied to 

enable comparisons with that on test plant species (non-target species). Knowledge of the 

biological characteristics also gives an indication of the potential of the insect species as a 

biological control agent, e.g. rate of increase, fecundity, longevity, mobility, generations 

per year and feeding rate.  

 

In this chapter studies on the biology of A. extrema are discussed. 

 

2.2 Materials and Methods 

Collection of the beetle was achieved by hand collecting all adults and larvae on a lantana 

plant with minimum disturbance of the vegetation as the adults jump readily. Hidden 

larvae and adults were then collected by means of a beating tray.  

 

A culture of A. extrema was established on potted plants in the quarantine glasshouse at 

the Rietondale Experimental Farm (ARC-PPRI) in Pretoria, South Africa. The captured 

adults were released onto caged potted plants, and the larvae reared to adulthood in petri-

dishes on cut leaves of South African naturalized L. camara plants. Voucher specimens 

were lodged at the National Collection of Insects (Biosystematics Division, ARC-PPRI, 

Pretoria). Sample specimens were sent to Dr C. N. Duckett (University of Puerto Rico) 

for identification.  

 

All biological studies were conducted in a quarantine laboratory with temperatures 

varying between 21ºC (night) to 30ºC (day) and relative humidity varying between 35% 
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and 65%. Natural daylight was supplemented with growth lights, resulting in a 

photoperiod of approximately 14 hours. All observations were made on potted plants of, 

and where mentioned, cut leaves of the L. camara variety 029 White Pink (see Chapter 1, 

Table 1.1).  

 

Source plants of the various L. camara varieties and plant species for host specificity 

testing were collected from homogenous stands of varieties or plants in the field or 

bought from nurseries, and planted in a ‘weed garden’ on the grounds of PPRI. Cuttings 

of plants to be used in culturing and host specificity testing were made from these source 

plants and allowed to root in a medium of coarse river sand. The rooted cuttings were 

transplanted into pots with a standard soil mixture of equal parts of coarse river sand, 

loam and compost. Plants were held in a nursery under 50% shade net, with overhead 

irrigation, and pruned and fertilized as needed. 

 

Aspects of the biology of A. extrema that were studied included: the biology and duration 

of the immature stages (egg stage, the larval instars and pupal stage), and the adult stage, 

which included the pre-oviposition period and female fertility. Studies on the immature 

and mature stages were undertaken by keeping egg clusters in small airtight containers on 

moist tissue paper and allowing them to hatch. Time to hatching was recorded as half 

way between the two observation periods per day. The emerging larvae were then 

separated into petri-dishes containing moist tissue paper and L. camara leaves. Leaves 

were replaced every second to third day until the larvae were ready to pupate. The 

number and duration of the larval stages were recorded by counting the number of 

moults. The petri-dishes were then filled with moist soil and the larvae allowed to pupate. 

The duration of the pupal stage (from the time that larvae burrowed into the soil to adult 

eclosion) was recorded. The newly-eclosed adults were separated into mating pairs and 

each pair was kept on a caged, potted plant until oviposition occurred. The pre-

oviposition period was recorded. Twenty-eight newly emerged females were divided into 

5 groups and kept on caged potted plants. The adults were transferred to new plants every 

5 to 7 days and the number of eggs laid by the females counted. This process was 
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repeated 6 times and the average number of eggs laid per female per day was calculated 

from these data.   

 

2.3 Results 

2.3.1 Collection localities and identification 

Alagoasa extrema was widespread and present at 31 sites visited in the provinces of 

Yucatan, Tabasco and Veracruz, although not very abundant per site (Fig. 2.1). On 

average between 1 and 7 larvae, and 1 to 2 adults were found per site, and in total about 

97 larvae and 20 adults were collected. Typical “shot-hole” flea-beetle damage was 

observed at almost all of the sites.  

 

The colour morphs of the flea beetle were found striped, spotted and black. Initially, two 

species of the genus Alagoasa Bechyné were identified. Striped specimens were similar 

to specimens of A. quadrilineata (Harold), while spotted specimens were comparative to 

specimens of A. extrema Jacoby. It was eventually realized that the two ‘species’ were 

actually polymorphic forms of a single species, and the earliest given name was used. 

Hence, the species was identified as A. extrema (C.N. Duckett, pers. comm.). 
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Figure 2.1: Localities where Alagoasa extrema was collected in Mexico in 1998. 
(Yellow squares indicate collection sites.) 
 

2.3.2 Life stages 

Egg. Females laid their eggs in groups (batches) of 17 to 22 eggs (Mean ± SE = 20.8 ± 

0.4; n=12 females) in moist areas amongst the leaf litter (Fig. 2.2). The eggs were orange 

in colour when laid, becoming darker as they develop and were conically shaped and laid 

in an upright position. The incubation period ranged between 9 to 10 days (Mean ± SE = 

9.5  ± 0.1; n=38 egg batches) (Table 2.2). 

 

Larval instars. There were three larval instars. On emergence the larvae were orange in 

colour, but as they started feeding they became a darker orange-brown. All instars had 

lateral protrusions on both sides of each abdominal segment (Fig. 2.3). The newly 

emerged larvae move up the host plant along the stem and any leaves touching the soil 

surface, to feed on the leaves and occasionally the flowers. At high densities, feeding by 

the larvae skeletonized the leaves. In the glasshouse, abscission of badly damaged leaves 

was observed. Larvae usually moulted in the leaf litter. The duration of the first instar 
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was 4 to 6 days (Mean ± SE = 5.2 ± 0.1; n=34), with the second instar 4 to 9 days (Mean 

± SE = 5.0 ± 0.2; n=41) and the third instar 3 to 6 days (Mean ± SE = 4.6 ± 0.1; n=43) 

(Table 2.2). 

 

Pupa. When the larvae were ready to pupate, the late third instars moved down to the soil 

surface, burrowed into the soil to a depth of about 2 to 3cm and constructed a pupation 

chamber out of soil particles and saliva. The pupae of A. extrema were bright yellow in 

colour, but as they grew older, the hind-legs and eyes became darker. The pupal stage 

(taken from the time the larva burrowed into the soil to adult emergence) lasted 18 to 25 

days (Mean ± SE = 21.1 ± 0.2; n=61) (Table 2.2). 

 

Adult. On eclosion the adults remained in the pupal cell for about a day until their elytra 

hardened. Adults usually emerged in the early afternoon and started feeding on the leaves 

of their host plant by chewing holes of 3-6mm in diameter, but occasionally larger. 

Adults were also found at times to feed on the flowers. Females were generally larger in 

size with body length varying between 60 to 68.5mm (Mean ± SE = 63.8 ± 0.0; n=31) 

and antennae length between 28.5 to 39mm (Mean ± SE = 33.6 ± 0.0; n=31). The body 

length of males varied between 49 to 59mm (Mean ± SE = 55.1 ± 0.0; n=17) and 

antennae length between 29 to 35mm (Mean ± SE = 31.8 ± 0.0; n=17). After a pre-

oviposition period of 11 to 26 days (Mean ± SE = 15.8 ± 0.8; n=21), during which 

copulation occurred, females started to oviposit. A female lay on average 7 eggs per day 

(n=28 females). Adult lifespan was observed to be longer than 10 months. 

 

 As adults, A. extrema exhibits three distinctive colour morphs (Fig. 2.4): a striped morph 

that is yellow with 2 black longitudinal stripes on each elytra; a black morph that is black 

with a pair of yellowish spots on the posterior tip of the elytra; and a spotted morph that 

is black with one pair of large and three smaller pairs of yellowish spots on the elytra. 

The pronotum and abdomen of all of the morphs are red. An egg packet laid by a single 

female can give rise to all three colour morphs. 
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Table 2.2: Comparison of the duration of the life stages of Alagoasa parana and 
Alagoasa extrema on Lantana camara. 
Life stage Alagoasa parana  

(in Australia under 
quarantine insectary 
conditions)* 

Alagoasa extrema  
(in South Africa under quarantine 
laboratory conditions) 
(Mean ± SE) 

Pre-oviposition 7 months (overwinter) 11-26 days  (15.76 ± 0.84; n=21) 
 

Egg 21-25 days 9-10 days    (9.53 ± 0.08; n=38) 
 

Larva:  1st instar 
2nd instar 
3rd instar 

5-7 days 
5-8 days             (x=16) 
4-6 days 

4-6 days      (5.18 ± 0.11; n=34) 
4-9 days      (5.02 ± 0.16; n=41) 
3-6 days      (4.61 ± 0.11; n=43) 
 

Prepupa + Pupa 21-24 days 18-25 days  (21.1 ± 0.20; n=61) 
 

Total: egg to adult 61-70 days 42-46 days  (44.4 ± 0.24; n=29) 
 

Adult lifespan ca 10 months ca 10 months 
* Studies conducted in Brisbane, at 25.0 ± 0.5 ºC. 
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Fig. 2.3: The three larval instars of 
Alagoasa extrema    

Fig. 2.2: Alagoasa extrema eggs laid in 
clusters at the base of the host plant stem as 
indicated by the arrows 

Fig. 2.4: The three colour morphs displayed by the adults of Alagoasa extrema 



 26 
 

 

 

2.4 Discussion 

The biological characteristics of A. extrema indicate that it has potential as a biological 

control agent. The adults are long-lived; several overlapping generations are produced 

annually and both the adults and larvae have high feeding rates. Alagoasa extrema was 

found at several sites in the humid subtropical to tropical regions of Mexico, indicating a 

relatively wide distribution, although limited to higher rainfall areas.  

Winder et al. (1988) suggested that A. parana showed a preference for moist conditions 

in Brazil, and that it would most likely be suited to the coastal rain forest fringes of 

Australia. Alagoasa extrema, having the same basic biological needs as A. parana, in that 

moist micro-climates are necessary for the survival and hatching of the eggs, would 

probably also be more suited to the subtropical and tropical areas of South Africa. Field 

studies done by Winder et al. (1988) over 2 years on the abundance of A. parana on 

lantana in Brazil, indicated that population levels reached a peak of 8 adults per 100 

branches and 27 larvae per 100 branches during the growing season. Mean defoliation 

levels varied between 7 and 26%, while defoliation of up to 47% caused by larvae was 

observed on individual plants. Compared to A. parana, A. extrema with its shorter 

lifecycle (Table 2.2) and overlapping generations, might be able to build up to larger 

populations and have a potentially a better chance of establishing and supplementing the 

herbivore stress on the target weed. Although A. extrema would probably be limited to 

the subtropical regions of South Africa, these are also the more heavily lantana-infested 

areas.  

 

Parasitism and predation have been linked to the failure of some of the agents released on 

lantana in South Africa (Chapter 1). The larvae and adults of A. extrema regurgitate 

enteric fluids, which are probably distasteful, and the adults display bright contrasting 

colour patterns that could also signify unpalatibility. These characteristics might provide 

some protection and increase the chances of establishment and population build-up. 

According to C. Duckett, University of Puerto Rico (pers. comm.) parasitism by tachinids 

on the genus Alagoasa is fairly common, and also predation by pentatomid adults, 

although the later is quite rare. No parasitoids were reared from the material collected in 
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Mexico. These observations suggest that lower rates of parasitism and predation might be 

found on A. extrema, once this insect is released into the field. 

 

Begossi and Benson (1988) reasoned that the very similar colour patterns displayed by 

many of the Oedionychina flea beetles, including several Alagoasa species, suggested 

mimicry. The three very conspicuous, constant colour morphs of A. extrema might either 

be the unpalatable models in a Batesian mimicry situation or be part of a Müllerian 

mimicry circle. Begossi and Benson (1988) tested the palatability of Oedionychina 

species to chickens and the rejection rates observed during of tests suggested that if 

mimicry was involved, then it was of the Müllerian type. However, Begossi and Benson 

(1988) also stated that the contrasting and bold colour displays, the slow flight patterns 

which ensure recognition of colour-patterns, and the tendency to aggregate, could also 

suggest aposematism. If aposematic colouration and mimicry protect Oedionychina flea 

beetles from predators, it is not clear why all these beetle species have not converged to 

the same colour pattern (Begossi and Benson 1988), and especially why A. extrema 

invests in three very different colour forms. Information on the distribution, genetics and 

physiology, the mimetic species present in the distribution range of A. extrema, and the 

selection pressures to which the insect are exposed, is lacking. Therefore, few firm 

conclusions can be drawn concerning the biological significance of its colour morphs. 

 

2.5 Conclusion 

The above results and observations suggest that A. extrema would, once released, 

establish in subtropical areas where lantana infestations thrive. One of the most important 

characteristics of A. extrema is that the adults are long-lived, which might enable the 

insect to endure the leafless period of its host during winter. Its relatively short lifecycle, 

several generations produced per year and defense mechanisms could enable the insect to 

reach high population levels and contribute to the defoliation of lantana stands and 

possibly a further reduction in the competitiveness of the weed. In the next chapter the 

impact of larval feeding on the host plant was studied and is discussed. 
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CHAPTER 3 

 

THE IMPACT OF ALAGOASA EXTREMA ON A SELECTED SOUTH AFRICAN 

LANTANA CAMARA VARIETY UNDER LABORATORY CONDITIONS 

 

3.1 Introduction 

A fundamental theory of plant-herbivore interactions is that herbivores impact on their 

host plants by reducing plant fitness (Strong et al. 1984, Crawley 1989c, Wise and Sacchi 

1996). Debate concerning the impact of insect attack on natural populations of their host 

plants persists with some reports on injurious effects on host plants (Dirzo 1984, Crawley 

1989c, Wise and Sacchi 1996, Briese 1996), while other argue that herbivory may 

increase the fitness of host plants by stimulating compensatory growth (Inouye 1982, 

McNaugton 1983, 1986, Maschinski and Whitham 1989). Briese (1996) found that the 

stem-boring weevil Lixus cardui Olivier reduced both the plant growth and reproductive 

capacity of Onopordum thistles (Asteraceae: Cardueae). Wise and Sacchi (1996) found 

that herbivory by the horse nettle beetle, Leptinotarsa juncta (Chrysomelidae: 

Chrysomelinae), and the eggplant flea beetle, Epitrix fuscula (Chrysomelidae: Alticinae), 

caused a decrease in sexual reproduction and a reduction in root biomass of Solanum 

carolinense L. On the other hand, Solomon (1983) found that S. carolinense plants were 

able to compensate for initial energy losses due to attack by the fruit-reducing moth 

Frumenta nundinella Zeller (Gelechiidae) and to become as productive as uninfested 

plants.  

 

Artificial defoliation experiments by Winder (1980) and Broughton (1999) demonstrated 

that when 100% of L. camara leaves were removed every month over a 1- to 2-year 

period, the plant recovered. However, insect feeding is more damaging than artificial 

removal of leaves, but these experiments suggested that lantana is capable of 

compensating for insect defoliation (Winder 1980, Winder and van Emden 1980, 

Broughton 1999, 2000). None of the defoliating insects established on L. camara in 

South Africa, inflict damage throughout the year because of declining populations in 

autumn (T. scrupulosa) and winter (U. girardi and O. scabripennis) (Harley et al. 1979, 
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Cilliers 1982, 1987, Broughton 1999), creating a “lag period” in spring, when lantana 

plants recover from the previous season’s damage (Harley et al. 1979, Cilliers 1982, 

1987, Broughton 1999). Van der Meijden (1989) stated that it is assumed that plants have 

a limited ‘energy budget’ against insect attack, because other functions such as growth, 

maintenance and reproduction cannot be stopped completely to allow for the continuous 

allocation of reserves to compensatory growth. Attack by leaf-feeding biocontrol agents 

must thus eventually reduce the fitness of lantana.   

 

To justify the cost involved in introducing a particular biological control agent, it is 

important to demonstrate that the insect species will have a negative impact on its host 

plant. Laboratory experiments give an indication of the effect a biocontrol agent might 

have on the performance of the host plant, but do not per se demonstrate the effect on the 

plant’s population dynamics (Crawley, 1989c).  

 

In this chapter the potential impact of the leaf-feeding flea-beetle, A. extrema, on the 

growth of one common and highly invasive variety of L. camara is quantified.  

 

3.2 Materials and Methods 

The potential impact of A. extrema larvae on plants of L. camara, variety 029 White 

Pink, was measured. Cuttings were made from the source plant of L. camara variety 029 

White Pink (see chapter 1) and allowed to root in coarse river sand. The rooted cuttings 

were transplanted into vermiculite and allowed to grow for 2 months under glasshouse 

conditions and fertilized twice weekly with a water-soluble fertilizer (Nitrosol®). 

Twenty-five plants of similar architecture were chosen and divided into 5 groups. Group 

1 was used as control plants to determine dry weight of the above- and below-ground 

biomass before the test, while groups 2 to 5 were exposed to larval densities of 0 larvae, 2 

larvae, 5 larvae and 10 larvae respectively.  

  

Newly-emerged larvae were transferred to potted plants, which were caged to prevent 

larvae from escaping. Larvae were allowed to complete their development and as soon as 

all larvae had moved down into the soil to pupate, the plants were cut down. After drying 
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the plant material in an oven, at 70ºC, for at least 24 hours, the following measurements 

were made: above-ground dry weight (leaves, flowers, stems) and below-ground dry 

weight (roots). 

 

Data were analyzed using the statistical program GenStat (2000). The experiment was 

designed as a completely randomized design with 5 treatments and 5 plants per treatment. 

Differences between treatments were tested for in an analysis of variance. The data was 

acceptably normal with homogeneous treatment variances. Treatment means were 

compared using Fishers’ Protected t-test Least Significant Difference (LSD) at the 5% 

level of significance (Snedecor and Cochran, 1980), if the F-probability from the 

ANOVA was significant at 5%. 

 

3.3 Results 

The above-ground dry weight of variety 029 WP was significantly reduced following 

attack by larvae from density levels of 5 and 10 larvae per plant (Fig. 3.1). Feeding by 5 

larvae per plant reduced the above-ground dry weight by 19% and feeding by 10 larvae 

caused a reduction of 28%. Larval feeding reduced these plants’ above-ground dry 

weight to such an extent that the weights did not differ significantly from the above-

ground dry weight of the control plants cut down for measurement prior to the start of the 

test (Fig. 3.1). The above-ground dry weight of plants that were attacked by 2 larvae did 

not differ significantly from plants that were not attacked (Fig. 3.1), although a 16% 

reduction in the weight of above-ground dry material was achieved.  

 

Attack by larvae over this short period had no significant impact on root growth, as there 

were no significant differences between the under-ground dry weights of plants attacked 

at the different levels of larval densities (Fig. 3.1). Since this study involved only a single 

replicate with 5 plants per larval density group, more replicates would have allowed a 

more reliable and sensitive analysis. 
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Fig. 3.1: Impact of different Alagoasa extrema larval densities on the growth of small 
Lantana camara (029 White Pink) plants under laboratory conditions. (Mean dry weights 
followed by the same letter do not differ significantly (p < 0.05; ANOVA). 
 

3.4 Discussion 

The above results show that under certain levels of attack, feeding damage by A. extrema 

larvae can significantly reduce the above-ground biomass of their host plant. Although 

the impact of adult feeding was not studied, it will certainly contribute towards a further 

reduction of biomass. In similar studies conducted by Winder and van Emden (1980) on 

A. parana, this insect significantly reduced plant dry weight and net assimilation rates. 

Field studies done by Winder et al (1988) over 2 years on the abundance of A. parana on 

lantana in Brazil, indicated that population levels reached a peak of 8 adults per 100 

branches and 27 larvae per 100 branches during the growing season. These authors also 

found that mean defoliation levels varied between 7% and 26%, while defoliation of up 

to 47% caused by larvae was observed on individual plants. Winder and Harley (1982) 

also reported on the impact of alticine species, stating that extensive attack by larvae of a 

species of Oedionychis nr. arcifer (Harold) (later identified as Alagoasa parana sp. n. in 
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Samuelson (1985)), of up to 20 larvae per 1000 leaves, contributed towards the reduction 

of flowering and fruiting at Castro in Brazil. Extensive leaf damage by the same species 

(21-29 larvae and adults per 1000 leaves) contributed towards poor flowering and fruiting 

at Guarapuava Forest in the following season. Should A. extrema establish in the field in 

South Africa, these figures give some indications on the population levels the beetle 

could reach, as A. parana generally has the same environmental needs as A. extrema. The 

impact of A. extrema might be even greater as it is a multivoltine species capable of 

producing several overlapping generations during the growing season, while A. parana is 

a univoltine species.  

 

Van der Meijden (1989) suggested that weed species with an effective regrowth capacity 

might not show spectacular population reductions after the successful introduction of 

biocontrol agents. These species will be vulnerable only to attack of the storage organs 

that enable regrowth, or to repeated attack of other plant parts through which reserves are 

exhausted, either by one or more herbivore species. Thus, the multivoltine A. extrema 

could, through attacking the leaves of its host plant, contribute towards depleting the 

reserves of L. camara plants. According to Harris (1971) the loss of mature leaves is 

normally the most damaging to the plant as these leaves represent a direct reduction in 

the photosynthetic capacity of the plant. Thus, attack by A. extrema larvae and adults is 

all the more meaningful, as no preferences based on the age of the leaves were shown and 

feeding on both younger and older leaves were observed. Damage caused by biocontrol 

agents often seem to not cause obvious stress to their host plant; nonetheless, if they are 

capable of reducing the biomass and/or of altering the pattern of resource allocation to 

lower the reproductive potential of the host plant, they could well contribute to a 

reduction in competitiveness of the target weed and influence its population dynamics 

(Briese 1996). 

 

Alagoasa extrema, once established in climatically favourable areas, could well augment 

other established agents in defoliating L. camara infestations, depleting secondary 

reserves and reducing the competitiveness of the weed.  
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CHAPTER 4 

 

THE PREFERENCE OF ALAGOASA EXTREMA FOR DIFFERENT LANTANA 

CAMARA VARIETIES  

 

4.1 Introduction  

One of the main factors contributing to the variable results of the biocontrol programme 

on L. camara in South Africa, has been the varietal complexity of the weed (Baars and 

Neser 1999, Chapter 1). However, there are conflicting reports in the literature about the 

extent to which failures in L. camara biocontrol can be attributed to varietal preferences 

of the established agents. Some authors (e.g. Harley et al 1979; Cilliers 1982; 1987; 

Neser and Cilliers 1989; Crawley 1989a;b) contend that varietal preferences are the main 

cause of failures in the lantana biocontrol programme. Cilliers and Neser (1991) found 

that Hypena strigata (F.), Octotoma scabripennis Guèrin-Mèneville, Calcomyza lantanae 

Frick and Uroplata girardi Pic, all displayed a preference for pink-flowering varieties in 

South Africa. Similarly, Haseler (1966) reported that Neogalea sunia Guenée preferred 

white and pink -flowering L. camara, while Salbia haemorrhoidalis Guenée preferred red 

flowering L. camara in Australia. Harley (1973) also found that Teleonemia scrupulosa 

Stål did not perform as well on common pink-flowering L. camara as on other varieties 

in Australia. However, other authors contend that certain agents are unaffected by the 

different varieties (Broughton 1999, 2000; Day and Neser 2000). Broughton (1999), 

using field studies in southeast Queensland, found that five species of leaf-feeding 

insects, including T. scrupulosa, C. lantanae, U. girardi and O. scabripennis, displayed 

no varietal preferences. Similarly, Day and Neser (2000) found U. girardi, O. 

scabripennis and Ophiomyia lantanae Froggatt to be present on all of the five major 

groups of L. camara varieties in Australia, but contrary to Broughton (1999), found that 

T. scrupulosa and Aconophora compressa Walker did display varietal preferences. In 

other studies, laboratory trials indicated clear varietal preferences in Ectaga garcia 

Becker, Charidotis pygmaea Klug, Alagoasa parana Samuelson, Falconia intermedia 

(Distant) and the fungus Mycovellosiella lantanae (Chupp) Deighton var. lantanae, with 

populations dying out on certain less preferred varieties (Morris et al. 1999, Urban and 
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Simelane 1999, Day and Neser 2000). These inconsistent reports of varietal preferences 

thus emphasize the need for additional quantitative laboratory and field studies to clarify 

the importance of this phenomenon in the biocontrol programme against L. camara. 

 

Varietal preference could play an important role in the host specificity testing of agents 

for L. camara, as it is necessary to identify which variety will support the best 

performance of the insect, so as to allow host suitability comparisons with non-target 

species. To determine the variety that supports optimal performance and to avoid 

problems with host plant incompatibility as far as possible, it is necessary to test whether 

a potential agent shows any preferences for, and/or performs better on any of the most 

common L. camara varieties.  

 

In this chapter I determine the adult preference and reproductive performance of A. 

extrema on a number of South African L. camara varieties.  

 

4.2 Materials and Methods 

Varietal preference of A. extrema was determined by adult choice trials, larval no-choice 

trials and multi-generation no-choice trials using five different L. camara varieties (Table 

4.1). The varieties selected are regarded as of the most important and widespread in 

South Africa (C.J. Cilliers and J-R. Baars, pers. comm., Chapter 1), and are represented 

in major L. camara infestations in KwaZulu-Natal and Mpumalanga provinces.  
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Table 4.1: Lantana camara varieties used during preference and performance studies of 
Alagoasa extrema. 
Lantana 
camara 
variety 

Distinguishing 
morphological 
characteristics 

Mature 
flower colour 
description 

Collection Site 

Grid 
reference 

Location 

163 LP* Shoot tips hairy and spiny; 
leaves very hairy; main 
stem with few spines 
 

Light Pink 30º 09’ 08.4”S 
30º 49’ 39.7”E 

nr. Scotsburgh, 
KwaZulu-Natal 

150 O Scrambling shrub, shoot 
tips hairy, spiny and 
reddish in colour; leaves 
small and hairy 
 

Orange 29º 38’ 45.9”S 
31º 07’ 39.5”E 

nr. La Merci, 
KwaZulu-Natal 

015 WY Shoot tip spiny; large 
broad dark hairy leaves; 
main stem spiny 
 

White 
(Yellow 
throat) 

25º 02’ 21.6”S 
31º 02’ 19.8”E 

nr. Sabie, 
Mpumalanga 

010 DP Shoot tip spiny; leaves 
small, dark and hairy; 
main stem very spiny 
 

Dark Pink 25º 37’ 08.3”S 
30º 31’ 12.1”E 

nr. Waterval-
Boven, 
Mpumalanga 

029 WP Shoot tip spiny; large 
broad dark hairy leaves, 
main stem spiny 

White Pink 25º 08’ 10.6”S 
31º 00’ 09.0”E 

nr. Hazyview, 
Mpumalanga 

*Varieties are named according to their collection GPS waypoint number and mature 
flower colour abbreviation. 
 

The larval and multi-generation no-choice trials were conducted in a quarantine 

laboratory with temperatures varying between 21ºC (night) and 29ºC (day) and the 

relative humidity varying between 35% and 65%. Overhead plant growth lights 

supplemented natural daylight resulting in a 14h photoperiod. Adult choice trials were 

conducted in a quarantine tunnel with temperatures varying between 13ºC (night) and 

30ºC (day) and the relative humidity varying between 35% and 65%. 

 

4.2.1 Adult choice trial 

The adult choice trial was conducted in a large walk-in cage (4m x 4m x 2m) in a 

ventilated quarantine tunnel. Older plants (up to 1m tall), grown in 10l pots, were used 

during the trials. Following a latin square design, six of each of the five L. camara 

varieties and the related Lippia wilmsii (Verbenaceae) were randomly arranged in the 
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cage without their foliage touching. Lippia wilmsii was included in the test to act as a 

control and ensure that a choice is made between the L. camara varieties and the L. 

wilmsii plants, should there be no definite indications of preference for specific L. 

camara varieties. In total, 180 gravid females and 30 males (calculated as 6 females and 

1 male per L. camara plant) were released in the cage. Adults used in the trial were, prior 

to testing, allowed to feed on a variety of L. camara which was different to the five 

varieties tested, because some insects have been shown to be influenced by prior 

experience (Traynier 1979). The adults were removed after a week and the number of egg 

packets in the soil of each potted plant was recorded. Data were analyzed using the 

statistical program GenStat (2000). Differences between varieties were tested for in an 

analysis of variance. The data were acceptably normal and the treatment variances 

homogeneous. Variety means were separated using Fisher’s Protected t-test with the 

Least Significant Difference (LSD) at the 5 % level (Snedecor and Cochran, 1980), and 

the F-probability from the ANOVA was taken as significant at 5 %. 

 

4.2.2 Larval no-choice trials 

Ten newly-emerged unfed larvae were placed onto the foliage of potted plants of the five 

L. camara varieties. To prevent larvae from escaping, ventilated cages made from 2l 

honey jars, were fitted over the plants with the mouths of the jars pushed about 1cm into 

the soil of the pots. Larvae that fell off could thus easily climb back onto the host plant. 

The number of larvae surviving was recorded. A minimum of 5 replicates were 

conducted for each variety. Data were analyzed using the statistical program GenStat 

(2000). A completely randomized design was used for the experiment. Differences 

between varieties were tested for by means of a One-way ANOVA. The data were 

acceptably normal and the treatment variances homogeneous. Variety means were 

separated using Fisher’s Protected t-test with the Least Significant Difference (LSD) at 

the 5 % level (Snedecor and Cochran, 1980), and the F-probability from the ANOVA was 

taken as significant at 5 %. 
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4.2.3 Multi-generation trials 

These trials determined a) whether the different L. camara varieties could support 

consecutive larval development to the third generation with comparable larval survival 

rates; and b) whether comparable ovarian development was supported by these varieties. 

The multi-generation trials were conducted by culturing each replicate of the original 

larval no-choice trial through to the third generation (where viable offspring were 

available). The newly-eclosed adults (F), obtained from the larval no-choice trials, were 

transferred to fresh plants of the same variety and allowed to feed and oviposit. The 

number of eggs laid per female during the first 45 days after eclosion was recorded. 

Where viable eggs were produced, 10 newly-emerged larvae were placed onto the foliage 

of fresh plants of the same variety. The number of larvae surviving to adulthood and 

developmental time to adult eclosion (F1) were recorded. Once again, the number of eggs 

laid per female during the first 45 days after eclosion was recorded. The same process 

was followed for the third generation (F2). Data were analyzed using the statistical 

program GenStat (2000). The experiment was designed as a completely randomized 

design with two factors, namely, the L. camara varieties and the 3 generations. 

Differences between varieties and generations and variety-by-generations interaction 

were tested for by means of an analysis of variance. The data were acceptably normal and 

the treatment variances homogeneous. Variety means were separated using Fisher’s 

Protected t-test with the Least Significant Difference (LSD) at the 5 % level (Snedecor 

and Cochran, 1980), and the F-probability from the ANOVA was taken as significant at 5 

%. 

 

4.2.4 Host plant suitability analysis 

The suitability of the 5 different L. camara varieties as host plants for A. extrema was 

compared. A risk analysis method, proposed by Wan and Harris (1997) for quantifying 

the safety of biocontrol agents, was employed. In this instance however, it was used to 

calculate the suitability of each L. camara variety as host plant for A. extrema. This 

method allows the comparison of the suitability of the different varieties in terms of 

numerical scores or percentages.  
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The calculation was done by measuring the insect’s performance on each variety, at 

different stages in the host plant selection process, as a proportion of that of the most 

suitable variety. The performance criteria used were i) plant preference, ii) oviposition 

preference, iii) oviposition potential and iv) larval survival. Plant preference and 

oviposition preference were determined by the mean number of adults present on the 

plants of the different varieties, and the mean number of egg packets laid in the soil 

around the plants of the different varieties during the adult choice trials (Table 4.2). 

Oviposition potential was determined as the mean number of eggs laid per female during 

the first 45 days after eclosion, when reared on the different L. camara varieties during 

the adult multi-generation no-choice trials (Table 4.5). Larval survival was the mean 

number of larvae surviving to adulthood during the larval no-choice trials (Table 4.3). 

The product of the scores calculated for the above performance criteria assessed the 

potential of the 5 different L. camara varieties to support viable reproductive populations 

of A. extrema. For each criterion, R represents the insect’s performance on the L. camara 

test variety relative to that on the most suitable variety (Table 4.6).  

 

4.3 Results 

4.3.1 Adult choice trial 

Adults and egg packets were found on all the L. camara varieties and on L. wilmsii 

(Table 4.2). There were no significant differences between the mean numbers of adults 

found on L. camara varieties 029 WP, 163 LP, 015 WY and 010 DP.  However, 

significantly less adults were found on L. camara variety 150 O and L. wilmsii. There 

were no significant differences between the numbers of egg packets found in the soil 

around L. camara varieties 029 WP, 163 LP, 015 WY and 150 O, while significantly less 

eggs were found on L. camara variety 010 DP and L. wilmsii. 
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Table 4.2: Host selection of Alagaoasa extrema, during adult multi-choice trials 
involving a 6x6 latin square design with 5 different Lantana camara varieties and Lippia 
wilmsii. 
Lantana camara 
variety or test 
plant species 

Number of adults 
per plant  

(Mean ± SEM)Y 

Number of egg 
packets per plant  
(Mean ± SEM)Y 

Times (out of 6 
replicates/plants) 

chosen as 
oviposition site 

L. camara  
163 LP 

4.3 ± 0.9ab 4.17 ± 0.9ab 5 

L. camara 
029 WP 

6.3 ± 0.9a 6.17 ± 0.9a 6 

L. camara  
015 WY 

6.0 ± 0.9a 4.17 ± 0.9ab 6 

L. camara  
150 O 

3.2 ± 0.9bc 5.33 ± 0.9a 6 

L. camara  
010 DP 

4.0 ± 0.9ab 1.83 ± 0.9bc 6 

L. wilmsii 
 

0.5 ± 0.9c 0.33 ± 0.9c 2 

F-probability 0.004 
 

0.001  

Y – SEM is the standard error of the mean. Means in the same column followed by the 
same letter are not significantly different (p < 0.05; ANOVA; Fishers’ protected t-
test LSD. 
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4.3.2 Larval no-choice trials  

Larval development was supported by all five L. camara varieties (Table 4.3). Percentage 

survival to adulthood was highest on L. camara 010 DP at 74%, but did not differ 

significantly from the survival recorded on the other L. camara varieties, which ranged 

from 57% to 72% (Table 4.3).  

 

Table 4.3: Percentage survival to adulthood of neonate larvae of Alagoasa extrema on 5 
different Lantana camara varieties during no-choice trials. 

Lantana camara  
Variety 

n Number of larvae 
surviving/ replicate 
(Mean ± SEM)Z* 

Percentage survival 
to adulthood 

L. camara  
163 LP 

6 7.0 ± 1.0a 70 

L. camara  
029 WP 

6 7.2 ± 1.0a 72 

L. camara  
015 WY 

6 5.7 ± 1.0 a 57 

L. camara  
150 O 

5 5.8 ± 1.0 a 58 

L. camara  
010 DP 

5 7.4 ± 1.0 a 74 

F-probability  0.625 
 

 

Z – SEM is the standard error of the mean. Means followed by the same letter are not 
significantly different (p < 0.05; ANOVA; Fishers’ protected t-test LSD). 

* - Out of 10 larvae placed on the plant.  
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4.3.3 Multi-generation trials 

Both the larval survival rate and adult ovipositional performance did not differ 

significantly between the different lantana varieties during the three generations and did 

not increase or decrease significantly over the three generations (Tables 4.4 and 4.5). 

Although larval survival rates and adult ovipositional performances were lowest on L. 

camara 015 WY, this was not statistically significant.  

 

Table 4.4: Survival of Alagoasa extrema larvae when reared on 5 different Lantana 
camara varieties for 3 consecutive generations during multi-generation trials. 
Species n Larval 

survival F  
(Mean ± 
SEM)* 

n Larval 
survival F1  

(Mean ± 
SEM)* 

n Larval 
survival F2  

(Mean ± 
SEM)* 

Varieties 
mean over 3 
generations 

(Mean ± 
SEM)X 

L. camara  
163 LP 

5 7.0 ± 1.1 4 5.8 ± 1.3 4 5.3 ± 1.3  6.1 ± 0.7a 

L. camara 
029 WP 

6 7.2 ± 1.1 5 8.2 ± 1.2  4 4.8 ± 1.3  6.8 ± 0.7a 

L. camara  
015 WY 

6 5.7 ± 1.1  3 3.7 ± 1.5  1 3.0 ± 1.9 4.3 ± 0.8a 

L. camara 
150 O 

5 5.8 ± 1.2  5 7.6 ± 1.2  5 5.6 ± 1.2 6.3 ± 0.7a 

L. camara  
010 DP 

5 7.4 ± 0.5  5 7.0 ± 1.2  5 6.2 ± 1.2  6.9 ± 0.7a 

Generation 
Mean Y 6.655 ± 0.51a 6.612 ± 0.56a 5.068 ± 0.60a  
F-probability:  Varieties: P=0.229 
   Generations: P=0.087 
   Varieties x Generation Interaction: P=0.812 
X – Means in this column followed by the same letter do not differ significantly at the 5% 

level. 
Y – Means in this row followed by the same letter do not differ significantly at the 5% 

level . 
* - SEM is the standard error of the mean. Out of 10 larvae placed on the plant. 
 



 42 
 

 

Table 4.5: Ovipositional performance of Alagoasa extrema females when reared on 5 
different Lantana camara varieties for 3 consecutive generations during multi-generation 
trials.  
Species n No of eggs laid 

per female 
during 1st 45 

days  
F 

(Mean ± SEM) 

n No of eggs laid 
per female 

during 1st 45 
days  
F1 

(Mean ± SEM)  

n No of eggs laid 
per female 

during 1st 45 
days  
F2 

(Mean ± SEM)  

Varieties 
mean over 3 
generations 
(±SEM) X 

L. camara  
163 LP 

5 220.0 ± 34.7 4 102.9 ± 38.8 4 145.0 ± 38.8 161.6 ± 21.6a 

L. camara  
029 WP 

6 234.6 ± 31.7 5 151.4 ± 34.7 3 196.3 ± 44.8 197.1 ± 20.9 a 

L. camara  
015 WY 

5 134.4 ± 34.7 2 197.9 ± 54.9 1 131.9 ± 77.6 154.6 ± 30.8 a 

L. camara  
150 O 

5 227.4 ± 34.7 5 172.4 ± 34.7 5 200.7 ± 34.7 202.2 ± 20.3 a 

L. camara 
 010 DP 

5 159.0 ± 34.7 5 219.0 ± 34.7 4 124.4 ± 38.8 169.5 ± 20.8 a 

Generatio
n MeanY 

200.8 ± 15.5a 167.1 ± 17.0a 163.2 ± 19.8a  
SEM is the standard error of the mean. 
F-probability:  Varieties: P=0.439 
   Generations: P=0.226 
   Varieties x Generation Interaction: P=0.224 
X – Means in this column followed by the same letter do not differ significantly at the 5% 

level. 
Y – Means in this row followed by the same letter do not differ significantly at the 5% 
level.
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4.3.4 Host plant suitability analysis 
Lantana camara variety 029 WP was the most successful host variety for A. extrema 

under laboratory conditions (Table 4.6). Performance and survival on this variety was 

consistent throughout the various trials. Lantana camara variety 163 LP was 42% as 

suitable as a host plant, followed by variety 150 O (34%), variety 015 WY (29%) and 

variety 010 DP being the least suitable at 13%. However, despite these findings, neither 

larval survival (Table 4.3), the viability of larvae reared on the varieties for 3 generations 

(Table 4.4) nor the number of eggs laid by the 3rd generation females, differed 

significantly between the 5 varieties. It was only during the adult multi-choice trials 

(Table 4.2) that significant differences were found between the mean number of adults on 

029 WP and 150 O and between the mean number of egg packets on 029 WP and 010 

DP. The analysis thus overestimates the non-significant differences in performance on the 

different varieties, but since the adults make the choice regarding the suitability of the 

different varieties as oviposition sites, the analysis does provide a practical numerical 

score to differentiate between the varieties. 

 

Table 4.6: A comparison of the suitability of 5 different Lantana camara varieties as 
host plants for Alagoasa extrema 

Variety Plant 
preference 

(R1) 

Oviposition 
Preference 

(R2) 

Oviposition 
Potential 

(R3) 

Larval 
Survival 

(R4) 

Suitability 
Index 

(R1xR2xR3xR4) 
L. camara 
163 LP 

0.684 0.676 0.938 0.976 0.42 

L. camara 
029 WP 

1.000 1.000 1.000 1.000 1.00 

L. camara 
015 WY 

0.948 0.676 0.573 0.791  0.29 

L. camara 
150 O 

0.501 0.864 0.969 0.809 0.34 

L. camara 
010 DP 

0.632 0.297 0.678 1.032 0.13 
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4.4 Discussion 

Alagoasa extrema exhibits a degree of varietal preference under laboratory conditions. 

The host plant suitability analysis calculated 029 WP to be the most suitable host variety, 

although the other four tested varieties were able to support viable populations of A. 

extrema for three consecutive generations in the laboratory. Not taking other factors such 

as climate and predation into consideration, all five of the tested varieties should thus be 

able to support viable populations of A. extrema in the field. The five tested L. camara 

varieties are listed among the 11 most important varieties in South Africa and are 

widespread in Mpumalanga and KwaZulu-Natal provinces, where some of the most 

severe infestations of L. camara are found.  

 

The importance of studies to determine varietal preferences is highlighted by cases such 

as F. intermedia, where varietal preference studies indicated that certain varieties were 

totally unsuitable, resulting in 100% mortality of the mirid (Urban and Simelane 1999, 

Day and Neser 2000). Another species that displayed varietal preferences was A. parana, 

which accepted the red and pink-edged red Australian L. camara varieties and only 

partially accepted the common pink, orange and white Australian L. camara varieties, 

with populations dying out on the less preferred varieties (Day and Neser 2000). Among 

the potential biocontrol agents currently being studied in quarantine, both the petiole-

galling Coelocephalapion camarae Kissinger and the root-attacking Longitarsus sp. 

display no varietal preferences, with good compatibility with South African lantana 

varieties (Baars unpublished, Simelane unpublished).  

 

Although A. extrema displayed some degree of varietal preferences, this phenomenon 

should not impact significantly on the insect’s chances of establishment. If A. extrema is 

found to be sufficiently host specific to promote release, it could have an impact on a 

number of widespread L. camara varieties in areas where additional stress on the weed is 

urgently needed.  
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CHAPTER 5 

 

LABORATORY HOST RANGE OF ALAGOASA EXTREMA, A POTENTIAL 

BIOLOGICAL CONTROL AGENT FOR LANTANA CAMARA IN SOUTH 

AFRICA  

 

5.1 Introduction 

All potential weed biological control agents need to undergo extensive host specificity 

testing to ensure that their release would not result in unacceptable non-target impact 

(van Klinken 2001). Host specificity studies are routinely undertaken to determine which 

plant species are included in a candidate’s fundamental host range under laboratory 

conditions. The absolute limits to an insect’s fundamental host range are determined by 

such factors as its metabolic and sensory capabilities, physical limitations and 

behavioural programming (van Klinken 2001). Host specificity testing can be divided 

into several steps: 1) identifying the fundamental host range of the potential agent; 2) 

identifying the life stage that makes the host choice; and 3) determining whether non-

target species are included within the fundamental host range and thereby predicting 

whether, and to what extent, they will be attacked under field conditions. Host specificity 

testing encompasses choice and no-choice trials where representatives of either the 

immature or the mature stages of the potential agent are exposed to a series of test plant 

species in order to quantify certain parameters, usually mortality but also feeding damage 

and/or oviposition.  

 

The realized host range, i.e. those plant species that are accepted as suitable hosts under 

field conditions, forms a subset of the fundamental host-range (van Klinken 2001). It is 

an accepted phenomenon that laboratory-based host specificity screening can lead to 

artificial host range extension, and over-estimate the range of plants suitable for survival 

under field conditions (Cullen 1990, Shepherd 1990, Hill and Hulley 1995). Under 

natural conditions, an insect follows a normal behavioural sequence based on appropriate 

cues, which lead to the selection of its correct host (Wapshere 1989). Usually, under 

restricted cage conditions, not all of the necessary cues are present, and the insect will 
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display behaviour characteristic of subsequent steps in its behavioural sequence and not 

the expected response. Thus, a species might be included in the fundamental host range 

of the larval stage, but not in that of the discerning ovipositing female, which represents 

an earlier step in the behavioural sequence of the host selection process. Thus, under field 

conditions the female would not recognize that plant species as a host, even though her 

offspring would have been able to develop on that species (Wapshere 1989). 

Consequently, such species should not be rejected as biocontrol agents because of 

unnatural larval feeding. 

 

Recent host specificity tests have indicated that most of the natural enemies currently 

being evaluated as potential biocontrol agents for L. camara in South Africa, accept 

closely related native and introduced plant species to varying degrees under restricted 

cage conditions (Baars and Neser 1999; Baars 2000). Prior to 1990, biocontrol agents 

obtained via Australia were released in South Africa, with virtually no additional host 

specificity testing besides the studies conducted in Australia, as these tests were 

considered to be sufficient for South African requirements (Cilliers and Neser 1999). 

Subsequent studies have indicated that Teleonemia scrupulosa (Stål), a tingid that was 

released under these circumstances and that has been established in South Africa for 

decades, feeds and develops on a wide range of species of Verbenaceae under laboratory 

conditions, but in the field has displayed only limited feeding on some native Lippia 

species (Baars and Neser 1999; Baars 2000). These studies suggest that the extended host 

ranges determined under laboratory conditions are often not realized in the field and that 

closely related species, at most, qualify as marginal hosts under field conditions (Baars 

and Neser 1999).  

 

In this chapter the host range of A. extrema under quarantine laboratory conditions is 

described and its suitability as a biocontrol agent discussed. 

 

5.2 Materials and Methods 

Studies to determine the host range of A. extrema included larval no-choice trials, adult 

choice trials and multi-generation trials. Larval no-choice trials test whether non-target 
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species can support larval development. Adult choice trials test whether non-target 

species are accepted as suitable feeding and oviposition sites. Multi-generation trials test 

whether non-target species can support successive generations of the agent under a no-

choice situation. A plant species that supports successive generations of an agent is 

potentially an alternative host and is therefore at risk if the agent was to be released (Day 

1999).  

 

Larval no-choice trials and the multi-generation trials were conducted in a quarantine 

laboratory with temperatures varying between 21ºC (night) and 29ºC (day) and the 

relative humidity varying between 35% and 65%. Overhead plant growth lights 

supplemented natural daylight resulting in a 14h photoperiod. Adult choice trials were 

conducted in a quarantine tunnel with temperatures varying between 13ºC (night) and 

30ºC (day) and the relative humidity varying between 35% and 65%. 

 

5.2.1 Test plant species 

The test plant species were selected according to Wapshere’s (1974) centrifugal 

phylogenetic testing method. Test plants (Table 5.1) consisted of 33 representative 

species in the families Verbenaceae and Lamiaceae as well as some economically 

important families. Lantana camara variety 029 WP was used as the control plant during 

all trials as it proved to be the most suitable host variety for A. extrema (see Chapter 4). 

Culture and test plants were maintained in pots under drip and overhead irrigation, under 

50% shadenet and were fertilized with LAN (Sasol Fertilizers®) and Super phosphate 

(All-Gro®) as needed. Although there are four native Lippia species described (Arnold 

and De Wet 1993), two additional taxa with different morphological characteristics and 

odours were treated as separate species and referred to as Lippia sp. A and B. Specimens 

of the latter have been lodged at the herbarium of the National Botanical Institute in 

Pretoria, South Africa (collector’s accession numbers 11 and 28). 
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Table 5.1: Test plant species used in the various trials to determine the host specificity of 
Alagoasa extrema. 

Plant species Common Names Trials conducted 
Verbenaceae   
Verbena brasiliensis Vell.*   AC 
Verbena bonariensis L.*  AC 
Lantana angolensis Moldenke  AC 
Lantana camara L.*  Lantana LNC, AC, MGNC 
Lantana dinteri Moldenke  LNC, AC, MGNC 
Lantana mearnsii Moldenke   LNC, AC, MGNC 
Lantana rugosa Thunb.  LNC, AC, MGNC 
Lantana montevidensis (Spreng.) Briq.*# Creeping lantana LNC, AC, MGNC 
Lantana trifolia L.*   LNC, AC, MGNC 
Lippia javanica (Burm.f.) Spreng.  LNC, AC, MGNC 
Lippia rehmanni H. Pearson  LNC, AC, MGNC 
Lippia wilmsii H. Pearson  LNC, AC, MGNC 
Lippia scaberimma Sond.  LNC, AC, MGNC 
Lippia sp. A  LNC, AC, MGNC 
Lippia sp. B  LNC, AC, MGNC 
Phyla nodiflora (L.) Greene   LNC, AC, MGNC 
Aloysia citriodora Palau*# Lemon verbena LNC, AC, MGNC 
Priva meyeri var. meyeri Jaub. & Spach.  LNC, AC, MGNC 
Duranta erecta L.*#  LNC, AC 
Lamiaceae   
Clerodendrum glabrum E. Mey.  LNC 
Karomia speciosa R. Fernandes  LNC, AC 
Lavandula angustifolia Ehrh.*# English lavender LNC 
Nepeta caltaria L.*# Catnip LNC 
Salvia africana-caerulea L.  LNC 
Salvia elegans Vahl.*# Pineapple sage LNC 
Mentha piperita L.*# Peppermint LNC 
Mentha spicata L.*# Spearmint LNC 
Plectranthus sp.  LNC 
Ocimum basilicum L.*# Basil LNC 
Solanaceae   
Solanum melongena L.*# Egg plant LNC 
Umbelliferae   
Daucus carota L.*# Carrot LNC 
Chenopodiaceae   
Beta vulgaris L.*# Beetroot LNC 
Cruciferae   
Brassica oleracea L.*# Cabbage LNC 
* - Plant species introduced to South Africa (Arnold and De Wet 1993) 
# - Plant species of economic and/or ornamental value in South Africa. 
**LNC – Larval no-choice trials, AC – Adult choice trails, MGNC – Multi-generation 
no-choice trials.
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5.2.2 Larval no-choice trials 
Twenty-nine plant species were included in the larval no-choice trials. Ten newly 

emerged and unfed larvae were placed onto the foliage of potted plants of the test plant 

species and L. camara as control and confined in ventilated cages to prevent the larvae 

escaping. The number of larvae surviving to adulthood and the developmental time to 

adult eclosion were recorded. A minimum of three replications were conducted for each 

test plant species. Data were analyzed using the statistical program GenStat (2000). The 

experiment was designed as a completely randomized design with 29 species. Differences 

between species were tested for by means of One-way ANOVA. The data were 

acceptably normal and the treatment variances homogeneous. Species means were 

separated using Fisher’s Protected t-test with the Least Significant Difference (LSD) at 

the 5 % level (Snedecor and Cochran 1980), and the F-probability from the ANOVA was 

taken as significant at 5 %. 

 

5.2.3 Adult choice trial 

The adult choice trial was conducted in a large walk-in cage (4m x 4m x 2m) in a 

ventilated quarantine tunnel. Older plants (up to 1m tall), grown in 10l pots, of the test 

plant species on which larvae were able to complete their development were used during 

these trials. Lantana camara was included as a control plant. In addition, Verbena 

bonariensis, V. brasiliensis and Lantana angolensis were also included, as these species 

were not available during the larval no-choice trials. Two Lamiaceae species completed 

the 20 test plant species and acted as additional ‘controls’ to check that females do not 

feed and oviposit randomly, but make actual choices between the test plants. The plants 

were arranged in the cage following a 4x5 rectangular lattice design, without their foliage 

touching. A total of 90 experienced females and 45 experienced males (calculated as 10 

females and 5 males per plant species supporting more than 50% larval to adult survival) 

were released in the cage and removed after 10 days. The number of adults present on 

each test plant and the number of egg batches in each plant pot were recorded. Data were 

analyzed using the statistical program GenStat (2000). Differences between species were 

tested for by means of an analysis of variance. The data were acceptably normal and the 

treatment variances homogeneous. Species means were separated using Fisher’s 
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Protected t-test with the Least Significant Difference (LSD) at the 5 % level (Snedecor 

and Cochran 1980), and the F-probability from the ANOVA was taken as significant at 5 

%. 

 

5.2.4 Multi-generation trials 

These trials were done to determine whether the relevant test plant species were able to 

support consecutive larval development to the third generation, and to monitor any 

reduced fitness and ovipositional output, through being fed inferior quality food. The 

multi-generation trials were conducted by culturing each group of adults that originated 

from larvae that survived the no-choice trials, through to the third generation (where 

viable offspring were available). The newly-eclosed adults (F), obtained from the larval 

no-choice trials, were transferred to fresh plants of the same species and allowed to feed 

and oviposit. The number of eggs laid per female during the first 45 days after eclosion 

was recorded. Where viable eggs were produced, 10 newly-emerged larvae were placed 

onto foliage of the test plant species. The number of larvae surviving and developmental 

time to adult eclosion (F1) were recorded. Once again, the number of eggs laid per 

female during the first 45 days after eclosion was recorded. The same procedure was 

carried out for the third generation (F2). Data were analyzed using the statistical program 

GenStat (2000). The experiment was designed as a completely randomized design with 

two factors, namely, the test plant species and the 3 generations. Differences between 

species and generations, and the interactions between them, were tested for by means of 

an analysis of variance. The data were acceptably normal and the treatment variances 

homogeneous. Species means were separated using Fisher’s Protected t-test with the 

Least Significant Difference (LSD) at the 5 % level (Snedecor and Cochran 1980), and 

the F-probability from the ANOVA was taken as significant at 5 %. 

 

5.2.5 Risk Analysis 

The risks to non-target plant species were analyzed and quantified by the method 

developed by Wan and Harris (1997), by measuring the insect’s performance on each test 

plant, at different stages in the host plant selection process, as a proportion of that on L. 

camara (029 WP). The relative performance risk of A. extrema was determined against 
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15 Verbenaceae and 2 Lamiaceae non-target species that were fed on, or oviposited on, to 

varying degrees during the choice and no-choice trials (Table 5.6). The performance 

criteria used were i) plant preference, ii) oviposition preference, iii) oviposition potential 

and iv) larval survival. Plant preference and oviposition preference were determined by 

the mean number of adults present on the test plants, and the mean number of egg packets 

laid in the soil around the test plants during the adult choice trials (Table 5.3). 

Oviposition potential was determined as the mean number of eggs laid per female during 

the first 45 days after eclosion, when reared on different test plant species during the 

multi-generation no-choice trials (Table 5.5a, F-generation). Larval survival was the 

mean number of larvae surviving to adulthood during the larval no-choice trials (Table 

5.2). The product of the calculated scores for each of the above performance criteria 

assessed the risk of A. extrema utilizing and establishing viable reproductive populations 

on a non-target plant species. For each criterion, R represents the insect’s performance on 

the test plant relative to that on L. camara (029 WP) (Table 5.6). To facilitate calculation, 

zero values were recorded as 0.001 (sensu Wan and Harris 1997). 

 

5.3 Results 

5.3.1 Larval no-choice trials 

All 15 Verbenaceae species tested, supported larval development (Table 5.2), while none 

of the Lamiaceae or the economically important species tested, were suitable for larval 

development. Lantana camara (029 WP) was the most suitable host with 72% of larvae 

developing to adulthood, although this was not significantly higher than survival on L. 

mearnsii (63%), Lippia rehmanni (66%), Lippia sp. A (53%), Lippia sp. B (67%), 

Aloysia citriodora (54%) and Priva meyeri var meyeri (66%). Several other indigenous 

Lantana and Lippia species proved to be less suitable hosts for A. extrema larvae, with 

survival rates varying between 15% and 33%.  
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Table 5.2: Mean number of Alagoasa extrema larvae developing to adulthood on 
different test plant species during larval no-choice trials. 
Plant species n Number of larvae surviving  

(Mean ± SEM)Z 

Verbenaceae   
L. camara 029 White Pink 6 7.2 ± 1.0a 

L. dinterii 4 2.8 ± 1.3bc 

Lantana trifolia 6 3.3 ± 1.0bc 

Lantana mearnsii 4 6.8 ± 1.3a 

Lantana rugosa 8 2.9 ± 0.9bc 

Lantana montevidensis 6 2.7 ± 1.0bc 

Lippia rehmanni 5 6.6 ± 1.1a 

Lippia javanica 8 1.5 ± 0.9c 

Lippia scaberimma 8 2.5 ± 0.9c 

Lippia sp. A 6 5.3 ± 1.0ab 

Lippia wilmsii 6 3.0 ± 1.0bc 

Lippia sp. B 6 6.7 ± 1.0a 

Phyla nodiflora 6 3.0 ± 1.0bc 

Aloysia citriodora 7 5.4 ± 1.0ab 

Priva meyeri var meyeri 5 6.6 ± 1.1a 

Duranta erecta 5 0 
Lamiaceae   
Clerodendrum glabrum 3 0 
Karomia speciosa 3 0 
Lavandula angustifolia 3 0 
Salvia africana-caerulea 3 0 
Salvia elegans 3 0 
Mentha spicata 3 0 
Mentha piperita 3 0 
Plectranthus sp. 3 0 
Nepeta caltaria 3 0 
Ocimum basilicum 3 0 
Solanaceae   
Solanum melongena 3 0 
Umbelliferae   
Daucus carota 3 0 
Chenopodiaceae   
Beta vulgaris 3 0 
Cruciferae   
Brassica oleracea 3 0 
F-probability  <0.001 
SEM is the standard error of the mean. 
Z – Means followed by the same letter are not significantly different (p < 0.05; ANOVA; 
Fishers’ protected t-test LSD). 
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5.3.2 Adult choice trial 

Most adults were found on L. camara (029 WP), L. trifolia, Lippia rehmann, L. javanica 

and Lippia sp. B (Table 5.3), although the numbers did not differ significantly between 

these four species and L. camara. Although there were no significant differences between 

the numbers of egg packets laid in the soil around the test plants, the highest numbers 

were found in the soil of the above four species. With the exception of L. trifolia, these 

species were also consistently chosen as suitable oviposition sites in all three replicates 

(Table 5.3). 

 

Table 5.3: Host selection by adults of Alagoasa extrema during multi-choice trials, with 
test plant species arranged in a 4x5 rectangular lattice design. 
Species n Number of 

adults 
(Mean ± SEM)Z* 

Number of egg 
packets 

(Mean ± SEM) 

Times (out of 3) 
chosen as 

oviposition site 
Verbenaceae     
Verbena brasiliensis 3 1.3 ± 3.3 0 0 
V. bonariensis 3 0.7 ± 3.3 0 0 
Lantana camara 029 WP 3 15.7 ± 3.3a 3.0 ± 1.2 3 
L. angolensis 3 0.7 ± 3.3 0 0 
L. dinterii 3 0.3 ± 3.3 0 0 
L. trifolia 3 14.3 ± 3.3abc 2.7 ± 1.2 2 
L. mearnsii 3 2.0 ± 3.3e 0.3 ± 1.2 1 
L. rugosa 3 1.3 ± 3.3e 0 0 
L. montevidensis 3 1.0 ± 3.3 0.3 ± 1.2 1 
Lippia rehmanni 3 14.7 ± 3.3ab 2.3 ± 1.2 3 
L. javanica 3 8.0 ± 3.3abcde 1.0 ± 1.2 2 
L. scaberimma 3 2.3 ± 3.3de 0.3 ± 1.2 1 
Lippia sp. A 3 5.0 ± 3.3cde 1.3 ± 1.2 2 
L. wilmsii 3 5.3 ± 3.3bcde 0 0 
Lippia sp. B 3 11.7 ± 3.3abcd 2.7 ± 1.2 3 
Phyla nodiflora 3 0 0 0 
Aloysia citriodora 3 5.0 ± 3.3cde 0 0 
Priva meyeri var meyeri 3 1.3 ± 3.3 0 0 
Duranta erecta 3 0.3 ± 3.3 0 0 
Lamiaceae     
Karomia speciosa 3 0.3 ± 3.3 0 0 
F-probability  0.026 0.818  
SEM is the standard error of the mean. 
Z – Means within column followed by the same letter are not significantly different (p < 

0.05; ANOVA; Fishers’ protected t-test LSD). Means without any letter was not 
included in statistical analysis because of too low a number of adults/egg packets. 

* - Out of 135 adults.  
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5.3.3 Multi-generation trials 

Eight test plant species out of the original 15 Verbenaceae species that supported larval 

development, including L. camara 029 WP, sustained oviposition and larval development 

up to and including the third generation (Table 5.4 and 5.5a). Lippia scaberrima 

supported larval development up to the third generation, but no eggs were laid by the F2-

generation females (Table 5.5b). The mean number of larvae surviving over three 

generations on L. camara 029 WP did not differ significantly from the number surviving 

on L. rehmanni, Lippia sp. B and Priva meyeri var meyeri. A significantly lower survival 

rate was found on Lantana mearnsii, L. rugosa, L. montevidensis and Lippia sp. A. The 

mean number of eggs laid over three generations by females reared on L. camara 029 WP 

did not differ significantly from that laid by females reared on Lantana mearnsii, L. 

rugosa, Lippia rehmanni, Lippia sp. A, Lippia sp. B and P.meyeri var meyeri. The 

exception was L. montevidensis on which females produced a significantly lower mean 

number of eggs. 
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Table 5.4: Survival to adulthood of Alagoasa extrema larvae when reared on different 
test plant species that supported development for 3 consecutive generations during multi-
generation no-choice trials 
Species n Larval 

survival  
F  

(Mean ± 
SEM) 

n Larval 
survival  

F1  
(Mean ± 

SEM) 

n Larval 
survival  

F2  
(Mean ± 

SEM) 

Species 
(Mean ± 
SEM)X 

Lantana camara 
029 WP 

6 7.2 ± 1.2 5 8.2 ± 1.3 4 4.8 ± 1.4 6.8 ± 0.7a 

L. mearnsii 4 6.8 ± 1.4 3 2.3 ± 1.6 2 4.0 ± 1.6 4.1 ± 0.9bc 
L. rugosa 8 2.9 ± 1.0 3 2.3 ± 1.2 1 6.0 ± 1.2 1.8 ± 0.6d 
L. montevidensis 6 2.7 ± 1.2 4 4.5 ± 1.2 3 0.7 ± 1.3 2.1 ± 0.7cd 
Lippia rehmanni 5 6.6 ± 1.3 5 6.8 ± 1.3 4 3.0 ± 1.4 5.6 ± 0.8ab 
Lippia sp. A 6 5.3 ± 1.2 4 5.8 ± 1.2 3 4.0 ± 1.2 3.9 ± 0.7bc 
Lippia sp. B 6 6.7 ± 1.2 4 6.3 ± 1.3 3 7.3 ± 1.4 5.8 ± 0.7ab 
Priva meyeri var 
meyeri 

5 6.6 ± 1.3 5 6.0 ± 1.3 3 3.3 ± 1.4 5.2 ± 0.8ab 

Generation 
MeanY 

5.4a 4.4a 2.6b  

SEM is the standard error of the mean. 
F-probability: Species: P<0.001 
  Generation: P<0.001 
  Species x Generation Interaction: P=0.796 
X -  Means within this column followed by the same letter are not significantly different 
at the 5% level. 
Y -  Means within this row followed by the same letter are not significantly different at 
the 5% level. 
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Table 5.5a: Ovipositional performance of Alagoasa extrema females when reared on 
different test plant species that supported oviposition for 3 consecutive generations 
during multi-generation no-choice trials. 
Species n No of eggs 

per female 
during 1st 
45 days  

F 
(Mean ± 

SEM) 

n No of eggs 
per female 
during 1st 
45 days  

F1 
 (Mean ± 

SEM) 

n No of eggs 
per female 
during 1st 
45 days  

F2 
 (Mean ± 

SEM) 

Species Mean 
(±SEM)X 

Lantana camara 
029 WP 

6 234.6 ± 31.7 5 151.4 ± 34.8 3 196.3 ± 44.9 199.0 ± 20.8a 

L. mearnsii 4 196.7 ± 38.9 2 166.4 ± 54.9 1 49.6 ± 77.7 156.4 ± 30.2a 
L. rugosa 3 103.2 ± 44.9 1 261.7 ± 77.7 1 92.5 ± 77.7 153.8 ± 36.8a 
L. montevidensis 4 56.7 ± 38.9 3 17.0 ± 44.9 1 3.1 ± 77.7 32.5 ± 28.3b 
Lippia rehmanni 5 215.7 ± 34.8 4 112.9 ± 38.9 2 44.9 ± 54.9 146.4 ± 23.5a 
Lippia sp. A 4 202.9 ± 38.9 3 254.8 ± 44.9 3 89.8 ± 44.9 197.0 ± 25.1a 
Lippia sp. B 5 272.5 ± 34.8 4 217.3 ± 38.9 3 62.6 ± 44.9 211.1 ± 22.6a 
Priva meyeri var 
meyeri 

5 168.1 ± 34.8 4 201.9 ± 38.9 2 140.0 ± 54.9 173.6 ± 23.5a 

Generation 
Mean Y 

194.2 ± 13.0a 171.1 ± 15.4a 93.2 ± b  

SEM is the standard error of the mean. 
F-probability: Species: P<0.001 
  Generation: P<0.001 
  Species x Generation Interaction: P=0.161 

X – Means within this column followed by the same letter are not significantly different at 
the 5% level. 
Y – Means within this row followed by the same letter are not significantly different at the 
5% level. 
 

Table 5.5b: Test plant species that were unable to support oviposition to the third 
generation during multi-generation no-choice trials 
Species n No of eggs per 

female during 
1st 45 days  

F 
 (Mean ± SE) 

n No of eggs per 
female during 

1st 45 days  
F1 

 (Mean ± SE) 

n No of eggs per 
female during 

1st 45 days  
F2 

 (Mean ± SE) 
L. dinterii 3 14.0 ± 11.1 0 0 0 0 
L. trifolia 3 100.5 ± 12.9 1 0 0 0 
Lippia javanica 2 88.2 ± 18.2 1 24.7 ± 0.0 0 0 
Lippia scaberimma 4 145.6 ± 48.3 1 59 1 0 
Lippia wilmsii 5 0.6 ± 0.6 0 0 0 0 
Phyla nodiflora  4 9.4 ± 4.7 0 0 0 0 
Aloysia citriodora 6 54.1 ± 17.5 0 0 0 0 



 57 
 

 

5.3.4 Risk Analysis 

Calculation of the risk of A. extrema utilizing and establishing viable reproductive 

populations on non-target plant species (Table 5.6), indicated that Lippia sp. B had a 72% 

probability of supporting such populations, compared with 62% in L. rehmanni, 16% in 

L. trifolia and 9% in Lippia sp. A a 9%. The likelihood of the remaining species serving 

as alternative hosts for A. extrema, varied between 1% and less than 0.001%.  

 

Table 5.6: Risk analysis on the performance of Alagoasa extrema on non-target plant 
species relative to that on L. camara (variety 029 WP) 
Species Plant 

Preference 
(R1) 

Oviposition 
Preference 

(R2) 

Oviposition 
Potential 

(R3) 

Larval 
Survival 

(R4) 

Risk of 
Attack 

(R1xR2xR3xR4) 
Verbenaceae      
Lantana camara 
029WP 

1.000 1.000 1.000 1.000 1.000 

L. dinterii 0.021 0.001 0.060 0.384 4.8 x 10-7 

L. trifolia 0.914 0.890 0.428 0.464 0.16 
L. mearnsii 0.128 0.110 0.838 0.941 0.01 
L. rugosa 0.085 0.001 0.440 0.402 1.5 x 10-5 

L. montevidensis 0.064 0.110 0.242 0.372 6.3 x 10-4 

Lippia rehmanni 0.936 0.777 0.920 0.921 0.62 
L. javanica 0.511 0.333 0.376 0.209 0.01 
L. scaberimma 0.149 0.110 0.621 0.349 3.6 x 10-3 

Lippia sp. A 0.319 0.443 0.865 0.743 0.09 
L. wilmsii 0.340 0.001 0.0026 0.418 3.7 x 10-7 

Lippia sp. B 0.745 0.890 1.162 0.930 0.72 
Phyla nodiflora  0.001 0.001 0.040 0.418 1.7 x 10-8 

Aloysia 
citriodora 

0.319 0.001 0.231 0.757 5.6 x 10-5 

Priva meyeri var 
meyeri 

0.085 0.001 0.717 0.921 5.6 x 10-5 

Duranta erecta 0.021 0.001 0.001 0.001 2.1 x 10-11 

Lamiaceae      
Karomia 
speciosa 

0.021 0.001 0.001 0.001 2.1 x 10-11 
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5.4 Discussion 

There are virtually no records of the host plants of A. extrema. Palmer and Pullen (1995), 

reporting on the phytophagous arthropods associated with L. camara, L. hirsuta, L. 

urticifolia and L. urticoides, mentioned a chrysomelid species, Alagoasa pr. extrema, 

found by Mann and Krauss during a previous survey in 1954. No further details were 

given other than the “association” with the four Lantana species. 

 

This study showed A. extrema to be an oligophagous herbivore, capable of ovipositing 

and developing on a number of indigenous and exotic verbenaceous species. Table 5.7 

gives the results of adult choice trials on four biocontrol agents currently being studied or 

that have been studied during the last 5 years. In adult choice trials F. intermedia, 

Coelocephalapion camarae Kissinger and Leptostales ignifera Warren fed on and/or laid 

eggs on other Lantana and several Lippia species, but at a much lower rate than on L. 

camara. These plant species under field conditions should not be able to support 

populations of the biocontrol agents, and might suffer limited feeding under periods of 

extremely high population densities, creating a “spill-over” effect. Thus, in spite of 

oviposition, feeding and development that took place on these species, all three the 

candidate biocontrol agents were or are to be released. On the other hand, during adult 

choice trials, a very promising stem-attacking insect, Aconophora compressa fed and 

oviposited on Lippia sp. B to such an extent that it was statistically comparable (p>0.05) 

to that on L. camara (Table 5.7). During no-choice multi-generation trials, comparable 

and sometimes superior performance was found on Lippia sp. B, and A. compressa thus 

had to be rejected because of these results (Heystek unpublished). Likewise, comparable 

performance by A. extrema was found on several verbenaceous species (Tables 5.4, 5.5a, 

5.6). 
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Table 5.7: Results of adult choice trials with potential biocontrol agents to demonstrate 
the host range expansion onto Lantana and Lippia species under quarantine laboratory 
conditions (Baars 2000, Simelane 2002, Heystek unpublished, Williams unpublished). 
Potential biocontrol agent Lantana species 

accepted as 
feeding/oviposition 
sites 

Lippia species 
accepted as 
feeding/oviposition 
sites 

Agent 
rejected 
/released  

Falconia intermedia 
(Hemiptera: Miridae) 

L. camara 
L. trifolia+ 

L. javanica+ 
L. rehmannii+ 
L. scaberrima+ 
L. wilmsii+ 
Lippia sp. A+ 
Lippia sp. B++ 
 

Released 

Coelocephalapion camarae 
(Coeloptera: Apionidae) 

L. camara 
L. rugosa+ 
L. montevidensis+ 
L. trifolia+ 

L. javanica+ 
L. rehmannii+ 
L. scaberrima+ 
L. wilmsii+ 
Lippia sp. A+ 
Lippia sp. B+ 
 

To be 
released 

Leptostales ignifera 
(Lepidoptera: Geometridae) 

L. camara L. rehmanni+ 
Lippia sp. A+ 
Lippia sp. B+ 
 

To be 
released 

Aconophora compressa 
(Hemiptera: Membracidae) 

L. camara L. javanica+ 
L. rehmannii+ 
L. wilmsii++ 
Lippia sp. A+ 
Lippia sp. B+++  

Rejected 

+ Feeding and/or oviposition on this species much lower than on L. camara; should not 
qualify as a marginal host plant under field conditions, 
++ Feeding and/or oviposition on this species lower than on L. camara; could qualify as 
a marginal host plant under field conditions, 
+++ Feeding and/or oviposition on this species comparable than on L. camara; should 
qualify as an alternative host plant under field conditions. 
 

The analysis of the risks posed by A. extrema to field populations of the test plant species, 

indicated that Lippia sp. B and L. rehmanni are likely to serve as alternative hosts in the 

field. Several biocontrol practitioners in South Africa have made use of a risk analysis, 

including Olckers (2000) with the screening of Gargaphia decoris Drake for the 

biological control of Solanum mauritianum, and Baars (pers. comm.) for the screening of 

F. intermedia. Olckers (2000) found that the probability of non-target species sustaining 
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reproductive populations ranged between <1% to 19.5%, and based on these results, 

permission was granted for the release of G. decoris. Baars (pers. comm.) found that the 

species that came closest to L. camara in terms of host suitability was Lippia sp. B, with 

a suitability of 24%, and based on these results, permission was granted for the release of 

F. intermedia. The probability of non-target attack on Lippia sp. B (72%) and L. 

rehmanni (62%), when compared to L. camara 029 White Pink, by A. extrema under 

field conditions is thus much greater. Baars (2000) stresses that host-range extension by 

natural enemies under laboratory conditions should be interpreted with care, and that 

more emphasis should be placed on behavioural factors that influence host acceptance. 

Oviposition choice by females plays a more important role in the host recognition process 

than does larval survival, and in the presence of L. camara, females will consistently 

recognize Lippia rehmannii and Lippia sp. B as acceptable hosts. In spite of the decrease 

in egg production when development occurs on these species, A. extrema will still pose a 

threat to these two species. Unlike biocontrol agents such as F. intermedia, G. decoris 

and Gratiana spadicea (Klug), where non-target species were deemed to be unlikely to 

support populations of the biocontrol agent, and where the damage to these species would 

be no more than incidental (assuming a worst-case scenario) (Hill and Hulley 1995, Baars 

2000, Olckers 2000), the multi-generation trials indicated that the two Lippia species 

would be able to support populations of A. extrema and that damage to these species 

could be considerable. 

 

The above considerations suggest that, should A. extrema be released in South Africa, the 

target weed, L. camara, along with some indigenous Lippia species are likely to serve as 

host plants. The potential risk to these indigenous species appears to be too great and it 

thus seems prudent that A. extrema should not be released in South Africa. 
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CHAPTER 6 

 

GENERAL DISCUSSION 

 

6.1 Suitability of A. extrema as an additional agent for L. camara 

The biological control programme against Lantana camara in South Africa has had 

limited success (Chapter 1) and the weed still poses a threat to agricultural production 

and biodiversity, despite attack from several biocontrol agents over a number of decades. 

Additional agents are needed to supplement the herbivore stress on the weed. Several 

factors have constrained or affected the success of the programme (Chapter 1). The most 

important factors constraining the agents are climatic incompatibility, varietal 

preferences, and parasitism.  

 

Lantana camara occurs over a broad range of climatic regions in South Africa. Most of 

the biological control agents originate from tropical and subtropical areas and 

establishment of these species in cold inland regions was not successful. Lantana camara 

plants abscise their leaves during winter and this leaf-less period together with lethal cold 

temperatures, can be devastating for the introduced leaf-feeding insects in particular. 

Alagoasa extrema is such a leaf-feeding candidate agent, which was collected from the 

subtropical areas of Mexico. Thus, the introduction of yet another leaf-feeding insect of 

tropical origin seems to go against lessons learned from past experience. Baars and Neser 

(1999) argued that leaves are the center of resource production and since the established 

leaf-feeders currently do not maintain adequate defoliation levels (Cilliers and Neser 

1991, Baars and Neser 1999), there is a need for additional leaf-feeders. Most of the 

established leaf-feeders are recognized by characteristics such as short-lived adults, 

adults and/or immatures that need to feed continuously and are thus poorly adapted to 

cope with leaf-less periods, e.g. Falconia intermedia, Teleonemia scrupulosa, and 

Hypena laceratalis. Species such as F. intermedia are able to overwinter only in areas 

where sheltered pockets allow L. camara plants to retain their leaves (Heystek, pers. 

comm.). From these areas, they build up their numbers in spring and cause severe but 

sporadic damage. Leaf-feeders with long-lived adults, e.g. Uroplata girardi and 



 62 
 

 

Octotoma scabripennis, have been among the most successful biocontrol agents for L. 

camara (Cilliers and Neser 1991, Broughton 2000), causing extensive but also localized 

defoliation. Potential leaf-feeding biocontrol agents that have long-lived adults that can 

enable them to overcome leaf-less periods should thus be targeted. Alagoasa extrema 

with its long-lived adults could fulfill this role. However, it was acknowledged from the 

start that A. extrema would probably only be able to establish in the subtropical areas of 

South Africa, but since these are also the most heavily lantana-infested areas in South 

Africa (see Chapter 1, Fig. 1.1), and A. extrema could therefore contribute significantly to 

the biocontrol programme.  

 

The second important factor that caused the apparent lack of success of the biological 

control programme against L. camara, is varietal preferences displayed by the biocontrol 

agents. Conflicting reports on just how much this factor has contributed to the variable 

levels of biocontrol success are found in the literature and are discussed in Chapter 4. 

Varietal preference studies (Chapter 4) indicated that A. extrema showed some degree of 

preference for certain varieties, but that all the tested varieties were able to support 

populations of this insect for several generations. The most suitable variety, 029 White 

Pink, is listed as one of the 11 most invasive lantana varieties in South Africa, and is 

particularly widespread in subtropical Mpumalanga, an area where some of the most 

severe infestations of L. camara are found, and where additional stress on the weed is 

still needed. 

 

The third important factor negatively influencing the success of the biological control 

programme against L. camara, is parasitism. The population numbers, and consequently 

impact, of several established biocontrol agents are reduced by parasitism (see Chapter 

1). In Chapter 2 it was shown that several characteristics of A. extrema suggest 

unpalatibility, a feature that could confer protection against potential predators and 

parasitoids and thus increase the chances of establishment and population build-up. 

However, it is not known if parasitoids from native flea beetle species might make use of 

A. extrema as food source. 
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However, despite these favourable attributes, host specificity tests indicated that A. 

extrema is able to oviposit and develop on a number of indigenous and exotic 

verbenaceous species (Chapter 5). An analysis of the risks posed by A. extrema to field 

populations of the more vulnerable test plant species, indicated that the target weed, L. 

camara, along with the indigenous Lippia sp. B and L. rehmanni are likely to serve as 

hosts in the field. The potential risk to these two indigenous Lippia species was deemed 

to be too great and it was thus decided that A. extrema should not be released in South 

Africa. 

 

6.2 Influence of testing procedures on determining an agent’s suitability 

The rejection of A. extrema forces one to critically consider the selection of agents and 

means by which host specificity testing is conducted and what problems, and perhaps 

errors, can be addressed and avoided, and what possible improvements can be suggested 

for future testing procedures.  

 

Standard host specificity tests and adaptations thereof were used to determine the 

physiological host range of A. extrema under quarantine laboratory conditions (Fig. 6.1). 

These included larval no-choice, adult choice and multi-generation no-choice trials. From 

the results of these tests, the risks posed to non-target species by the possible release of A. 

extrema were determined by means of a risk assessment and a recommendation on the 

suitability for releases of A. extrema was made.  
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A fundamental question is thus whether any of the standard testing procedures could have 

been modified so as to provide more accurate results and thus theoretically a different 

outcome. In particular two factors are known to influence the outcome of host specificity 

testing and are discussed below. These factors are: a) the experimental design, and b) 

insect behavioural phenomena as affected by experience. 

 

No-choice trials determine the candidate’s fundamental host range, i.e. the absolute limits 

to an insect’s host range that are determined by such factors such as its metabolic and 

sensory capabilities, physical limitations and behavioural programming (van Klinken 

Fig. 6.1: The standard host specificity procedures and adaptations thereof used to 
determine the host range of Alagoasa extrema under quarantine laboratory conditions. 

33 Test plant species  
(including L. camara) 

Larval no-choice trials 

15 Test plant species 
(including L. camara) 

Adult choice trials 

6 Test plant species 
(including L. camara) 

Multi-generation trials 

3 Test plant species 
(including L. camara) 

 

Host suitability analysis 
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2000). In no-choice tests, an insect species is generally unable to exercise all of the 

discriminating behaviours that might cause it to reject a host in a more natural arena (Hill 

1999). A negative test therefore provides very strong evidence that a particular plant 

species is not a potential host but, on the other hand, ‘false positive’ results can be 

generated. In such cases, plant species that would not qualify as hosts under field 

conditions, are accepted under the restricted conditions imposed by no-choice tests (Hill 

1999). Under the conditions of larval no-choice trials, larvae of A. extrema were able to 

complete their development on 14 species, including the target weed (Chapter 5, Table 

5.3). However, induced preferences in larvae can cause ‘false negatives’ in tests, if the 

insects have prior experience of the target weed, or any other plant that induces a strong 

preference for that plant (Traynier 1979, Heard 1999). Because unfed neonate larvae 

were used during the no-choice trials, induced preference could not have influenced the 

trial and the results (Chapter 5, Table 5.3) can be considered to accurately reflect the 

fundamental host range of A. extrema. 

 

The larval no-choice trials were modified continued as multi-generation trials. Multi-

generation trials test whether non-target species can support successive generations of 

potential biocontrol agents in no-choice situations (Day 1999). Under these 

circumstances, 8 species including the target weed were able to support populations of A. 

extrema for 3 consecutive generations (Chapter 5, Tables 5.5, 5.6a). During some of the 

trials, low numbers of adults completed their development, or sex-ratios were 

unbalanced, such that only a few pairs of adults were obtained to continue the trial. The 

ideal situation would have been to increase the insect population size on such plant 

species to obtain a more reliable mean of the insect’s fertility but, unfortunately, logistics 

made this very difficult. The results of the multi-generation trials (Chapter 5, Table 5.5, 

5.6a) should still be accepted, as it would be unreasonable to conclude that the plant is 

not at risk because only a few adults emerged. Because of population size differences, a 

low percentage survival in the laboratory could translate to a large number of adults in 

the field (Day 1999). Table 5.6a also indicated that there was a significant decrease in the 

average numbers of eggs laid by females reared on Lippia sp. B and L. rehmanni by the 

third generation, compared to oviposition by females reared on L. camara that remained 
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statistically constant. It could be argued that should any established populations on Lippia 

sp. B and L. rehmanni become extinct at any stage, the plants would still be subjected to 

periodic damage by A. extrema, or could become more acceptable as hosts, as adaptation 

could occur over time (Day 1999). 

 

Choice trials involve the simultaneous presentation of two or more plant species to the 

insect in the same arena (Edwards 1999). These tests usually follow no-choice trials and 

involve those species on which feeding, oviposition or complete development had 

occurred during the no-choice tests. These tests detect an agent’s preference when given a 

choice. If only the target host was attacked, or was attacked to a far greater extent than 

any of the test species, then it can be concluded that the agent in question is host specific 

(Edwards 1999). During adult choice trials A. extrema adults oviposited on 9 plant 

species, including the target species (Chapter 5, Table 5.4). Furthermore, the multi-

generation no-choice trials indicated that only 6 of these species, including L. camara, 

were able to support consecutive generations of A. extrema (Chapter 5, Table 5.5, 5.6a) 

and it can thus be concluded that only these 6 species are likely to serve as hosts for A. 

extrema in the field.  

 

Several mechanisms associated with previous experience of the test insects, could have 

influenced the results of the adult choice trials. The adults used during the choice trials 

had been reared on the target species during routine culturing, prior to their use in the 

trials, so preference for L. camara could thus have been artificially induced (Heard 1999). 

However, the results of the adult choice trials, during which feeding and oviposition 

occurred on several test species, suggested that induced preferences did not occur 

(Chapter 5, Table 5.4). 

 

On the other hand the adults could, as a result of previous exposure, have been in a state 

of central excitation where contact with the target weed, a highly ranked host species, 

would have increased the responsiveness and readiness of the insects to feed and oviposit 

(Heard 1999). In this state, females of A. extrema would have searched for suitable 

oviposition sites (namely moist secluded areas in the soil) and could well have been 
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stimulated to oviposit randomly in the pots of any of the test plant species. However, the 

results of the adult choice trials indicated that the adults did discriminate between the test 

species, as eggs were mostly laid in the soil around plant species that supported higher 

percentages of larval development. Also, no oviposition occurred in the soil around the 

two ‘control species’, Duranta erecta and Karomia speciosa, on which no larval 

development had occurred and which were specifically included in the test arena to test 

whether the adults were indeed exercising a choice (Chapter 5, Table 5.4).  

 

It could also have been expected that, if the adult females were in a state of central 

excitation when they entered the choice situation, they would initially have oviposited on 

whichever plant species was encountered first, but with time, feeding and oviposition 

would eventually have declined on the lower ranked species, while continuing on the 

highest ranked or preferred host plant species (Withers et al. 1999). In hindsight, a 

criticism of, or possible error in the execution of the adult choice trials, was that the trials 

were run for a period of only 10 days and that the results were based only on the results 

recorded at the end of the trial period. Should the trial have been run for a longer period, 

and should oviposition data have been recorded at different intervals during the trial, then 

the ranking of host plant species, could possibly have been more pronounced.  

 

Another phenomenon typical of adult choice trials is ‘spill-over’ of oviposition onto 

lesser-ranked species because of overcrowding. Simelane (2002) found with the leaf-

mining agromyzid fly, Ophiomyia camarae, another agent for L. camara, that as low as 

eight females confined onto two plants per paired-choice trial, caused oviposition on 

Lippia species, whereas no spill-over occurred when a single pair of adults were used. 

Overcrowding seems unlikely to influence the oviposition behaviour of A. extrema, since 

Oedionychina flea beetles are known to aggregate (Begossi and Benson 1988). 

 

The results of the adult choice trials indicated that L. camara is the highest ranking host 

plant species for A. extrema, but that Lippia sp. B and L. rehmanni are so closely ranked 

below L. camara, that these species could serve as possible alternative hosts. 
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6.3 The importance of risk assessments 

In the risk analysis (Chapter 5, Table 5.7), the number of non-target species that could be 

at risk, should A. extrema be released, was reduced to two species, namely Lippia 

rehmanni and Lippia sp. B. The analysis employed to quantitatively assess the risk that 

the release of A. extrema would pose to non-target species, was based on a method 

developed by Wan and Harris (1997) (Chapter 5). Several South African biocontrol 

practitioners used this risk analysis to promote the release of agents, notably Olckers 

(2000) with Gargaphia decoris Drake for Solanum mauritianum, and Baars (pers. 

comm.) with F. intermedia for L. camara (Chapter 5). Baars (2000) stated that 

behavioural mechanisms that limit the accepted (i.e. true) host range, in this case the 

females that select oviposition sites, should be incorporated and emphasized during the 

risk analysis. However, results obtained from the no-choice trials should be carefully 

considered, as the possible broadening of an agent’s host range under deprived conditions 

(and consequent “spill-over” effects) can be foreseen and predicted (Withers 1997). The 

risk analysis used during the host specificity testing of A. extrema takes into account 

performance factors from results of both the no-choice as well as the choice trials, giving 

a well-balanced reflection of the risks posed to non-target species. 

 

Baars and Neser (1999) stated that because of possible limited attack on some indigenous 

Lantana and Lippia species, the number of new natural enemies that will ultimately be 

considered acceptable for release on lantana in South Africa will be limited, thus 

constraining the biocontrol programme against this extremely invasive weed. Species 

such as the stem-sucking A. compressa that was likely to have made a valuable 

contribution, since it is able to kill stems of its host plant and is also able to survive dry 

winters on plants that are devoid of leaves, had to be rejected because of potential 

damage and possible population build-up on some native Lippia species. Unless 

regulatory authorities and other affected bodies can accept possible damage on non-target 

species in the field, as an ecologically justifiable ‘trade-off’ against the benefits of 

releasing agents that have the potential to suppress such an environmentally damaging 

weed as L. camara, the potential impact of several very promising agents, such as A. 

extrema and A. compressa will be lost. Thus is seems prudent that an analysis of the risks 
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associated with the release of a ‘questionable’ agent like A. extrema should be considered 

against an analysis of the risks of not releasing it, i.e. the additional environmental 

damage that will accrue if L. camara is allowed to continue unchecked. 

 

6.4 Other considerations 

The taxonomic relationship between some of the genera in the family Verbenaceae 

should be reexamined. Testing has indicated that most of the insect species tend to accept 

closely related native plant species to varying degrees, under laboratory conditions (Baars 

1999, Simelane 2002, Heystek, pers. comm.). These species included several indigenous 

and introduced Lantana species, as well as species in the closely related indigenous genus 

Lippia (Chapter 5, Table 5.7). What is remarkable is that, although some ovipostion and 

feeding occurred on one or two of the related Lantana species, more often the more 

distantly related Lippia species tended to be more acceptable for feeding and oviposition, 

often supporting higher feeding and oviposition rates than on the Lantana species. In 

particular, Lippia sp. B has proved to be a superior host for A. compressa relative to some 

of the other Lantana species as well as several of the L. camara varieties (Heystek, pers. 

comm.), while it has also proven to be very closely ranked beneath L. camara in terms of 

the host preferences of A. extrema. Lippia sp. B was also the second preferred host of F. 

intermedia (Baars, pers. comm.). These insect species suggest that the relationship 

between L. camara and some of the Lippia species may well be much closer than the 

relationship between L. camara and other congeneric species, at least where their 

secondary plant chemicals that serve as insect attractants or repellants are concerned. 

This raises the question as to whether these species should not all be included in the same 

genus. Wapshere (1989) stated that related plants species have similar morphological 

structures and secondary chemical constitutions and that only minor adjustments in the 

host selection sequence would facilitate the inclusion of such species as hosts. The host 

ranges of phytophagous insects should thus give an indication of how closely affiliated 

the related plant species are. In this instance, it is strongly suggested that some of the 

Lippia species are more closely related to L. camara than are some of the other Lantana 

species.  
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6.5 The potential of A. extrema for use in other countries 

Although A. extrema is not suitable for release in South Africa, it could have considerable 

potential for release against L. camara in Australia. Indeed, Australia and South Africa 

have long been collaborative partners in the battle against L. camara and potential agents 

have often been exchanged between the two countries. Since no native Lantana or Lippia 

species are represented in the indigenous Australian flora, there are thus no possible 

alternative hosts for A. extrema. An exception could be the exotic Lippia alba (Mill.) 

N.E. Br. ex Britton & P. Wilson, on which non-target feeding would be of no concern. In 

any event, the release of A. extrema would pose no threat to the indigenous Australian 

flora. 

 

Australian researchers have invested a substantial amount of money in trying to 

successfully establish A. parana in Australia. In spite of diligent efforts, which included 

the seasonal collection of large numbers of the insect in Brazil and releasing them in 

Australia, establishment was not achieved (M. Day, pers. comm.). Alagoasa extrema, as 

alternative biocontrol agent for the same niche, could prove to be a more successful 

agent. Compared to A. parana, it has a shorter lifecycle, is multivoltine with several 

generations produced annually and may display a degree of tolerance towards some 

natural enemies (Chapter 2). These characteristics could facilitate successful 

establishment and high population levels in the field. Winder et al. (1988) suggested that 

A. parana would be most suited to the coastal rain forest fringes in Australia, a habitat 

that is in need of additional biological control agents for L. camara. Since A. extrema is 

most suited to moist conditions, which are fundamental to the insects’ survival, this 

species could thus fill this niche in Australia. In November 2002, adults of A. extrema 

were exported to Australia to undergo host specificity screening.   
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