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Abstract 

The majority of river systems in developing countries like South Africa, are found in 

catchments areas that are densely human populated, therefore are subjected to intense land-use 

and developmental pressures. Anthropogenic nutrient pollution or the excessive addition of 

nutrients is one important type of stressors that river systems often experience through intense 

land-use, which includes poor waste management and agricultural practices. Such events are 

referred to as the “urban syndrome”, were human populations and developmental demands 

outpace ecosystem services. Traditional measurements of water quality (e.g. physicochemical 

and micro-nutrient assessments) and biological monitoring (e.g. South African Scoring System 5, 

SASS5) techniques for assessing ecosystem health have being widely used to reflect the 

ecological health and status of river systems. However these techniques have a number of 

challenges associated with their application. SASS5 which is used most prevalently in southern 

Africa for example, can only be applied in lotic systems, it is habitat dependent and finally (but 

arguably most importantly) it cannot identify the source of pollution inputs. Recent laboratory 

studies using stable isotopic ratios (δ
15

N and δ
13

C) of aquatic macrophytes (duckweed: Spirodela 

sp.) have shown successful differentiation between different N-sources and the mapping of 

temporal and spatial nitrogen dynamics in freshwater systems. Furthermore δ
15

N isotopic values 

of Spirodela sp. showed the capability to act as an early warning indicator of eutrophication, 

before the onset of aquatic ecosystem degradation. Therefore, this study aimed to field test the 

potential of sewage plume mapping using the stable isotopic values of Spirodela sp. and aquatic 

macroinvertebrates at nine study sites on the Bloukrans-Kowie River and ten study sites on the 

Bushman-New Year’s River systems in the Eastern Cape, South Africa.  

Firstly, duckweed plants (of known starting isotopic ratios) were transplanted into 

greenhouse cages (n = 5) at 19 sites on both river systems. Plants were left to grow for a 

minimum of 10 days between sampling events, and samples for δ
15

N and δ
13

C isotopic analysis 

were collected every month together with on-site physicochemical variables over a period of 13 

months. This was done to investigate the ability of duckweed plants to map spatial and temporal 

nutrient loading in natural systems (i.e. sewage plume mapping). Secondly, comprehensive 

SASS5 assessments were completed at each study sites, together with water sample collection 

for micronutrient analysis on quarterly basis in order to compare results of ecosystem health 
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assessed using standard indices of biological monitoring (SASS5) with the sewage plume 

mapping technique. Lastly, the δ
15

N and δ
13

C isotopic values of aquatic macroinvertebrates were 

also investigated in order to assess their ability to act as additional biological indicators for N-

loading. This was completed over four weeks sampling events, during which four identified 

nutrients biological indicator species of macroinvertebrates (Oligochaeta, Chironomidae, 

Culicidae and Syrphidae) were collected on weekly basis, at four study sites in the Bloukrans-

Kowie River system, which spanned a strong nutrients concentration gradient.  

δ
15

N isotopic values of both Spirodela plants, Oligochaeta and Chironomidae were able 

to trace environmental N-loading and were also able to identify pollution hotspots over time and 

space from different catchment land-uses on the Bloukrans-Kowie and Bushman-New Year’s 

River systems. Furthermore, the sewage plume mapping technique using Spirodela sp. was able 

to identify sewerage out-fall and cow manure run-off from dairy farms as the main 

anthropogenic source of excessive nutrients in both river systems. The stable isotopic results also 

supported the current existing biological monitoring assessment determined by the SASS5 

technique, where sites with SASS scores < 90 also showed δ
15

N isotopic values of > 10.00 ‰, 

both indicating pollution stress. However, stable isotopic values of Spirodela sp. provided better 

resolution on the dynamics of N-loading over time and space. Although Oligochaeta and 

Chironomidae nitrogen isotopic values showed potential for N-loading mapping in freshwater 

ecosystems, notably there is still a need for baseline calibrations for aquatic macroinvertebrates, 

as observed from this study, that macroinvertebrate δ
15

N ratios were influenced by body size, life 

span and dietary resources, while those of Spirodela sp. were not. 

In conclusion, traditional measurements of water chemistry and aquatic 

macroinvertebrate biological assessments (SASS5), despite providing indications of pollution 

stress (i.e. the identification of systems which are largely natural, moderately impaired or largely 

impaired), and results being time integrated. The SASS5 assessment provided very little 

resolution on nutrient dynamics and could not identify sources of N-loading. Stable nitrogen and 

carbon isotopic values of Spirodela sp. provided detailed dynamics on N-source, tagging and 

identifying pollution hot spots, on both a temporal and spatial scale, supporting its utilization for 

mapping freshwater nutrient dynamics and N-loading events. Therefore it is highly 

recommended that sewage plume mapping be included as an up-and-coming tool for future 

monitoring, conservation and management of freshwater ecosystems. 
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Mapping nitrogen loading in freshwater systems: using aquatic biota 

CHAPTER ONE 

 

GENERAL INTRODUCTION 

 

 

1.1 Problem statement 

Gyedu-Ababio & van Wyk (2004), Oberholster & Ashton (2008) and Coetzee et al. 

(2014) have illustrated that increased anthropogenic inputs often results in numerous impacts on 

aquatic ecosystems, including eutrophication, facilitation of invasive aquatic weeds, loss of 

native aquatic biodiversity and ultimately, to deterioration of freshwater resources. The South 

African Scoring System (SASS) is a biological monitoring tool for lotic systems that is well-

known for ecological health assessments in freshwater ecosystems, pioneered by Chutter (1994) 

and further revised by Dickens & Graham (2002) to its fifth version, SASS5. There are however, 

a number of ecological challenges associated with SASS5 application as acknowledged by 

Dickens & Graham (2002) and Simaika & Samways (2012). The major drawback is that SASS5 

only provides “red flag results”, meaning it only identifies disturbance (e.g. eutrophication, 

heavy metals etc.) after ecosystem degradation has taken place. Furthermore it provides no 

information on the nature of the disturbance and thus makes it challenging to understand and 

mediate the damage. This is important, especially for arid and semi-arid countries on the African 

continent where natural freshwater resources cannot meet the high economic demands (Gyedu-

Ababio & van Wyk 2004). Therefore there is a need for a new technique(s) which can identify 

eutrophication, before the onset of degradation (Vander Zanden et al. 2005, Coetzee & Hill 

2012, Hill et al. 2012, Coetzee et al. 2014). Stable isotopic analysis has been identified as a 

potentially powerful tool for tracing nutrient loading, identifying nutrient sources and their 

dynamics in freshwater ecosystems (see Costanzo et al. 2001; 2005, Rabalais 2002, Kellman & 

Hillaire-Marcel 2003, Anderson & Cabana 2005, Deutsch & Voss 2006, Oczkowski et al. 2008, 

Hill et al. 2012). 
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1.2 Freshwater ecosystems 

The world’s total water supply is about 1 385.9 million cubic kilometers, of that, 95.50% 

is salt water (in the ocean), 0.07% is found as saline lakes and 0.93% is saline ground-water. 

Only 2.50% of the global total is freshwater, with 68.60% of it locked up as glaciers and ice 

caps, 30.10% found as groundwater, with only 1.30% available as surface water as ice and snow, 

freshwater lakes, soil moisture, swamps and marshes, rivers, biological and atmospheric water 

(Shiklomanov 1993). Rivers and lakes constitute a mere 93 100 cubic kilometers of the total 

world water supply, yet they are regarded as the major source of available freshwater for global 

human communities. Collectively, freshwater ecosystems (e.g. wetlands, ponds, lakes, rivers and 

streams) are characterized by in and out flow of water in one direction, unique and changing 

water chemistry from the river source to the river mouth and provide micro-habitats, for both 

submerged and emergent aquatic biota (Chapman 1992, Davies & Day 1999). Freshwater 

resources are considered as interlinked systems, and the river continuum concept describes how 

these ecosystems from mountain streams, to mid-lands and coastlines are all connected and in 

some cases are able to influence each other down an altitudinal gradient (Vannote et al. 1980). 

However, despite their connectivity, each freshwater body has independent physical and 

chemical characteristics, which are driven mainly by ecological variables such as microclimate, 

geomorphological/geochemical conditions and prevailing land-use within the catchment area 

(Chapman 1992, Davies & Day 1998; 1999, Hooda et al. 2000, Taylor et al. 2007). Most of 

South African waterways are small and the majority of them are found within catchment areas 

with dense human populations and therefore are subjected to intense anthropogenic activities 

(Coetzee & Hill 2012), with the most detrimental anthropogenic activity being system 

eutrophication (Oberholster et al. 2009, van Ginkel 2011). 

 

1.3 Nutrient loading (e.g. Eutrophication) 

Eutrophication is an increase in accumulation of organic matter which is usually driven 

by excess supplies of nutrients (e.g. nitrogen and phosphorus) which can often lead to toxic algae 

blooms, fish kills, excessive plant production and subsequent decay, oxygen depletion and 

overall reduction in water quality (Nixon 1995, Botes et al. 2004, Deutsch & Voss 2006, 

Oberholster et al. 2009, van Ginkel 2011, Hill et al. 2012). Such eutrophication events are 
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considered to be one of the most serious ecological problems facing freshwater ecosystems, on a 

global scale (de Villiers 2007). Eutrophication can be classified in two different ways, natural 

eutrophication and cultural eutrophication. Natural eutrophication occurs through natural 

activities, where the influx of nutrients comes from natural sources such as rocks, soils and other 

features within the catchment area, changing nutrient levels on gradual scale. This type of 

eutrophication is an irreversible and uncontrollable process, but its slow rate makes it less 

harmful to the environment (Botes et al. 2004, Oberholster et al. 2009, van Ginkel 2011). 

Cultural eutrophication on the other hand, is controllable and considered to be the most 

important and detrimental type of eutrophication from an environmental health perspective. It is 

predominantly driven by anthropogenic impacts such as poor waste management (urban and 

rural wastes) and for decades it was responsible for the degradation of majority of South African 

waterways (Botes et al. 2004, Coetzee & Hill 2012). The major consequences of ecosystem 

degradation include the death or local extinction of keystone species, due to drastic habitat 

modifications (Rosenberg et al. 1986, Johnson et al. 2006), which may result in cascading effects 

to ecosystem structure and functioning (Speight et al. 2008). Under intense eutrophication 

conditions, Chorus & Bartram (1999) noted that secondary effects may also manifest to such an 

extent that in some cases it may lead to cyanobacteria blooms (blue-green algae, e.g. 

Microcystis) and the production of cyanotoxins. Pouria et al. (1998) and Rabalais (2002) 

reported ingestion and/or recreational use of water containing cynatoxins pose threats to both 

human and animal health. This was also reported by Oberholster et al. (2009) in Kruger National 

Park, South Africa, where 50 captive animals died due to exposure to cyanotoxin contaminated 

water resulting from highly eutrophic water flowing through the park from a severely disturbed 

upstream catchment.  

 

1.4 Biological monitoring and indicators 

The composition of aquatic communities in freshwater ecosystems is determined by how 

well a species can cope with environmental variables within its niche and also its capacity to 

tolerate disturbance (Rosenberg & Resh 1993, Resh 2008, Speight et al. 2008). For example, 

biotic integrity has been defined as “the ability to support and maintain a balanced, integrated, 

adaptive community of organisms, having a full range of elements (genes, species and 



4 
 

assemblages) and processes (mutation, demography, biotic interactions, nutrients, energy 

dynamics and meta-population process) expected in the natural habitat” according to Karr 

(1996). Thus an ecosystem with high biotic integrity constitutes a healthier habitat that supports 

indigenous aquatic faunal and floral communities, promotes aquatic biodiversity, ecosystem 

services (e.g. good water quality, food security) and brings about sustainability of natural 

resources with an environment. While systems with low biotic integrity, promote water borne 

diseases and result in poor/no ecosystem services and ultimately the collapse of the ecosystem 

(Karr 1996). McGeoch (1998) defines biological indicators as “a species or group of species that 

readily reflects the abiotic and/or biotic state of an environment, represents the impact of 

environmental change on a habitat, community, or ecosystem, or is indicative of the diversity of 

a subset of taxa, or of the wholesale diversity, within an area”. A number of authors (e.g. Adams 

et al. 1989, Kwandrans et al. 1998, McGeoch 1998, Chapman 1992, Chutter 1994; 1998, 

Kleynhans 1999, Smith et al. 1999, Wright et al. 2000, Hodkinson & Jackson 2005, Dickens & 

Graham 2002, Speight et al. 2008, Bredenhand & Samways 2009, Simaika & Samways 2012) 

have illustrated that aquatic communities have the ability to respond to ecological integrity and 

that their ecological behavior reflects differing external stressors over time, thus providing a 

broad calculation of the aggregated impacts of disturbance. Such ecological measures of 

fluctuating environmental conditions are available by quantifying and monitoring biological 

communities in a given habitat, and are thus reliable and time integrated. A biological 

monitoring programme called the Aquatic Ecosystem Health Monitoring Programme 

(NAEHMP): National River Health Programme (NRHP) was established in southern Africa 

(https://www.dwa.gov.za/iwqs/rhp/index.html). This was the initiative of the Department of 

Water Affairs and Forestry, together with other research institutions including the Water 

Research Commission (https://www.wrc.org.za/), the Council of Scientific Institution of 

Research (https://www.csir.co.za/) and the Department of Water and Environmental Affairs 

(https://www.environment.gov.za/) (DWAF 2008). The NAEHMP-NRHP uses riverine and 

riparian biota together with riverine habitat status to assess the water quality and habitat integrity 

of southern African rivers and streams. The ultimate goal of the NRHP was to provide 

meaningful and accurate data, on both the water quality and overall condition of freshwater 

resources to be later used as the basis of management decisions (Taylor et al. 2007). Notably, the 

programme showcased algae, aquatic macroinvertebrates and fish as reliable biological 

https://www.dwa.gov.za/iwqs/rhp/index.html
https://www.wrc.org.za/
https://www.csir.co.za/
https://www.environment.gov.za/
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indicators because of their sensitivity to changes in water quality and habitat integrity (Chutter 

1994, Dickens & Graham 2002, Li et al. 2010).  

The characteristics of an ideal biological indicator include: (a) ease of identification (easy 

to spot by non-specialists); (b) a wide distribution; (c) low mobility (thus representative of local 

and small scale regions); (d) well known ecological characteristics; (e) high abundances; (f) 

suitability for laboratory work; (g) high sensitivity to environmental change; and (h) capability 

for standardization and quantification (Markert et al. 2003). Numerous investigations have 

identified a variety of biological indicator organisms for use in South Africa, including diatoms, 

fish, aquatic macroinvertebrates and plants (Dallas 1997).  

 

1.4.1 Diatoms 

Diatoms form the largest component of aquatic communities and are found attached to 

various substrates in aquatic ecosystems (Dokulil et al. 1997). Like all aquatic biota, these 

localized unicellular communities are directly impacted by any chemical and/or physical changes 

in the surrounding water column, and they have been used as indicators of water quality (Taylor 

et al. 2005; 2007, Beyene et al. 2009). Diatom indices were first developed and tested in 

European countries as a potential index for freshwater biological assessment (Taylor et al. 2005), 

and gained favor and momentum in other developed countries, particularly in the United States 

of America (Dokulil et al. 1997, Kwandrans et al. 1998, Eloranta & Soininen 2002). According 

to Taylor et al. (2007), these successful developments were due to demands from the Urban 

Wastewater Directives in Europe, who had the goal of reinforcing their legislature, which then 

led to a call for reliable water quality indicators. Only later, was the diatom index introduced and 

applied in southern African river systems (de la Rey et al. 2004). However, with limited baseline 

studies on native southern African diatom species and the inclusion of diatoms species endemic 

to South Africa in the existing European indices, experts were worried about inaccuracies and 

mistakes in the calculation of diatom indices, and subsequent incorrect evaluations of water 

quality and interpretation (Taylor et al. 2005; 2007). Simaika & Samways (2012) further argued 

that diatoms are challenging in terms of identification and they also react rapidly to nutrient 

inputs either by blooming or death, therefore making the situation challenging to trace or detect 

pollution events over longer time intervals. Li et al. (2010) also suggested that diatom indices in 

lotic systems do not accurately reflect integrated environmental changes and/or long-term 
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sustainability of the river ecosystem because immediate changes in hydrology will also affect 

diatoms communities and complicate interpretation. Moreover, South African diatoms still lack 

taxonomical information and ecological characteristics, all of which make them unreliable 

biological indicators of water quality based on Markert et al. (2003)’s ideal characteristics. 

 

1.4.2 Aquatic Macroinvertebrates 

Arthropods are regarded as excellent biological indicators for both terrestrial and aquatic 

habitats (Rosenberg et al. 1986, McGeoch 1998, Markert et al. 2003, Hodkinson & Jackson 

2005). According to Wilhm & Dorris (1968), the original use of the term “biological indicator” 

first appeared in reference to aquatic ecosystems, where it was used for the detection and 

monitoring of aquatic biota to describe changes from the external environment. Substantial 

developments of techniques using aquatic macroinvertebrates for the assessment of water quality 

has only occurred in recent years and includes: the British Monitoring Water Party System 

(BMWP), United Kingdom (Hawkes 1998), Australian River Assessment Scheme 

(AUSRIVAS), Australia (Smith et al. 1999), River InVertebrate Prediction and Classification 

System (RIVPACS), United Kingdom (Wright et al. 2000) and the Index of Biotic Integrity 

(IBI), USA (Karr 1991, Kerans & Karr 1994). Aquatic macroinvertebrates are regarded ideal 

habitat health and water quality indicators because they are highly diverse, occupy almost every 

possible ecological niche (both terrestrial and aquatic) and show measurable responses to habitat 

disturbances and/or modifications (see Rosenberg et al. 1986, Karr 1991, Chapman 1992, 

Rosenberg & Resh 1993, Hawkes 1998, McGeoch 1998, Smith et al. 1999, Wright et al. 2000, 

Hodkinson & Jackson 2005, Johnson et al. 2006, McGeoch 2007, Bredenhand & Samways 2009, 

Masese et al. 2009).  

The importance of South Africa’s freshwater resources has driven the development of a 

country specific rapid biological monitoring tool called the South African Scoring System 

(SASS5; Chutter 1994) for riverine ecosystems. The main objective of SASS5 was to assess 

river health and water quality, and further investigation showed that the SASS5 tool can also be 

used for; (1) the assessment of the ecological state of aquatic ecosystems; (2) the assessment of 

spatial and temporal trends in ecological states; (3) assessing emerging pollution problems; (4) 

setting management objectives for rivers; (5) assessing the impact of anthropogenic 

developments; (6) predicting changes in ecosystems due to developments; and (7) contributing to 
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the determination of Ecological Reserves (Roux 1999). The SASS5 technique has been applied 

successfully in a number of riverine ecosystem studies (Dickens & Graham 2002, Simaika & 

Samways 2012), however its application has met a number of ecological drawbacks. Firstly, 

SASS5 only provides “red-flag results”, identifying problems only after ecosystem level changes 

have taken place. Secondly, SASS5 results cannot point out the type of pollution/disturbance, 

providing information solely on whether or not a system is impacted and provides only a very 

basic indication of the level of impact. Thirdly, the majority of macroinvertebrate indices work 

only in lotic systems, thus the assessment of impoundments, wetlands and lakes are excluded. 

SASS5 is also field work intensive, and it is habitat dependent meaning the sampling site 

selection is ecologically biased. Not only that, but it requires intensive training unlike the 

simplest version, mini-SASS (Simaika & Samways 2012). Although SASS5 is currently the most 

commonly used rapid biological assessment tool and has been successfully implemented in a 

number of South African fluvial ecosystems, there is a strong need for a biological monitoring 

tool that can be applied in a bigger range of aquatic ecosystems, which is not habitat dependent 

and that will provide information on the source and type of pollution, both over time and space, 

effectively acting as an early warning system. Such tools will help to identify and trace 

anthropogenic inputs in aquatic systems before the onset of ecosystem degradation and will help 

in the management and conservation of South Africa’s freshwater ecosystems. One method 

which has received attention very recently is the application of stable isotopic analysis to trace 

nutrient loading in aquatic systems and holds some promise as a useful biological monitoring 

technique. 

 

1.4.3 Vertebrates (e.g. fish) 

Fish have also been identified as good biological indicators due to their sensitivity 

towards habitat alteration (Kleynhans 1999, Pont et al. 2007, Roset et al. 2007). For example 

their long life span and top position in the aquatic food web make fish an ideal indicator for 

heavy metal and/or bioaccumulation studies and bioassays. However Li et al. (2012) noted that 

fish can be affected by multiple external factors that include physical or chemical modifications 

as well as human exploitation. Using Markert et al.’s (2003) criteria, fish fall short of being 

considered ideal biological indicators because; (1) they have a relatively low numbers of species, 
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therefore leading to low densities in freshwater systems, making biological monitoring very 

difficult from statistical perspective; (2) the majority of fish species are highly mobile which 

makes them able to avoidance/escape pollution events by swimming into less affected areas; (3) 

they are also not easily sampled, particularly for rapid biological assessments purposes due to 

their protective legislature; and (4) the majority of South African river systems are impacted by 

anthropogenic activities, and are thus modified “not-natural” systems. That combined with 

predominantly shallow waters, means that many fish species are effectively absent from most of 

the inland waterways where biological monitoring is targeted (Hill et al. 2012, Simaika & 

Samways 2012). Li et al. (2010), further argued that fish stress responses are better reflected at a 

molecular level than at population and community levels, thus it is only at a population level 

where the effects of disturbance may be manifested through the reduction of recruitment 

(reproduction). Most successful studies using fish in Europe incorporate fish reference conditions 

into the application of biotic monitoring indices (e.g. IBI, Index of biotic integrity). This 

approach requires information on river characterization, descriptions of reference fish 

assemblages in each river type and a selection of biological attributes for each fish assemblage, 

to allow the quantification of the difference between observed and reference fish assemblages 

and can be complicated by fish age and migration (Roset et al. 2007). Biotic indices using fish 

can be further complicated by the impact of invasive species (Kadye 2008). Thus, overall, fish are 

not ideal organisms for biological monitoring programs, particularly when compared with aquatic 

macroinvertebrates. 

 

1.5 Stable isotopic analysis (SIA) in ecology 

Stable isotopes are naturally occurring, non-radioactive, heavier and lighter forms of the 

same elements (e.g. 
12

C and 
13

C for carbon, 
14

N and 
15

N for nitrogen) (Criss 1999). Their mass 

difference is due to different number of neutrons. For elements of low atomic numbers, this mass 

difference between the isotopes is often large enough for bonds of the lighter isotope to be 

broken slightly more easily than equivalent bonds of the heavier isotope. As a result the light 

isotope reacts faster and become concentrated in the product (relative to the substrate). It is this 

fractionation (or sometimes lack thereof) that is used to follow the pathways of compounds from 

sources to sinks. Recently, SIA has been shown to be a useful tool for tracking changes in 

trophic structure and energy flows in an ecosystem, contributing to the understanding of how 
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basic ecosystem services may be affected by indigenous and non-indigenous species (Caut et al. 

2006). Isotopic ratios are conserved up through the food web, with predictable isotopic 

fractionation at every trophic step (0.5-1 ‰ for δ
13

C and 3-4 ‰ for δ
15

N; DeNiro & Epstein 

1978; 1981, Fry & Sherr 1984, Post 2002, McCutchan et al. 2003). As such, stable carbon (δ
13

C; 

information on food resources) and nitrogen (δ
15

N; information on trophic position) isotopic 

ratios can provide time-integrated information about feeding relationships and energy flow (e.g. 

Peterson & Fry 1987, Cabana & Rasmussen 1996, Vander Zanden & Rasmussen 1999, Martinez 

del Rio et al. 2009). Thus, δ
13

C and δ
15

N isotopic values can be used to draw food web maps and 

conceptualize trophic niches within communities and habitats because they vary both temporally 

and spatially (Bearhop et al. 2004, Layman et al. 2007, Newsome et al. 2007, Kadye & Booth 

2012).  

 

Following DeNiro & Epstein (1978; 1981), Boon & Bunn (1994), Cabana & Rasmussen 

(1996), Vander Zanden & Rasmussen (2001) and Davis et al. (2015) investigations, both stable 

nitrogen and carbon isotopic values provided insight information with regards to aquatic 

organism trophic feeding niches and diets from phytoplankton (primary producers) to fish 

(secondary consumers). Furthermore, stable isotopic analysis can investigate trophic ecology 

with regards to the presence of some notorious invaders and alien aquatic species e.g. Tarebia 

granifera, Pterygoplichthys disjunctivus; Hill et al. (2015) and zebra mussels – Dressena 

polymorpha; Colborne et al. (2015). Additionally a number of studies have also shown that 

stable isotopic values of nitrogen (δ
15

N) in aquatic biota are sensitive in reflecting N-loading of 

the system under investigation and may act as an early indicator of nutrient pollution prior to the 

onset of system degradation (e.g. Anderson & Cabana 2005, Cole et al. 2004, Deutsch & Voss 

2006, Fry & Allen 2003, Savage 2004, Lassauque et al. 2010) and can even be used to trace 

nutrient loading in aquatic systems. Costanzo et al. (2001) used marine macrophytes and 

subsequent carbon and nitrogen isotopic values to illustrate nutrient hotspots from sewerage 

effluents coming through a river mouth as well as the spatial extent of sewage pollution in 

Moreton Bay, Australia (referred to as sewage plume mapping). Results from his study 

eventually resulted in sewage treatments works in the Moreton Bay vicinity being upgraded and 

the Australian sewerage effluents standards being reviewed. Hill et al. (2011; 2012) also 

identified an aquatic macrophyte, duckweed (Spirodela sp.) with the ability to differentiate 
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between different N-sources using SIA. The study showed promising results, where the 

duckweed was able to trace N-loading and differentiate between cow manure and commercial 

fertilizer N-inputs, with concentration levels effects on the plant isotopic values, however these 

investigations were completed in a laboratory setting, therefore follow up studies were needed to 

test the sewage plume mapping technique with Spirodela sp. in the natural environment. 

 

 

1.6 Study Aims 

The aims of this thesis were addressed in a series of three separate studies following the 

chapter outline below. Chapter 2 addresses the materials and methods used in the three 

subsequent chapters and also provides an overview of land use, comparing in situ environmental 

variables between all sampled study sites on the Bloukrans-Kowie and Bushmans-New Year’s 

River systems. Chapter 3 investigates the effect of land-use and prevailing environmental 

variables on the river’s ecological health and biodiversity using the SASS5 technique. Chapter 4 

provides an intensive field test of the sewage plume mapping technique in order to validate the 

use of stable isotopic values of δ
15

N and δ
13

C from transplanted duckweed (Spirodela sp.) for 

monitoring water quality and tracing nutrient loading in freshwater systems and compares stable 

isotopic techniques with the existing traditional SASS5 technique. Chapter 5 attempts to identify 

available macroinvertebrate(s) taxa as an additional biological indicator using stable isotopic 

values, to use in conjunction with Spirodela plants to map and trace nutrient loading in 

freshwater ecosystems. Chapter 6 provides an overall discussion on the use of stable isotopic 

techniques with respect to sewage plume mapping and biological monitoring in comparison with 

SASS5 and considers the future of biological monitoring in the face of anthropogenic activity. 
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Mapping nitrogen loading in freshwater systems: using aquatic biota 

CHAPTER TWO 

MATERIALS AND METHODS 

 

2.1 Study Area 

The study was conducted in two local river systems of the Eastern Cape;  the Bloukrans-

Kowie River system in Grahamstown and the Bushmans-New Year’s River system in Alicedale, 

both within the Makana District Municipality, Eastern Cape Province, South Africa (Figure 2.1). 

The Kowie and Bushmans River systems are situated in the Southern Temperate Highveld 

ecoregion, which covers the majority of the interior land of South Africa (O'Hagan 1989, 

Duggan 1990). The climate of the southeastern Cape were both river systems lie, is that of a 

subtropical coastal belt influenced by the warm Mozambique-Agulhas current, experiencing an 

annual rainfall of about 600-800 mm, were 80-85% occurring as brief summer thunderstorms 

from October to March (Agnew 1986, Skelton 1994). According to Henderson (2001) and de 

Moor & Day (2013) this ecoregion is characterized by grassland and valley thicket, as the main 

indigenous ground cover and is also invaded by alien plants consisting of wattle (Acacia 

mearnsii, A. dealbata and A. baileyana), hakea (Hakea drupacea, H. sericea, H. gibbosa) and 

bluegum trees (Eucalyptus camaldulensis and E. lehmannii).   

Together, the Bloukrans-Kowie and the Bushmans-New Year’s River systems flow 

directly into the south-eastern coastal belt of South Africa (Allanson et al. 1990), through Port 

Alfred and Kenton-on-Sea respectively (Figure 2.1). These systems are found within the Kowie 

Thicket biome of the Eastern Cape at an altitudinal range of between 0 – 700 meters above sea 

level. Mucina & Rutherford (2006) describe the region as “tall thickets dominated by succulent 

euphorbias and aloe with understory composed of thorny shrubs, woody lianas and shrubby 

succulents”.  
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Figure 2.1: Map showing the (A) Africa map, (B) Southern Africa map and (C) the Bloukrans-

Kowie and Bushmans-New Year’s River Systems, Eastern Cape. 

 

2.1.1 Bloukrans-Kowie River system 

General Description 

The Kowie River is a permanently open river system with a total length of 70 kilometers, 

draining a relatively small catchment area of ~800 square kilometers. Its source arises in the hills 

of Grahamstown Heights and is relatively in an undisturbed natural habitat (Eady et al. 2013, 

Dalu et al. 2014). The majority of this area is privately owned land, dominated by game farms. 
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Further downstream, the Kowie River system from the south-easterly direction, meets the 

Bloukrans River system and collectively flows through Water Meetings Nature Reserve and 

Bathurst town towards Port Alfred as the Kowie River system (which will be referred to as the 

Great Kowie in this study). 

 

This system has been identified recently as impacted by anthropogenic pollution (Barber-

James et al. 2003). The upper end of the Bloukrans River drains the majority of the urban and 

rural Grahamstown area including human settlements and industrial areas, passing through 

Belmont Valley. Along the river in the eastern part of the town, there is raw sewage inputs 

leaking into the system from the nearby settlements, along with treated sewerage out-fall from 

the Belmont Valley Sewerage Treatment Works (BVSTWs; S33º19’00.52”, E26º33’28.39”, 500 

meters above sea level).  The Bloukrans River also experiences intense disturbances further 

downstream, including water abstraction from intensive neighboring agricultural lands e.g. Dairy 

farms, beef cattle and goat farms, cabbage and pineapple plantations and the on-going Golf 

course construction (Belmont Dev. Co.) along the Belmont valley road (Eady et al. 2013). 

 

Site Selection 

Ten sites were originally selected on the Bloukrans-Kowie River over a well-defined 

nutrient gradient; including areas considered largely natural and those influenced by sewage and 

fertilizers inputs (Table 2.1, Figure 2.2A). The majority of the chosen sites lie on the Bloukrans 

River which is the tributary of the Great Kowie River system (Figure 2.2A), and were chosen 

both for ecological importance and ease of logistical access. Site A1 was intended to be situated 

within the BVSTWs, but was precluded by overhauls in management and infrastructure of this 

facility. As a result only nine sites were investigated consistently over the 13 month (see data 

collection below). The rationale behind site selection for the remaining nine sites briefly follows; 

A2 was downstream of urban Grahamstown’s industrial area and rural human settlements and 

thus an entry point for all catchment activities happening within the vicinity e.g. cow manure, 

waste material dumping, industrial waste and leaking sewage pipes. A3 was approximately 0.82 

kilometers downstream from A2 and adjacent to the BVSTWs, located in the treated sewerage 

effluent before it entered the river (in order to investigate the properties of the treated waste 



14 
 

water before entering the Bloukrans River system).  Site A4, A5 and A7 were downstream of the 

BVSTWs and adjacent to intense agricultural lands, suggesting potential impacts from sewage 

and anthropogenic fertilizer inputs. The last site on the Bloukrans River before the Kowie-

Bloukrans confluence was A8, much further downstream of the BVSTWs and thus theoretically 

exposed to more dilute anthropogenic inputs. The upper reaches of Kowie River were considered 

largely natural habitat, with site A9 located on the upper reaches of the Kowie River - 

Featherstone Kloof, at the Southwell road bridge and A6 located downstream A9 at the 

Coleridge Nature Reserve. The last site, A10 was after the Bloukrans and Kowie River systems 

confluence on the Hollingrove Nature Reserve, collectively representing all eight upper stream 

sampled sites with differing catchment activities (Table 2.1, Figure 2.2A & 2.3).
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Figure 2.2: Map showing the sites chosen on the (A) Bloukrans-Kowie River systems and (B) 

Bushmans-New Year’s River system Eastern Cape, South Africa. Arrows represents nutrient 

(sewage out-fall and cow manure run-off) entry points.
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Figure 2.3: Photographic snapshots of sites A2 - A10 on the Bloukrans-Kowie River system, Eastern Cape South Africa. 
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Table 2.1: A summary of the Bloukrans-Kowie River systems study sites in the Eastern Cape, South Africa. 

Study Sites Latitude Longitude Sites Description & Land-use Sites Structure & 

Characteristics 

Dominant Plant species (Aquatic & Riparian) 

Indigenous Invasive 

A2 S33º31’45.0” E26º55’25.2” Bloukrans River; downstream urban & 

industrial areas 

Riffle site, medium 

water flow & 

turbidity, 0% canopy 

cover 

Cynodo dactylon 

Persicaria senegalensis 

Solanum mauritianum 

Argemone ochroleuca 

A3 S33º31’55.1” E26º56’01.7” Bloukrans River; sewerage effluent Rocky, medium water 

flow & turbidity, 60% 

canopy cover 

Typha capensis Arundo donax 

Solanum mauritianum 

Argemone ochroleuca 

A4 S33º32’36.1” E26º62’71.4” Bloukrans River; downstream sewage out-

fall, adjacent Belmont valley agricultural 

lands 

Rocky, medium water 

flow & turbidity, 80% 

canopy cover 

Persicaria senegalensis 

Celtis africana 

 

- 

A5 S33º19’45.8” E26º37’90.0” Bloukrans River; downstream sewage out-

fall, adjacent Belmont valley agricultural 

lands 

Rocky, medium water 

flow, low turbidity, 

60% canopy cover 

Cyperus sexangularis 

C. dives 

Rhus sp. 

Cana indica 

Arundo donax 

A6 S33º36’59.1” E26º62’71.4” Upper reaches of Kowie River; Coleridge 

Nature Reserve (largely natural) 

Rocky-sandy site, 

medium water flow, 

low turbidity, 10% 

canopy cover 

Cyperus sexangularis 

Acacia karoo 

 

- 

A7 S33º35’34.7” E26º72’05.5” Bloukrans River; downstream sewage out-

fall, adjacent Belmont valley agricultural 

lands 

Sandy-muddy site, 

low water flow, high 

turbidity 

Acacia sp. 

Cyperus sexangularis 

Lemna gibba 

Phragmites australis 

Eucalyptus sp. 

A8 S33º39’12.2” E23º70’75.4” Bloukrans River; downstream sewage out-

fall, adjacent Belmont valley agricultural 

lands (diluted) 

Rocky, high water 

flow, low turbidity, 

30% canopy cover 

Cyperus sexangularis 

C. marginatus 

Acacia caffra 

Rhus sp. 

Acacia mearnsii 

A9 S33º39’93.0” E26º55’99.6” Upper reaches of Kowie River (largely 

natural) 

Sandy-rocky, medium 

water flow, low 

turbidity, 50% canopy 

cover 

Ficus capensis 

Rhus chirindensis 

Cyperus sexangularis 

Lantana camara 

A10 S33º45’77.0” E26º69’33.8” Great Kowie River System; after the 

confluence 

Rocky riffle, medium 

water flow, low 

turbidity, 60% canopy 

cover  

Cyperus sexangularis 

Acacia karoo 

Acacia athaxacantha 

Rhus sp. 

Solanum mauritianum 
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2.1.2 Bushmans-New Year’s River system 

General Description 

The Bushmans-New Year’s River system is comprised of a 27.08 kilometers Bushmans 

River arising North of Kirkwood town and passing through the easterly region of Alicedale 

(S33º18’55.89”, E26º04’59.12”, 283 meters above sea level), Eastern Cape South Africa. The 

New Year’s River is a tributary of the Bushmans River, and is a 17.32 kilometer system arising 

between the North western hills of Grahamstown and Glen Ambrose. It joins the Bushmans 

River system from the westerly direction at Alicedale and stretches down to the coastal and 

meets the Indian Ocean at Kenton-on-Sea (Midgley et al. 2006).  

 

The Bushmans-New Year’s River system drains the majority of the surrounding areas 

including urban and rural Alicedale and the neighboring Game Farms (e.g. Bushman Sands 

Nature Reserve (New Year’s Dam) and Bushman Sands Golf course). The system also is said to 

be exposed to strong anthropogenic disturbance. Also the river is known to house the large 

populations of the world’s number one aquatic invasive plant, Eichhornia crassipes (water 

hyacinth) (Hill & Olckers 2001). 

 

Site Selection 

Ten sites were selected on the Bushmans-New Year’s River system, also over a well-

defined nutrient gradient; including areas considered less disturbed and those largely influenced 

by sewerage and fertilizers (Table 2.2, Figure 2.2B). The majority of the chosen sites were 

concentrated around Alicedale on the New Year’s River (Figure 2.2B), and again, were chosen 

both for ecological importance and ease of logistical access. It should be noted that throughout 

most of the 13 month sampling period (see data collection below) the Bushmans-New Year’s 

River system was experiencing drought, resulting in multiple isolated pools along the system, 

particularly between sites B1, B2, B3, B5 and B10 (Figure 2.4). This was with the exception of 

April and May 2014; where high rainfall restores a continuously flowing river from above the 

New Year’s dam wall and Bushmans river system to the confluence and down to the river 

mouth. The rationale behind site selection for the remaining ten sites briefly follows; B1 and B2 

were on the Bushman Sands Nature Reserve, with B1 further upstream above the New Year’s 
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dam wall and B2 downstream of the dam wall. Despite the potential of seepage from the dam 

impoundment, these sites were considered natural with major modifications, as they were found 

in a Nature Reserve and free from anthropogenic inputs. However infestation of the invasive 

Eichhornia crassipes (water hyacinth) was noted at site B1 (Figure 2.4). Site B3 was 

downstream from the dam wall, directly adjacent to the uncompleted Alicedale Sewerage 

Treatment Works (ASTWs), this site was chosen in order to investigate the possibility of point 

source water pollution from the ASTWs, which currently employs settling ponds located by the 

riverside. B4 was located directly in the ASTWs sewage settling ponds in order to quantify 

physical and chemical characteristics of sewerage inputs likely seeping in, washed through 

during heavy rains or leaching through the groundwater into the surrounding water-ways. B5 was 

downstream the ASTWs. B6 and B7 were chosen on the New Year’s River within the Bushman 

Sands Golf Course, to investigate non-point source pollution from fertilizer run-off (as used on 

the greens) and also to try and differentiate between nitrogen arising from sewage pollution and 

commercial fertilizer (see Hill et al. 2011, 2012). On the upper Bushmans River, B10 was 

selected, which was about 2.70 kilometers before the confluence, to determine the level of 

nitrogen inputs coming from the Bushmans River. B8 and B9 were downstream of the 

Bushmans-New Year’s River confluence, approximately a kilometer apart, collectively 

representing all sampled sites with differing catchment activities (Table 2.2, Figure 2.2B & 

Figure 2.4)
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Figure 2.4: Photographic snapshots of sites B1 - B10 on the Bushmans-New Year’s River system, Eastern Cape, South Africa. 
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Table 2.2: A summary of the Bushmans-New Year River systems study sites in the Eastern Cape, South Africa. 

Study Sites Latitude Longitude Sites Description & Land-use Sites Structure & 

Characteristics 

Dominant Plant species (Aquatic & Riparian) 

Indigenous Invasive 

B1 S33º29’61.5” E26º14’74.1” New Year’s River; above New Year’s 

dam wall 

Sandy-muddy site, zero 

water flow, high turbidity 

Cyperus sexangularis 

Phragmites australis 

Rhus lucida 

Eichhornia 

crassipes 

B2 S33º31’60.9” E26º10’138” New Year’s River; below New Year’s 

dam wall 

Muddy site, zero water 

flow, very high turbidity, 

10% canopy cover  

Rhus lancea 

R. lucida 

Cyperus sexangularis 

Eichhornia 

crassipes 

B3 S33º31’53.8” E26º10’71.2” New Year’s River; adjacent to ASTWs Muddy site, zero water 

flow, high turbidity, 5% 

canopy cover 

Typha capensis 

Spirodela sp. 

Persicaria senegalensis 

Rhus incise 

Acacia karoo 

Gymnosporia sp. 

Eucalyptus sp. 

B4 S33º31’54.2” E26º10’68.4” New Year’s River; ASTWs – sewage 

settling ponds 

- - - 

B5 S333160.9 E26º10’13.8” New Year’s River; downstream ASTWs Sandy site, zero water flow, 

high turbidity, 5% canopy 

cover 

Typha capensis 

Persicaria decipiens 

Spirodela sp. 

Eucalyptus sp. 

 

B6 S33º31’21.3” E26º08’70.3” New Year’s River; Bushman Sands Golf 

Course 

Sandy site, Trickle water 

flow, very high turbidity 

Cyperus sexangularis 

C. marginatus 

Potamogeton pectinatus 

Acacia karoo 

Spirodela sp. 

Cactus sp. 

B7 S33º31’42.3” E26º09’79.2” New Year’s River; Bushman Sands Golf 

Course 

Sandy, trickle water flow, 

very high turbidity, 30% 

canopy cover 

Phragmites australis 

 

 

- 

B8 S33º32’15.9” E26º07’97.8” Bushmans River System; after New 

Year’s and Bushmans River confluence 

Rocky (Bedrock) site, low 

water flow & turbidity 

Phragmites australis 

Cyperus sexangularis 

Eucalyptus sp. 

B9 S33º32’94.8” E26º07’71.2” Bushmans River System; after New 

Year’s and Bushmans River confluence 

Rocky (Bedrock) site, low 

water flow & turbidity, 

canopy cover 30% 

Cyperus sexangularis 

Acacia karoo 

 

- 

B10 S33º31’60.7” E26º06’49.5” Bushmans River; downstream Muddy site, zero flow, very 

high turbidity, 2% canopy 

cover 

Cyperus sexangularis 

Acacia karoo 

 

- 
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2.2 Data Collection 

2.2.1 Environmental variables 

Physicochemical variables 

The physicochemical parameters of the water column at each site were collected once 

every month at all 19 study sites over the 13 month sampling period, August 2013 to August 

2014. These included pH (log [H
+
]), electrical conductivity (EC; µS), total dissolved solids 

(TDS; ppm), salinity (Sal; ppt), water temperature (°C) and dissolved oxygen (DO; mg/L) 

(Appendix 1). Parameters were measured using a portable multi-probe PCSTester 35 and a DO 

Pen 85004. Additionally, GPS co-ordinates of each site were recorded using a Garmin Montana 

600 GPS. 

 

Micronutrients (Inorganic salts) 

On quarterly sampling occasions, water samples were collected for micronutrient 

analyses. 1 L plastic bottles were used to collect water samples, with both the plastic bottle and 

lid rinsed with the water in question prior to collection. Samples were collected from 15 cm 

below the water surface and filled to the top to avoid any air bubbles within the container 

(www.bemlabs.co.za/samplinginfo.php?Id=22). Samples were then brought to the laboratory and 

stored at 4 ºC until sample collection was concluded (4 days) and sent to BEM-Labs, Cape Town 

for analysis.  Micronutrient determinations by BEM-Labs included analyte concentrations of Na, 

K, Ca, Mg, Fe, Cl, CO3, HCO3, SO4, B, Mn, Cu, Zn, P and F as determined by the standard 

procedures defined in the ICP manual; NH4-N and NO3-N concentrations were via an auto 

analyzer (using wavelengths of 660 nm and 550 nm respectively); and pH, EC and TDS were 

measured according to SANS 11885:2008 (http://www.bemlab.co.za/services.php) (Appendix 2 

& 3).  

 

A one-way analysis of variance (ANOVA) was completed for each river system 

separately, where pH, EC, TDS, DO, salinity and water temperature were dependent variables 

and sites were grouping variables. This was used to compare means of physicochemical variables 

among sampling sites after testing for normality (Shapiro-Wilk test) and homogeneity of 

variance (Levene’s test). Data were not normally distributed in all sampled study sites in either 

http://www.bemlabs.co.za/samplinginfo.php?Id=22
http://www.bemlab.co.za/services.php
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river system (Shapiro-Wilk test; p < 0.001). Additionally, variances for DO and water 

temperature were not equal on the Bloukrans-Kowie River nor were the variances for water 

temperature on the Bushmans-New Year’s River (Levene’s test; p > 0.05). Transformation of the 

data did not improve heteroscedasticity.  ANOVA is not sensitive to non-normal data distribution 

and thus the likelihood of a false positive (Type I or Type II) is small (Zar 1996), that being the 

case ANOVA was performed using Statistica 12 (Stat Soft Inc. 2008-2014). 

Similarity dendrogram based on Euclidean distance was also performed on treated 

(averaged, log(x+1) transformed and normalized) abiotic data, to assess similarity between 

sampled sites based on the micronutrient data (PRIMER v6 add-on package PERMANOVA+; 

Clarke & Warwick 2001). A Principal Co-ordinate Analysis (PCoA) was further used to indicate 

environmental variables which showed a significant correlation with sampled sites. This was 

achieved by adding vectors (i.e. environmental variable) from log(x+1) transformed, normalized 

environmental data that showed a strong positive Pearson correlation (r = 0.7) as the selection 

method (PRIMER v6 add-on package PERMANOVA+; Clarke & Warwick 2001). Closely and 

highly correlated environmental variables e.g. TDS and EC were pulled-out from the analysis. 

 

Visual site inspections 

River width (m) was measured at five different sections within each site to give an 

average river width per site. Percentage canopy cover was estimated visually and recorded per 

site. Substrate type and biotope diversity, flow rate and turbidity were also rated visually using 

the categorical scale on the SASS5 protocol and this was completed during every SASS5 

assessment. These physical variables were later given a standard rating between 1 (poor/very 

low) to 5 (diverse/very high), and the data was further used in multivariate analysis (see later 

Chapters). Notes were taken on basic catchment properties at each site including visible physical 

and/or chemical pollution, human disturbance, land-use, habitat type (e.g. rocky, sandy or muddy 

habitat) and both the predominant aquatic and riparian plants (both indigenous and alien) using 

relevant field guides and classification keys (van Wyk & van Wyk 1997, Henderson 2001, 

Gerber et al. 2004, Henderson & Cilliers 2002) (see Table 2.1 & 2.2). Finally, photographic 

snap-shots of each study site were taken for visual presentation using a Nikon CoolPix s6300, 

16.0 megapixel camera (see Figure 2.3 & 2.4).  
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2.2.2 Aquatic macroinvertebrates collection and SASS5 assessments (Chapter 3) 

A comprehensive SASS5 assessment was conducted quarterly, for a period of 13 months, 

on the following occasions; 26
th

 – 29
th

 August 2013, 18
th

 – 21
st
 November 2013, 25

th
 – 29

th
 

February 2014 and 29
th

 May – 03
rd

 June 2014 in all 18 study sites excluding the sewerage 

settling ponds (B4 Bushmans-New Year’s River system), making up to 72 sampling points for 

the duration of study. Water quality and habitat health were assessed using the South African 

Scoring System version 5 (SASS5) technique pioneered by (Chutter 1994) and revised by 

Dickens & Graham (2002). Briefly; a 30 × 30 cm, 1000 micron hand held aquatic net was placed 

against the river current and through vigorous kicking, turning and scraping all available 

biotopes individually (e.g. stones, vegetation and gravel/sand/mud) within the prescribed time 

intervals, samples were washed and dislodged into the aquatic net. Thereafter, samples were 

tipped into the white collecting tray, separately and allowed to stand for few minutes for plant 

matter to settle down and aquatic macroinvertebrates to emerge (Dickens & Graham 2002). 

Identification of aquatic macroinvertebrates was done in the field, using relevant identification 

guides and keys (Day & de Moor 2002A & B, Day et al. 2002; 2003, Gerber & Gabriel 2002A, 

de Moor et al. 2003A & B) as recommended by Dickens & Graham (2002). Additionally, for 

estimating aquatic macroinvertebrate biodiversity, instead of normal SASS5 abundance ratings 

of 1 = 1, A = 2 - 10, B = 10 - 100, C = 100 - 1000, D > 1000 (Dickens & Graham 2002), aquatic 

macroinvertebrate abundance of observed individual taxa were first recorded, to be further used 

for biodiversity assessments following Bredenhand & Samways (2009) study. Abundances data 

was later converted to SASS5 rating for computing SASS score and ASPT. 

 

2.2.3 Stable isotope samples collection  

2.2.3.1 Tracing N-loading with δ
15

N and δ
13

C isotopic values of Spirodela sp. (Chapter 4) 

The indigenous duckweed Spirodela sp. was grown following the procedure adopted 

from Hill et al. (2012). Fresh Spirodela plants were collected and grown in two 20 litre tubs at 

the Biological Control Research Group (BCRG), Waainek Mass Raring Facility at Rhodes 

University, under (10.0 mg nitrate/L; 12:12 light: dark regime; 20.0 ± 2.0 ºC) conditions for a 

period of more than 10 days prior to experimental start (Hill et al. 2012). 95 floating aquatic field 

cages were constructed, consisting of a 250 ml clear plastic containers with minute holes 

punched in the plastic to facilitate free flowing water and fitted with two floats of high density 
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foam (Figure 2.5A). Cages were designed to transplant previously incubated Spirodela sp. (with 

initial values of δ
15

N 13.12±3.18 ‰, δ
13

C -29.06±0.78 ‰ and C/N ratios of 9.04±1.14) in 19 

selected study sites. Five floating cages (n = 5) were transplanted per site, and were allowed to 

float freely within the system housing ± 45g wet weight of Spirodela plants (Figure 2.5B). Cages 

were prevented from drifting by using a string attached to design 10 × 10 cm, PVC pipe weights 

filled with pre-mixed cements (Figure 2.5C). The isotopic equilibration rates of Spirodela sp. 

(e.g. the time it takes for Spirodela plants to reflect N-loading in the environment) is between 4 - 

10 days (Hill et al. 2011, 2012), thus plants were left to grow for a period of at least 10 days in 

between sample collection. On-site floating cages were washed (to remove dirt and algae), 

repaired and refilled with plants where necessary in every fourth month. Plants samples were 

collected every month over a period of 13 months from August 2013 to August 2014. 

Approximately 3.0 – 5.0 mg of Spirodela plants samples were collected and put into Eppendorf 

tubes. Samples were stored on ice until they reached the laboratory and then oven dried for a 

minimum of 72 hours at 50 ºC.  
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Figure 2.5: Experimental design illustrating (A) floating aquatic field cages, (B) suspended free 

floating cages and, (C) designed PVC pipe weights on each site on the Bloukrans-Kowie and 

Bushmans-New Year’s River system in the Eastern Cape, South Africa. 

 

 

2.2.3.2 Tracing N-loading with δ
15

N isotopic values of macroinvertebrates: can the 
15

N 

isotopic values of some macroinvertebrates taxa also trace N-loading? (Chapter 5) 

Using previously collected macroinvertebrates abundance data (from SASS5 

assessments; see Chapter 3), potential indicator taxa were identified using the Indicator Value 

Species Analysis (IndVal) and multivariate analysis (Redundancy analysis - RDA) methods from 

all sampled study sites on both the Bloukrans-Kowie and Bushmans-New Year’s River systems.  

Indicator macroinvertebrate taxa, identified by both IndVal (PC-ORD 5.1) and RDA 

(CANOCO 4.5) included Oligochaeta adult and Chironomidae, Culicidae and Syrphidae larvae. 

A 

B 
C 

B 
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Once potential indicator taxa were identified, a preliminary investigation was conducted between 

three selected study sites (identified on RDA) on the Bloukrans River system which showed high 

positive correlation towards nutrients inputs (A2, A3 and A4) and for comparison purpose one 

largely natural study site A9 was selected as a control site (Figure 2.2A, 2.3; Table 2.1). 

Identified potential macroinvertebrate indicator taxa were collected at each site, once every week 

over four weeks sampling events in March 2015. Taxa were collected via kick sampling method, 

where all available aquatic biotopes (e.g. stones, aquatic and marginal vegetation and 

gravel/sand/mud) collectively were sampled vigorously for three minutes. Macroinvertebrates 

samples collected were transferred into a white collecting tray and selected taxa individuals were 

collected using laboratory pipettes and tweezers into an Eppendorf vial and then transported on 

ice to the laboratory for further processing. For each site and time, five replicates of each 

indicator taxa were collected, consisting of between 10 - 20 pooled individuals (to achieve 

sufficient mass for SIA). Collected wet mass taxa were oven dried for 72 hours at 50 ºC (Bergfur 

et al. 2009, di Lascio et al. 2013). However, pollution tolerant taxa were in less abundance at A9 

(due to its largely natural nature and higher numbers of pollution sensitive taxa) and so in some 

cases, very few of the previously identified N-loading indicator taxa (Oligochaeta and 

Chironomidae, Culicidae and Syrphidae larvae) were found, thus fewer replicates or no taxa 

sometimes were obtained at A9. 

In addition [NO3-N], [NH4-N] and [DO] measurements (n = 5) were recorded per site on 

each sampling occasion from five different points.  

 

2.2.4 Stable isotopic analysis of δ
13

C and δ
15

N isotopic values 

 Prior to isotopic analyses, all samples were ground into homogenous fine powder using 

mortar and pestle and weighed to appropriate weights (plants = 1.8 mg – 2.0 mg, animal tissue = 

0.5 mg – 0.6 mg; IsoEnrvironmental Sven Kaehler pers. comm.) into tin capsules (8 × 5 mm). 

δ
15

N and δ
13

C isotopic values of plant samples from August 2013 (Tinitial) to March 2014 (T8) 

were analyzed at the IsoEnvironmental Laboratory, South African Institute of Aquatic 

Biodiversity (SAIAB), South Africa using a Europa Scientific 20-20 IRMS interfaced to an 

ANCA SL Elemental Analyser. The precision of replicate determinations was 0.11 for δ
15

N and 

0.07 for δ
13

C. All δ
15

N and δ
13

C isotopic values were reported as ‰ vs Viennea PeeDee 

Belemnite (VPDB) and air respectively and normalized to internal standards calibrated to the 
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International Atomic Energy reference materials (IAEA-CH6 for δ
13

C and IAEA-N2 for δ
15

N). 

Remaining plant samples from April 2014 (T9) to August 2015 (T13) and all macroinvertebrates 

samples were determined at the Stable Isotope Laboratory, Mammal Research Institute, 

University of Pretoria using a Flash EA 1112 Series coupled to a Delta V Plus stable light 

isotope ratio mass spectrometer via a ConFlo IV system (all equipment supplied by Thermo 

Fischer, Bremen, Germany). Analytical precision was < 0.2 ‰ for δ
13

C and < 0.2 ‰ for δ
15

N. A 

laboratory running standard (Merck Gel: δ
13

C = -20.57 ‰, δ
15

N = 6.8 ‰, C%= 43.83, N% = 

14.64) and blank sample were run after every 12 unknown samples. All δ
15

N and δ
13

C values 

were reported as ‰ vs Vienna Pee-Dee Belemnite (VPDB) and air respectively.  

All results were expressed in delta notation using a per mil (‰) scale using the standard 

equation: δX (‰) = [(Rsample-Rstandard)/Rstandard-1] x 1000, where X= 
15

N or 
13

C and R represents 

15
N/

14
N or 

13
C/

12
C respectively. 

 

2.3 Results 

2.3.1 Bloukrans-Kowie River environmental variables 

Physicochemical variables 

The pH values on the Bloukrans-Kowie River ranged between 7.85 – 8.58, with site A8 

(8.58) and A10 (8.57) showing the most alkaline pH values, and site A3 (7.85) showing the most 

acidic pH value. The pH values were significantly different between study sites (F8, 115 = 10.24, p 

< 0.001), with site A7, A8 and A10 appearing to drive the majority of the pH variation (Table 

2.3, Figure 2.5A). Electrical conductivity (F8, 115 = 11.54, p < 0.001), salinity (F8, 115 = 11.84, p < 

0.001) and TDS (F8, 115 = 13.85, p < 0.001) showed similar trends and strong agreement in 

differences between sites, with site A6, A9 and A10 significantly different from all other sites 

(Table 2.2, Figure 2.4B, C, E). Where site A10 showed the highest values for all three variables 

(EC = 2023.20 µS, TDS = 1495.40 ppm, salinity = 1.05 ppt), while site A9 demonstrated the 

lowest (EC = 350.20 µS, TDS = 220.60 ppm, salinity = 0.15 ppt) (Figure 2.4B, C, E). DO values 

ranged between 3.70 – 6.03 mg/L and were significantly different between sites (F8, 115 = 15.96, 

p < 0.001), with site A6, A7, A8, A9 and A10 significantly different from all other sites on the 

river system (Table 2.3, Figure 2.4F). Site A8 had the highest (6.03 mg/L) and site A2 (3.70 

mg/L) had the lowest DO concentrations (Figure 2.5D). There were no significant differences in 



29 
 

water temperature between sites in the Bloukrans-Kowie River (Figure 2.5F) averaged over the 

13 month sampling period (August 2013 – August 2014; F8, 115 = 0.62, p > 0.05). 

Micronutrient concentrations 

The composition of total dissolved salts in the Bloukrans-Kowie River was dominated by 

major ions and cations (HCO3
-
, Cl

-
 , S04

2- 
and Ca

2+
, Mg

2+
, K

+
 and Na

+
). Upstream sites (A2, A3, 

A4 and A5) showed increased concentrations of phosphorus (P), ammonium (NH4-N) and nitrate 

(NO3-N), while sites on the upper reaches of the Kowie River (A9 and A6) and the site below the 

confluence (A10), showed lower concentrations of the same compounds (Appendix 2). 

 

2.3.2 Bushmans-New Years River environmental variables 

Physicochemical variables 

The pH values on the Bushmans-New Year’s River ranged between 7.72 – 9.25. Site B4 

demonstrated the highest pH value (9.25) for the period of this study (Table 2.4, Figure 2.6A). 

EC (F9, 130 = 12.48, p < 0.001), salinity (F9, 130 = 9.21, p < 0.001) and TDS (F9, 130 = 12.81, p < 

0.001) showed similar trends and strong agreement in differences between sites, with site B7, B8 

and B9 significantly different from all other sites on the river (Table 2.4, Figure 2.6B, C, E). Site 

B8 on the Bushmans-New Year’s River showed the highest values (EC = 2211.70 µS, TDS = 

1565 ppm and salinity = 1.17 ppt), while B10 demostrated the lowest (EC = 551.10 µS, TDS = 

391.70 ppm and salinity = 0.34 ppt) (Figure 2.6 B, C, E). There were no significant differences 

in water temperature (F9, 130 = 0.61, p > 0.05) and DO concentrations (F9, 130 = 1.26, p > 0.05) 

between sites in the Bushmans-New Year’s River (Table 2.4, Figure 2.6D, F) averaged over the 

13 month sampling period (August 2013 – August 2014). 

 

Micronutrient concentrations 

The composition of total dissolved salts in the Bushmans-New Year’s River systems was 

similar to the Bloukrans-Kowie, comprised predominantly of ions and cations HCO3
-
, Cl

-
 , S04

2- 

and Ca
2+

, Mg
2+

, K
+
 and Na

+
. The highest concentrations of P, NH4-N and NO3-N were observed 

at site B4; the ASTWs sewerage settling pond.  Interestingly, none of the sites adjacent to B4 

showed substantial increase in phosphorous, NH4-N or NO3-N concentrations. Along with B4, 

site B2 recorded P levels > 0.50 mg/L, while the remaining 8 sites had much lower levels < 0.50 

mg/L. Sites B1 and B10 showed [NO3-N] < 0.50 mg/L, while the rest of the study sites exhibited 
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a range of between 0.50 – 1.56 mg/L (with the exception of site B2 = 4.37 mg/L). 

Comparatively, NH4-N concentration was recorded > 0.50 mg/L at six sites, with 

(B4>B1>B6>B3>B5>B2), leaving four sites with a concentration of < 0.5; site B7>B10>B>B9 

(Appendix 2). 
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Figure 2.6: (A) pH, (B) electrical conductivity (µS), (C) total dissolved solids (ppm), (D) dissolved oxygen (mg/L), (E) salinity (ppt) 

and (F) water temperature (ºC) from the nine sampled study sites (A2 - A10) on the Bloukrans-Kowie River system, Eastern Cape 

South Africa averaged over the 13 month sampling period (August 2013 - August 2014). Error bars -  represent ± 1 standard deviation, 

the black line represents the mean and the box -  represents the minimum and maximum values. 
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Figure 2.7: (A) pH, (B) electrical conductivity (µS), (C) total dissolved solids (ppm), (D) dissolved oxygen (mg/L), (E) salinity (ppt) 

and (F) water temperature (ºC) from the nine sampled study sites (A2 - A10) on the Bushmans-New Year’s River system, Eastern 

Cape South Africa averaged over the 13 month sampling period (August 2013 - August 2014). Error bars -  represent ± 1 standard 

deviation, the black line represents the mean and the box -  represents the minimum and maximum values.
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Table 2.3: Tukey’s HSD post-hoc tests investigating differences in physicochemical variables 

averaged over time (August 2013 – August 2014) for the nine sites on the Bloukrans-Kowie river 

system. No significant differences were seen in water temperatures between sites, and are thus 

not presented. Bolded values show a significance level of p < 0.05. 

Bloukrans-Kowie River Sites A2 A3 A4 A5 A6 A7 A8 A9 A10 

pH A2 -         

F8,115 = 10.24, p < 0.001 A3 0.904 -        

 A4 1.000 0.944 -       

 A5 0.994 0.391 0.984 -      

 A6 0.999 0.671 0.999 0.999 -     

 A7 0.003 0.000 0.002 0.063 0.014 -    

 A8 0.000 0.000 0.000 0.008 0.001 0.999 -   

 A9 0.519 0.024 0.430 0.970 0.802 0.552 0.165 -  

 A10 0.000 0.000 0.000 0.011 0.001 0.999 1.000 0.193 - 

           

EC A2 -         

F8,115 = 11.54, p < 0.001 A3 0.998 -        

 A4 0.999 0.999 -       

 A5 0.999 1.000 1.000 -      

 A6 0.006 0.000 0.001 0.001 -     

 A7 0.999 0.999 1.000 1.000 0.001 -    

 A8 1.000 0.999 0.999 0.999 0.003 0.999 -   

 A9 0.000 0.013 0.005 0.007 0.000 0.006 0.002 -  

 A10 0.029 0.003 0.006 0.007 0.999 0.006 0.018 0.000 - 

           

TDS A2 -         

F8,115 = 13.85, p < 0.001 A3 0.048 -        

 A4 0.097 0.999 -       

 A5 0.108 1.000 1.000 -      

 A6 0.828 0.000 0.000 0.000 -     

 A7 0.079 1.000 1.000 1.000 0.001 -    

 A8 0.142 0.999 1.000 1.000 0.001 1.000 -   

 A9 0.000 0.008 0.004 0.005 0.000 0.005 0.002 -  

 A10 0.926 0.000 0.002 0.003 1.000 0.001 0.004 0.000 - 

           

Sal A2 -         

F8,115 = 11.84, p < 0.001 A3 0.999 -        

 A4 0.999 1.000 -       

 A5 0.999 1.000 1.000 -      

 A6 0.003 0.000 0.005 0.001 -     

 A7 0.999 1.000 1.000 1.000 0.000 -    

 A8 1.000 0.999 0.999 0.999 0.004 0.999 -   

 A9 0.001 0.009 0.008 0.010 0.000 0.006 0.001 -  

 A10 0.017 0.002 0.003 0.004 0.999 0.004 0.020 0.000 - 

           

DO A2 -         

F8,115 = 15.96, p < 0.001 A3 0.999 -        

 A4 0.999 1.000 -       

 A5 0.975 0.999 0.999 -      

 A6 0.000 0.000 0.000 0.002 -     

 A7 0.000 0.000 0.000 0.000 0.999 -    

 A8 0.000 0.000 0.000 0.000 0.932 0.985 -   

 A9 0.000 0.000 0.000 0.002 1.000 1.000 0.952 -  

 A10 0.000 0.000 0.000 0.000 0.985 0.998 0.999 0.991  
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Table 2.4: Tukey’s HSD post-hoc tests investigating differences in physicochemical variables 

averaged over time (August 2013 – August 2014) for the ten sites on the Bushmans-New Year’s 

river system. No significant differences were seen in water temperatures or dissolved oxygen 

concentrations between sites, and are thus not presented. Bolded values show a significance level 

of p < 0.05. 

Bushmans-New Year’s 

River 

Sites B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

pH B1 -          

F9,130 = 8.26, p<  0.001 B2 0.143 -         

 B3 0.811 0.984 -        

 B4 0.000 0.000 0.000 -       

 B5 0.999 0.347 0.963 0.000 -      

 B6 0.957 0.894 0.999 0.000 0.997 -     

 B7 0.993 0.731 0.999 0.000 0.999 1.00 -    

 B8 0.141 1.000 0.983 0.000 0.342 0.891 0.727 -   

 B9 0.074 1.000 0.940 0.001 0.211 0.769 0.559 1.000 -  

 B10 0.605 0.998 0.999 0.000 0.859 0.999 0.991 0.999 0.990 - 

            

EC B1 -          

F9,130 = 12.48, p < 0.001 B2 1.000 -         

 B3 0.958 0.973 -        

 B4 0.765 0.814 0.999 -       

 B5 0.984 0.991 1.000 0.999 -      

 B6 0.008 0.011 0.312 0.634 0.220 -     

 B7 0.000 0.000 0.002 0.014 0.001 0.849 -    

 B8 0.000 0.000 0.000 0.000 0.000 0.354 0.999 -   

 B9 0.000 0.000 0.000 0.001 0.000 0.476 0.999 1.000 -  

 B10 1.000 1.000 0.935 0.704 0.972 0.006 0.000 0.000 0.000 - 

            

TDS B1 -          

F9,130 = 12.81, p < 0.001 B2 1.000 -         

 B3 0.976 0.999 -        

 B4 0.808 0.870 0.999 -       

 B5 0.993 0.997 1.000 0.999 -      

 B6 0.008 0.012 0.252 0.580 0.168 -     

 B7 0.000 0.000 0.000 0.007 0.000 0.789 -    

 B8 0.000 0.000 0.000 0.000 0.000 0.346 0.999 -   

 B9 0.000 0.000 0.000 0.001 0.000 0.455 0.999 1.000 -  

 B10 1.000 1.000 0.961 0.755 0.986 0.005 0.000 0.000 0.000 - 

            

Sal B1 -          

F9,130 = 9.21, p < 0.001 B2 0.999 -         

 B3 0.950 0.999 -        

 B4 0.723 0.949 0.999 -       

 B5 0.973 0.999 1.000 0.999 -      

 B6 0.025 0.111 0.554 0.868 0.472 -     

 B7 0.000 0.000 0.009 0.051 0.006 0.851 -    

 B8 0.000 0.000 0.000 0.002 0.000 0.276 0.997 -   

 B9 0.000 0.000 0.018 0.089 0.013 0.927 1.000 0.986 -  

 B10 0.999 1.000 0.997 0.933 0.999 0.095 0.000 0.000 0.000 - 
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Euclidean Distance Similarity dendrogram 

Based on Euclidean distance similarities (micronutrients), five main clusters were 

identified. Cluster 1 represented site A9, which was the least disturbed and situated in the upper 

reaches of the Kowie River amongst a natural and untransformed landscape on the North-eastern 

direction of Grahamstown. Cluster 2 represented sites found only on the Bushmans-New Year’s 

River system e.g. B1-B3, B5 and B10. These sites for the majority of the study were isolated 

pools due to the insufficient rain fall from the region, therefore restricting water flow and likely 

experienced similar physical and chemical conditions. Cluster 3, represented site B4, the ASTWs 

sewerage settling pond which was characterized by extremely high inorganic salt concentrations 

and was clearly different from the rest of the sampled study sites. B4 was also set back from and 

not directly connected to the Bushmans-New Year’s River. Cluster 4, was a combination of 

confluence sites e.g. B8, B9, A10, Nature Reserve sites A6, A8 and site A7 which was situated 

within a dense agricultural lands. Cluster 5 comprised of two geographically similar study sites 

(B6 and B7) both within the Bushman Sands Golf Course and approximately about 1.20 

kilometers apart. Also the cluster included Bloukrans River upstream sites A2, A3, A4 and A5 

regularly experience anthropogenic inputs including waste material disposal, sewage out-fall and 

run-off from agricultural land (Figure 2.7)                             

 

Principal Co-ordinate Analysis (PCoA)  

PCoA revealed 17 of the 25 environmental variables to be strongly correlated (Pearson 

correlation, r = 0.70) to sampled study sites and explained about 67.40% variation. Of the 17 

environmental variables, eight variables showed to be highly correlated with the remaining nine 

variables e.g. NO3-N and K, pH and HCO3, B and Ca, TDS and Na and EC and CO3, Cl and Mg. 

Therefore K, HCO3, Ca, Na, EC, CO3 and Mg were removed from the analysis using the 

exclusion method and only nine environmental variables e.g. NH4-N, NO3-N, P, F, SO4, B, TDS, 

Cl and Fe were used to explain the study sites similarity pattern.  

Sites A2, A3, A4, A5 and B4 were characterized by NH4-N, NO3-N and P, which are 

indicative of high anthropogenic inputs and in order of most least impacted was A2<A3<A4< 

B4. Site A5 indicated high concentration of fluorine (F), whilst site A7 and A8 both had high 

concentrations of sulphate (SO4) and boron (B). Total dissolved solids and chlorine (Cl) were 
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correlated to sites B6, B8, B9, A10 and A6. Site B7 and A9 appeared to be inversely correlated 

to NH4-N, NO3-N and P, thus theoretically represent sites with higher water quality. And lastly 

sites B1, B10, B5, B3 and B2 appeared to be driven by high concentrations of iron (Fe).  

 

 

 

 

Figure 2.8: Euclidean distance similarity dendrogram based on similarity of environmental 

variables on sampled study sites in both the Bloukrans-Kowie (A) and the Bushmans-New 

Year’s Rivers (B). Each symbol represents a different land-use/site description: (▲) - sewage 

input; (▼) - dairy farms; (♦) - confluence; (■) - undisturbed habitats; (●) - isolated pools; (+) - 

golf course (commercial fertilizer). 
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Figure 2.9: Principal Co-ordinate Analysis ordination illustrating environmental variables that 

showed a strong correlation towards all sampled study sites on both the Bloukrans-Kowie (A 

sites) and the Bushmans-New Year’s Rivers (B sites). Each symbol represents a different land-

use/site description: (▲) - sewage input; (▼) - dairy farms; (♦) - confluence; (■) - undisturbed 

habitats; (●) - isolated pools; (+) - golf course (commercial fertilizer). 
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2.4 Discussion 

As water physico-chemistry is often used as the sole proxy for the assessment of water 

quality, a short discussion of the physicochemical and micronutrients difference between sites 

within each system is appropriate and follows below. 

 

Physicochemical variables 

Water quality assessments are a measurement of the combined effects of the physical 

attributes and chemical constituents of a water sample, which have the potential to affect not 

only ecosystem ecology, but also the human use of surface water for basic services (e.g. 

domestic ablutions, recreation purposes and irrigation schemes). Thus water quality can have far 

reaching effects (beneficial or detrimental) on aquatic ecosystems and also to the end users 

(humans; Palmer et al. 2004). One of the mandates of the Department of Water and Sanitation 

(DWS), previously known as Department of Water Affairs and Forestry (DWAF), South Africa, 

as well as international organizations such as the World Health Organization (WHO) and the 

European Union (EU) is to ensure that the quality of water resources remains fit for recognized 

water uses, while also maintaining and protecting the viability of aquatic ecosystems, thus 

supporting the sustainable use of freshwater resources (Chapman 1996, DWAF 1996A).  

South African Water Quality Guidelines (SAWQG) provide water quality managers with 

a series of physicochemical concentration guidelines deemed to be acceptable within South 

African waterways, and are referred to as the targeted water quality range (TWQR) (DWAF 

1996A). For example pH ranges for effluent discharge in South African river systems is 5.50 - 

7.50, for domestic water use and healthy aquatic ecosystems is 6.00 - 9.00 (DWAF 1996B, C, & 

D). For the duration of this study, the average pH of 16 of the 19 sites fell into the required 

TWQR for domestic water use and aquatic ecosystem health. However, unsurprisingly, the 

ASTWs sewerage settling pond (B4) had a pH value much higher than the TWQR (9.25). This 

site frequently receives unprocessed human waste from the Alicedale settlements and is not 

directly connected to the Bushmans-New Year’s River. Similarly, site A2, which is frequently 

flooded by raw sewage (sewerage pipe leaks) and site A3 which is situated directly on the 

junction between BVSTWs effluent output and Bloukrans River, had pH > 7.50. These values 

exceed the TWQR for effluent discharge in river systems (DWAF 1996B), although they remain 

within the range for domestic water use and healthy aquatic ecosystems (DWAF 1996C & D). 
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As expected EC, TDS and salinity were highly correlated (Deksissa et al. 2003, Fatoki & 

Awofolu 2003, Palmer et al. 2004) and showed similar patterns between sites in this study.  The 

target guideline range for electrical conductivity for effluents for example is 70 000 µS, while 

domestic water use and aquatic ecosystems health requires no more than 250 000 µS (DWAF 

1996B & C). This limit was not exceeded at any site, however, these findings differ from that of 

Hosking & du Preez (2002) who stated that Kowie River waters are mostly suitable for livestock 

watering only. This was attributed to the water’s high salt content (which directly affects EC and 

TDS) which suggested that Kowie River water was also unsuitable for irrigation and/or domestic 

uses. The findings by Hosking & du Preez (2002) also highlight the pitfalls of using 

physicochemical measurements as a direct measure of water quality. Furthermore, Deksissa et al. 

(2003) illustrated that a river’s flow rate and water level have an inversely proportionate effect of 

the water’s dissolved salts (EC, TDS and salinity). Koning et al. (2000) also emphasized that 

lentic conditions can also cause salts to alter and/or change to sediments, leading to a decrease in 

dissolved salts and conductivity. In the present study the Bushman-New Year’s River water had 

a higher salinity than the Bloukrans-Kowie River. It is likely that this can be correlate with a lack 

of water flow and low water levels, yielding more salt concentrations on the Bushmans-New 

Year’s River systems as described by Deksissa et al. (2003). Dissolved oxygen concentrations of 

< 3.00 mg/L adversely affect freshwater invertebrate communities (Chapman 1996). All sampled 

study sites showed DO concentration well above the proposed guideline. However the present 

study contradicted with Chapman (1996) findings, were sites showed to be severely impacted by 

anthropogenic disturbance, waste material disposal, sewage and industrial pollution as well as 

invasion of alien plants indicated DO between 3.00 mg/L and 4.00 mg/L e.g. site A2, A3, A4 and 

A5; site B1, B5, B6, B7 and B10 which were all not regarded conducive but heavily impacted. 

Above all, site B4 the ASTWs sewerage settling pond had the highest DO concentration. This is 

not surprising as sewerage settling ponds are highly nutrient rich and design to maintain good, 

algal growth and activity, to support aerobic bacterial digestion. From a South African point of 

view, DWAF (1996) and Fatoki et al. (2003) indicate that largely natural surface waters are 

normally saturated with DO (> 80%). And in context unpolluted water records DO concentration 

of about 8 to 10 mg/L at 25 ̊C and concentration below 5 mg/L are regarded to adversely affect 

aquatic life (Fatoki et al. 2003) and this was a different case with Chapman (1996)’s observation. 

Water temperature in both river systems was fairly stable and was not significantly different 
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between study sites. Overall however, the Bushmans-New Year’s River system had warmer 

waters than the Bloukrans-Kowie River system, which is likely due to limited or no water flow 

(standing water) on the Bushmans-New Year’s River system.  

 

Micronutrients 

A number of sites (A3, A4, A5 and B3, B4, B5) on the Bloukrans-Kowie River and 

Bushmans-New Year’s River exceeded the TWQR guidelines for N03
-
-N concentrations for 

effluent discharge (< 1.50 mg/L; DWAF 1996D). These sites all experience regular 

anthropogenic inputs, with A3 directly adjacent to the BVSTWs out-fall, also site A4 and A5 

both approximately 0.82 kilometers and 5.70 kilometers downstream A3 respectively. 

Substantial distance based downstream dilution effects on the concentration of NO3
-
-N (Bere 

2007) were expected in sites A4 and A5. However the high levels of [NO3-N] at both 

downstream sites suggest an additional anthropogenic inputs were at play, such as run-off from 

the fertilization of agricultural lands with cow manure (Tucker et al. 1999, Constanzo et al. 

2001). The presence of large dairy farm on the banks of A4 and A5 support this idea. The sites 

on the Bushmans-New Year’s River that demonstrated elevated levels of NO3
-
-N included the 

sewerage settlement pond (B4; 1.56 mg/L) and the closely adjacent B3 (1.45 mg/L). While the 

levels in the isolated sewerage settlement pond are not an immediate concern, the level of NO3
-
-

N at B3 is at the very upper end of the TWQR acceptable limits and suggests inputs from 

ASTWs settlement pond via seepage, leaching or overtopping events during high rainfall may be 

impacting the nearby river system. DWAF (1996A) and Jordaan & Bezuidehout (2013) 

published a limit of 6.00 mg NO3
-
 N/L for domestic water use and aquatic ecosystem health, and 

few sites on either the Bloukrans-Kowie or Bushmans-New Year’s rivers exceeded the limit. The 

extensions included sites adjacent to or nearby sewerage out-falls (A3, A4, A5 and B3, B4, B5). 

Thus, overall [NO3-N] are not currently a threat to the overall health of the Bloukrans-Kowie or 

Bushmans-New Year’s rivers aquatic biota or to domestic water use for agricultural means or 

subsistence communities. However, eutrophication is still an ongoing concern (Hill et al 2011; 

2012), as high NO3-N loads in some sites along both river systems suggests that a certain degree 

of ecological degradation may occur as N-loads continues and it requires further monitoring to 

prevent widespread ecosystem deterioration.  
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TWQR for phosphorus (P) in effluent discharge according to Oberholster & Ashton 

(2008), was said to be 1.00 mg/L and as expected site A3, A4, A5 and B4 which are adjacent  to 

sewerage out-falls and also mentioned to have on the nitrate section exceeded this limit. P 

content was found to be approximately < 2.00 mg/L for majority of the sites on both systems, 

with sites closer to sewerage out-falls having P concentrations between 2.00 – 3.00 mg/L. The 

SAWQG however have much less conservative limits of 5.00 mg/L for effluents, and all sites 

fell under this value. High levels of P are thus currently not a concern in the river, reducing the 

likelihood of opportunistic algal and macrophytes growth within these systems (DWAF 1996C). 

Ammonium (NH4
+
-N) on the other hand is an extremely soluble nitrogen derivative that is easily 

transported between source and sink and is also a major component of raw sewage according to 

Morrison et al. (2001). At high pH levels (> 8.5), NH4
+
-N is converted into ammonia (NH3), 

which can be highly toxic to aquatic organisms (fish in particular)  at concentrations exceeding 

2.00 mg/L (de Villiers & Thiart 2007). Due to the toxicity of NH3 to aquatic life, the European 

Union has set a safety limit of 0.005 – 0.025 mg NH3-N/L (Chapman 1996).  In South Africa 

however, SAWQG for NH3 in the water column for domestic water use is 1.00 mg NH3/L 

(DWAF 1996A), for aquatic ecosystem integrity is 0.007 mg NH3/L (DWAF 1996B) and 

effluent discharge had a limit of 1.50 mg NH3/L (assuming pH > 8.5 in all cases).  None of the 

sites (with the exception of the ASTWs sewerage settlement pond) from either river system 

showed an average pH > 8.5 during the course of the study, suggesting that the majority of 

NH4
+
-N was not converted to NH3. However, high levels of NH4

+
-N are still important to 

monitor because of the influence of high nutrient rich (NO3-N and NH4-N) from sewerage 

treatments works on adjacent and downstream sites experiencing high pollution nutrient 

indicators (NO3-N and NH4-N). Palmer et al. (2004) and Fatoki & Awofolu (2003) also 

emphasize the crucial role pH in freshwater ecosystems, stating that “pH determines the 

chemical species (and thus their potential toxicity) of many elements in freshwater ecosystems 

such as aluminum (Al), cadmium (Cd) and zinc (Zn) which are mostly mobilized following 

acidification of the system”.  

 

Other important metal contaminants (Zinc, Iron, Manganese and Copper) 

Fatoki & Mathabatha (2001) consider heavy metals as stable and continuous 

contaminants of aquatic ecosystems, considering in particular zinc (Zn), copper (Cu), iron (Fe) 
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and manganese (Mn). These metals are fundamental for organismal metabolic activities, but high 

concentrations of these metals can also be toxic. The SAWQG guideline for Zn in domestic 

water for example is 3.00 mg/L, and for aquatic ecosystems inhabitants, water should fall 

between 0.01 - 0.02 mg/L (DWAF 1996A & B; 1998). These limits were not exceeded at any 

study site in either river systems, however three sites (A3, A6 and A8) were at the maximum of 

the aquatic ecosystem limit, suggesting anthropogenic inputs at these sites may eventually 

impact ecosystem integrity (Fatoki & Awofolu 2003).  The source of zinc within waterways is 

influenced in some cases by catchment geology (likely the case for sites A6 and A8) but is often 

also the result of sewage contamination. SAWQG set safe limits of copper at 1.00 - 3.00 mg/L 

for domestic water use, and all sites in both systems fell within a range of 0.01 - 0.02 mg/L. 

Therefore from a purely micronutrient perspective, inputs from both the BVSTWs and ASTWs 

and run-off from adjacent agricultural lands have resulted in aquatic ecosystems whose water 

exceeds both the SAWQG guidelines for safe effluent discharge and in some cases water for 

domestic and aquatic biota use. There are numerous socio-economic and ecological factors 

which may be driving these issues, including a lack of proper waste management practices, lack 

of infrastructure or competent personnel and drought in some cases.  

 

Physicochemical and micronutrients ananlysis have, to some extent provided useful 

information and categorization of water quality in the Bloukrans-Kowie and Bushmans-New 

Year’s rivers. There are many challenges however, associated with using micronutrient analyses 

and physicochemical variables to describe water quality and ecosystem intergrity, particularly as 

instantaneous measurements are highly variable in both time and space. Coupling these 

evironmental variables with time integrated biological data e.g. aquatic plants and 

macroinvertebrates, can provide better resolution towards biological monitoring.  

 

Therefore the following Chapter 3, will incorporate on-site prevailing environmental 

variables (Chapter 2) with abundances, composition and biodiversity of aquatic 

macroinvertebrates, to give a better understanding of ecologically important environmental 

variables that drives the composition of aquatic biota and the ecological state of both the 

Bloukrans-Kowie and Bushmans-New Year’s River systems. 
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Mapping nitrogen loading in freshwater systems: using aquatic biota 

CHAPTER THREE 

COMMUNITY COMPOSITION OF AQUATIC 

MACROINVERTEBRATES IN TWO RIVER SYSTEMS, EASTERN CAPE, 

SOUTH AFRICA 

 

3.1 Introduction 

Previously, the majority of ecological studies have mostly concentrated on terrestrial 

ecosystems, and only recently that aquatic ecosystems have gained some attention (Dudgeon et 

al. 2006, de Moor & Day 2013). However, marine ecosystems represent about 70% of the 

Earth’s surface, while freshwater ecosystems represent the smallest percent of the Earth’s 

surface, yet they are considered to be the most disturbed ecosystems worldwide (Covich et al. 

1999; 2004). According to Pearce (1998) and Heal (2000) the nature of these freshwater 

disturbances compromises the social, ecological and economic services of these ecosystems and 

unfortunately in most cases the damage is said to be irreversible. As a consequence, drastic 

declines in aquatic biodiversity, which have a global effect on the storage, cycling and recycling 

of materials, nutrients and energy flow, have been reported (Dallas & Day 1993). Thus, 

freshwater ecosystems have been used to investigate environmental health using freshwater 

water organisms which act as integrators of anthropogenic effects accumulated from land-use 

practices within catchments. This practice has been steadily developing in recent literature, with 

tests and applications in numerous aquatic ecosystem studies on a global scale been successful 

(e.g. Walley & Hawkes 1996, Chutter 1998, Rosenberg et al. 1986, Masese et al. 2009, Bere & 

Nyamupingidza 2014). Due to the high levels of disturbance experienced by freshwater 

ecosystems, to mention one; dragonflies (Odonata) have been reported  threatened (Samways & 

Taylor 2004, Samways 2006, Simaika & Samways 2009, Simaika & Samways 2012). However, 

predictions have highlighted that a substantial number of other aquatic insects will be candidates 

for inclusion on the IUCN red list if the current freshwater threats are not attended (Samways 

2006). Collectively Allan & Flecker (1993), Ndaruga et al. (2004), Dudgeon et al. (2006), 

Beyene et al. (2009) and de Moor & Day (2013) categorized freshwater threats into five 

interrelated groups; over-exploitation, water pollution, habitat loss and/or degradation, alien 
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species invasion and climate change. All of these are commonly considered to be driving factors 

behind the global decline in freshwater biodiversity, and in some cases leading to ecosystem 

collapse. South Africa is an arid country, freshwater is in high demand, however multiple 

anthropogenic stressors, including sewerage and agricultural run-off, have find their way into 

majority of South Africa’s rivers (Dallas & Rivers-Moore 2014). These pollution inputs have 

modified the physical and chemical properties of freshwater ecosystems, which in turn have 

resulted in the extirpation of sensitive indigenous aquatic species and promotion and the 

establishment of more tolerant alien species (Coetzee & Hill 2012). Hill et al. (2012) and 

Theobald et al. (2015) suggest that such rapid land transformation and the exploitation of natural 

resources might be attributed through increased human population and related human footprint 

on the environment, particularly in developing countries. Furthermore it is also anticipated that 

with recent climate change cases, organisms that manage to withstand current threats (e.g. 

eutrophication, impoundments, pollution) may or may not survive the additional pressure exerted 

by long term changes in climate (Heino et al. 2007).  

 

Rivers are longitudinal systems divided into three zones e.g. head waters, foothill reaches 

and lower reaches, and driven largely by the flow of freshwater. These zones are distinct in their 

physical, chemical and biological characteristics which are primarily underpinned by 

geographical location and altitude (Vannote et al. 1980, McGeoch 1998, Allan & Flecker 1993). 

This was clearly illustrated by Covich et al. (1999), who showed that the spatial and temporal 

distribution of aquatic macroinvertebrates have differing habitat preferences which can be 

closely correlated to specific physical and chemical variables range (e.g. water temperature, 

concentration of dissolved salts, water velocity and substrate types). However, Ndarunga et al. 

(2009) argues that in the age of the ‘anthropocene’, these concepts seldom hold true for the 

majority of lotic systems due to the longitudinal changes in environmental variables caused by 

anthropogenic activities, due to the ecological settings of river systems in their catchments 

subjected to waste easily. Therefore, in order to monitor and quantify such anthropogenic 

changes there is a need for techniques that will be able to reflect changes within such complex 

ecosystems (Hill et al. 2012, Simaika & Samways 2012). Previously, in many developing 

countries, the assessment of stream’s ecological health and water quality was determined using 

only physical and chemical properties (Beyene et al. 2009, Beneberu et al. 2014). These types of 
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assessment however, only provide an instantaneous “snap shot” of aquatic ecosystem health, 

because of the potential for water chemistry to be highly variable and influenced by flow regimes 

and the time of the day the water sample was taken (Dickens & Graham 2002, Nilsson & 

Renöfält 2008).  Beneberu et al. (2014) also further emphasized that operating costs for the 

laboratory equipment required for chemical analysis and in particular, heavy metals, is very 

costly. Therefore, only recently that the cost effective and non-specialist biological monitoring 

techniques were introduced, that can provide a more temporal and spatially integrated measure of 

water quality, and involving the use of aquatic macroinvertebrates (Chutter 1998, Dallas 2004, 

Bere & Nyamupingidza 2014). Aquatic macroinvertebrates constitute an important component of 

aquatic biodiversity (Chutter 1994). As a group they are sensitive to disturbance and respond to 

both natural and man-induced changes within the environment (Chutter 1998). With ecological 

research developments in South Africa, the recent establishment of the NAEHMP-RHP involves 

the use of aquatic macroinvertebrates as reliable biological monitoring tools to characterize the 

ecological health of South Africa’s freshwater ecosystems (Dallas 2007). This programme aims 

to promote standardized and continuous monitoring for southern African river systems and 

provide reports on river health and river rehabilitation implementation programmes. This is 

currently implemented using the South African Scoring System version 5 (SASS5) (Chutter 

1994, Dickens & Graham 2002). In general, the SASS5 technique focuses on the sensitivity or 

tolerance of aquatic macroinvertebrates to water quality impairment. Aquatic macroinvertebrates 

have been considered good biological indicators for aquatic ecosystems since the late 1970’s due 

to their (1) diversity and ability to colonize the majority of aquatic habitats, (2) dispersal ability, 

(3) capacity to show a measurable response towards external disturbances, (4) ease of 

identification (to family level for SASS5) and sampling and, (5) sedentary nature, indicating 

local disturbance (Rosenberg et al. 1986, Chutter 1994, Dickens & Graham 2002). For SASS5 

assessments, each family is assigned a sensitivity weighting between 1 (very tolerant to 

pollution) and 15 (extremely sensitive to pollution). The SASS score, which is the sum of the 

sensitivity values of sampled/observed aquatic macroinvertebrates, is used to: (1) assess impacts 

of pollution and disturbance e.g. lower SASS scores = higher impact and (2) assess water quality 

and ecological health, using the Average Score per Taxa (ASPT) = SASS score/Number of 

observed taxa (Chutter 1998).  SASS score and ASPT indices are very similar to the biological 

monitoring standards used globally (e.g. in Europe (BMWP) and Australia (AURIVAS) (Walley 
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& Hawkes 1996, Niemi & McDonald 2004). The SASS5 technique has been vigorously tested, 

widely used and further adopted by a number of southern African countries, such as Zimbabwe, 

Zambia and Mozambique, to assess water quality and ecological health of lotic systems (Bere & 

Nyamupingidza 2014). These theories, concepts and application techniques have assisted in 

determining the environmental water requirements in the context of legislation protecting South 

African water resources (National Water Act, No. 36 of 1998), the environment (National 

Environmental Management Act, No. 107 of 1998) and aquatic biodiversity (Biodiversity Act, 

No. 10 of 2004) (Dickens & Graham 2002, Dallas 2007). 

 

This chapter aims to evaluate the ecosystem health, water quality and impact of 

anthropogenic activities within different land-uses (e.g. sewerage out-fall, waste disposal and 

agricultural run-off) using the SASS5 technique on the Bloukrans-Kowie and Bushmans-New 

Year’s River systems, Eastern Cape, South Africa.  

 

3.2 Material and Methods 

3.2.1 Study sites & Data collection 

Details on study sites, sample collection and SASS5 techniques are given in Chapter 2. 

 

3.2.2 Data Analysis 

General aquatic macroinvertebrate abundances 

Aquatic macroinvertebrate community composition was compared between the two river 

systems using percentage abundances and unique versus shared individual taxa, using hand 

scored Absence (0)/ Presence (1) data (Appendix 4). All graphs and figures were created using 

SigmaPlot 10.0 (Systat 2006) and Microsoft Excel 2010. 

 

South African Scoring System Version 5 (SASS5) and Shannon-Weiner index (H) 

SASS scores, ASPT and Shannon-Weiner index were computed separately for each study 

site in each river system. SASS scores = the sum of all observed taxa sensitive value, ASPT = 

the sum of SASS scores/Number of Taxa (Appendix 5) (Chutter 1994) and the Shannon-Weiner 
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index was determined using the Shannon (1948), Weaver & Shannon (1949) and Henderson 

(2003) function: 

ppH ei

S

i

obs

.log
1




 , where ip = proportion of sample in the i th
 species. 

A Nonparametric analysis, Kruskal-Wallis ANOVA was completed to investigate 

significant differences between biological indices (e.g. SASS scores, ASPT and Shannon-Wiener 

index (H)) from each site, separately for each river system. SASS score, ASPT and H were 

considered dependent variables and study sites was the grouping variables. Significance was 

considered at a confidence interval of 99.95% (p < 0.05). A multiple (2 tailed) comparison of 

mean ranks of all group test was further completed to indicates sites that were significant from 

the rest.   

The strength of association between SASS scores versus ASPT and ASPT versus H was 

tested using the Pearson’s correlation coefficient (r) at a confidence interval of 99.99% (p < 

0.01). All statistics were completed in Statistica 12 (Stat Soft Inc. 2008-2014) and SigmaPlot 

10.0 (Systat 2006). 

 

Aquatic Macroinvertebrate Community Analysis  

Bray-Cutis Similarity 

The estimated abundance of macroinvertebrates collected on quarterly basis was summed 

over all four months to represent the entire study period. The data was first pre-treated by square-

root transforming, normalized and converted to Bray-Curtis resemblance matrix. This was to 

ensure that there was an internal adjustment to place all variables on a common scale. Using 

PRIMER v6 add-on package PERMANOVA+, a Bray-Curtis similarity dendrogram, using the 

group average method was performed to assess the similarity between sites based on abundance 

and absence/presence of macroinvertebrates. This was following Clarke & Warwick (2001)’s 

recommendation that Bray-Curtis similarity is more useful in assessing similarity in ecological 

studies because it is not affected by absences and gives more weight to abundance in comparison 

taxa/species. 
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RELATE function 

The relatedness and/or correlation between macroinvertebrates abundance (Bray-Curtis 

distance matrix) and the environmental variables (Euclidean distance matrix, Chapter 2) was 

analyzed using the RELATE function (Permutation test N = 999, p < 0.05). PRIMER v6 add-on 

package PERMANOVA+ allows users to compare two sets of multivariate data based on a 

matching set of samples, by calculating a rank correlation coefficient between all the elements of 

their similarity matrices (Clarke & Warwick 2001). 

 

BEST function 

The BEST function has the ability to identify a set of environmental variables that best 

describe a set of biological data (e.g. macroinvertebrate abundance). Using the BVSTEP, a 

stepwise selection method (PRIMER v6 add-on package PERMANOVA+) usually used in 

conjunction with a large number of environmental variables and the Spearman rank correlation 

(Permutation test N = 999, p < 0.05) was used to identify a combination of environmental 

variables that best correlated with the sampled biological abundance data (Clarke & Warwick 

2001). 

 

Distance Based Linear Model (DistLM) 

A multiple regression approach, Distance-based linear Model (DistLM) was used to 

model and illustrate the macroinvertebrates abundance pattern using environmental variables. 

Using a stepwise selection procedure, second-order Akaike’s information criterion (AICc) for 

selection criteria and the marginal test, to test the significance of one environmental variable 

against the biological data (Permutation test N = 999, p < 0.05) (Clarke & Gorley 2001). The 

BEST function only gives a combination of environmental variables, however it does not explain 

how much percentage variation selected variable account for on the biological data. Using the 

force inclusion method, BEST identified 6 environmental variables that is water temperature, 

NH4-N, NO3-N, substrate diversity, flow rate and turbidity where included in the model. 

Additionally, variables that showed to have a significance effect (marginal test, p < 0.05) on the 

biological data were also included. This was to better achieve a combination of environmental 

variables that would best (> 50%) explain macroinvertebrates abundance patterns (Clarke & 

Warwick 2001).  PRIMER v6 add-on package PERMANOVA+ only works with distance 
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measures, therefore Distance based Redundancy analysis (bd-RDA) bi-plot was created to 

illustrate the combination of all significant environmental variables from the DistLM analyses 

and marginal test that best described macroinvertebrates relative abundance patterns (Clarke & 

Warwick 2001).  

 

3.3 Results 

3.3.1 Aquatic Macroinvertebrates Presence and Abundance 

A total abundance of 23 681 aquatic macroinvertebrate specimens, belonging to 56 taxa, 

were identified throughout the duration of this study. Sites with diverse biotopes generally 

yielded more taxa as compared to sites with fewer or single biotopes (see Table 2.1 & 22, 

Chapter 2). Most aquatic invertebrate taxa expected to be present in lotic systems were observed 

in this study, with six dominant Insecta orders; Diptera (30%), Ephemeroptera (27%), Hemiptera 

(18%), Odonata (5%), Trichoptera and Coleoptera (3%), and the rest comprising approximately 

14% (Crustacean, Gastropoda, Annelida, Turbellaria, Porifera and Hydracarina). The Bloukrans-

Kowie River system had the highest number of individual macroinvertebrate (n = 16 290, 52 

taxa); with Diptera, Ephemeroptera, Hemiptera, Odonata and Gastropoda as the dominant taxa 

(Figure 3.1A) and the Bushmans-New Year’s River system (n = 6791, 51 taxa); with Diptera, 

Ephemeroptera, Hemiptera, Annelida and Coleoptera as the dominant taxa (Figure 3.1B). 

Furthermore, from the 56 macroinvertebrate taxa sampled, 47 were observed on both river 

systems, while only five taxa (Chlorocyphidae, Platycnemidae, Lepidostomatidae, Pisuliidae and 

Athericidae) and four taxa (Atyidae, Hydraenidae, Planorbidae and Chaoboridae) were observed 

only on the Bloukrans-Kowie River and Bushmans-New Year’s River system respectively 

(Figure 3.2). 
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Figure 3.1: Pooled relative abundances (%) of aquatic macroinvertebrates for (A) the Bloukrans-

Kowie River system (n =16 290) and (B) the Bushmans-New Year’s River system (n = 6791), 

sampled quarterly from August 2013 to August 2014 in the Eastern Cape, South Africa. 
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Figure 3.2: Venn diagram illustrating shared and unique aquatic macroinvertebrate taxa 

observed between the Bloukrans-Kowie and Bushmans-New Year’s River systems Eastern Cape, 

South Africa. 

 

3.3.2 South African Scoring System5 (SASS5), Average Score per Taxon (ASPT) and the 

Shannon-Wiener index (H) 

The Bloukrans-Kowie River had a SASS score ranging between 22.67 – 160.00, where 

site A8 and A10 had a SASS score > 130, A6 and A9 SASS score > 150 and the rest of the sites 

having a SASS score < 100. The Bushmans-New Year’s River on the other hand, showed a range 

of between 16.24 – 113.00. Site B8 and B9 had the highest SASS score equating to 95.75 and 

113.00 respectively, and the rest of the sites scored < 90. In general, all study sites showed a 

ASPT value of < 6, with the Bloukrans-Kowie River ranging between, 2.95 – 5.99 and the 

Bushman-New Year’s River 2.65 – 5.14. The Bloukrans-Kowie River showed an average 

Shannon-Wiener index H of 1.89 ± 0.69 ranging between 0.5 – 2.66, with site A10 being the 

highest (H = 2.66). The Bushmans-New Year’s River showed the highest average Shannon-

Wiener index, with H = 1.96 ± 0.49, ranging between 0.64 – 2.62 and site B8 scoring the highest 

with H = 2.66. Significant difference in H between sites were driven predominantly by high 

biodiversity scores at site A7 and A10 on the Bloukrans-Kowie River, but by only one site (B8) 

on the Bushmans-New Year’s River (Table 3.1 & 3.2).  Strong positive highly significant 

47 4 5 

N = 56 

Bushmans-New Year’s River 

systemsysystem 

Bloukrans-Kowie River 
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correlations were observed between SASS scores and ASPT values on the Bloukrans-Kowie 

River (r = 0.93, p < 0.001; y = 2.63 + 0.02605x) and on the Bushmans-New Year’s River (r = 

0.86, p < 0.001; y = 2.60 + 0.023x) (Figure 3.3A & B). This was expected since ASPT is derived 

from the SASS score. ASPT and H values also showed a correlative trend on the Bloukrans-

Kowie River (r = 0.72, p < 0.001; y = -0.14 + 0.430x) and the Bushmans-New Year’s River (r = 

0.58, p < 0.001; y = 0.404 + 0.037x) (Figure 3.4A & B). Multiple comparison mean rank results 

showed a significant differences between SASS scores and the highly correlated ASPT which 

were mostly due to higher SASS scores at site A6, A8 and A9 on the Bloukrans-Kowie River 

and site B8 and B9 on the Bushmans-New Year’s River.  (Table 3.1 & 3.2). 
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Figure 3.3: Scatter plots illustrating the relationship between average SASS scores and ASPT on 

(A) the Bloukrans-Kowie River (r = 0.93, p < 0.001) and (B) the Bushmans-New Year’s River 

systems (r = 0.86, p < 0.001), Eastern Cape South Africa. Error bars represent ± 1 SD. 
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Figure 3.4: Scatter plots illustrating relationship between average ASPT and the Shannon-

Wiener index (H) on the Bloukrans-Kowie River (r = 0.72, p < 0.001) and the Bushmans-New 

Year’s River systems (r = 0.58, p < 0.001), Eastern Cape South Africa. Error bars represent ± 1 

SD. 
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Table 3.1: Kruskal-Wallis ANOVA, multiple comparison of mean rank of all groups, results 

showing significant differences of the three calculated biodiversity indices (SASS score, ASPT 

and H) between sites on the Bloukrans-Kowie River system, Eastern Cape South Africa. Bolded 

values show a significance level of p < 0.05. 

Bloukrans-Kowie 

River 

Sites A2 A3 A4 A5 A6 A7 A8 A9 A10 

SASS score A2 -         

H8, 36 = 30.13, p < 0.001 A3 1.000 -        

 A4 1.000 1.000 -       

 A5 1.000 1.000 1.000 -      

 A6 0.058 0.029 0.261 0.964 -     

 A7 1.000 1.000 1.000 1.000 1.000 -    

 A8 0.335 0.183 1.000 1.000 1.000 1.000 -   

 A9 0.030 0.014 0.148 0.591 1.000 1.000 1.000 -  

 A10 0.319 0.174 1.000 1.000 1.000 1.000 1.000 1.000 - 

           

ASPT A2 -         

H8, 36 = 30.85, p < 0.001 A3 1.000 -        

 A4 1.000 1.000 -       

 A5 1.000 1.000 1.000 -      

 A6 0.113 0.081 0.884 1.000 -     

 A7 1.000 1.000 1.000 1.000 1.000 -    

 A8 0.030 0.021 0.304 1.000 1.000 1.000 -   

 A9 0.013 0.009 0.148 1.000 1.000 1.000 1.000 -  

 A10 0.447 0.335 1.000 1.000 1.000 1.000 1.000 1.000 - 

           

H A2 -         

H8, 36 = 26.92, p < 0.01 A3 1.000 -        

 A4 1.000 1.000 -       

 A5 1.000 1.000 1.000 -      

 A6 0.810 0.133 1.000 1.000 -     

 A7 0.156 0.019 0.539 1.000 1.000 -    

 A8 1.000 1.000 1.000 1.000 1.000 1.000 -   

 A9 0.964 0.165 1.000 1.000 1.000 1.000 1.000 -  

 A10 0.091 0.010 0.335 1.000 1.000 1.000 1.000 1.000 - 
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Table 3.2: Kruskal-Wallis ANOVA, multiple comparison of mean rank of all groups, results 

showing significant differences of the three calculated biodiversity indices (SASS score, ASPT 

and H) between sites on the Bushmans-New Year’s River system, Eastern Cape South Africa. 

Bolded values show a significance level of p < 0.05. 

Bushmans-New Year’s 

River 

Sites B1 B2 B3 B5 B6 B7 B8 B9 B10 

SASS scores B1 -         

H8, 36 = 25.36, p < 0.01 B2 1.000 -        

 B3 1.000 1.000 -       

 B5 1.000 1.000 1.000 -      

 B6 1.000 0.469 1.000 1.000 -     

 B7 1.000 0.565 1.000 1.000 1.000 -    

 B8 1.000 0.009 1.000 0.709 1.000 1.000 -   

 B9 0.964 0.001 0.406 0.148 1.000 1.000 1.000 -  

 B10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.261 - 

           

ASPT B1 -         

H8, 36 = 26.80, p < 0.001 B2 0.426 -        

 B3 1.000 1.000 -       

 B5 1.000 1.000 1.000 -      

 B6 1.000 1.000 1.000 1.000 -     

 B7 1.000 0.319 1.000 1.000 1.000 -    

 B8 1.000 0.002 0.539 0.061 1.000 1.000 -   

 B9 1.000 0.004 0.846 0.107 1.000 1.000 1.000 -  

 B10 1.000 1.000 1.000 1.000 1.000 1.000 0.964 1.000 - 

           

H B1 -         

H8, 36 = 15.95, p < 0.05 B2 1.000 -        

 B3 1.000 1.000 -       

 B5 1.000 1.000 1.000 -      

 B6 1.000 0.086 1.000 1.000 -     

 B7 1.000 1.000 1.000 1.000 1.000 -    

 B8 1.000 0.022 1.000 1.000 1.000 1.000 -   

 B9 1.000 0.447 1.000 1.000 1.000 1.000 1.000 -  

 B10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 - 
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3.3.3 Aquatic Macroinvertebrates Community Analysis 

The Bray-Curtis Similarity dendrogram showed a fairly high percentage of similarity > 

50% and divided all study sites into four main clusters (Figure 3.5). Cluster 1 comprised of two 

sites; A2 and A3, these sites were the upstream Bloukrans River sites, receiving polluted water, 

waste materials, treated and untreated waste water from the Grahamstown settlement and the 

Belmont Valley Sewerage Treatment Works (BVSTWs) respectively. Cluster 2 was the largest 

group with three sub-clusters of closely related downstream study sites from both river systems. 

These sites were characterized by diverse in-stream biotopes, particularly stones in-current, 

marginal vegetation, medium to high water flow and low turbidity (see Table 2.1, Chapter 2). 

Cluster 3 was site B2, which was the only site with extremely high turbidity, low/zero flow rate 

and no marginal or aquatic vegetation (according to Dickens & Graham 2002, categorizations). 

Lastly, cluster 4 comprised six Bushmans-New Year’s River sites sharing similar characteristics 

with site B2 (cluster 3) e.g. primarily forming isolated pools, but with cluster 4 sites having 

patches of marginal vegetation.  

 

RELATE Function 

RELATE revealed that environmental variables (micronutrients) and macroinvertebrates 

(abundances) were significantly related, showing a significant medium strength correlation (r = 

0.57, p = 0.001) between the environmental variables and macroinvertebrate abundance pattern.  

 

BEST Function 

BEST analysis identified a combination of six environmental variables including water 

temperature, NH4-N, NO3-N, substrate diversity, water flow and turbidity which showed a 

significantly strong correlations (r = 0.82, p = 0.001).  

 

DistLM Analysis 

The DistLM analysis marginal test, which tested individually the significance of one 

environmental variable against macroinvertebrates abundance data, revealed pH, conductivity 

(EC), dissolved oxygen (DO), sodium (Na
+
), calcium (Ca

2+
), magnesium (Mg

2+
), iron (Fe

+
), 

chlorine (Cl
-
), carbonate (CO3

2-
), bicarbonate (HCO

3-
), sulphate (SO4

2-
), boron (B

+
), manganese 

(Mn
2+

), phosphate (P
3-

), fluorine (F
-
) and total dissolve solids (TDS) to be significant, having an 
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effect on the variation of macroinvertebrate abundance. The DistLM was performed using the 

force inclusion method, were a subset of six BEST environmental variables (water temperature, 

NH4-N, NO3-N, substrate diversity, water flow and turbidity) and an addition of highly 

significant (p < 0.01) environmental variables from the marginal test (pH, EC, DO, Fe and P) 

were included into the analysis. The distance-based redundancy analysis (db-RDA) bi-plot was 

the outcome illustration of the DistLM analysis, where axis1 and 2 cumulative showed 65.80% 

of the fitted model and explained 56.20% variation of macroinvertebrates abundance and 

environmental variables. A total collective variation of 85.40% was explained by the model 

(Table 3.3). 

 

In general db-RDA bi-plot describe the Bloukrans-Kowie river system sites to be very 

much orientated on the vertical plane which is related to the chemical composition (nutrients), 

whereas the Bushmans-New Year’s river system seemed to be more horizontally orientated 

relating to physical composition (flow, water temperature, turbidity). In comparison with the 

Bray Curtis dendrogram, the db-RDA bi-plot also identified four main clusters. Cluster 1 (site 

A2 and A3) showed strong correlations towards nutrients e.g. NO3-N and NH4-N; cluster 2 (A4 

and A5), showed strong correlations with P concentrations and water flow; cluster 3 was the 

largest group of sites with B8 and B9 together with sites A6, A7, A8, A9 and A10, which were 

grouped together based on substrate diversity, pH, EC and DO as the main environmental 

drivers. Cluster 4 (sites B1, B2, B3, B5, B6, B7, B10) all of which were on the Bushmans-New 

Year’s River had high turbidity, increased water temperatures and elevated concentrations of Fe 

(Figure 3.6).  
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Figure 3.5: Bray-Cutis similarity dendrogram based on aquatic macroinvertebrate relative 

abundance pattern on both the Bloukrans-Kowie (A sites) and the Bushmans-New Year’s rivers 

(B sites). Each symbol represents a different land-use/site description (please see Chapter 2, 

Table 2.1 for more details): (▲) - sewage input; (▼) - dairy farms; (♦) - confluence; (■) - 

undisturbed habitats; (●) - isolated pools; (+) - golf course (commercial fertilizer). 
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Table 3.3: Distance based linear model percentage variation of selected environmental variables 

describing aquatic macroinvertebrate abundance (AICc = 181.9, r
2
 = 0.85, RSS = 3643.3, 

number of variables = 11). . 

Axis 

 

% explained variation out of fitted model % explained variation out of total variation 

Individual Cumulative Individual Cumulative 

1 40.7 40.7 34.7 34.7 

2 25.1 65.8 21.5 56.2 

3 10 75.8 8.5 64.7 

4 7.0 75.8 5.9 70.7 

5 5.9 82.8 5.1 75.8 

6 4.3 88.9 3.7 79.5 

7 2.8 93.1 2.4 81.9 

8 2.3 95.9 1.9 83.8 

9 1.1 99.3 0.9 84.7 

10 0.7 99.9 0.6 85.3 

11 0.07 100 0.06 85.4 
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Figure 3.6: Distance based Redundancy Analysis bi-plot illustrating interactions between 

aquatic macroinvertebrate abundance with the best combination of environmental variables that 

describe the biological data (▲ – Bloukrans-Kowie River; ▼ – Bushmans-New Year’s River).
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3.4 Discussion 

Physicochemistry and biotic indicators 

Changes anywhere within the landscape (either natural and/or human induced) which 

find their way into the river system can be reflected in the composition of the resident aquatic 

biota, particularly within communities of macroinvertebrates (Dickens & Graham 2002). Aquatic 

macroinvertebrate communities have therefore been considered good biological indicators of 

pollution and physical disturbance (Masese et al. 2006, Bredenhand & Samways 2009). 

According to Allanson et al. (1990) and de Moor et al. (2013), both the Bloukrans-Kowie and 

the Bushmans-New Year’s River systems sit within similar geographical region, therefore 

according to Vannote et al. (1980) and Eady et al. (2013) they are expected to experience similar 

environmental conditions and display similar biological compositions. Mathooko & Mavuti 

(1992) and Kibichii et al. (2007) investigated streams on Mount Kenya and Njoro river in Kenya 

were they found that macroinvertebrate communities were mostly dominated by Baetis sp. 

(Ephemeroptera: Baetidae) and Simulium sp. (Diptera: Simuliidae). Closer to home, Bredenhand 

& Samways (2006) also recorded high abundances of baetids and simuliids in the Western Cape 

Mountains, South Africa. This was also true on the Bloukrans-Kowie River, where baetids and 

simuliids were found to be the two most abundant macroinvertebrate families. Additionally the 

Lepidostomatidae, Pisullidae, Chlorocyphidae, Platycnemidae and Athericidae families were 

unique to the Bloukrans-Kowie River. Generally these families prefer dwelling on rocky 

substrates such as the ‘stones’ biotope and are usually found in continuously flowing currents 

with low levels of dissolved salts but high dissolved oxygen (de Moor et al. 2003B). Conversely, 

on the Bushmans-New Year’s River, Corixidae and Notonectidae were the most abundant 

families, with Atyidae, Hydracarina, Planorbidae and Chaoboridae unique to the Bushmans-New 

Year’s River. According to Mantel et al. (2010), these opportunistic and generalist 

macroinvertebrate taxa are more tolerant to disturbed habitats and are capable of exploiting 

available space and food source abandoned by sensitive macroinvertebrates. Hemipterans like 

Corixidae and Notonectidae for example, are air breathers and exhibit a predatory life style, 

therefore they are not limited by low oxygen concentrations and thus they are more flexible, 

capable to overlap between disturbed and undisturbed habitats, ensuring maximum survival 

(Gerber & Gabriel 2002B). Size and land-use were considered to be different in between 
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sampled sites and rivers, anthropogenic inputs and consequently the physical and chemical 

characteristics of each river system were different, which subsequently influences 

macroinvertebrate community composition to differ.  

Biological monitoring using the SASS5 technique was able to identify disturbance effects 

on both rivers. Although SASS scores alone cannot identify disturbance events, site inspections 

lead us to hypothesize that this included sewerage effluents (treated and untreated), agricultural 

run-off and disposal on non-biodegradable materials. According to Dickens & Graham (2002), 

when dealing with pollution inputs, SASS scores are more meaningful than the ASPT. 

Disturbance and pollution tolerant taxa are characterized by lower SASS scores (Gerber & 

Gabriel 2002B), and thus will result in an overall lower SASS score value when compared to 

undisturbed sites (Chutter 1998). Overall, the Bloukrans-Kowie River had the highest SASS 

scores, with five sites (A2-A5, A7; SASS score < 100) identified as being severely/critically 

disturbed and the remaining sites classified as moderately disturbed (A8 and A10; SASS score > 

130) and largely natural with only minor disturbance (A6 and A9; SASS score > 150) as 

described by Dallas (2007). Site A2-A5 on the Bloukrans River were situated downstream of 

Grahamstown residential area and the BVSTWs, these sites were likely experiencing daily inputs 

of enriched nutrient run-off from wastes up the catchment. Comparatively, site A7 is further 

downstream and is surrounded by agricultural lands, particularly cabbage and pineapple 

plantations as well as dairy farms which may be frequently fertilized using cow manure (Eady et 

al. 2013, Dalu et al. 2014). Constant anthropogenic inputs experienced by majority of the 

Bloukrans River were attributed by low SASS scores, identifying these sites to be critically 

disturbed. Site A6 and A9 were considered largely natural, which were situated at the upper 

reaches of the Kowie River, surrounded mainly by natural habitat, game farms and privately 

owned land. Two ‘moderately disturbed’ sites; A8, which was downstream the Bloukrans River 

and before the junction with the upper Kowie reaches and A10, which was after the confluence 

of the Bloukrans River and Kowie River, together represent ecosystem experiencing diluted 

anthropogenic inputs. These two sites were not as disturbed as upstream sites, suggesting some 

potential recovery ability of the river, likely dependent on the distance from nutrient entry points 

and continuous water flow of the river (e.g. Ifabiyi 2008). Comparatively, the SASS scores on 

the Bushman-New Year’s River were much lower than on the Bloukrans-Kowie River system. 

According to categorizations by Dallas (2007), the majority of the Bushmans River sites (B1-B7 
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and B10; SASS score < 90) were regarded as severely/critically disturbed, while remaining sites 

(B8 and B9; SASS score = 95.7 and 113.00 respectively) were categorized as largely modified.  

There were a number of factors that affected the low values SASS scoring, ASPT and 

macroinvertebrate diversity (H) on the Bushmans-New Year’s River system; firstly, Alicedale, 

for the duration of the study experienced minimal rainfall, and so water flow was severely 

obstructed, this resulted in numerous isolated pools forming along the river, rather than one 

continuous system. Secondly, the system possessed poor biotope diversity due to the formation 

of isolated pools and only comprised mainly by muddy and sandy biotopes, therefore missing the 

stones and gravel biotopes that house diverse stones and gravel dwelling taxa absent from the 

system (that indicate higher water quality; Dickens & Graham 2002). Thus these taxa substituted 

by general, opportunistic taxa (which indicate lower water quality; Dickens & Graham 2002), 

thus decreasing the classification of the overall river health (SASS score and diversity indices). 

Thirdly, the lack of rainfall also resulted in no currents changing the system from lotic to lentic 

and thus physical and chemical characteristics such as increased water temperature and elevated 

ion concentration were observed (see Bowd et al. 2006). Additionally, site B1 which was 

situated above New Year’s Dam, had a significant water hyacinth infestation which is under 

biological control for almost a decade (Hill & Olckers 2001), which is regraded a threat to 

aquatic macroinvertebrate biodiversity (Masifwa et al. 2001, Midgley et al. 2006, Coetzee et al. 

2014). Water hyacinth stops sunlight penetration to under water habitats, completes for space 

with aquatic organisms and in some cases is responsible for habitat loss for other aquatic taxa 

(Masifwa et al. 2001, Midgley et al. 2006, Coetzee et al. 2014). Site B2 was characterized by 

absence of both aquatic plants and marginal vegetation and had the highest turbidity for the 

period of this study, both of which create unfavorable micro-habitats for macroinvertebrates. 

Sites B3 and B5 were adjacent and downstream of the ASTWs respectively, and were likely 

influenced by nutrient inputs through sewage seepage, spillover and/or leaching through the 

groundwater to adjacent waterways. Site B6 and B7 were situated further downstream from the 

ASTWs within the Bushmans Sands Golf Course, which maintains its greens with a periodical 

application of commercial fertilizers (Hill et al. 2011). Site B10 on the Bushmans River was 

downstream before the confluence and was predominantly an isolated pool throughout the 

duration of the study and was involved in a massive water abstraction pipelines. Only sites B8 

and B9, situated after the Bushmans-New Year’s River confluence were characterized by 
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medium flow and fairly diverse biotopes, creating suitable micro-habitats for diverse 

macroinvertebrate communities and thus yielded a moderately higher SASS scores. 

Changes in SASS scores, ASPT and H along the Bloukrans-Kowie River system in this 

study suggest that downstream from anthropogenic inputs, the river had some ability to 

assimilate “self-purify”. This ability has also been illustrated by Madikizela et al. (2001) and 

Bere (2007), where SASS scores and ASPT increased downstream from pollution hotspots. It is 

possible that with the appropriate physical conditions (e.g. adequate flow and diverse 

biotopes/substrates), river systems have the ability to flush out, dilute excess nutrients and/or 

riparian and aquatic vegetation takes up some nutrients from the system as a natural occurring 

restoration process along the river. Sites categorized as disturbed on the Bloukrans River had 

macroinvertebrate communities predominantly made up of Chironomidae, Culicidae and 

Hirudinea, all pollution tolerant taxa, and the more sensitive taxa, Ephemeroptera and 

Trichoptera families were observed further downstream, suggesting that ecosystem health 

improves  with distance from pollution inputs.  This was likely due to the continuous current and 

diverse biotopes in the Bloukrans River that were lacking in the Bushmans-New Year’s River. 

Additionally, factors including the presence of riparian vegetation, land use, altitude, discharge 

rates, rainfall, substrate type and the resulting dissolved salt concentrations, pH, turbidity and 

temperature as discussed by Masese et al. (2009) and Mantel et al. (2010) would have influenced 

the water quality of the systems in question. With so many factors at play, the SASS score metric 

on its own, can only provide “red flag” results (polluted/disturbed or unpolluted/undisturbed) and 

cannot identify the factors driving changes in ecosystem health. Thus most studies couple the 

SASS5 assessments with either environmental variables, fish species, diatoms or habitat health 

assessments to further explain variation unaccounted by SASS5 indices (Dickens & Graham 

2002). Dickens & Graham (1998), Ndarunga et al. (2004), Beyene et al. (2009) and Bere & 

Nyamupingidza (2014) suggest that a multiple regression approach may provide a subset of 

environmental variables which give the most efficient explanation of the variation in the sampled 

aquatic macroinvertebrates from both river systems. The RELATE analysis in the present study 

used this approach and showed strong correlations between majority of the environmental 

variables and macroinvertebrates abundance. Bere & Nyamupingidza (2014) also found a 

significant correlation between SASS scores, ASPT and some water chemistry variables 

(physical and chemical parameters) in Zimbabwe streams. Similarly, a high correlation between 
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SASS scores and ASPT values and a similar association between ASPT and Shannon-Wiener 

biodiversity index were observed in this study. These findings show that the relationship at each 

site between macroinvertebrates abundance and physicochemical parameters are strongly 

complementary, suggesting that a combination of biological monitoring and water chemistry 

analyses will reliably identify sites with poor water quality and/or ecosystem health.  

The distance based redundancy analysis showed that sites on both rivers could be 

categorized into four groups, defined by 4 different sets of environmental variables. The first 

group was comprised of sites with poor water quality, where variations in macroinvertebrates 

abundance was best described by elevated concentrations of NO3-N and NH4-N, and were 

predominantly pollution tolerant taxa such as Chironomidae, Muscidae, Culicidae, Oligochaeta 

and Syrphidae (Rosenberg et al. 1986, Loch et al. 1996, Dickens & Graham 2002). Generally, 

these organisms possess haemoglobin, enabling them to increase oxygen uptake in eutrophic and 

organically enriched waters, increasing their chances of survival in polluted waters (Rosenberg 

& Resh 1993, Ndarunga et al. 2004, Bere & Nyamupingidza 2014). The second group of sites 

was the downstream sites from the severely disturbed sites on the Bloukrans River system, likely 

experiencing diluted anthropogenic inputs (sewage effluent and/or urban pollution carried 

downstream) and were driven primarily by increased concentrations of P and higher river flow 

rates. Group three was the largest group, mainly dominated by downstream study sites on both 

river systems, and here macroinvertebrate abundances were driven by an increase in substrate 

diversity (i.e. number of available biotypes) and lower values of pH, EC and DO. Contrastingly, 

increased water temperature, turbidity and iron (Fe) concentrations described macroinvertebrate 

abundances in the fourth group (comprised primarily of sites on the Bushmans-New Year’s 

River system) which adequately describes lentic and/or standing water ecosystems. Corixidae, 

Notonectidae, Pleidae, and certain Baetidae and Atyidae were found in high abundance at these 

sites. 

 

Biological monitoring using the South African Scoring System in conjunction with 

analyses of water chemistry (physicochemistry and micronutrients) in the present study revealed 

useful information on the ecological health of both river systems. Overall the Bloukrans-Kowie 

River was in better health, while the Bushmans-New Year’s system was critically impacted, 

likely due to the shift from a lotic to lentic environment. Sites directly adjacent to anthropogenic 
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inputs or stressors were in understandably poorer health, however the positive relationship 

between ecosystem health and distance from pollution inputs suggests that in some cases, river 

systems can provide a measure of self-purification. While the SASS5 technique and its 

subsequent interpretation is robust as a spot measurement of ecosystem health – there are a 

number of factors that SASS5 does not account for that can contribute to change in disturbance 

rating. Furthermore the SASS5 technique was (1) clearly site dependent, (2) was seriously 

influenced by a lack of diversity in available biotopes and thus is limited to use in lotic 

ecosystems, (3) and cannot provide information on the nature of the disturbance. Additionally it 

requires expertise and training in taxonomic identification and application (accreditation) for 

appropriate use. All of these ecological drawbacks are acknowledged by Dickens & Graham 

(2002) and are further illustrated by Simaika & Samways (2012) as well in the present study. 

While this chapter acknowledges the use and application of biological monitoring in conjunction 

with water chemistry measurements, future management of South Africa’s freshwater systems 

requires more refined techniques that; (1) can include all aquatic ecosystems,  (2) are not habitat 

or substrate dependent, (3) can help to identify the sources of pollution and, (4) that can provide 

temporal and spatial information on anthropogenic pollution and act as an early warning 

indicator, before the onset of ecosystem degradation. 

 

The next Chapter 4 will introduce an internationally adopted N-loading/eutrophication 

mapping technique that will address the above-mentioned biological monitoring challenges.  
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Mapping nitrogen loading in freshwater systems: using aquatic biota 

CHAPTER FOUR 

 

STABLE ISOTOPE ANALYSIS (SIA), A NEW STEP IN BIOLOGICAL 

MONITORING: A CASE STUDY OF TWO RIVER SYSTEMS IN THE 

EASTERN CAPE, SOUTH AFRICA 

 

 

4.1 Introduction 

 

In the past, aquatic ecosystem health has been monitored using a number of techniques, 

that includes water toxicity measurements (heavy metals; Fatoki & Awofolu 2003, de Villiers 

2007), microbial assemblages assessments (e.g. Escherichia coli counts; Xu et al. 2011, Seanego 

& Moyo 2013), taxonomic changes in the abundance of aquatic biota (%EPT – Ephemeroptera, 

Plecoptera & Trichoptera; Camargo et al. 2004, diatoms; Taylor et al. 2007, fish; Kleynhans 

1999, Loomer et al. 2014) and water quality assessment protocols using pollution tolerant and 

sensitive aquatic taxa (BMWP; Hawkes 1998, AUSRIVAS; Smith et al. 1999, IBI; Karr 1991, 

SASS5; Chutter 1998 and Dickens & Graham 2002, Dragonfly Biotic Index (DBI); Simaika & 

Samways 2012) (see Chapter 3). Globally, these traditional biological monitoring techniques 

have been widely used, however Hill et al. (2012) argues that these traditional techniques only 

reflect disturbances once they have manifested within waterways and they are not specific in 

identifying types of pollution. Dickens & Graham (2002) acknowledge that once disturbance 

events have occurred, it is a challenge to identify the type and/or nature of the disturbance, 

especially when dealing with non-point source pollution events (see Chapter 3). Similarly, direct 

and indirect anthropogenic nutrient loading arises from a variety of activities (e.g. treated and 

untreated sewage discharges, aquaculture and livestock grazing), therefore it is difficult to 

unambiguously determine the nutrient sources and their related impact on an ecosystem (Jona-

Lasinio et al. 2015). Recently however, it has been suggested that stable isotopic values of 

aquatic organisms particularly that of macrophytes, can be used as sensitive indicators of 

eutrophication events and can provide a measure of water quality (Costanzo et al. 2001; 2005, 

Vander Zanden et al. 2005).  
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Stable isotopic analysis has been used for decades to map food webs and investigate 

trophic linkages in freshwater ecosystems (e.g. Fry 1991, France 1997, Jones & Waldron 2003, 

Schmidt et al. 2007, Jackson & Britton 2013, Hill et al. 2015). This technique is based upon the 

principle that consumers show predictable isotopic fractionation that persist up the food web. 

Consumers are characterized by a carbon isotopic composition (
13

C:
12

C, expressed as δ
13

C) that 

is, on average, enriched ~0-1 ‰ relative to their diet, which allows differences in δ
13

C isotopic 

ratios to be used in distinguishing and/or tracing allochthonous and autochthonous carbon 

sources in aquatic ecosystems (DeNiro et al. 1978, Fry & Sherr 1984, Vander Zanden & 

Rasmussen 2001, Post 2002). Comparatively, consumer nitrogen isotopic composition (
15

N:
14

N, 

expressed as δ
15

N) enriches ~3-4 ‰ moving up the food web, thus providing information on 

consumer trophic level (DeNiro & Epstein 1981, Vander Zanden & Rasmussen 2001, Post 

2002). However, the δ
15

N isotopic values of primary producers (i.e. aquatic plants) are affected 

by dissolved inorganic nitrogen (and its isotopic composition) and plant physiology, because the 

isotopic value of plant tissues reflect the nitrogen sources they assimilate (Costanzo et al. 2001). 

When nitrogen is limiting, plant tissues have δ
15

N isotopic value similar to their main N-source, 

but when nitrogen is in excess, plant tissues show δ
15

N isotopic values which are significantly 

more enriched (Heaton 1986, Kendall 1998, Kendall & Doctor 2003). As a result, high N-loads 

can often be linked with enriched δ
15

N isotopic values of aquatic vegetation relative to largely 

natural conditions, indicating that they may provide an early indication of nitrogen pollution in 

aquatic ecosystems (e.g. Fry & Allen 2003, Anderson & Cabana 2005, Deutsch & Voss 2006, 

Costanzo et al. 2001; 2005, Vander Zanden et al. 2005, Hill et al. 2012).  

Paces (1982), Turner & Rabalais (1991) and Goolsby (2000) cited in Ohte (2012) all 

noted that excess inputs of nitrogen through anthropogenic activities have threatened aquatic 

ecosystems for decades. Natural leaching and atmospheric deposition are regarded as the major 

pathways by which inorganic nutrients like nitrogen and phosphorus reach both aquatic and 

terrestrial ecosystems (Ohte 2012). However, excessive nutrients from anthropogenic activities 

including intensive farming, increase use of N-containing organic and inorganic fertilizer or 

animal manure, agricultural run-off and sewage effluent discharge can eventually find their way 

into underground aquifers and rivers, and ultimately act as promotors of eutrophication (Cabana 

& Rasmussen 1996, Smil 1999, Anderson et al. 2002, Rabalais 2002, Hill et al. 2012). For 

example, Lassauque et al. (2010) and Schubert et al. (2013) used marine organisms (e.g. 
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transplanted mussels and seagrasses) to detect various levels of nutrients from both river run-off 

and coastal anthropogenic activities that included harbour out-flows, fish farms and urban 

sewerage out-fall. These studies revealed enriched δ
15

N isotopic ratios of mussels and seagrasses 

that were observed closer to the harbour and sewerage out-fall.  Similarly, Costanzo et al. (2001) 

illustrated the potential of using the δ
15

N isotopic values of macrophytes to help detect sewage 

inputs into a coastal bay, by mapping sewage discharge from the sewerage treatment works 

situated along the river mouth. Five years later Costanzo et al. (2005) used marine organisms to 

assess the effectiveness of the improved sewage discharge standards; δ
15

N isotopic ratios 

demonstrated a large reduction in the spatial extent of sewage discharge after substantial 

infrastructure upgrades. This suggests that tracing anthropogenic N-loading via δ
15

N isotopic 

values, otherwise known as sewage plume mapping, may provide ecologists and environmental 

managers with a monitoring technique to detect problems and monitor freshwater rehabilitation 

programs.   

The mechanism underpinning a macrophytes ability to track nitrogen loading lies in the 

isotopic fractionation linked to the physiological preferences and pathways in biological 

activities (Hill et al. 2012). Plants assimilating nitrogen from synthetic fertilizers for example, 

have δ
15

N isotopic values that reflect the atmospheric N2-source of the fertilizer (~-2.00 to +2.00 

‰; Heaton 1986, Kendall 1998, Curt et al. 2004). Treated sewage on the other hand is 

isotopically heavier or more enriched with 
15

N isotope because bacteria found in wastewater 

treatments preferentially process the lighter 
14

N isotope leading to an overall enrichment in the 

δ
15

N isotopic values of remaining sewage (typically +10.00 to +25.00 ‰; Heaton 1986, Kendall 

1998, Curt et al. 2004, Hill et al. 2011; 2012, Hill 2014, Morrissey et al. 2013, Loomer et al. 

2014). However, isotopic fractionation varies with the indicator’s (e.g. Spirodela sp.) taxonomic 

and geographical differences as suggested by Peterson & Fry (1987), Cole et al. (2004), Aberle 

& Malzahn (2007) and Hill et al. (2012). This further emphasizes the importance of providing 

species-specific and area-specific baseline isotopic data of the indicator taxa for successful 

interpretations. In South Africa, the duckweed Spirodela sp. (which collectively represents a 

combination of Spirodela polyrrhiza and Spirodela punctata), the smallest known floating 

aquatic macrophytes (Hillman 1961, Hillman & Culley Jr. 1978), is ubiquitous in freshwater 

ecosystems. These plants proliferate in fresh, slow moving or still waters and grow on top or just 

below the water surface, creating large dense mats. A baseline laboratory study on the isotopic 
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differentiation of Spirodela plants illustrated that they have the ability to clearly differentiate 

between different nutrient types (NH4
+
 and NO3

-
) and regimes. This was observed to take 4-10 

days of exposure and have increasingly depleted and enriched δ
15

N isotopic values with 

increasing level of concentration for NH4
+
 and NO3

-
 respectively. This suggests that they are 

excellent biological indicators for nitrogen mapping in freshwater ecosystems (Hill et al. 2012). 

While this study provided useful information on sewage plume mapping using duckweed in a 

laboratory setting, substantial field testing is required to confirm its utilisation in the natural 

environment. Therefore the present study was aimed to evaluate (1) the ability of δ
15

N and δ
13

C 

isotopic values of Spirodela sp. to trace inputs of anthropogenic nitrogen (sewage, agricultural 

run-off/commercial fertilizers) across a well-defined nutrient gradient on the Bloukrans-Kowie 

and Bushmans-New Year’s River systems and (2) test the relationship between nitrogen isotopic 

values and the SASS5 biological monitoring assessment technique in the Eastern Cape, South 

Africa. 

 

4.2 Materials and Methods 

4.2.1 Study Area & Data collection 

Details on study sites, samples collection and stable isotope techniques are given in Chapter 2. 

 

4.2.2 Data Analysis 

Ocean Data View (ODV version 4.6.1; 2014) was used to illustrate the temporal and 

spatial variation in isotopic values of δ
15

N, δ
13

C and C/N ratios throughout the 13 month 

sampling period on the Bloukrans-Kowie and Bushmans-New Year’s River systems, in the 

Eastern Cape, South Africa.  

ArcMap (ArcGIS 10.2; 2014-2015) was used to produce general description maps of 

average in situ nitrogen loading and SASS5 scores in all sampled study sites on the Bloukrans-

Kowie and Bushmans-New Year’s River systems.  

A General Linear Mixed-Effects Model (GLMM) was performed to test whether there 

were any significant differences in δ
15

N
 
isotopic values over time (months) and space (between 

sites). A GLMM was used instead of a repeated measures analysis of variance (RM-ANOVA), as 

it can deal with missing data and unbalanced designs and it does not require data to be normally 



72 
 

distributed or variances to be homogeneous (Bolker et al. 2008). Furthermore GLMM has the 

ability to incorporate repeated measures on multiple study sites and replicates as random effects 

(Bolker et al. 2008). The coding for the optimal model formula run was: 

model<-lme(
15

N values~time, random=~1+time|sites, data=my data) 

Where lme is the linear mixed-effect model function from the nlme package, 
15

N 

values~time (time of sampling) were the fixed effects, ~1+time was the slope and intercept 

function of the δ
15

N isotopic values over time, and sites were incorporated as random effects. 

Best linear unbiased predictor values (BLUPs) were generated using the predict function on the 

model and fitted values (F0 and F1). The model was fitted separately on δ
15

N
 
isotopic data for 

both the Bloukrans-Kowie and Bushmans-New Year’s River systems. Using the build-in coef 

function (coef(model)), intercepts and slope values of each fitted and plotted study site were 

obtained. Model validation was achieved using diagnostic plots of δ
15

N residuals verses fitted 

δ
15

N values, and residuals verses predictor variables e.g. study sites, time of sampling, rainfall 

and water temperature. All analyses were done in the R environment (R Core Team; 2012). 

Furthermore a Multiple Linear Regression Analysis (MLRA) was performed to 

investigate the influence of explanatory variables on the response variables. The model followed 

the general formula: 

model2<-lm(response~explanatory1+explanatory2+……….+explanatoryn) 

 

Where the response variables were δ
15

N, δ
13

C isotopic values and C:N ratios, and the 

explanatory variables were the on-site collected physicochemical variables e.g. pH, conductivity, 

dissolved oxygen, water temperature, [ammonium] and [nitrate] and rainfall (mm). All analyses 

were also done in the R environment (R Core Team; 2012), using a stepwise variable selection 

method. Model validation was also achieved using diagnostic plots dispersion metrics e.g. 

residual versus fitted, normal Q-Q plots and residuals versus Leverage plots.   

SASS5 scores and δ
15

N isotopic values relationships were presented in simple scattered 

plots graphs to compare general patterns, this was due to the nature of the two data sets (SASS5 

scores were collected quarterly and δ
15

N isotopic data (n=5) were collected monthly) and this 

resulted in an unbalanced data sets and were not suitable for statistical analysis.  

 

 



73 
 

4.3 Results 

4.3.1 Mapping anthropogenic N-loading 

δ
15

N isotopic values of Spirodela plants showed distinct temporal and spatial patterns, 

indicating variation in nitrogen dynamics over the 13 month sampling period (August 2013 - 

August 2014) on both the Bloukrans-Kowie and Bushmans-New Year’s River systems (Figure 

4.1A & 4.3A). Enriched δ
15

N isotopic values (> +10.00 ‰) and low C/N ratios (≤ 15.00) suggest 

sewage and/or cow manure inputs (Heaton 1986, Kendall 1998, Curt et al. 2003, Hill et al. 2012, 

Hill 2014), enriched δ
15

N isotopic values (> +10.00 ‰) and high C/N ratios (≥ 15.00) suggest 

nitrogen limitation and nutrient stress (Hill et al. 2012, Hill 2014), while strongly depleted δ
15

N 

isotopic values (-2.00 to +2.00 ‰) and low C/N ratios (< 15.00) indicate uptake of commercial 

fertilizers (Heaton 1986, Kendall 1998, Curt et al. 2003). Mid-range δ
15

N isotopic values (+2.00 

to +8.00 ‰) and low C/N ratios (< 15.00) suggest plants growing in largely natural systems 

(Kreitler & Browning 1983, Kendall 1998). 

On the Bloukrans-Kowie Rivers system contour plots revealed sewage and/or cow 

manure inputs at sites A3, A4 and A5 for approximately the first 8 months of the study (i.e. Aug. 

2013 – Mar. 2014), between Dec. 2013 and Jan. 2014, and in some cases, for the two months 

preceding or following these dates. Site A4 and A5 continued to show sewage inputs for the 

majority of the remaining months (Figure 4.1). Site A2, A7 and A8 showed temporal variation in 

nitrogen loading with indications of sewage inputs (A2: Nov. 2013 – Feb. 2014; A7: Aug. – Oct. 

2013, Dec. 2013 – Jun. 2014; A8: Aug. – Oct. 2013, Jan. – Mar. 2014, May 2014), and natural 

nitrogen inputs (A2: Aug. – Sept. 2013, Mar.- May 2014; A7: Jul.-Aug. 2014; A8: Apr. & Jun. 

2014) in some months and nutrient stress in others (A7: Nov. 2013; A8: Nov. – Dec. 2013). Site 

A6 was predominantly under nutrient limitation for the duration of the study (with the exception 

of Apr. 2014), while A9 plants appeared growing in a largely natural environment overall. 

Fertilizer inputs were minimal with two sites A2 (Jun. – Jul. 2014) and A3 (Apr. 2014 and Jun. – 

Aug. 2014) showing uptake over the entire 13 months (Figure 4.1 & 4.2).  

 

Comparatively, on the Bushmans-New Year’s River system, sites B3, B4, B5 and B10 

showed evidence for sewage inputs for the majority of the sampling period, with two exceptions 

(B3: Apr. – Jun. 2014; B10: Aug. 2013). The remainder of the sites showed temporal variation in 
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nitrogen loading with indication of sewage inputs at some sites and times (B1: Aug. – Oct. 2013; 

B2: Nov. 2013 – May 2014; Dec. 2013 – Jun. 2014; B6: Feb. – Apr. 2014, Jun. – Aug. 2014; B7: 

Feb. – Mar. 2014; B8: Aug. 2013, Feb. – May 2014, Jul. – Aug. 2014; B9: Jun. 2014) and natural 

inputs (B1: Jan. – Jun. 2014; B2: Aug. - Oct. 2013, Aug. 2014; B6: May 2014; B7: Apr. – Aug. 

2014; B8: Jun. 2014; B9: Apr. – May 2014, Jul. – Aug. 2014) at others. Nutrient stress was 

visible at site B6-B9 for the first 6 months as well as at site B1 (Nov. - Dec. 2013, Aug. 2014). 

Fertilizer inputs were also minimal on the Bushmans-New Year’s River, with only site B2 

showing evidence of fertilizer uptake between Jun. - Jul. 2014 (Figure 4.3 & 4.4).  

δ
13

C isotopic values were much less useful with Spirodela plants showing minimal 

variation between sampled study sites and/or sampling events, with values ranging between -

30.00 to -22.00 ‰ and -30.00 to -25.00 ‰ on the Bloukrans-Kowie and Bushmans-New Year’s 

River systems respectively. However there were three anomalies, with site A10 in Oct. 2013 and 

Jul. – Aug. 2014 (-24.00 to -22.00 ‰) and site B9 in Sept. 2013 (~ -10.00 ‰) showing more 

enriched δ
13

C isotopic values than any other site or time (Figure 4.2 & 4.4). 

 

Generalized Linear Mixed-Effect models 

Mixed-effects models fitted on the δ
15

N isotopic values of Spirodela plants showed 

significant differences between all sampled study sites on both rivers systems (Figure 4.5A & B). 

Furthermore, from the model fit statistics, temporal variation in δ
15

N isotopic values as seen in 

the contour plots was significantly different (p < 0.05) between sampling events (months) on 

both the Bloukrans-Kowie and the Bushmans-New Year’s River systems (Table 4.1). δ
15

N 

isotopic values and time of sampling (month) showed a very strong negative correlation as 

factors of both random effects (r = -0.86 and r = -0.98) and fixed effects (r = -0.83 and r = -0.95) 

throughout the study on both the Bloukrans-Kowie and Bushmans-New Year’s River systems 

respectively (Table 4.1). The model (coef, function) provided slopes for each fitted study sites 

and these were compared to the population line slope (~ -0.59 and ~ -0.21) and intercept (+18.84 

and +12.69 ‰), which was used to distinguish between eutrophic (intercept: > +19.12 ‰ and > 

+12.69 ‰), moderately eutrophic (intercept: +19.12 – +10.00 ‰ and +12.69 – +10.00 ‰) and 

oligotrophic (+8.00 – +3.00 ‰) sites on the Bloukrans-Kowie and Bushmans-New Year’s River 

systems respectively. Site  A5 (slope: -1.09, intercept: +35.63 ‰), A4 (slope: -0.99, intercept: 

+26.36 ‰), A3 (slope:-0.89, intercept: +22.23 ‰), A7 (slope: -0.54, intercept: +18.84 ‰) and 
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site B4 (slope: -0.86, intercept: +21.49 ‰), B5 (slope: -0.61, intercept: +17.70 ‰), B3 (slope: -

0.53, intercept: +16.75 ‰), B10 (slope: -0.19, intercept: +13.20 ‰) and B8 (slope: -0.22, 

intercept: +12.89 ‰) on the Bloukrans-Kowie and Bushmans-New Year’s River systems 

respectively, had regression lines above that of the population line and were thus significantly 

more 
15

N enriched compared to the rest of the sites, these sites were identified as eutrophic.  

Comparatively, site A8 (slope: -0.46, intercept: +16.76 ‰), A10 (slope: -0.16, intercept: =16.09 

‰), A2 (slope: -0.69, intercept: +15.42 ‰) and A9 (slope: -0.12, intercept: +10.64 ‰) had a 

slope and intercept below that of the population line and were thus identified as moderately 

eutrophic. Site B1 (slope: -0.12, intercept: +9.80 ‰), A6 (slope: -0.10, intercept: +8.97 ‰) and 

site B2 (slope: -0.07, intercept: +9.29 ‰), B6 (slope: 0.06, intercept: +9.02 ‰), B9 (slope: 0.06, 

intercept: +8.39 ‰), B7 (slope: 0.13, intercept: +7.78 ‰) had a slope relatively closer to zero 

and an intercept equating to ~ < +10.00 ‰, which was lower than the population line and were 

thus identified as oligotrophic (Figure 4.5A &B). Additionally, site B6, B7 and B9 had δ
15

N 

isotopic values which showed a positive linear relationship (slope > 0) with time of sampling 

throughout the study period when compared to the rest of the sites. However this did not bring 

any changes to their nitrogen isotopic values but mainly showed increasing nitrogen isotopic 

values with time of sampling.   

Overall estimates of average nitrogen loading over the 13 month sampling period at each 

site on both the Bloukrans-Kowie and Bushmans-New Year’s River systems can be found in 

Figure 4.6 

 

Model-checking plots showed that δ
15

N residuals were well behaved (showing a linear 

band of points concentrated on the 0 line) (Appendix 6). δ
15

N residuals versus predictor variables 

e.g. sampled study sites also confirmed a mean variation approximately equating to zero, 

however three sites A2, A3 and B4 had a slight deviation from the reference point (Appendix 7). 

δ
15

N residuals and time diagnostic plots showed a semi-circular pattern throughout the period of 

the study (Appendix 8), therefore δ
15

N residuals were then plotted against two physical variables 

that were collected and that were associated with time variations e.g. rainfall and water 

temperature. Further investigations of rainfall and δ
15

N residuals plots showed a similar pattern 

to that of δ
15

N residuals and time of sampling (Appendix 9) and a fairly uniform scattered pattern 

on δ
15

N residuals and water temperature (Appendix 10).  
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Multiple Linear Regression 

Significant, but weak relationships were seen between numerous physicochemical 

variables and the δ
15

N, δ
13

C isotopic values and C/N ratios of Spirodela plants. On the 

Bloukrans-Kowie River system, pH, rainfall, DO and [NH4] had a significant effect on Spirodela 

plant δ
15

N isotopic values (r
2 

= 0.28, F4-71 = 6.78, p < 0.001). pH and rainfall were the only two 

physicochemical variables that explained significant variation in δ
13

C isotopic values (r
2 

= 0.091, 

F2-73 = 3.67, p < 0.05) and for C/N ratios, rainfall, water temperature, DO, [NH4] and [NO3] were 

found to drive variation (r
2 

= 0.34, F5-70 = 7.20, p < 0.001). On the Bushmans-New Year’s River 

system, δ
15

N isotopic values were influenced by pH, EC, DO and [NO3
-
] (r

2 
= 0.39, F4-75 = 11.80, 

p < 0.001), EC, pH, DO and EC, DO, [NH4], [NO3] also had an effect on δ
13

C isotopic values of 

Spirodela plants (r
2 

= 0.16, F3-76 = 4.79, p < 0.01) and C/N ratios (r
2 

= 0.16, F3-76 = 4.79, p < 0.01) 

respectively. 
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Figure 4.1: Temporal and spatial variation in (A) δ
15

N isotopic values (‰) and (B) C/N ratios of Spirodela plants at each site on the 

Bloukrans-Kowie River system over the 13 month sampling period (August 2013 – August 2014). 
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Figure 4.2: Temporal and spatial variation in δ
13

C isotopic values of Spirodela plants at each 

site on the Bloukrans-Kowie River system over the 13 month sampling period (August 2013 – 

August 2014).  
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Figure 4.3: Temporal and spatial variation in (A) δ
15

N values (‰) and (B)  C/N ratios of Spirodela plants at each site on the 

Bushmans-New Year’s River system over the 13 month sampling period (August 2013 – August 2014). 
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Figure 4.4: Temporal and spatial variation in δ
13

C isotopic values of Spirodela plants at each 

site on the Bushmans-New Year’s River system over the 13 month sampling period (August 

2013 – August 2014). 
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Figure 4.5: (A) Bloukrans-Kowie and (B) Bushmans-New Year’s River systems model plots showing differences in δ
15

N intercept 

and slope from predicted δ
15

N isotopic values over 13 month sampling period. Colored solid regression lines represent different study 

sites and the black solid line represents the population line.
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Table 4.1: Summary of linear mixed-effect model fit statistics for δ
15

N isotopic ratios between 

site over time on the Bloukrans-Kowie and Bushmans-New Year’s River systems, Eastern Cape 

South Africa. 

 

Model Statistics 

Linear Mixed Effects Model 

Bloukrans-Kowie River Bushmans-New Year’s River 

Model AIC 2059.33 1973.01 

Random Effects StdDev.   

Intercept 8.12 4.76 

Time 0.43 0.34 

Residuals 5.36 3.49 

Random Effect Correlation -0.86 -0.98 

Fixed Effects   

Intercept (±Std. error) 18.88±2.78 12.63±1.54 

Time (±Std. error) -0.56±0.16 

(df = 314, t-value = -3.46, p = 0.0006) 

-0.24±0.12  

(df = 349, t-value = -2.01, p = 0.0448) 

Fixed Effects Correlation -0.83 -0.95 

Number of Observations 324 360 

Number of Groups 9 10 
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Figure 4.6: Average δ
15

N hotspot locations and in situ nitrogen mapping on the (A) Bloukrans-

Kowie River and (B) Bushmans-New Year’s River over the 13 month sampling period (August 

2013 – August 2015). 
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4.3.2 Comparison of δ
15

N isotopic values and SASS scores 

 

The mean δ
15

N isotopic values of Spirodela plants grown in the Bloukrans-Kowie and 

Bushmans-New Year’s River systems showed an inverse relationship with the average SASS 

scores calculated over the 13 month study period. Sites observed to have enriched δ
15

N
 
isotopic

 

values, consistently demonstrated lower SASS scores and vice versa (Figure 4.7). On the 

Bloukrans-Kowie River system for example, site A2, A3, A4 and A5 showed an average SASS 

score of < 90 and mean δ
15

N
 
isotopic values of between +10.00 to + 20.00 ‰, indicating severe 

disturbance and substantial inputs of anthropogenic nitrogen respectively. Site A6 and A9 on the 

other hand demonstrated an average SASS score ≥ 150 and mean δ
15

N
 
isotopic values of 

between +2.00 and +8.00 ‰, suggesting a largely natural and an oligotrophic nutrient conditions. 

The rest of the Bloukrans-Kowie River study sites A7, A8 and A10 had an average SASS score ≤ 

140 which was associated with an average δ
15

N
 
isotopic value of between +10.00 ‰ and +14.00 

‰ indicating moderate disturbance and moderately eutrophic conditions respectively. The 

majority of the Bushmans-New Year’s River study sites; B1, B2, B3, B5, B6, B7 and B10 

showed average SASS scores < 90 with moderately eutrophic δ
15

N isotopic values (+7.00 to 

+13.00 ‰). Confluence sites B8 and B9 however, demonstrated the ‘highest’ SASS scores (> 

90) with δ
15

N isotopic values
 
of +10.56 ‰ and +6.21 ‰ respectively (Figure 4.7). Furthermore a 

summary of δ
15

N isotopic values and SASS scores mapping revealed complementary 

relationship between the two techniques. The tagging reported corresponding results from 

average ODV representation, fitted GLMMs model plots and the spatial ArcGIS δ
15

N isotopic 

values throughout the study period on the Bloukrans-Kowie and Bushmans-New Year’s Rivers 

systems (Figure 4.8). 
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Figure 4.7: Average SASS5 scores and mean δ
15

N isotopic values (‰) of Spirodela plants at 

each site over the 13 month sampling period, on the (A) Bloukrans-Kowie and (B) Bushmans-

New Year’s River systems. Error bars represent ± 1SD. 
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Figure 4.8: Average δ
15

N ratios (‰) hotspot locations and average SASS5 scores mapping at each 

site over the 13 month sampling period. Arrows indicate nutrient inputs, on the (A) Bloukrans-

Kowie and (B) Bushmans-New Year’s River systems (visual summary presentation of Figure 

4.7). 
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4.4 Discussion 

Intensive field application of the sewage plume mapping technique using transplanted 

Spirodela plants as described by Hill et al. (2011, 2012) in a laboratory setting were highly 

successful. This was also the case in a natural environment, were δ
15

N isotopic values of 

Spirodela plants clearly differentiated temporal and spatial dynamics of N-loading in both the 

Bloukrans-Kowie and Bushmans-New Year’s River systems. Studies by McClelland & Valiela 

(1998), Cole et al. (2004), Costanzo et al. (2001, 2005), Hill et al. (2011, 2012) and Morrissey et 

al. (2013) indicate that elevated δ
15

N isotopic values are highly correlated to sewage inputs and 

urbanization. Walsh et al. (2005A cited in Morrissey et al. 2013) described anthropogenic 

nitrogen pollution as the “urban stream syndrome”, where even with innovative developments 

and advancements in infrastructure and legislature, excessive nutrient loads (through treated or 

untreated sewage out-falls) are regularly still been released into aquatic ecosystems. Such 

nutrient loading was evident in the present study, where sites adjacent to sewerage treatment 

works (Alicedale Sewerage Treatment Works - ASTWs and Belmont Valley Sewerage 

Treatment Works - BVSTWs) (e.g. A3, A5 and B3, B5) and agricultural lands (e.g. A5 and A7) 

showed enriched δ
15

N isotopic values compared to those further downstream. The majority of 

the study sites on both the Bloukrans-Kowie and Bushman-New Year’s River systems on 

average demonstrated δ
15

N isotopic values (≥ +10.00 ‰) and low C/N ratios (≤ 15.00), which 

are indicative of sewage and/or cow manure run-off inputs (Heaton 1986, Kendall 1998, Curt et 

al. 2004, Hill et al. 2012, Hill 2014), with only a few sites (i.e. A2, A9, A6 and B1, B2, B6, B7, 

B9) showing depleted δ
15

N isotopic values between +6.21 and +8.76 ‰ which suggests largely 

natural (oligotrophic) growing conditions (Kreitler & Browning 1983, Kendall 1998). Diebel & 

Vander Zanden (2009) argues that sometimes isotopic ranges of anthropogenic nutrients have 

been documented to overlap, particularly when using aquatic biota as biological indicators. This 

emphasizes the need for baseline information which quantifies species-specific isotopic 

fractionation, equilibration rates and calibration of the indicator species, for later interpretation. 

According to the δ
15

N isotopic values and C/N ratios, the anthropogenic inputs/land-use 

pollution in this study was mainly sewage and/or cow manure run-off and is representative of 

nitrogen loads of 4.5 mg/L or higher (in some cases much higher, see Hill et al. 2011, 2012). 

These values of nitrate standards were seen as extremely higher, exceeding the nitrates targeted 

water quality range (TWQR) for sewage effluents (< 1.5 mg/L) and therefore threatening the 
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TWQR for domestic water use and for aquatic ecosystems, of 6 mg/L (Chapter 2) (DWAF 

1996A, Jordaan & Bezuidehout 2013). And all this evidently contributing to eutrophication. 

Such levels were recorded at sites that were adjacent and downstream of the BVSTWs, ASTWs 

and also Belmont Valley agricultural lands, and overall both river systems were found to have 

high levels of N-loading. Interestingly, sites close to the Belmont Valley agricultural lands were 

expected to reflect δ
15

N isotopic values of commercial fertilizer due to their anticipated 

application and subsequent run-off (as indicated by farm owners), however the Spirodela 

isotopic values of nitrogen in this case showed that adjacent dairy farms, pineapple and cabbage 

plantation lands in the Belmont Valley uses cow manure as a ‘fertilizer’ hence enriched nitrogen 

isotopic values recorded. Oligotrophic sites (largely natural sites) were recorded at site A2, A6, 

A9 and B1, B2, B6, B7, B9 on the Bloukrans-Kowie and Bushmans-New Year’s River systems. 

Both the model and the N-loading mapping were in agreement that these sites were largely 

natural and could be considered the least impacted sites throughout the sampling period. Nutrient 

inputs into these river systems were inconsistent, with irregular pulses of sewage and/or cow 

manure run-off from neighbouring lands (S. Motitsoe pers. obs, Makana & Alice Municipalities 

pers. comm.) however this was reflected clearly on the isotopic values, thus the ability to map 

this complicated case spatially and temporally is of real asset. For example, while site A5 on the 

Bloukrans-Kowie system demonstrated considerable eutrophication for the majority of the 

sampling period, site A2 was only eutrophic between November 2013 – February 2014, and site 

A3 and A4 for approximately the first six months. Although A2 is located upstream of the 

BVSTWs, it is downstream of local township housing where untreated raw sewage was observed 

entering the river.  Interestingly there appears to be pulses of eutrophication at both A3 and A4 

between April – August 2014 and are likely indicative of sporadic sewage inputs from the nearby 

BVSTWs (between A2 & A3). However there was no indication of commercial fertilizer 

application in this system at any time. Similarly on the Bushmans-New Year’s River, the sites 

which were identified as the most eutrophic were those adjacent to B4 which was the sewerage 

settling pond (part of the currently being constructed ASTWs). While site B4 has not directly in 

connection to the river, highly enriched δ
15

N isotopic values were observed at B5, which was 

directly downstream B4, this was as expected due to overtopping events and seepage. 

Additionally, of interest to management is that site B3 and occasionally B2, both upstream of B4 

were also experiencing eutrophication, which is likely due to leaks in ageing infrastructure at B4, 
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as well as seepage and overtopping events. Commercial fertilizer was again mostly absent from 

this system, but is possibly present at site B2 (directly below the dam wall) in June 2014. New 

Year’s dam however, has been shown to be sink for NO3
-
 and this extremely depleted δ

15
N

 

isotopic value may be an artefact of the dam’s unique physicochemistry (Hill et al. 2011). This 

information on both the spatial and temporal dynamics of nitrogen loading in aquatic systems is 

essential for proper management and conservation of aquatic ecosystems.  

 

Anthropogenic activities have also been reported to significantly influence the δ
13

C 

isotopic values of basal resources (Milanovich et al. 2014). Eitzmann & Paukert (2010) 

attributed this variation to freshwater fish in urbanized catchment, where the δ
13

C isotopic values 

of fish inhabiting less urbanized river reaches showed more highly variable δ
13

C isotopic values 

due to increased carbon sources. The present study showed no significant variation in δ
13

C 

isotopic values, which suggests that, the isotopic ratios of sewage inputs and/or cow manure are 

not significantly different from the dissolved inorganic carbon already present. This is supported 

by Cabana & Rasmussen (1996), Steffy & Kilham (2004), Morrissey et al. (2013) and Loomer et 

al. (2014), who also found no significant differences in δ
13

C isotopic values between upstream 

and downstream sewage out-fall sites in sewage mapping. Thus δ
13

C isotopic values are more 

useful for investigation of variation in trophic ecology studies (DeNiro et al. 1978, Fry & Sherr 

1984, Vander Zanden & Rasmussen 2001, Post 2002), and not necessarily  particularly useful for 

tracing anthropogenic inputs. 

The δ
15

N sewage mapping technique also highlighted an important ecological ability on 

both rivers, the ability to assimilate. Contour plots and maps clearly showed, that the  Bloukrans-

Kowie river in particular, depleting δ
15

N isotopic values as one moves downstream of the sewage 

inputs, and along with C/N ratios, providing evidence for dilution and scrubbing of nutrients 

(Chapman 1992), this was in keeping with the river continuum concept by Vannote et al. (1980). 

Such natural processes however can be suppressed due to (1) the water current speed and water 

volume of rivers which might be modified through water abstraction, and (2) with that in mind, 

the constant influx of anthropogenic nitrogen, which may eventually exceed the ecosystems 

ability to process, therefore all this leading to N-loading.   

The present study showed a strong relationship between the δ
15

N isotopic values of 

Spirodela plants grown in each river and the system’s biological water quality (SASS5). 
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According to Dallas (2007) the range of SASS scoring can be described as; scores < 90 are 

associated with severely to critically impacted ecosystems; scores between 90 - 115 are largely 

impacted, scores between 115 - 140 are moderately impacted and scores > 140 are largely natural 

sites with minor modifications. Score interpretations were drawn from the South-eastern lower 

high land ecoregion of South Africa, where both the Bloukrans-Kowie and Bushmans-New 

Year’s River system are located following Dallas (2007), SASS5 interpretations. Sites on the 

Bloukrans-Kowie River system that recorded a lower SASS score < 90, yielded δ
15

N
 
isotopic 

values between +10.00 and +35.00 ‰, each independently indicating that these sites were 

severely impacted (Dallas 2007) and highly eutrophic (Constanzo et al. 2004, 2005). Whereas 

sites with SASS scores ≤ 140 all had nitrogen isotopic values of between +10.00 and +14.00 ‰, 

both indicating moderate impairment. Lastly sites with SASS scores ≥ 150 consistently 

demonstrated δ
15

N
 
isotopic values of between +2.00 to +8.00 ‰, which both strongly indicate 

largely natural conditions without any sources of excessive nutrients. Similar to sites on the 

Bloukrans-Kowie River system, five Bushmans-New Year’s River sites were described as 

critically impacted, with low SASS scores and highly enriched δ
15

N
 
isotopic values, but 

interestingly, the remaining five sites had low SASS scores, but moderate δ
15

N
 
isotopic values 

(e.g. +6.68 to +12.65 ‰). The explanation for this most likely lies as mentioned previously on 

the physical convention of the Bushmans-New Year’s River forming series of isolated pools 

between study sites. Additionally, with the development of isolated pools, the river continuum 

concept no longer applies as nutrient loads from upstream are not carried and/or washed 

downstream and instead there is a large accumulation of salts and detritus (Vannote et al. 1980).  

The physical and chemical differences reported between the two river systems might have been 

the underlining factors that have driven the differences in biological composition and ultimately 

the δ
15

N isotopic values and SASS5 interpretations. However only two confluence study sites B8 

and B9 on the Bushmans-New Year’s River system, that was ‘flowing’ and consistent of more 

biotopes. Site B8 and B9 recorded a SASS score (98 and 125) and subsequent moderate δ
15

N 

isotopic values (~+10.00 and ~ +6.80 ‰), therefore undefined technique differences were 

restored and both techniques complemented respectively the disturbance.  

 

Coetzee & Hill (2012) and Hill et al. (2012) suggest that the excessive addition of 

chemical pollutants to aquatic ecosystems have been reported to result in negative ecological 
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consequences in the long-term. They further elaborate that findings to date have shown clear and 

strong impacts on aquatic ecosystems through increased production and the establishment of 

alien plants and animal species, and major changes in the presence and dominance of certain 

species of benthic macroinvertebrates (see Coetzee et al. 2014, Hill et al. 2015). Thus is it 

important, now more than ever, to understand aquatic nutrient dynamics. Aquatic ecosystems are 

extremely dependent on terrestrial ecosystems for nutrient inputs, therefore it is not surprising 

that land-use is one of the best predictors of δ
15

N
 
isotopic values in aquatic ecology (Vander 

Zanden et al. 2005). While SASS scores and δ
15

N isotopic values of Spirodela plants increased 

with an increase in anthropogenic inputs and SASS scores decreased with an increase in land-use 

activities, the δ
15

N tracing technique provided information on both spatial and temporal 

dynamics in N-loading. Conversely, biological assessment indices (i.e. SASS scores) can only 

identify disturbance once it has already manifested and because ecologically, there are multiple 

factors that may result in ecosystem disturbance, the information provided by SASS scores is 

limited and does not provide a better understanding of ecosystem stress. δ
15

N tracing however 

can clearly identify the type of pollution beforehand and can provide management with better 

techniques which can describe N-loading on a spatial and temporal basis before ecosystem 

degradation. Therefore sewage plume mapping (in this case with Spirodela sp.) may find its 

greatest utility in monitoring long-term, continuous nutrient inputs, such as environments 

impacted by sewage out-falls and wastewater inputs.  
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Mapping nitrogen loading in freshwater systems: using aquatic biota 

CHAPTER FIVE 

 

ISOTOPIC VALUES OF AQUATIC MACROINVERTEBRATES AS AN 

INDICATION OF NUTRIENT LOADING  

 

5.1 Introduction 

Assessing the ecological health of aquatic ecosystems and underlying ecological stressors 

such as physical and/or chemical pollutants is regarded as the core of environmental research 

(Aazami et al. 2015B). Environmental assessments are commonly carried out using biological 

indicators e.g. fish (Pont et al. 2007), macroinvertebrates (Hodkinson & Jackson 2005), diatoms 

(Taylor et al. 2007) and macrophytes (Ferrat et al. 2003), which have illustrated capabilities as 

reliable tools to guide management in decision-making by providing ecological information 

about the area/site of interest (Aazami et al. 2015B). These environmental assessments are often 

based on the biological community composition and characteristics (Vilmi et al. 2015). Current 

developments in biological monitoring regards aquatic macroinvertebrates as good biological 

indicators of external disturbances, and this was supported and described collectively by 

Rosenberg et al. (1986), McGreoch (1998), Markert et al. (2003) and Hodkinson & Jackson 

(2005). These studies highlighted that; (1) macroinvertebrates are taxonomically sound, therefore 

easy to identify and collect, (2) they comprise a major percentage of aquatic ecosystem primary 

consumers and biodiversity, (3) their ecology and ecological characteristics are well-known and 

documented, (4) they show a measurable response towards both natural and man-induced 

disturbances (e.g. Chironomidae and Culicidae are pollution tolerant taxa versus Ephemeroptera, 

Trichoptera and Plecoptera, which are pollution sensitivity taxa), (5) they are suitable for 

laboratory experiments and, (6) they have a strong capacity to be quantified and standardized. 

Combined, these six characteristics make macroinvertebrates good tools for ecological research 

and long-term freshwater biological monitoring, globally.  

Eutrophication in southern Africa is considered one of the most important ecological 

challenges for the majority of the countries waterways (van Ginkel et al. 2000, Oberholster & 

Ashton 2008, Coetzee & Hill 2012, Hill et al. 2012). There has been some attempt to try and 

understand system nutrient dynamics and/or identify ultimate sources of system eutrophication 
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using aquatic organisms such as algae and diatoms and to date they have provided some insights 

towards understanding the impacts of eutrophication on freshwater ecosystems. For example, 

Oberholster et al. (2009) and van Ginkel (2011) reported algae outbreaks/blooms that manifested 

to secondary effects, leading to high levels of cyanotoxins in eutrophic waters (resulting in the 

deaths of thousands of livestock, domestic animals and wildlife). According to van Ginkel (2004; 

cited in Oberholster & Ashton 2008) these algae blooms occurred mainly in South African 

impoundments and the majority of these blooms were concentrated in the Gauteng Province 

followed by the Free State, Kwa-Zulu Natal, the Eastern Cape and the Western Cape. 

Furthermore Vilmi et al. (2015) reported diatom morphology as related to the effects of 

eutrophication and/or changes in nutrient regimes in lotic waters. Vilmi et al. (2015)’s work 

followed that of Jarlman & Kahlert (2009; cited in Vilmi et al. (2015) where differences in mean 

width of diatoms valves (particularly in that of Achnanthidium minutissimum) were reported to 

be associated with variation in nutrients gradients. Mean diatom valve widths < 2 μm, 2.2 – 2.8 

μm and > 2.8 μm were associated with oligotrophic, oligo-mesotrophic and eutrophic waters 

respectively in Swedish Highlands streams. However, Simaika & Samways (2012) suggested 

that algae are not reliable indicators of N-loading due to their spontaneous response to high 

nitrogen levels, making them unreliable indicators to trace or monitor N-loading events on a 

long-term basis. To date, there is no consensus on whether macroinvertebrates or diatoms are 

better biological indicators, however, recently, the use of diatoms indices in southern Africa has 

been gaining momentum (Taylor et al. 2007, Dalu et al. 2014; 2015). Overall, while both 

organisms can provide useful information, both require specialised knowledge and training 

regarding identification, which is a challenge for their implementation and use. While using 

aquatic macroinvertebrates and/or diatoms for basic identification of ecosystem health and status 

is a common practice (Dickens & Graham 1998, Dickens & Graham 2002, Beyene et al. 2009, 

Ndebele-Murisa 2012, Seanego & Moyo 2013, Bere & Nyamupingidza 2014, Farrell et al. 

2015), neither can provide information on nutrient dynamics and/or identify ultimate sources of 

system eutrophication (see Chapter 3; Hill et al. 2012, Simaika & Samways 2012, Aazami et al. 

2015A & B). It is anticipated that using macroinvertebrates a better understanding can be drawn 

based on ecological point of view regarding macroinvertebrates ecological preferences been well 

understood following Palmer et al. (1994), Dallas (2004), Hodkinson & Jackson (2005), Heino et 

al. (2007), Mantel et al. (2010) studies where habitat type, seasonal micro-climate, lotic and 
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lentic characteristics have an effect on macroinvertebrates behavior and community composition, 

and this is well documented. 

Recently, the use of stable isotopic analysis (SIA) for tracing nutrient loading and 

nitrogen dynamics in aquatic systems has been investigated using zooplankton (Montoya et al. 

2002, Toetz et al. 2009, Lee et al. 2013), macroalgae (Costanzo et al. 2001, Deutsch & Voss 

2006, Thornber et al. 2008, Dailer et al. 2010), coral reefs and other marine organisms (Costanzo 

et al. 2005, Risk et al. 2009, Schurbert et al. 2013), mussels (Lake et al. 2001, McKinney et al. 

2002, Fry & Allen 2003, Gustafson et al. 2007, Lassauque et al. 2010, Alomar et al. 2015), 

aquatic macrophytes (Chapter 4) (Costanzo et al. 2001, Benson et al. 2008, Lassauque et al. 

2010, Hill et al. 2012) and fish (Lake et al. 2001) coupled with water nutrients analysis and 

sediments. In particular, Xu & Zhang (2012) and di Lascio et al. (2013) showed that stable 

isotope variation in macroinvertebrates can indicate anthropogenic disturbance in freshwater 

ecosystems. Following this work, Morrissey et al. (2013) investigated the possibility of tracing 

N-loading using nitrogen and carbon stable isotopic values of four macroinvertebrate families 

(e.g. Baetidae, Hydropsychidae, Heptageniidae and Gammaridae) to indicate the effect of 

wastewater on urban rivers in southern Wales and the Welsh Borders of United Kingdom. This 

study reported no significant differences in δ
15

N and δ
13

C macroinvertebrate isotopic values 

between animals downstream and upstream of sewerage out-falls. This can be attributed by 

macroinvertebrates being small organisms, with a short life span (primary consumers tend to 

show greater variability in their δ
15

N isotopic value than larger organisms with a longer life 

span), rapid nitrogen turnover, which can easily reflect any changes in their micro-habitat 

compared to larger, longer lived secondary consumers and predators (Cabana & Rasmussen 

1996, McKinney et al. 2002, Post 2002, Xu et al. 2010). Overall, Morrissey et al. (2013) 

recommended further investigations, particularly using different macroinvertebrate taxa, 

however very little work on this topic has been completed in South Africa. If macroinvertebrates 

in South African rivers which are exposed to high nutrient loads reflect enriched nitrogen 

isotopic values, as has been reported for Spirodela plants (see Chapter 4), SIA techniques may 

help to provide essential information on the extent of anthropogenic inputs and subsequent 

eutrophication in freshwater ecosystems. This chapter aims to: (1) identify an aquatic 

macroinvertebrate(s) whose isotopic values can act as an additional biological indicator in 

conjunction with Spirodela plants (see chapter 4), and (2) test and validate the δ
15

N isotopic 
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value of the indicator taxa for mapping nutrient loading and nitrogen dynamics in freshwater 

ecosystems in the Eastern Cape, South Africa. 

 

5.2 Materials and Methods 

5.2.1 Study sites and Data collections 

Details on study sites, sample collection and the experimental design are given in Chapter 2. 

 

5.2.2 Data analysis 

5.2.2.1 Identifying Potential Indicator Taxa 

The Indicator Value Species Analysis method (IndVal; Dufrêne & Legendre 1997) was 

carried out to identify indicator species on the Bloukrans-Kowie River and the Bushmans-New 

Year’s River systems and then together as a pooled data set, within aquatic macroinvertebrate 

communities which fell into different land-use and sampling site categories based on all 56 

identified taxa originally collected for chapter 3. IndVal combines species’ relative abundances 

together with its relative frequency of occurrence at multiple study sites. According to Dufrêne 

& Legendre (1997), good indicator species are always present at a particular land-use or study 

site within a given group/category and never occur in other groups/categories. The mean 

abundance of species i in site type j compared with all sites studied (specificity), by Bij, the 

relative frequency of occurrence of species i in the site type j (fidelity). IndVal was determined 

according to the following formula adopted from Dufrêne & Legendre (1997): 

Aij = Nij/Ni 

Bij = NSij/NSj 

IndValij = Aij * Bij * 100 

Where IndValij = Indicator Value of species i in site type/category j, Nij = mean number 

of individuals of species i across sites type/category j, Ni = sum of the mean number of 

individuals of species i over all sites, NSij = the number of sites j where species i is present, NSj 

= the total number of sites. 

The indicator value ranges from 0 - no indication to 100% - describing perfect indication 

(Dufrene & Legendre 1997, McGeoch et al. 2002). The significance of each taxon was tested 
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using a Monte Carlo test (permutations N = 9999, p < 0.05) in PC-ORD version 5.10 following 

McCune & Mefford (2006), Bere & Tundisi (2011) and Dalu et al. (2014; 2015). The taxon with 

a significant indicator values (p < 0.05) were considered as indicator species.  

Indicator taxa were determined on two ecological categories/types; indicator taxa for 

catchment land-uses (sewage, agricultural and confluence) and diagnostic taxa per study site. 

Due to differences in land-use properties between the two river systems, the Bloukrans-Kowie 

River system land-use indicator analysis was divided into four categories/sites types: (1) human 

settlement and sewage input (upstream Bloukrans site, close to Grahamstown settlements), (2) 

agricultural lands and fertilizer input (Mid-Bloukrans River), (3) natural/undisturbed habitats 

(upper reaches of Kowie River) and, (4) confluence (Bloukrans-Kowie confluence) sites 

representing upstream disturbances. The Bushmans-New Year’s River system was categorized 

into: (1) isolated pools (New Year’s site B1 – B2, B10), (2) non-point and sewage inputs 

(adjacent site to ASTWs), (3) agricultural lands (Golf course sites), (4) natural/undisturbed 

habitats and confluence sites. 

An additional canonical multivariate analysis with the software program CANOCO 4.5, 

was used to assess the relationship between the environmental variables, aquatic 

macroinvertebrates relative abundance and study sites (ter Braak & Smilauer 2002). The analysis 

was used concurrently with IndVal to identify characteristic macroinvertebrates that correlated 

with high levels of nutrients. Detrended Correspondence Analysis (DCA) was used to determine 

the appropriate response model (linear or unimodal). The DCA illustrated a gradient length of 

2.99 which was < 3 standard deviations (s.d), implying that taxa abundance exhibited a linear 

response to environmental variables (ter Braak & Smilauer 2002). A Redundancy Analysis 

(RDA) was then completed with species scores standardized by dividing the standard deviation. 

Species abundance data were further log transformed (log (x + 1)) prior to RDA analysis to 

prevent skewed results. RDA analysis involved a forward selection (Automatic selection) 

procedure, tested using a Monte Carlo significance test (permutation N = 9999, p < 0.05) under 

full model fit (ter Braak & Smilauer 2002). Preliminary RDA identified 8 of 25 environmental 

variables to be co-linear, and thus a selected subset of environmental variables with a variance 

inflation factors larger than 20 (VIF > 20) were removed and the analysis was re-run (ter Braak 

& Smilauer 2002). 
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5.2.2.2 
15

N isotopic values for Indicator Taxa  

A General Linear Mixed-Effects Model (GLMM) was performed to test whether there 

were any significant differences in δ
15

N
 
isotopic values of indicator taxa between the four 

sampling events and between the four selected study sites. The coding for the chosen optimal 

model formula run was similar to that of Chapter 4, where: 

model<-lme(
15

N values~time, random=~1+time|sites, data=my data) 

Where lme is the linear mixed-effect model function from the nlme package, 
15

N~time of 

sampling were the fixed effects, ~1+time was the slope and intercept function of the δ
15

N 

isotopic values over time, and sites were incorporated as a random effects. The model was fitted 

on δ
15

N
 
isotopic values for Oligochaeta and Chironomidae only, due to completeness of their 

collected data. These taxa were present at all times at all sampled study sites, therefore making 

them good candidates for comparison using the mixed-effect model (see Appendix 12; 

presence/absence data). Using the build-in coef function (coef(model)), intercepts and slope 

values of each fitted and plotted study site were obtained. Model validation was achieved using 

diagnostic plots of δ
15

N residuals versus fitted δ
15

N values, and δ
15

N residuals versus predictor 

variables (e.g. sampled study sites and time of sampling). 

A Multiple Linear Regression Analysis (MLRA) was also performed to investigate how 

explanatory variables influenced the response variables. The model followed the general 

formula: 

model2<-lm(response~explanatory1+explanatory2+……….+explanatoryn); 

where the response variables were δ
15

N isotopic values of Oligochaeta, Chironomidae, 

Culicidae and Syrphidae and the explanatory variables were the on-site collected 

physicochemical variables (e.g. dissolved oxygen [DO], ammonium [NH4-N] and nitrate [NO3-

N]). Model validation was achieved using diagnostic plots e.g. δ
15

N residual versus fitted δ
15

N 

values, normal Q-Q plots and δ
15

N residuals versus Leverage plots. All analyses were completed 

in the R environment (R Core Team; 2012). 
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5.3 Results   

5.3.1 Potential Indicator Taxa 

Indicator value species analysis 

Overall, the Bloukrans-Kowie River system showed the highest number of significant 

indicator taxa. The majority of indicators were more indicative of land-use/catchment than study 

site; with only Syrphidae and Turbellaria families representing human settlement/sewage input 

and agricultural lands/fertilizer respectively. Natural/undisturbed habitats were represented by 9 

families and 13 families were significantly diagnostic for the confluence (including upstream 

disturbance) land-use category (Table 5.1). Some families were also diagnostic of particular 

study sites, including Ecnomidae, Hydropsychidae and Tabanidae for site A10, Gerridae, 

Philopotamidae and Athericidae for site A9, Baetidae, Leptophlebiidae for site A8 as well as 

Lestidae and Pleidae for site A7. Site A6 had the highest number of diagnostic species, including 

Libellulidae, Hydrometridae, Nepidae, Leptoceridae, Dytiscidae and Gyrinidae (see Table 2.1, 

Chapter 2; Table 5.1). 

Comparatively, the Bushmans-New Year’s River system had the least amount of 

significant indicator taxa, which can likely be attributed to its lower relative macroinvertebrates 

abundance and biodiversity (see results, Chapter 3). Overall, the Bushmans-New Year’s River 

system also had indicators that were more indicative of land-use/catchment than study site; with 

human settlement/sewage represented by 3 families (including Turbellaria), 3 families diagnostic 

of agricultural lands/fertilizer and 11 families significantly diagnostic for the confluence 

(including upstream disturbance) land-use category. No taxa were seen to represent 

natural/undisturbed habitat (Table 5.2). Lastly, 4 study sites could be related significant indicator 

taxa; Libellulidae for site B1; Aeshnidae for site B6 and Simuliidae and Porifera for site B9. Site 

B8 had the highest number of significant indicator taxa and included Potamonautidae, Atyidae, 

Caenidae, Leptophlebiidae, Ecnomidae and Ancylidae (see Table 2.2, Chapter 2; Table 5.2).   

 

Pooling the Bloukrans-Kowie and Bushmans-New Year’s River systems aquatic 

macroinvertebrate abundances provided a more overall representation of useful indicator species.  

Site A2, A6, A7, A8, A9, A10 and B5, B6, B8, B9 showed significant diagnostic taxa; with site 

A2 (which receives wastewater from urban and rural Grahamstown) represented by 
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Chironomidae, Culicidae and Syrphidae. Site A5 (downstream of a sewage out-fall and 

agricultural lands) had only Simuliidae as an indicator taxon. Site A6 (primarily 

natural/undisturbed) could be identified by Aeshnidae, Gomphidae, Libellulidae and 

Hydrometridae, site A7 (adjacent to agricultural lands/fertilizer) was represented by 

Coenagrionidae and Lestidae, while site A8 (confluence, including upstream disturbance) was 

represented by Baetidae and Leptophlebiidae. Site A9 (primarily natural/undisturbed) had 5 

diagnostic taxa including Philopotamidae, Leptoceridae, Dytiscidae, Gyrinidae and Athericidae, 

and site A10 was characterized by Potamonautidae, Ecnomidae, Hydropsychidae and Tabanidae 

(Table 5.3). On the Bushmans-New Year’s River system, sites B5 and B6 (downstream of the 

sewage out-fall and in the Bushman Sand Golf Course (agricultural lands/fertilizer)), were 

characterized by the Hirudinea and Pleidae families respectively. Site B8 and B9 (confluence, 

including upstream disturbance) had Atyidae and Ancylidae and Porifera as their indicator taxa 

respectively (Table 5.3). The IndVal analysis of the pooled data showed comparable results to 

the Bloukrans-Kowie and Bushmans-New Year’s River analyzed individually. 

 

Multivariate analysis  

RDA was used to investigate the relationship between aquatic macroinvertebrates 

abundance patterns and the collected environmental variables, across sampled study sites. The 

accepted RDA plot reduced environmental variables to ten (i.e. nitrate, ammonium and 

phosphorus concentrations, flow rate (categorical), zinc concentrations, substrate diversity (as a 

score), carbonate concentrations, TDS, dissolved oxygen levels and turbidity). The first two 

RDA axes (1 and 2) accounted for 50.00% of the variance between taxa and 64.70% of the 

variance for the species-environment data. The Eigen values of axis 1, 2, 3 and 4 were 0.353, 

0.147, 0.070 and 0.050 respectively. The scale in S.D. units was -1 to 1 for both 

macroinvertebrates and environmental variables (see full names of aquatic macroinvertebrates in 

Appendix 11). In this ordination, the metric species-environment correlation for four axes 1, 2, 3, 

and 4 indicated a very strong positive correlation of 0.987, 0.985, 0.887 and 0.871 respectively. 

The environmental variables categorical flow rate, [Zn], substrate diversity, [CO3], TDS and DO 

were positively associated to axis 1, while turbidity, and [NH4-N] were negatively associated to 

axis 1. Comparatively, [NH4-N], [NO3-N], [P], categorical flow rate, [Zn] and substrate diversity 

were positively associated to axis 2 and inversely [CO3], TDS, DO and turbidity were negatively 
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associated to axis 2. RDA axis 1 and 2 separated all sampled study sites into three distinct groups 

based on nutrient enrichment levels and land-use, which were further characterized by associated 

aquatic macroinvertebrate community composition (Figure 5.1). The first group consisted of the 

heavily polluted and nutrient rich, upstream Bloukrans River study sites (A2, A3, A4 and A5; 

A3>A4>A5>A2 from extremely polluted to polluted) which were positively associated to axis 2 

and thus highly correlated to [NH4-N], [NO3-N] and [P]. Aquatic macroinvertebrates 

characterizing this group were the relatively pollution tolerant Dipteran families: Chironomidae, 

Culicidae, Syrphidae and the aquatic earthworm, Oligochaeta (Beneberu et al. 2014). The second 

group was primarily comprised of sites on the Bushmans-New Year’s River system (sites B1-B3, 

B5-B7 and B10), which were positively associated to axis 2 and thus showing strong correlations 

to high turbidity, likely indicative of the isolated pools nature of the sites. This second group 

illustrated generalist macroinvertebrate taxa with no precise habitat preference limits, however 

inhabiting moderately disturbed habitats. These included the pollution tolerate parasitic worm 

(Hirudinea), Psychodidae and the generalists Chaoboridae, Hydracarina, Helodidae, 

Notonectidae, Belostomatidae, Pleidae, Hydrophillidae, Turbellaria, Lymnaeidae and Physidae. 

The third group consisted of less polluted study sites that were positively associated to axis 1 

(A6, A9, A10, A8, B8, B9 and A7; with A6>A9>A10>A8>B8>B9>A7, from the largely natural 

to “less disturbed”). Macroinvertebrates that mainly characterized this group were the pollution 

sensitive families including; Leptoceridae, Ecnomidae, Philopotamidae, Lestidae, 

Leptophlebiidae, Hydropsychidae, Baetidae, Aeshnidae, Tabanidae, Chlorocyphidae, 

Synlestidae, Caenidae, Platycnemididae, Gomphidae, Coenagrionidae, Ancylidae and 

Potamonautidae. This group associate with high levels of DO and increased substrate diversity 

coupled with adequate water flow rates. A Monte Carlo permutation test indicated that substrate 

diversity, [phosphorus], flow rate and [NO3-N] were the only significant environmental variables 

(p < 0.05) that were responsible for aquatic macroinvertebrate composition and site groupings 

according to ecosystem health (e.g. polluted to less polluted sites). Therefore water quality (e.g. 

[P] and [NO3-N]) and habitat structure (flow and substrate diversity) were clearly driving factors 

in the present study (Figure 5.1). 
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Table 5.1: List of significant (p < 0.05) indicator taxa and their observed IndVal percentage as 

indicators of different catchment land-use and study site categories on the Bloukrans-Kowie 

River system, Eastern Cape, South Africa. 

Taxa Catchment land-use Study site 

IndVal% P-value Catchment IndVal% P-value Site 

Gerridae    30.2 0.053 A9 

Turbellaria 57.3 0.006 Agriculture    

Potamonautidae 41.0 0.003 Confluence    

Baetidae 34.6 0.053 Natural 17.7 0.043 A8 

Leptophlebiidae 46.7 0.015 Confluence 29.9 0.004 A8 

Chlorocyphidae 32.7 0.05 Confluence    

Coenagrionidae 39.6 0.037 Confluence    

Aeshnidae 49.2 0.013 Natural    

Gomphidae 58.8 0.000 Natural    

Belostomatidae 45.8 0.006 Confluence    

Corixidae 37.9 0.05 Natural    

Notonectidae 46.2 0.025 Natural    

Elmidae 34.1 0.045 Confluence    

Syrphidae 34.5 0.046 Sewage    

Tipulidae 37.4 0.025 Confluence    

Physidae 41.0 0.051 Confluence    

Lestidae    36.3 0.032 A7 

Libellulidae    41.2 0.003 A6 

Hydrometridae 41.7 0.010 Natural 39.8 0.044 A6 

Nepidae    47.3 0.010 A6 

Pleidae 62.4 0.003 Confluence 38.8 0.021 A7 

Ecnomidae 67.2 0.000 Confluence 40.6 0.002 A10 

Hydropsychidae 57.8 0.000 Confluence 30.6 0.004 A10 

Philopotamidae 50.0 0.012 Natural 40.9 0.027 A9 

Leptoceridae 51.9 0.009 Natural 57.8 0.0001 A6 

Dytiscidae 51.4 0.006 Confluence 30.6 0.009 A6 

Gyrinidae 37.4 0.051 Natural 35.2 0.033 A6 

Athericidae    75.0 0.004 A9 

Tabanidae 71.6 0.000 Confluence 45.9 0.002 A10 
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Table 5.2: List of significant (p < 0.05) indicator taxa and their observed IndVal percentage as 

indicators of different catchment land-use and study site categories on the Bushmans-New 

Year’s River system, Eastern Cape, South Africa. 

Taxa Catchment land-use Study site 

IndVal% P-value Catchment IndVal% P-value Site 

Turbellaria 39.8 0.022 Sewage    

Baetidae 37.6 0.033 Confluence    

Aeshnidae 45.0 0.009 Fertilizer 30.7 0.045 B6 

Pleidae 39.8 0.025 Fertilizer    

Gerridae 39.2 0.025 Fertilizer    

Coenagrionidae 37.6 0.033 Confluence    

Hydrpsychidae 54.2 0.007 Confluence    

Hydracarina 36.2 0.027 Sewage    

Dytiscidae 38.2 0.026 Sewage    

Porifera 75.0 0.000 Confluence 60.6 0.002 B9 

Potamonautidae 90.6 0.000 Confluence 45.2 0.009 B8 

Atyidae 67.5 0.000 Confluence 33.7 0.009 B8 

Caenidae 94.1 0.000 Confluence 48.7 0.003 B8 

Leptophlebiidae 87.5 0.000 Confluence 85.7 0.000 B8 

Libellulidae    42.8 0.003 B1 

Ecnomidae 47.1 0.002 Confluence 52.2 0.011 B8 

Simuliidae 36.5 0.012 Confluence 49.6 0.014 B9 

Ancylidae 86.4 0.000 Confluence 47.2 0.003 B8 
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Table 5.3: List of significant (p < 0.05) indicator taxa from pooled aquatic macroinvertebrates 

abundance collected on all study sites on the Bloukrans-Kowie and the Bushman-New Year’s 

River system Eastern Cape South Africa. 

Taxa IndVal Outcome 

IndVal% P-value System & Site 

Porifera 29.3 0.011 Bush B9 

Hirudinea 16.3 0.039 Bush B5 

Potamonautidae 15.8 0.012 Blouk A10 

Atyidae 33.7 0.000 Bush B8 

Baetidae 11.7 0.005 Blouk A8 

Leptophlebiidae 22.8 0.003 Blouk A8 

Coenagrionidae 11.9 0.047 Blouk A7 

Lestidae 34.4 0.005 Blouk A7 

Aeshnidae 19.4 0.043 Blouk A6 

Gomphidae 22.7 0.008 Blouk A6 

Libellulidae 22.3 0.004 Blouk A6 

Hydrometridae 27.6 0.027 Blouk A6 

Pleidae 16.8 0.041 Bush B6 

Ecnomidae 26.9 0.007 Blouk A10 

Hydropsychidae 26.4 0.000 Blouk A10 

Philopotamidae 30.7 0.019 Blouk A9 

Leptoceridae 52.5 0.0001 Blouk A9 

Dytiscidae 13.0 0.031 Blouk A9 

Gyrinidae 27.9 0.008 Blouk A9 

Athericidae 75.0 0.001 Blouk A9 

Chironomidae 10.5 0.011 Blouk A2 

Culicidae 14.7 0.029 Blouk A2 

Simuliidae 17.8 0.034 Blouk A5 

Syrphidae 32.4 0.048 Blouk A2 

Tabanidae 36.9 0.000 Blouk A10 

Ancylidae 16.4 0.034 Bush B8 
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Figure 5.1: Redundancy Analysis (RDA) tri-plot representing aquatic macroinvertebrate relative 

abundance in relation to environmental variables across all sampled study sites on the Bloukrans-

Kowie and Bushmans-New Year’s River systems, Eastern Cape, South Africa. Red arrows 

represent the environmental variables, blue arrows represent the abundance of aquatic 

macroinvertebrates, and the black circles represent study sites. The full names of 

macroinvertebrates are provided in Appendix 11). 
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5.3.2 Isotopic values of indicator taxa 

 

The RDA showed 4 sites; A2 – A5 to be strongly correlated with [NH4-N], [NO3-N] and 

[P] (variable that effectively describe eutrophication). The macroinvertebrate taxa associated 

with these environmental variables and sites included Chironomidae, Culicidae, Syrphidae and 

Oligochaeta and Muscidae (Figure 5.1). The subsequent pooled IndVal analysis showed 

Chironomidae, Culicidae and Syrphidae as the only taxa which represented site A2 (severely 

disturbed sites, receiving rural and urban waste from Grahamstown). Based on both the RDA and 

the IndVal analyses, Oligochaeta, Chironomidae, Culicidae and Syrphidae were chosen as the 

best options for N-loading indicator taxa. The choices of macroinvertebrates N-loading 

indicators were also supported by work from Dickens & Graham (1998), Beyene et al. (2009), 

Beneberu et al. (2014) and Bere & Nyamupingidza (2014).  

Only two macroinvertebrate taxa; Oligochaeta and Chironomidae were present 

throughout the study period at all study sites. Culicidae and Syrphidae presence was variable 

between sampled sites (see presence/absence data, Appendix 12), with Syrphidae completely 

absent at site A9 throughout the study and Culicidae observed only once at site A9 at T3. Thus 

only the isotopic data for Oligochaeta and Chironomidae are presented below. 

Oligochaeta and Chironomidae families showed δ
15

N and δ
13

C isotopic values that varied 

both temporally and spatially at the four selected Bloukrans-Kowie River system sites over four 

sampling events in March 2015 (Figure 5.2 & 5.3). Oligochaeta illustrated enriched δ
15

N isotopic 

values (> +10.00 ‰, likely indicating eutrophication; see chapter 4) at site A3 at T2, A4 

throughout the entire study period and at A9 at T4. Relatively depleted δ
15

N isotopic values (< 

+10.00 ‰, likely indicating largely natural N-inputs, see chapter 4) were observed at A2 

throughout the entire study period, A3 at T1, T3 – T4 and A9 at T1 and T3 (Figure 5.2A). 

Similarly, Chironomidae also showed enriched δ
15

N isotopic values (> +10.00 ‰) at site A3 

between T1 – T2, A4 at T1 – T2, T4 and depleted δ
15

N isotopic values (< +10.00 ‰) at site A2 

throughout the study period, at A3 between T3 – T4, A4 at T4 and A9 throughout the study period 

(Figure 5.3A). In general, both Oligochaeta and Chironomidae δ
15

N isotopic values followed a 

gradual increase from site A2 to A3 and reached the most enriched δ
15

N isotopic values at site 

A4 on all sampling events, with the exception of the Chironomidae at T3. At T3, Chironomidae 

δ
15

N isotopic values consistently ranged between +2.00 to +4.00 ‰ across all study sites, while 
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comparatively, the δ
15

N isotopic values of Oligochaeta collected at the same sites at the same 

sampling events followed the originally described trend of δ
15

N enrichment from site A2-A4. 

Organisms at A9 showed different patterns, with oligochaetes enriching over time, but with 

chironomids remaining more or less between +2.00 to +6.00 ‰ over the entire time period 

(Figure 5.2A & 5.3A).  

The δ
13

C isotopic values of both Oligochaeta and Chironomidae showed a range of 

between -22.00 to -26.00 ‰ and -22.00 to -28.00 ‰ respectively, throughout the investigation 

(Figure 5.2B & 5.3B). Generally, both taxa illustrated a spatial trend of δ
13

C isotopic values 

depletion, from site A2 to A9. δ
13

C isotopic values for Oligochaeta and Chironomidae at A9 

were equivalent to those at site A4 (with the exception of Chironomidae at T3) and temporally 

both taxa illustrated less variation within sites throughout the study.  

 

Linear mixed-effects model 

Mixed-effects models fitted on δ
15

N isotopic values of Oligochaeta and Chironomidae 

were significantly different between all study sites on the Bloukrans-Kowie River system (Figure 

5.4A & B, Table 5.5). Furthermore, from the model fit statistics, temporal variation in δ
15

N 

isotopic values (Figure 5.2A & 5.3 A) were significantly different (p < 0.05) between study sites 

(Table 5.4). δ
15

N isotopic values of Oligochaeta and Chironomidae over time showed a negative 

and positive correlation as factors of both random effects (r = -0.87 and r = 0.53) and fixed 

effects (r = -0.87 and r = 0.45) respectively (Table 5.4). Slopes from each site were compared to 

the population line slope (~ 0 and ~ -0.99) and intercepts (+8.72 and +10.23 ‰) of Oligochaeta 

and Chironomidae respectively. The population regression line was used to distinguish between 

nutrient rich, eutrophic study sites (> +10.00 ‰) and less nutrient rich, oligotrophic study sites 

(+2.00 - +8.00 ‰). Sites A3 (slope: -0.93, intercept: +10.13 ‰) and A4 (slope: -1.45, intercept: 

+17.59 ‰) for Oligochaeta and sites A3 (slope:-1.44, intercept: +12.21 ‰) and A4 (slope: 0.67, 

intercept: +14.65 ‰) also for Chironomidae showed regression lines and intercept above that of 

the population line,  and were thus significantly enriched compared to rest of the study sites, 

therefore they were identified as eutrophic (see also Chapter 4 – Results) (Figure 5.4 A & B).  

Comparatively, both sites A2 (slope: 0.14, intercept: +4.56 ‰ for Oligochaeta; slope: -1.02, 

intercept: +6.94 for Chironomidae) and A9 (slope: 2.12, intercept: +2.59 ‰ for Oligochaeta, 

slope: -0.96, intercept: +7.13 ‰ for Chironomidae) had an intercept equating to ~ < +8.00 ‰, 
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which was less than the population line and were thus identified as oligotrophic study sites 

(Figure 5.4 A & B, 5.5). Site A2 and A9 for Oligochaeta and site A4 for Chironomidae were the 

only study sites that showed a positive linear relationship (slope > 0). 

Model-checking plots showed that δ
15

N residuals versus fitted δ
15

N values for both the 

Oligochaeta and Chironomidae were fairly well behaved (showing a linear band of points 

concentrated on the reference line) (see Appendix 14). δ
15

N residuals versus predictor variables 

(study sites and time of sampling) also confirmed a mean variation approximately equating to the 

reference point, however site A3 for Oligochaeta δ
15

N isotopic values had a slight deviation from 

the reference point (see Appendix 15). δ
15

N residuals and time diagnostic plots also showed a 

semi-circular pattern comparable with that of Spirodela (Chapter 4) plants throughout the 

sampling period (see Chapter 4, Appendix 8).  

 

Multiple linear regression 

Strong significant relationships were seen between on-site physicochemical variables and 

δ
15

N isotopic values of Chironomidae, Culicidae and Syrphidae throughout the investigation.  

DO, [NH4] and [NO3] (which were significantly different between sites, appendix 16) had a 

significant associations with δ
15

N isotopic values of Chironomidae (r
2 

= 0.53, F3-43 = 16.23, p < 

0.001), Syrphidae (r
2 

= 0.86, F3-10 = 20.11, p < 0.001) and Culicidae (r
2 

= 0.81, F3-20 = 27.86, p < 

0.001), and explained ≥ 50.00% variation of Oligochaeta and Chironomidae δ
15

N isotopic 

values. However Oligochaeta δ
15

N isotopic values and physicochemical variables showed a very 

weak but significant association, and the physicochemical variables explained only 19% 

variation of the nitrogen data (r
2 

= 0.25, F3-41 = 4.47, p < 0.01).  
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Figure 5.2: Oligochaeta (A) δ
15

N and (B) δ
13

C isotopic values at four selected study sites on the 

Bloukrans-Kowie River system, Eastern Cape South Africa, during four weeks (T1, T2, T3, T4) 

sampling events in March 2015.
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Figure 5.3: Chironomidae (A) δ
15

N and (B) δ
13

C isotopic values at four selected study sites on 

the Bloukrans-Kowie River system, Eastern Cape South Africa, during four weeks (T1, T2, T3, 

T4) sampling events in March 2015. 
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Figure 5.4: (A) Oligochaeta and (B) Chironomidae mixed-effect model plots showing differences in the δ
15

N intercept and slope from 

predicted δ
15

N isotopic values over the 13 month sampling period. Colored solid regression lines represent different study sites and the 

black solid line represents the population line.

A B 
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Table 5.5: Summary of linear mixed-effect model fit statistics for δ
15

N isotopic ratios of 

identified biological indicators for eutrophication on the Bloukrans-Kowie River system, Eastern 

Cape South Africa. 

Model Statistics Linear Mixed-Effect Model 

Oligochaeta Chironomidae 

Model AIC 194.27 175.12 

Random Effects StdDev.   

Intercept 6.78 3.89 

Time 1.62 0.96 

Residuals 1.43 1.06 

Random Effect Correlation -0.87 0.53 

Fixed Effects   

Intercept (±Std. error) 8.72±3.44 10.23±1.98 

Time (±Std. error) -0.03±0.83 

df = 40 

t-value = -0.03 

p = 0.03 

-0.69±0.50 

df = 42 

t-value = -1.38 

p = 0.04 

Fixed Effects Correlation -0.87 0.45 

Number of Observations 45 47 

Number of Groups 4 4 
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Figure 5.5: Average δ
15

N ratios (‰) of Spirodela plant, Chironomidae and Oligochaeta at four 

Bloukrans-Kowie River, Eastern Cape South Africa sites, over four sampling events in March 

2015. Black arrows indicate sewage out-fall (between A2 & A3) and cow manure run-off 

(between A3 & A4) from adjacent dairy-farm lands on the Belmont Valley road, Grahamstown 

Eastern Cape. 
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5.4 Discussion 

Biological indicators 

Aquatic macroinvertebrate abundance patterns were positively correlated to 

environmental variables on both Bloukrans-Kowie and Bushmans-New Year’s River systems, 

Eastern Cape. This was in agreement with other water quality and biological assessment studies, 

investigating the effect of land-use activities using macroinvertebrates to assess the river health 

(Dickens & Graham 1998, Ndebele-Murisa 2012, Seanego & Moyo 2013, Bere & 

Nyamupingidza 2014, Farrell et al. 2015). Sites were grouped into three distinct clusters based 

on pollution levels and the pollution tolerance of macroinvertebrates at each study site. 

Multivariate analysis further demonstrated the capacity of macroinvertebrates to act as biological 

indicators of different levels of pollution and land-use as suggested by Dallas & Day (2004) and 

Bonada et al. (2006). Site A2, A3, A4 and A5 were correlated to relatively poor water quality (as 

seen by high nutrient levels of P, NH4-N and NO3-N) and was supported by the presence of 

pollution tolerant macroinvertebrate taxa e.g. Oligochaeta, Chironomidae, Culicidae and 

Muscidae supplemented by Syrphidae. These taxa are regarded as good diagnostic indicators for 

high pollution disturbance in freshwater ecology (Dickens & Graham 1998, Beyene et al. 2009, 

Beneberu et al. 2014, Bere & Nyamupingidza 2014). All these taxa are adapted to survive in 

polluted waters with low oxygen levels, oligochaetes and chironomids for example, use their 

haemolymph fluid which contains high concentration of haemoglobin making them resistant to 

low oxygen levels (Weber & Vinogradov 2001, Van Hoven & Day 2002). Syrphids and culicids 

on the other hand, use their respiratory tubes to help them to exchanges gases from the water 

surface enabling them to take oxygen directly from the atmosphere (Beneberu et al. 2014).  The 

majority of taxa for this first group were also observed to be indicators of pollution/nutrient rich 

study sites in the IndVal analysis, where Syrphidae was an indicator for the sewage and 

Chironomidae, Syrphidae and Culicidae were diagnostic macroinvertebrates for site A2. 

Ndebele-Murisa (2012) also observed Chironomidae family in abundance in nutrient rich study 

sites, receiving effluents from the nearby industry, in Harare Zimbabwe. The second group 

included site B1, B2, B3, B5, B6 and B10, and were the least/or at least less polluted, but 

severely physically modified study sites. These sites were for the majority of the study period, 

converted into isolated pools, and thus had poor biotope diversity (only sandy to muddy biotopes 
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present), minimal flow rates, high water temperatures, high turbidity and a lower concentration 

of dissolved oxygen as is characteristic for lentic water bodies (O’Keeffe et al. 1990). The 

majority of aquatic macroinvertebrates that colonize such spaces are, in most cases, predatory 

taxa which are only affected by the presence/absence of prey (e.g. Hemiptera: Notonectidae, 

Belostomatidae, Pleidae and Naucoridae; see Chapter 3, Results section). Additionally, taxa that 

prefer muddy/sandy habitats (e.g. Hirudinea, Turbellaria and certain Coleoptera families) were 

also recorded amongst this group. Again, this correlates with the IndVal analysis, where the 

predatory Libellulidae was identified as an indicator taxon for site B1 and Hirudinea and Pleidae 

as indicator taxa for the muddy/sandy sites B5 and B6 respectively. This topic has been widely 

illustrated using macroinvertebrates correlating with their micro-habitat e.g. physical and 

chemical characteristics to maximize their survival (Gies et al. 2015, Shearer et al. 2015). Group 

three constituted of minimally polluted and more natural downstream study sites on both the 

Bloukrans-Kowie and Bushmans-New Year’s River system, showing a strong correlation with 

high levels of DO, supported by diverse biotopes and with less acidic waters as shown by 

moderate concentrations of CO3 and TDS. The group exhibited a diverse group of 

macroinvertebrates, most of which are documented as sensitive to any anthropogenic activities. 

Furthermore, Simaika & Samways (2012) noted that Odonata (dragonflies) are good indicators 

of habitat quality and this third group included a number of families of Odonata despite their 

endangered status due to habitat modification (Kietzka et al. 2015), therefore supporting the 

identification of this last group of sites as largely natural. 

 

Stable isotopic values of indicator taxa 

The spatial variation in δ
15

N isotopic values of both Oligochaeta and Chironomidae 

generally reflected excessive nutrient loads from catchment land-use in a similar fashion to 

sewage plume mapping in Spirodela plants (see chapter 4). Majority of excess nutrients as 

expected identified on both taxa isotopic values indicated high magnitude of stable nitrogen 

isotopic values (> +10.00 ‰) of sewage out-fall between site A2 - A3 and cow manure run-off 

between A3 - A4. Therefore site A4 showing the highest nitrogen isotopic values, due to nutrient 

gradient from A3. Comparatively, site A9 only showed N-values of between (+2.00 ‰ - 

+6.00‰), which are similar to nitrogen harvested from the atmosphere, therefore indicating no 

excessive nutrient inputs but only a natural habitat/site. Similar findings were reported by Xu & 
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Zhang (2012) and di Lascio et al. (2013), where zooplankton and primary consumers showed 

elevated δ
15

N isotopic values after exposure to point and diffuse source nutrient loads through 

time and space. Morrissey et al. (2013) also conducted a similar study using aquatic 

macroinvertebrate families which represented a wide range of functional feeding groups. Their 

study however, showed no significant differences in δ
15

N isotopic values between 

macroinvertebrates taken from sites upstream and downstream of a wastewater treatment facility. 

However, the observed variation (δ
15

NDownstream – δ
15

NUpstream) provided enough evidence to show 

that macroinvertebrates exposed to excessively high nutrients have altered their nitrogen isotopic 

ratios. Based on the present study and that of Cabana & Rasmussen (1996), Matthews & 

Mazumder (2003), Xu et al. (2005B; 2010) and Xu & Zhang (2012), primary consumers with 

only a short life span and small body size (zooplankton or oligochaetes and chironomids) have a 

high nitrogen turn over as compared to large body size and long life span (mussels or fish) 

aquatic organisms. Furthermore, following similar studies (e.g. Xu & Zhang (2012), Morrissey et 

al. (2013)) the present study concluded that δ
15

N isotopic values of macroinvertebrates will vary 

with the body size, life span and dietary source (position in the trophic level) of the selected 

biological indicator. Although our study showed increasing nitrogen values with respect to 

anthropogenic influence, we further observed that temporally nitrogen values between the two 

taxa differed, particular that of chironomids at week 3 (T3). This could be explained by; firstly, 

oligochaetes and chironomids difference in their dietary sources, this was observed on both taxa 

using carbon isotopic values were taxa (both oligochaetes and chironomids) found at site A2 

were more/moderately enriched in carbon sources than taxa found at site A4 and A9. Therefore 

indicating different dietary source and carbon fractionation, this further outline the importance 

for using dual stable isotope analysis, where not only they can point out and map pollution but 

can further provide information on the trophic status of the taxa in subject. Secondly life span, 

Chironomidae like any other dipteran families have a life span of about two to three weeks 

(Harrison 2003, Arva et al. 2015), unlike oligochaetes with a life span of about a month to a year 

(Van Hoven & Day 2002). Therefore there is a possibility that at T3/week 3, we could have 

sampled a new hatched generation of chironomids (but the same generation of oligochaetes) that 

has not yet being exposed to nutrient gradient on selected sites, hence a constant/similar nitrogen 

isotopic value recoded at T3 on all study sites irrespective of the nutrient gradient as compared to 

nitrogen isotopic values of oligochaetes. This is following DeNiro & Epstein (1981) emphasizes 
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that nutrient rich sediments, surface water column nutrients concentration and primary producers 

subsequent wastewater input in aquatic ecosystems reflect increased nitrogen isotopic values of 

short lived and small bodied primary consumers that graze and/or filter feed on the vicinity. This 

was in agreement with our study, and further supports the constant chironomids nitrogen isotopic 

values which were not corresponding with high water nutrient concentration, meaning sampled 

taxa should have been the newly emerged generation. According to Xu & Zhang (2012) this will 

also be the cases in terms of spatially and temporal differences and this was also the trend 

observed on the present study were different water nutrient concentration and macroinvertebrate 

nitrogen isotopic values were showing a highly correlation throughout the study. Therefore for 

Morrissey et al. (2013) study, body size and organism life span could have been factors 

attributed less variation in macroinvertebrate δ
15

N isotopic values and also the quality of 

discharged effluents may have not been of any significant difference as compared to that of the 

receiving stream. 

 

Although Cole et al. (2004) and Udy et al. (2006) cited in Bergfur et al. (2009) noted that 

δ
13

C isotopic values are as much important as δ
15

N isotopic values in eutrophication studies. 

Furthermore Voss et al. (2000) also added that increased primary production leads to reduced 

discrimination of 
13

C in photosynthesis and this leads to increase/enriched δ
13

C isotopic values.  

However Bergfur et al. (2009) found no differences in δ
13

C isotopic values of periphyton, 

organic matter, invertebrates and fish species along the nutrient gradient boreal stream in 

Sweden.  On the other hand Xu & Zhang (2012) only regarded nitrogen isotopic values as good 

indicator of increased anthropogenic and land-use activities on aquatic ecosystems. On the 

present study δ
13

C isotopic ratios of primary consumers showed no relationship to the nutrient 

gradient as implied by Voss et al. (2000) and Finlay (2001) and we conclude that no effect of 

nutrient enrichment were seen on photosynthesis rates in the Bloukrans-Kowie River system 

were probably small and had no effect on the discrimination between heavy and light carbon 

isotopes of primary consumers as it was the case with the Spirodela plants (Chapter 4). However 

we recommend that when using aquatic macroinvertebrates as indicator taxa, carbon isotopic 

values should be taken into consideration as it is able to trace and identify if selected taxa share 

the same or different dietary sources (organic matter), and this can contribute towards reflected 

nitrogen isotopic values interpretation. 
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Therefore primary consumers can be used as reliable biological indicators of nitrogen 

pollution in aquatic ecosystems, however because primary consumers have a high nitrogen turn 

over in a short period of time, thus they must be consider for only a short term studies 

particularly chironomids, such will give a better understanding on nutrients dynamics as a 

function of nitrogen pollution. Only for long term studies that users are recommended to 

consider nitrogen isotopic values of long lived, large body sized molluscs, mussels and oysters 

which can better reflect environmental changes that happened in longer time periods as opposed 

to primary consumers (Gustafson et al. 2007, Wen et al. 2010). Agreeing to Bergfur et al. (2009) 

statement our study was also aimed at opening opportunities for more studies that will cover 

broader gradients in nutrients concentration and also determine potential threshold values by 

calibrating macroinvertebrates δ
15

N isotopic values taking in consideration differences in dietary 

requirements, life span and body size for taxa of interest in order to further develop they isotopic 

technique as tools in biological assessment. 
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Mapping nitrogen loading in freshwater systems: using aquatic biota 

CHAPTER 6 

 

GENERAL DISCUSSION 

 

Anthropogenic activities, particularly environmental nitrogen pollution, have been 

increasing on a global scale since the industrial revolution, and substantial pollution loads have 

reached aquatic ecosystems, resulting in numerous environmental impacts, including 

eutrophication, poor water quality, decline in aquatic biodiversity, the promotion of alien species 

invasions and the proliferation of water borne diseases (Chen et al. 2012, Coetzee & Hill 2012). 

Thus, Fenech et al. (2012) emphasizes that tracing N-sources in aquatic ecosystems is of vital 

importance for improving both human and environmental health issues and as this has 

importance with regards to legislation, it has become a priority for many countries. Vander 

Zanden et al. (2005) and Hill et al. (2012) further argue that studies in eutrophication and the 

means of identifying its sources are limited, particularly in developing countries. 

Nyenje et al. (2010) reported that high levels of eutrophication and excess nutrient 

release are common in urban areas in sub-Saharan African countries, and further highlighted a 

few of South African freshwater systems; e.g. the Hartbeespoort Dam, Roodeplaat Dam, 

Hennops River and Rietvlei wetlands (Gauteng: Thornton & Ashton 1989, Oberholster et al. 

2008, Harding 2015), Berg River (Western Cape: de Villiers 2007), Lake Krugersdrift, Modder 

River (Free State: Oberholster et al. 2009), Umtata River (Eastern Cape: Fatoki et al. 2001) and 

Molopo River (North West: Munyati 2015) as severely nutrient enriched. This was attributed 

primarily to poor infrastructure and waste management, including lack of sewer lines, sewerage 

treatment plants or solid waste disposal sites surrounding these waterways. This nutrient 

overload manifests as consistent eutrophication that can further result in complete alteration or 

degradation of ecosystem structure and function, thus threatening human and environmental 

health (McClelland & Valilea 1998, Rabalais 2002, Anderson & Cabana 2005). Accordingly, 

Coetzee & Hill (2012) South Africa constitutes the most eutrophic water bodies globally. Now 

more than ever, there is a demand for initial assessments on the trophic status of ecosystems and 

for the tracing of sources of nutrient loading into aquatic ecosystems, both of which are essential 

steps towards understanding the detrimental effects of eutrophication (Xu & Zhang 2012). 
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This chapter will discuss all the tested biological monitoring methodologies (Chapter 2 – 

Chapter 5), their ecological capabilities and challenges with regards to the present study and the 

scientific literature. The aim of this chapter is to identify which technique/methodology (or 

combination of techniques/methodologies) will help us to best resolve the temporal and spatial 

dynamics of nitrogen loading in freshwater ecosystems, as well as provide a potential early 

warning system that will provide better tools for the management of freshwater ecosystems. 

 

6.1 Environmental variables as indicators of N-loading 

The effluent discharge from the Belmont Valley Sewerage Treatment Works (BVSTWs) 

and the Alicedale Sewerage Treatment Works (ASTWs), coupled with diffuse inputs of waste 

material from urban and rural settlements around Grahamstown and Alicedale, showed potential 

detrimental effects on the downstream receiving systems; both on the Bloukrans-Kowie and 

Bushmans-New Year’s Rivers. Numerous sites on both rivers (A8, A10, B4) showed average pH 

values greater than 8.5, which is reported to work synergistically, increasing the toxicity of 

certain detrimental micronutrients in aquatic ecosystems, e.g. increasing the conversion rate of 

NH4 to NH3, and enhancing the toxicity effect of aluminum (Al), cadmium (Cd) and zinc (Zn) 

(Palmer et al. 2004). Additionally, not only were these sites a concern with respect to pH, many 

(but not all) also showed high nitrogen (NO2
-
) and phosphorus (P) concentrations that were 

above the South African Targeted Water Quality Range (TWQR; < 1.50 mg/L effluent 

discharge), in particular site A3, A4, A5 and B3, B5 which were situated adjacent and 

downstream of the BVSWs and ASTWs discharge points respectively. Effluent discharge and 

cultural eutrophication (land-use activities which result in synthetic/manure fertilizer run-off) 

have been reported as the main drivers of excessive levels of nitrogen and phosphorus in local 

watersheds (de Villiers 2007). Dissolved oxygen (DO) levels have also been linked to poor 

ecosystem health, with Ndebele-Murisa (2012) and Farrell et al. (2015) reporting low DO 

concentrations associated with nutrient enrichment in aquatic ecosystems. Surprisingly, despite 

high pH and increased concentrations of N and P at numerous sites on both rivers in this study, 

which all indicate poor ecosystem health, dissolved oxygen (DO) levels for the majority of sites 

fell into the ‘safe’ range for proper ecosystem functioning (> 3.0 mg/L) as defined by Chapman 

(1992). Additionally, the rest of the micronutrient concentrations at the majority of sites in this 

study were well within the recommended South African Water Quality Guidelines for the well-
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being of aquatic biota, domestic water use and safe effluent discharge (DWAF 1996A, Morrison 

et al. 2001). Often this was also in contrast to the levels of impairment and assessments of 

ecosystem health determined using measures of macroinvertebrate diversity and SASS5 

assessments recorded for these sites (which will be discussed further below). The use of water 

quality parameters in aquatic ecosystem are therefore challenging to use as reliable tools for 

monitoring aquatic ecosystem health and can be complicated by; (1) a lack of globally 

standardized ranges, accepted as ecologically relevant, which are not subject to changes in 

governmental directives (2) a lack of time integration (3) a highly dynamic nature, influenced by 

multiple external factors (substrate biochemistry, flow rate etc.), and resulting in large 

variability. All of these factors make water quality parameter assessments difficult tools for long-

term monitoring and providing a true reflection of aquatic ecosystem status. The first major 

challenge in water resource management is to identify the most important environmental 

stressors and then understand how they affect aquatic ecosystems in the long-term (Farrell et al. 

2015), and as the majority of physicochemical and micronutrient parameters represent only a 

snap-shot of water quality, the information they provide is limited. The best use of water quality 

parameters therefore, is in conjunction with other measurements of eutrophication, biodiversity 

and ecosystem health, in order to explain community patterns and changes. The present study, 

together with that of Dickens & Graham (1998) have demonstrated that micronutrient standards, 

which are used to characterize and manage wastewater treatment facilities in Southern Africa 

(TWQR) are inadequate for protecting and conserving downstream environments. Unfortunately, 

this is not the first recommendation calling for a revision of the South African Targeted Water 

Quality Range system (see Gyedu-Ababio & van Wyk 2004, Coetzee & Hill 2012). Long term 

effects of both sewage effluents and fertilizer inputs are clearly significant threats, which 

promote eutrophication in freshwater ecosystems. Although there was some evidence in our 

study for “river self-purification” as one moves downstream of the pollution entry points, this 

natural process is often not sufficient, and in some cases is nonexistent due to water abstraction 

and physical river modifications (e.g. river channeling, dam construction, impoundments etc.). 

Combined with inadequate rainfall (a result of increasing climate change), the ability for a river 

ecosystem to assimilate via washing/flushing and diluting excess nutrients as one moves 

downstream, is easily compromised. 

 



121 
 

6.2 Aquatic macroinvertebrate biological assessments (SASS5) as an indicator of N-loading 

Assessing ecosystem health above and below effluent discharge points is a procedure that 

has been recommended for quantifying impacts of nutrient loading and/or eutrophication in the 

USA (USEPA 1991) and Australia (Hart et al. 1993). This procedure was later adopted in 

southern Africa following Roux (1994) and it was eventually applied by a number of other 

studies (e.g. Quinin & Hickey 1993, Roux et al. 1993). A few years later Dickens & Graham 

(1998) used the procedure in Kwa-Zulu Natal rivers, to investigate the influence of wastewater 

on downstream environments, focusing on aquatic macroinvertebrate biological assessment 

(SASS4), abundance and community composition. Using multivariate analysis, they reported a 

significant variation in macroinvertebrate community composition together with some 

physicochemical variables as drivers. According to Dickens & Graham (1998), the majority of 

the receiving downstream sites showed extremely high concentrations of ammonia and total 

phosphorus which were coupled with a high abundance of pollution tolerant taxa (e.g. 

oligochaetes, chironomids, culicids and leeches) and lower/zero abundances of pollution 

sensitive taxa (e.g. notonemourids and hydropsychids). Their technique, the South African 

Scoring System 4 was further revised to the South African Scoring System 5 (SASS5; Dickens & 

Graham 2002) aimed at improving the technique through standardization and quality control 

when evaluating ecosystem health. Results from the present study demonstrated the usefulness of 

the SASS5 technique, with site A2, A3, A4 and B3, B5, all of which were downstream of 

sewerage facilities, showing very low abundance of pollution sensitive macroinvertebrate taxa 

and high abundance of pollution tolerant taxa (Dickens & Graham 1998; 2002). Such community 

compositions result in very low SASS scores and indicates high levels of anthropogenic stress. 

Comparatively, less disturbed study sites had a high diversity and abundance of pollution 

sensitive macroinvertebrates (Dallas 2007), resulting in higher SASS scores (Dickens & Graham 

2002). This also included sites from this study that were further downstream from the pollution 

entry points (A6, A9 A8, A10, B8, B9), again highlighting both the Bloukrans-Kowie and 

Bushman-New Year’s River’s ability to assimilate (Madikizela et al. 2001, Bere 2007). 

However, Dickens & Graham (1998) observed that in some cases, macroinvertebrate abundance 

patterns appeared to be driven by other, unmeasured and unexplained external or internal 

variables. Thus more recent studies have investigated the effect of various land-use (e.g. 

agriculture, mining, power generation, industrial and sewerage effluents) on nutrient inputs into 
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the Tajan River in Iran (Arimoro et al. 2015) and the Wilge River in South Africa (Farrell et al. 

(2015), and results from these studies suggest that the physical characteristics of a river or a 

study site, not necessarily land-use, are the main drivers of macroinvertebrate community 

composition. Although Dickens & Graham (1998; 2002), Arimoro et al. (2015), Farrell et al. 

(2015) together with Munyika et al. (2015), Aazami et al. (2015A & B) who conducted similar 

investigations, provided useful insights on the sensitivity and tolerance of macroinvertebrate taxa 

and important environmental variables which are responsible for shaping macroinvertebrate 

community composition, very little was reported about the pollution input, dynamics or intensity. 

Effectively all that is reported is the eventual impact of poor water quality on macroinvertebrate 

presence and absence. The majority of these studies recommended that future biological 

monitoring should include organic and inorganic variables that might affect the system, 

including cultural and wastewater pollution, particularly through non-point source inputs. In the 

present study P, NH4-N, NO3-N and substrate diversity where the four main environmental 

variables that showed significant effects on macroinvertebrate community composition. 

Therefore, as with Dickens & Graham (1998; 2002), Arimoro et al. (2015) and Farrrell et al. 

(2015), macroinvertebrate assemblages and/or the measured physicochemical parameters in this 

study were unable to provide information on the source of disturbance. Indeed SASS scores for 

each site in this study were relatively consistent across time. Ultimately, all SASS5 assessments 

were able to distinguish between largely natural, moderately or largely impacted study sites. 

Techniques which provide better resolution are therefore needed to address unique aquatic 

ecosystem disturbances like N-loading, ideally with the ability to also measure habitat and water 

quality over time and space, identify eutrophication hotspots and sources and provide early 

warning information. 

 

6.3 δ
15

N isotopic values of primary producers (Spirodela sp.) and consumers (Oligochaeta 

and Chironomidae) as biological indicators of N-loading 

Using stable isotopic analysis (SIA), the present study was able to first identify and then 

map nutrient hotspots (both temporally and spatially) that were severely and consistently being 

exposed to nutrient enrichment from sewage effluents e.g. ASTWs, BVSTWs and cow manure 

run-off from the Belmont Valley dairy farm using stable isotopic values of  Spirodela plants (i.e. 

sewage plume mapping). On both rivers systems, sewage effluents and cow manure were 
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identified as the main anthropogenic sources of N-loading. Indeed, using SIA of Spirodela plant 

tissue, this study was able to identify months during which pollution inputs were most extreme as 

well as sites that showed contamination from nearby sewerage treatment facilities (e.g. A3, A4, 

A5, B3, B5), possibly through direct release and groundwater leakage or overtopping events 

(Chapter 4). Therefore governmental standards and compliance for sewerage treatment and water 

quality in South Africa should be considered for review and the adoption of sewage plume 

mapping as a biological monitoring tool (see Costanzo et al. 2001; 2005) would allow for more 

comprehensive monitoring as well as early N-loading alerts. Consequently, better and more 

powerful management strategies could be implemented for the preservation and conservation of 

South Africa’s freshwater ecosystems. The results from chapter 4 show that the mapping 

technique was not only capable of identifying the N-source of eutrophication (also see Hill et al. 

2011; 2012), but was time integrated (reflects N-environmental loading between 4-10 days; Hill 

et al. 2011; 2012) and provided information on temporal variation in N-loading over 13 months 

as well as spatial information (extent of N-loading) within a river, and further identifying sites of 

management interest. Baseline studies by Hill et al. (2011; 2012) also allowed for an estimation 

of nitrogen concentrations at each site, with the most impacted sites showing levels of NH4 

concentration of 4.5 mg N/L or higher. Interestingly, both the Bloukrans-Kowie and Bushmans-

New Year’s River systems in the present study turned out to be more exposed to sewage 

effluents and intense dairy farm activities (cow manure run-off, cultural pollution) rather than 

synthetic fertilizer, with sites directly downstream of pollution inputs consistently reflecting high 

nitrogen isotopic values (A3 – A8; Bloukrans-Kowie River system and B3 – B5; Bushmans-New 

Year’s River system). Unlike previously reported traditional water quality assessments (e.g. 

Dickens & Graham 1998, Gyedu-Ababio & van Wyk 2004, Aazami et al. 2015A & B, Arimoro 

et al. 2015, Farrrell et al. 2015, Munyika et al. 2015), sewage plume mapping will enable users 

to complete intensive monitoring, trace and map N-loading over time and space and together 

with measurements of physicochemical parameters (Chapter 2) and biotic scoring indices 

(Chapter 3) provides excellent resolution and a better understanding of N-loading in both the 

Bloukrans-Kowie and Bushmans-New Year’s River systems. Furthermore δ
15

N isotopic values 

of Spirodela plants reported results complementary to the SASS5 results from chapter 3. SASS 

scores of < 90 and concurrent δ
15

N isotopic values of > 10.00 ‰ were consistently recorded at 

the most impacted sites (A3, A4, A5, B3 and B5). The ability for river self-purification was also 
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once again visible from the isotopic values of the plants, with sites downstream of anthropogenic 

inputs showing less and less enrichment in 
15

N, suggesting the dilution and flushing of excessive 

nutrients. Overall however, sewage plume mapping gave better temporal and spatial resolution of 

ecosystem nitrogen dynamics and water quality compared to SASS5 assessments, which only 

provided “red flag” indications throughout the study period. For example; the confluence site 

A10 and B8 were representative of all pollution activities happening upstream (despite the self-

purification effect),  Spirodela plant nitrogen isotopic values showed an average of +9.02 to 

+12.09 ‰ in δ
15

N isotopic values (for both Bloukrans-Kowie and Bushmans-New Year’s rivers), 

suggesting a largely natural – slightly eutrophic ecosystem. SASS5 on the other hand indicated a 

largely natural environment for A10 and a severely impacted environment for B8, with no 

change over the 13 month period. 

Furthermore, it is not only the isotopic ratios of plants which can act as biological 

indicators of N-loading, but δ
15

N isotopic values of macroinvertebrates as well. In a similar 

fashion, chapter 5 showed that the δ
15

N isotopic values of Oligochaeta and Chironomidae were 

able to trace N-loading from sewage and cow manure inputs (sites A3, A4 and A5) in 

comparison with the largely natural site A9 on the Bloukrans-Kowie River system. This is 

supported by the work of Xu & Zhang (2012) and di Lascio et al. (2013), and to some extent by 

Morrissey et al. (2013), who also attempted to use macroinvertebrates to trace anthropogenic 

pollution. However the use of macroinvertebrates as biological indicators for N-loading clearly 

still needs some baseline work. In terms of calibration this would include determining the 

isotopic equilibration rates for each indicator taxa, as organism body size and life-span affects its 

nitrogen turn-over (DeNiro & Epstein 1981, Tieszen et al. 1983, Peterson & Fry 1987). It also 

needs to include an understanding on each organism’s dietary resources, as the assimilation of 

different food resources may result in a lag in isotopic reflection of the changes occurring in the 

water column (Michener & Schell 1994) and of course primary consumers (e.g. scrappers, filter 

feeders and grazers) respond rapidly to changes in sediments, organic matter and water column 

nitrogen content relative to their body size, compared with organisms further up the trophic food 

web (e.g. predators; DeNiro & Epstein 1981). In the present study, oligochaetes and chironomids 

showed enriched nitrogen isotopic values at sites A3 (after the sewage out-fall) and the highest 

δ
15

N isotopic values at site A4.  This increased enrichment at A4 was expected as this site 

represents an accumulation of nutrients from the BVSTWs (between A2 and A3) and the cow 
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manure run-off from a neighbouring dairy farm (between A3 and A4). Interestingly, while 

oligochaetes δ
15

N isotopic values remained high at A4 throughout the four weeks of sampling, 

chironomids δ
15

N isotopic values dropped on the week three sampling event. Further 

investigation showed the two taxa have differing life spans, with oligochaetes having a life cycle 

lasting for a months to a year, while chironomids live for only about two - three weeks before 

eclosion (Harrison 2003, Arva et al. 2015).  Therefore, life span would be the attribute towards 

the depletion in chironomids δ
15

N isotopic values, were sampled chironomids at week 3 of the 

investigation, were from a new cohort of organisms (a newly hatched generation), which had not 

yet been exposed to high N-loading. Unlike sewage plume mapping with Spirodela sp., δ
13

C 

values of macroinvertebrates showed that there are likely differences in dietary resources 

between oligochaetes and chironomids (DeNiro & Epstein 1978, Fry & Sherr 1984), which adds 

a further complication to tracing nutrient loading with macroinvertebrates. Therefore it is 

concluded that sewage plume mapping with Spirodela plants gives a clearer indication of the 

temporal and spatial dynamics of nutrient enrichment in freshwater systems than 

macroinvertebrates, which is not directly influenced by life span, body size or dietary resources 

but only by the source of dissolved inorganic nitrogen available in the water column, and thus is 

a more direct reflection of environmental N-loading (Kendall 1998, Costanzo et al. 2001; 2005, 

Hill et al. 2012, Hill 2014).  

 

In conclusion, traditional measurements of water chemistry and aquatic 

macroinvertebrate biological assessments (SASS5), despite providing indications of pollution 

stress (i.e. the identification of systems which are largely natural, moderately impaired or largely 

impaired), provided very little resolution on nutrient dynamics. Stable nitrogen isotopic values of 

Spirodela sp. provided detailed dynamics on N-source, tagging and identifying pollution hot 

spots, on both a temporal and spatial scale, supporting its utilization for mapping freshwater N-

dynamics and N-loading events. Nitrogen stable isotopic analysis is affordable and requires no 

special training to implement (no accreditation nor intensive sampling required), making it an 

easier alternative to biotic monitoring indices such as SASS (Chapter 2, methodologies). 

Therefore it is highly recommended that sewage plume mapping be included as an up-and-

coming tool for future monitoring, conservation and management of freshwater ecosystems. 
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8. Appendices 

Appendix 1 Summary of on-site physicochemical variables (mean ± 1 SD) taken every month for a period of 13 months at all 

sampled study sites on the Bloukrans-Kowie and Bushmans-New Year’s River systems.  

 

Sampled Sites 

Physicochemical parameters 

pH (log[H+]) Conductivity 

(µS) 

Total Dissolved 

Solids (ppm) 

Dissolved 

Oxygen (mg/l) 

Salinity (ppt) Water Temperature 

(ºC) 

A2 8±0.6 1288.9±268.1 875.2±193.9 3.7±2.4 0.64±0.14 19.8±4.8 

A3 7.9±0.2 1124.6±121.3 797.5±85.9 3.9±2.2 0.58±0.09 18.6±1.4 

A4 8±0.2 1182.3±149.3 838.4±105.1 3.9±1.9 0.58±0.07 16.6±3.8 

A5 8.1±0.3 1178.8±142.6 836.8±101.2 4.1±2.1 0.58±0.08 17.5±4.2 

A6 8.1±0.2 2116.6±1514 1529.1±1103.7 5.6±3.2 1.10±0.82 18.4±4.6 

A7 8.5±0.3 1181.5±298.6 826.6±201.8 5.7±3.1 0.59±0.15 17.5±4.1 

A8 8.6±0.3 1253.4±361 863.1±242.7 6.0±3.4 0.65±0.23 17.4±5.5 

A9 8.3±0.3 350.2±144.8 220.6±36.2 5.6±3.1 0.15±0.03 16.9±4.1 

A10 8.6±0.3 2023.2±462.9 1495.4±264.4 5.9±3.5 1.05±0.19 17.9±5.4 

B1 7.7±0.4 576.8±21.9 409±15.5 3.5±2.3 0.28±0.02 20.2±5.7 

B2 8.3±0.7 599.9±202.5 432.7±140.7 5.1±3.6 0.35±0.17 20.7±7.2 

B3 8.1±0.7 922.3±269 632.5±178.7 5.2±6.3 0.48±0.17 20.5±4.4 

B4 9.3±1.0 1050.1±57.7 728.5±68.3 6.2±7.4 0.55±0.10 21.4±4.1 

B5 7.8±0.4 876.3±259.6 597.8±161.7 4.4±3.7 0.46±0.16 18.6±5.4 

B6 7.9±0.4 1576.6±1152.2 1114.3±807.8 3.8±2.4 0.79±0.59 18.9±6.1 

B7 7.9±0.3 2008.3±1366.4 1440.1±967.7 3.5±2.5 1.03±0.72 18.8±5.7 

B8 8.3±0.4 2211.7±867.5 1565±614.9 5.7±3.2 1.17±0.51 19±5.4 

B9 8.4±0.4 2163.2±977.5 1533.6±693.1 4.8±2.6 1.00±0.56 18.4±6.3 

B10 8.1±0.4 551.1±121.7 391.7±85.5 4.3±2.8 0.34±0.28 18.5±5.2 
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Appendix 2 Summary of micronutrients analysis (mean ± 1SD)) sampled every quarter for a period of 13 months on the Bloukrans-

Kowie River systems, Eastern Cape South Africa.  

Micro-

nutrients 

Sampled Sites 

A2 A3 A4 A5 A6 A7 A8 A9 A10 

pH (log[H+]) 7.5±0.3 7.5±0.2 7.7±0.5 8.07±0.21 7.88±0.30 8.10±0.41 8.20±0.35 6.93±1.07 7.98±0.47 

EC (mS/m) 85.5±33.0 88.9±14.7 93.6±15.5 102.2±19.3 180.9±145.7 138.7±46.9 143.2±49.3 77.0±99.3 163.3±89.0 

Na (mg/l) 116.4±54.16 131.4±14 143.7±15.1 179.4±46.5 371.8±535.1 234.7±192.0 2401±82.9 144.5±289.3 272.1±228.9 

K (mg/l) 7.0±5.2 9.7±6.02 11.5±8.9 85.1 6.77 7.5±4.0 6.5±3.4 2.5±3.5 6.2±3.5 

Ca (mg/l) 35.3±17.8 32.8±11.8 36.5±14.3 35.2±9.8 53.3±52.6 47.3±15.1 51.6±19.2 18.8±32 54.3±24.3 

Mg (mg/l) 23.4±11.6 21.4±6.5 23.5±9.2 25.4±6.2 65.5±71.3 40.6±19.5 43.6±20.9 24.2±35.9 45.3±22.3 

Fe (mg/l) 0.54±0.71 0.29±0.21 0.24±0.08 0.33±0.08 0.33±0.17 0.09±0.10 0.08±0.10 0.77±0.53 0.14±0.14 

Cl (mg/l) 175.5±62.7 181.1±18.1 194.4±26.5 227.8±43.6 592.6±531.5 375.4±226.2 238.6±73.3 253.0±323.8 466.3±289.4 

CO3 (mg/l) 12.00 9.00 18.1±4.2 17.0±7.0 19.1±4.5 29.1±1.7 29.4±11.4 75.30 22.1±10.6 

HCO3 (mg/l) 240.3±109.6 201.6±78.3 220.3±51.2 225.4±37.2 180.7±125.2 247.9±54.6 256.8±113.1 112.5±193.6 228.0±50.6 

SO4 (mg/l) 46.5±35.1 54.8±29.4 60.5±29.9 49±28.1 69.8±81.9 66.5±20.2 79.3±26.1 34.5±54.6 70.8±38.3 

B (mg/l) 0.16±0.08 0.18±0.05 0.17±0.06 0.19±0.06 0.18±0.10 0.21±0.03 0.25±0.13 0.15±0.22 0.20±0.06 

Mn (mg/l) 0.11±0.10 0.08±0.11 0.04±0.04 0.03±0.04 0.14±0.26 0.04±0.04 0.01±0.01 0.05±0.06 0.07±0.08 

Cu (mg/l) 0.01±0.01 0.02±0.02 0.02±0.02 0.01±0.02 0.01±0.02 0.01±0.02 0.01±0.02 0.01±0.02 0.01±0.02 

Zn (mg/l) 0.01±0.01 0.02±0.01 0.01±0.01 0.01±0.01 0.02±0.02 0.01±0.01 0.02±0.02 0.01±0.01 0.01±0.01 

P (mg/l) 0.8±0.6 2.4±2.1 2.9±1.9 1.6±1.4 0.09±0.07 0.8±0.5 0.6±0.4 0.06±0.05 0.3±0.08 

NH4-N (mg/l) 7.5±7.2 6.8±6.2 8.0±5.9 1.0±0.8 0.4±0.3 0.4±0.3 0.3±0.2 0.3±0.2 0.6±0.8 

NO3-N (mg/l) 1.4±1.3 9.5±8.9 4.6±3.9 5.3±4.7 0.4±0.3 3.5±2.4 2.5±2.1 0.3±0.3 1.2±1.2 

F (mg/l) 0.3±0.2 0.5±0.4 0.6±0.2 0.4±0.1 0.3±0.2 0.5±0.1 0.6±0.3 0.3±0.5 0.4±0.1 

TDS (mg/l) 555±214.1 577±95.9 607±102 664±125.4 1174.8±945.2 900.5±304.5 929.5±304.5 495.8±636.3 1059.5±577.1 
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Appendix 3 Summary of micronutrients analysis (mean ± 1 SD) sampled every quarter for a period of 13 months on the Bushman-

New Year’s River systems, Eastern Cape South Africa. 

Micro-

nutrients 

Sampled Sites 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

pH (log[H+]) 7±0.7 7.3±0.3 7.3±0.5 8±1.3 7.4±0.4 7.5±0.4 7.3±0.8 7.6±0.5 7.8±0.4 7.4±0.1 

EC (µS) 72.5±48.9 61.8±42.9 86.4±34.0 97.7±16.2 69.6±19.6 118.8±116.4 128.6±129.7 116.7±98 143.2±74.4 42.6±10.3 

Na (mg/l) 87.4±41.9 71.9±46.9 102.2±21.3 140.8±39.7 83.6±16.6 232.6±286.4 155.6±116.2 213.5±205.5 205.3±87.74 58.9±28.6 

K (mg/l) 5±3.9 7.7±7.6 6.3±4.9 11.6±5.3 4.7±4.6 7±5.8 8.9±4.5 4.5±4.5 5.9±4.6 4.2±2.9 

Ca (mg/l) 21.3±7.9 24±13.1 27.9±11.8 26.3±9.3 20.9±13.5 37.6±32.2 38.9±34.1 40.9±23.5 49.8±23.5 23.3±8.7 

Mg (mg/l) 14.1±5.1 13.6±7.3 20.1±7.5 15±5.6 16.4±8.6 37±43.5 42.1±50.9 38.5±42 45.7±31.2 11.9±4.5 

Fe (mg/l) 1.97±2.4 1.06±0.98 0.96±0.81 0.19±0.05 1.14±0.95 0.79±0.98 0.40±0.37 0.75±0.73 0.43±0.65 0.76±0.46 

Cl (mg/l) 130.8±22.2 111±59.7 179.7±54.3 215.8±35.9 153.6±36.9 358.6±415.8 383.9±465.9 315.1±301.9 4002±47.4 89.9±40.6 

CO3 (mg/l) - - 12 24.1±17.0 12 12 15.10 12 21.1 - 

HCO3 (mg/l) 115.2±76.27 108.3±33.5 164.2±53 176.4±99 102.9±70.9 200.6±158.9 173.8±136.3 214.3±180.9 246.4±100.9 130.4±36.3 

SO4 (mg/l) 32±26.2 27.8±25.7 27.8±24.3 36.8±14.4 17.5±11.8 44.3±44.9 31±24.5 64.8±73.9 69±45.3 17.8±10.2 

B (mg/l) 0.10±0.05 0.09±0.06 0.12±0.05 0.12±0.05 0.08±0.06 0.15±0.15 0.10±0.05 0.23±0.20 0.24±0.15 0.09±0.03 

Mn (mg/l) 0.05±0.04 0.27±0.34 0.25±0.43 0.05±0.04 0.06±0.10 0.09±0.09 0.17±0.14 0.04±0.03 0.01±0.01 0.18±0.16 

Cu (mg/l) 0.02±0.02 0.02±0.02 0.01±0.02 0.02±0.02 0.01±0.02 0.02±0.02 0.01±0.01 0.02±0.02 0.02±0.03 0.02±0.02 

Zn (mg/l) 0.01±0.01 0.01±0.01 0.01±0.01 0.00±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 

P (mg/l) 0.20±0.31 1.09±2.09 0.40±0.60 2.97±2.21 0.10±0.03 0.24±0.32 0.41±0.43 0.07±0.03 0.19±0.25 0.09±0.06 

NH4-N (mg/l) 2.01±3.21 0.83±0.82 13±1.5 7.6±13.3 1.2±1.5 1.6±2.4 0.4±0.3 0.3±0.2 0.3±0.2 0.3±0.2 

NO3-N (mg/l) 0.37±0.36 4.48 1.7±1.3 1.5±1.8 0.8±0.6 1.1±1.3 0.93±1.28 0.54±0.23 0.69±0.60 0.29±0.32 

F (mg/l) 0.10±0.20 0.28±0.43 0.10±0.14 0.63±0.39 0.10±0.14 0.23±0.17 0.23±0.26 0.43±0.39 0.33±0.36 0 

TDS (mg/l) 365.5±109.2 318.3±148.2 469.8±120.6 543.5±85.7 395±150.9 770.8±753.6 832±836.7 755.3±633.1 930±483.9 276.3±66.7 
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Appendix 4 Aquatic macroinvertebrates Presence (1)/Absence (0) data observed in the 

Bloukrans-Kowie and Bushmans-New Year’s Rivers systems Eastern Cape, South Africa. 

Taxa Bloukrans-Kowie River Bushmans-New Year’s River 

Porifera 1 1 

Coelenterata 0 0 

Turbellaria 1 1 

Annelida   

Oligocheata 1 1 

Hirudinea 1 1 

Crustacea   

Amphipoda 0 0 

Potamonautidae 1 1 

Atyidae 0 1 

Palaemonidae 0 0 

Hydracarina 1 1 

Plecoptera   

Notonectidae 0 0 

Perlidae 0 0 

Ephemeroptera   

Baetidae 1 1 

Caenidae 1 1 

Ephemeridae 0 0 

Heptageniidae 0 0 

Leptophlebiidae 1 1 

Oligoneuridae 0 0 

Polymitarcyidae 0 0 

Prosopistomatidae 0 0 

Teloganodidae 0 0 

Tricorythidae 0 0 

Odonata   

Calopterygidae 0 0 

Chlorocyphidae 1 0 

Synlestidae 1 1 

Coenagrionidae 1 1 

Lestidae 1 1 

Platycnemidae 1 0 

Protoneuridae 0 0 

Aeshnidae 1 1 

Corduliidae 1 1 

Gomphidae 1 1 

Libellulidae 1 1 

Lepidoptera   

Crambidae 0 0 

Hemiptera   

Belostomatidae 1 1 

Corixidae 1 1 

Gerridae 1 1 

Hydrometridae 1 1 
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Taxa Bloukrans-Kowie River Bushmans-New Year’s River 

Naucoridae 1 1 

Nepidae 1 1 

Notonectidae 1 1 

Pleidae 1 1 

Veliidae 1 1 

Megaloptera   

Corygalidae 0 0 

Sialidae 0 0 

Trichoptera   

Dipseudopsidae 0 0 

Ecnomidae 1 1 

Hydropsychidae 1 1 

Philopotamidae 1 1 

Polycentropodidae 0 0 

Psychomyiidae 0 0 

Barbarochthonidae 0 0 

Calamoceratidae 0 0 

Glossosomatidae 0 0 

Hydroptilidae 0 0 

Hydrosalpingidae 0 0 

Lepidostomatidae 1 0 

Leptoceridae 1 1 

Petrothrincidae 0 0 

Pisuliidae 1 0 

Sericostomatidae 0 0 

Coleoptera   

Dytiscidae 1 1 

Elmidae 1 1 

Gyrinidae 1 1 

Haliplidae 0 0 

Hydraenidae 0 1 

Hydrophilidae 1 1 

Limnichidae 0 0 

Psephenidae 0 0 

Diptera   

Athericidae 0 1 

Blepharoceridae 0 0 

Ceratopogonidae 1 1 

Chironomidae 1 1 

Culicidae 1 1 

Dixidae 1 1 

Empididae 0 0 

Ephydridae 0 0 

Muscidae 1 1 

Psychodidae 1 1 
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Taxa Bloukrans-Kowie River Bushmans-New Year’s River 

Simuliidae 1 1 

Sryphidae 1 1 

Tabanidae 1 1 

Tipulidae 1 1 

Gastropoda   

Ancylidae 1 1 

Bulininae 0 0 

Hydrobiidae 0 0 

Lymnaeidae 1 1 

Physidae 1 1 

Planorbidae 0 1 

Thriaridae 0 0 

Viviparidae 0 0 

Pelecypodae 0 0 

Cordiculidae 0 0 

Sphaeriidae 0 0 

Unionidae 0 0 

Chaoboridae 0 1 
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Appendix 5 Summary of the number of taxa, SASS5 and ASPT values at sample sites on the 

Bloukrans-Kowie and Bushmans-New Year’s River systems, Eastern Cape South Africa. # Taxa 

— number of taxa; SS — SASS5 score; ASPT — average score per taxon. 

 

 

Sites 

26
th 

– 29
th

 August 

2013 

18
th 

– 21
st
 November 

2013 

25
th

 – 29
th

 February 

2014 

29
th

 May – 03
rd

 June 

2014 

SS  # Taxa ASPT SS  # Taxa ASPT SS  # Taxa ASPT SS  # Taxa ASPT 

A2 13 5 2.6 23 7 3.29 85 21 4.05 13 7 1.86 

A3 16 6 2.67 18 7 2.57 34 12 2.92 23 8 2.73 

A4 75 17 4.41 60 15 4 72 17 4.24 37 9 4.11 

A5 80 16 4.9 83 18 4.61 83 17 4.88 73 14 5.21 

A6 151 28 5.39 171 29 5.9 125 25 5 153 27 5.67 

A7 103 21 4.91 120 25 4.8 91 19 4.79 132 26 5.08 

A8 138 24 5.75 140 25 5.6 137 25 5.48 110 19 5.79 

A9 122 24 5.08 169 27 6.26 171 28 6.11 178 29 6.14 

A10 170 31 5.48 137 28 4.89 125 28 4.89 118 22 5.36 

B1 79 18 4.39 52 11 4.73 67 15 4.19 73 18 4.06 

B2 21 8 2.63 17 6 2.83 14 5 2.8 14 6 2.33 

B3 88 18 4.89 67 17 3.94 39 10 3.9 47 14 3.36 

B5 49 13 3.77 67 17 3.94 37 10 3.7 75 20 3.75 

B6 77 18 4.28 78 19 4.11 71 18 3.94 78 18 4.33 

B7 84 17 4.94 89 19 4.68 54 13 4.15 60 15 4 

B8 109 20 5.45 106 23 4.61 85 16 5.31 83 16 5.19 

B9 129 26 4.96 119 25 4.76 109 21 5.19 95 19 5 

B10 82 20 4.1 38 12 3.17 52 15 4.33 63 15 4.2 
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Appendix 6: δ
15

N residuals values versus δ
15

N fitted values diagnostic plots on the (A) 

Bloukrans-Kowie River and (B) Bushmans-New Year’s River systems, Eastern Cape South 

Africa. 
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Appendix 7: δ
15

N residual values versus predictor variable (study sites) diagnostic plots on the 

(A) Bloukrans-Kowie River and (B) Bushmans-New Year’s River systems, Eastern Cape South 

Africa. 
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Appendix 8: δ
15

N residuals values versus predictor variable (time of sampling) diagnostic plots 

of 13 month sampling period on the (A) Bloukrans-Kowie River and (B) Bushmans-New Year’s 

River systems, Eastern Cape South Africa. 
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Appendix 9: δ
15

N residuals values versus predictor variable (rainfall) diagnostic plots on the (A) 

Bloukrans-Kowie River and (B) Bushmans-New Year’s River systems, Eastern Cape South 

Africa. 
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Appendix 10: δ
15

N residuals values versus predictor variable (water temperature) diagnostic 

plots on the (A) Bloukrans-Kowie River and (B) Bushmans-New Year’s River systems, Eastern 

Cape South Africa. 
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Appendix 11 Full aquatic macroinvertebrates taxa names from abbreviations (six characters) in 

Chapter 5, RDA ordination diagram.  

Porife – Porifera 

Turbel – Turbellaria 

Oligo – Oligocheata 

Hirudi - Hirudinea 

Potamo – Potamonautidae 

Atyida – Atyidae 

Hydrac - Hydracarina 

Baetid – Baetidae 

Leptop - Leptophlebiidae 

Chloro - Chlorocyphidae 

Synles - Synlestidae 

Coenag - Coenagrionidae 

Lestid - Lestidae 

Platyc - Platycnemidae 

Aeshni - Aeshnidae 

Cordul - Corduliidae 

Gomphi - Gomphidae 

Libell - Libellulidae 

Belost - Belostomatidae 

Corixi - Corixidae 

Gerrid - Gerridae 

Hydrom - Hydrometridae 

Naurco - Naucoridae 

Nepida - Nepidae 

Notone - Notonectidae 

Pleida - Pleidae 

Veliid - Veliidae 

Ecnomi - Ecnomidae 

Hydpsy - Hydropsychidae 

Philop - Philopotamidae 

Lepido - Lepidostomatidae 

Leptoc - Leptoceridae 

Pisuli - Pisuliidae 

Dytisc - Dytiscidae 

Elmida - Elmidae 

Gyrini - Gyrinidae 

Helodi - Helodidae 

Hydrae - Hydraenidae 

Hydrop - Hydrophilidae 

Atheri - Athericidae 

Cerato - Ceratopogonidae 

Chiron - Chironomidae 

Culici - Culicidae 

Dixida - Dixidae 

Muscid - Muscidae 

Psycho - Psychodidae 

Simuli - Simuliidae 

Sryphi - Syrphidae 

Tabani - Tabanidae 

Tipuli - Tipulidae 

Ancyli - Ancylidae 

Lymnae - Lymnaeidae 

Physid - Physidae 

Planor - Planorbinae 

Chaobo - Chaoboridae 
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Appendix 12 A summary of Present (1)/Absent (0) aquatic macroinvertebrates N-loading 

indicator taxa data collected at four study sites on the Bloukrans-Kowie River systems. 

 

Sampling Period 

 

Study Site 

Aquatic Macroinvertebrates 

Oligochaeta Chironomidae Culicidae Syrphidae 

T1 A2 1 1 1 1 

A3 1 1 1 0 

A4 1 1 0 0 

A9 1 1 0 0 

T2 A2 1 1 1 0 

A3 1 1 1 1 

A4 1 1 0 0 

A9 1 0 0 0 

T3 A2 1 1 1 0 

A3 1 1 1 1 

A4 1 1 0 0 

A9 1 1 0 0 

T4 A2 1 1 1 1 

A3 1 1 1 1 

A4 1 1 0 0 

A9 1 1 0 0 

 

 

 

 



 

 

172 
 

 

 

Appendix 13: δ
15

N residuals values versus δ
15

N fitted values diagnostic plots for (A) 

Oligochaeta (B) Chironomidae, collected on the Bloukrans-Kowie River systems, Eastern Cape 

South Africa. 



 

 

173 
 

 

 

Appendix 14: δ
15

N residual values versus predictor variable (study sites) diagnostic plots for (A) 

Oligochaeta and (B) Chironomidae collected on the Bloukrans-Kowie River systems, Eastern 

Cape South Africa. 



 

 

174 
 

 

 

Appendix 15: δ
15

N residual values versus predictor variable (time of sampling) diagnostic plots 

for (A) Oligochaeta and (B) Chironomidae collected on the Bloukrans-Kowie River systems, 

Eastern Cape South Africa. 
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Appendix 16 Summary of on-site physicochemical variables (mean ± 1 SD) taken every week 

over a period of four weeks in March 2015 at all sampled study sites on the Bloukrans-Kowie 

and River systems, Eastern Cape South Africa. 

Physicochemical 

Variables 

Sampled study sites ANOVA - Statistics 

A2 A3 A4 A9 

DO 4.48±0.75 3.98±1.25 4.53±0.73 5.78±0.62 F3-76 = 15.34, p < 0.0001 

NH4-N 4.05±5.33 2.84±3.19 1.14±1.30 0.11±0.14 F3-76 = 6.12, p < 0.001 

NO3-N 9.43±3.50 10.10±3.04 15.05±5.38 1.64±0.92 F3-76 = 48.94, p < 0.0001 

 

 

 

 

 

 

 

 

 

 

 

 

     


