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Abstract 

 

Integrated Algae Pond Systems (IAPS) are a derivation of the Oswald designed Algal 

Integrated Wastewater Pond Systems (AIWPS
®
) and combine the use of anaerobic and 

aerobic bioprocesses to effect wastewater treatment. IAPS technology was introduced to 

South Africa in 1996 and a pilot plant designed and commissioned at the Belmont Valley 

WWTW in Grahamstown. The system has been in continual use since implementation and 

affords a secondarily treated water for reclamation according to its design specifications 

which most closely resemble those of the AIWPS
®
 Advanced Secondary Process developed 

by Oswald. As a consequence, and as might be expected, while the technology performed 

well and delivered a final effluent superior to most pond systems deployed in South Africa it 

was unable to meet The Department of Water Affairs General Standard for nutrient removal 

and effluent discharge. The work described in this thesis involved the design, construction, 

and evaluation of several tertiary treatment units (TTU‟s) for incorporation into the IAPS 

process design. Included were; Maturation Ponds (MP), Slow Sand Filter (SSF) and Rock 

Filters (RF). Three MP‟s were constructed in series with a 12 day retention time and operated 

in parallel with a two-layered SSF and a three-stage RF. Water quality of the effluent 

emerging from each of these TTU‟s was monitored over a 10 month period. Significant 

decreases in the chemical oxygen demand (COD), ammonium-N, phosphate-P, nitrate-N, 

faecal coliforms (FC) and total coliforms (TC) were achieved by these TTU‟s. On average, 

throughout the testing period, water quality was within the statutory limit for discharge to a 

water course that is not a listed water course, with the exception of the total suspended solids 

(TSS). The RF was determined as the most suitable TTU for commercial use due to 

production of a better quality water, smaller footprint, lower construction costs and less 

maintenance required. From the results of this investigation it is concluded that commercial 

deployment of IAPS for the treatment of municipal sewage requires the inclusion of a 

suitable TTU. Furthermore, and based on the findings presented, RF appears most 

appropriate to ensure that quality of the final effluent meets the standard for discharge.  
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CHAPTER 1 

Introduction and Literature review 

1.1 Introduction 

A continuous supply of fresh water is one of the most essential commodities, for both the 

environment and for human necessity. Vast improvement is needed in order to decrease 

pollution in water supplies and the degradation of finite resources (Rose et al., 2002b). There 

is a need to prioritize cost-effective ways to improve the social welfare, in terms of enhancing 

water quality and sanitation in South Africa.  

South Africa is a semi-arid country and population growth is increasing at an exponential rate 

(Erasmus et al., 2005; Vetter, 2009). According to Mwenge Kahinda et al. (2007), 3.7 million 

people in South Africa do not have infrastructure for their daily water supply and a further 

5.4 million people are left with only a „basic level of service‟. Due to the scarcity of potable 

water in South Africa, water prices in the future will rise. Government will have to increase 

tariffs for local water supply in order to uplift the national water resource infrastructure, 

water services and conservation (van Rooyen et al., 2011).  

In South Africa, the distribution of wealth is seen to be unequal when compared to the rest of 

the world and many households especially in the poverty stricken areas are without adequate 

health care, education, energy and clean water (May and Govender, 1998). According to the 

PROVIDE Project (2005), it is estimated that 65% of the people in the Eastern Cape live in 

rural areas. Of the 55 wastewater treatment plants in the rural parts of the Eastern Cape 

Province, only 18% were operating to the correct microbiological recommendations (Momba 

et al., 2006). It is estimated that only 34% of rural households in the Eastern Cape Province 

have access to sewage treatment facilities. Insufficient sanitation is one of the major problems 

with regard to water pollution causing water-borne illnesses to humans e.g. cholera, which 

has become endemic to the country (Wells, 2005; Lee and Kamradt-Scott, 2010). There is an 

increase in the discharge of wastewater into the rivers on a national level in South Africa 

which has become problematic due to poor administration and management by the 

municipalities (Eales, 2011). This is a major obstacle to socio-economic development in 

South Africa because poor quality water can cause devastating effects on the health of 

people, especially in poverty stricken areas (Rose et al., 2002b). 
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Clean water is a limiting resource and as the human population continues to grow, this 

problem will become more pressing and serious around the world (Gleick, 1998). Although 

conventional technologies (activated sludge and biological nutrient removal systems) are 

important for wastewater treatment, they are expensive processes and require high energy 

input. Management of these sewage plants in rural areas is also challenging due to the lack of 

local technical expertise (Letinga, 1995; Horan et al., 2006). Therefore, scientists have been 

strategizing in an effort to derive new, cheap and innovative ways of sustaining water in all 

forms. The supply of clean water is considered a major driver for sustainable development 

and the main challenge for this development is the recycling of wastewater nutrients, 

irrigation and urban agriculture (Horan et al., 2006). Therefore, the development of 

alternative more appropriate wastewater treatment is seen to be very beneficial. The 

Integrated Algal Pond System (IAPS) seems to be one possible solution to the problem.  

The IAPS technology adheres to these prioritizations with regard to South Africa‟s 

infrastructure, services and conservation in the water sector. The IAPS has the ability to treat 

and recycle domestic wastewater. With the IAPS being a low-cost domestic wastewater 

treatment technology, the system has the potential of being implemented by small 

municipalities as a rural treatment works (Rose et al., 2002a). Operating and control skills are 

limited; require low maintenance and upkeep, and also energy efficient, therefore requiring 

less electricity for operational use compared to other wastewater treatment systems (Wells, 

2005).  

The first IAPS was designed and developed by Prof. William Oswald from the University of 

California, Berkley, USA. The IAPS system was specifically designed as an alternative 

wastewater treatment plant to the conventional wastewater waste stabilization pond systems. 

This system is ideally an enhancement of the conventional waste stabilization pond (WSP) 

systems because it was able to remove the same amount of nutrient and organic material 

compared to the conventional WSP at a lower cost and lower energy efficiency (Wells, 

2005).  

1.2 History of IAPS 

The international oil market during the 1970‟s came to disruptive halt due to the concerning 

fact of fossil fuel depletion which is used as an energy resource. A global interest then came 

into energy conservation as well as renewable energy resource development. Scientists came 
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up with ways of trying to avoid disastrous environmental impacts as well as finding ways to 

reduce costs of energy resources. These factors also played an influential role in the 

development of environmentally friendly wastewater treatment plants (Green et al., 1995). 

Oswald was one of the pioneers in the development of the IAPS (Mambo et al., 2014). It was 

in the 1950‟s when he became interested in the design of natural, affordable and sustainable 

wastewater treatment systems. Most of his research was done at the Lawrence Berkeley 

National Laboratory in California. His early research began with the role of microalgae in 

sewage ponds in 1949. A high rate algal oxygenated pond (HRAOP) system was then 

developed by Oswald in 1957 which was used for wastewater treatment and nutrient recovery 

as algal biomass (Craggs, 2005). 

From there Oswald expanded these systems to other research sites such as Concord and 

Richmond in California, with the Richmond HRAOP the largest outdoor algae cultivation 

pond on the globe (Oswald et al., 1994; Craggs, 2005). 

Methane production in algal pond systems was one of the main focuses during the early 

1960‟s. Craggs (2005) revealed that better treatment was provided by deeper anaerobic pits 

within the ponds. In 1967, the first full scale Advanced Integrated Wastewater Pond System 

(AIWPS
®
) (initial name), with a deep fermentation pit integrated into the facultative pond 

was built in St Helena, California (Oswald, 1990). 

During the 1970‟s, HRAOP systems continued to play a big role with regard to algal growth 

and productivity. Paddlewheels seemed to be the most effective and efficient mixer and 

replaced the propeller pumps in the Richmond HRAOP in 1978 (Green et al., 1995; Craggs, 

2005). Hollister, California became the second area where a full scale IAPS was built in 1980 

(Oswald, 1990). 

As global research continued for more efficient wastewater treatment systems, it was during 

the late 1970‟s and early 1980‟s when a researcher by the name of Gedaliah Shelef and his 

co-workers expanded the HRAOP technology worldwide and decided to use these systems as 

a treatment for domestic wastewater in Israel (Craggs, 2005). Similar work was initiated in 

Kuwait by Ismail Esen, Kazmer Puskas, Ibrahim Banat, Reyad Al-Daher and Yousif Al-

Shayji. These researchers had set up pilot plant HRAOP systems to treat municipal 

wastewater for irrigational use and often with the use of a post- treatment sand filtration unit 
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for algae removal (Puskas, Esen, 1989; Puskas et al., 1991; Esen et al., 1987; Esen et al., 

1991; Al-Shayji et al., 1994).  

Nutrient removal, energy efficiency and resource recovery continued throughout the 1980‟s 

and 1990‟s using these IAPS systems. A large amount of research was done on algae 

harvesting, methane recovery and utilization from HRAOP systems (Craggs, 2005). The 

harvesting of algal/bacterial biomass (or mixed liquor suspended solids: MLSS) from the 

HRAOP system can be beneficial for the use in biofuel (methane), fertiliser and feed 

production (Craggs et al., 2012). 

Currently extensive research has been done on using sand filtration, dissolved air flotation 

and reverse osmosis on enhancing IAPS effluents. The reason being is that the IAPS does not 

produce a final effluent that meets the general standards set by various authorities for 

environmental discharge. Also the removal of selenium from agricultural drainage waters 

using the IAPS system has been a fascination amongst some researchers (Craggs, 2005). 

Selenium is a toxic pollutant that contaminates drainage waters. It causes a devastating effect 

on aquatic life e.g. birds, which causes embryonic deformity and mortality (Kharaka et al., 

1996).  

1.3 IAPS as a technology for municipal sewage treatment 

The IAPS can be regarded as an innovative wastewater treatment system; however, without 

the correct design and configuration, it may give misleading results. Multiple pond systems 

like the IAPS perform well in terms of organic solids removal but the removal of algal solids 

and nutrients as well as the disinfection of wastewater are very inconsistent (Craggs, 2012). 

The configuration and design of the system does not allow for the final effluent to meet the 

recommended standards for environmental discharge in South Africa (Wells, 2005). 

Therefore one way to avoid effluent quality issues is to introduce polishing components and 

to include tertiary treatment units (TTU) to ensure that the final effluent meets the discharge 

standards.  

1.3.1 General Information on IAPS 

The integrated algal pond system (IAPS) as a wastewater technology is a derivation of the 

AIWPS
®
 developed by Oswald who is credited as the pioneer of algae pond technology 

which he began studying in 1949 (Ludwig and Oswald, 1952). Initially, Oswald focussed on 
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the symbiosis of algae and bacteria in wastewater treatment (Oswald et al., 1955). This later 

became known as photosynthetic oxygenation (Oswald et al., 1957). Photosynthetic 

oxygenation is the aeration effect caused by algae by release of photosynthetically generated 

oxygen on treated wastewater (Ludwig et al., 1951; Ludwig and Oswald, 1952; Oswald et al., 

1953, 1955). By 1957, Oswald had established the High Rate Algae Oxidation Pond 

(HRAOP). This algae-containing raceway incorporated wastewater remediation via 

biological oxygenation and nutrient removal (Oswald et al., 1955, 1957) and eventually led to 

the fully developed IAPS (Oswald et al., 1957) (Fig 1.1). 

 

Figure 1.1: IAPS operating configuration design deployed in California, USA. A) 

Delhi, California plant with design flow= 6 ML/d, wet surface area= 7.5 hectares, total 

area= 16 hectares, annual energy cost=$20,000, wastewater 

rate=$21/month/household; B) Hilmar, California plant with design flow= 4 ML/d; 

wet surface area= 7.2 hectares; total treatment area= 15 hectares; annual energy cost= 

$13,000; wastewater rate=$21.85/month/household C) St Helena, California plant 

established in 1965 (ML/d = mega litres per day). 

 

1.3.2 IAPS Process Flow 

There are 5 phases with regard to wastewater treatment. Primary treatment (AFP) includes 

the removal of suspended solids. Secondary treatment (HRAOP; ASP; ADB) involves the 

reduction of dissolved biodegradable organic matter and lowers the biochemical oxygen 

demand (BOD) to a level where the oxygen is not depleted completely within the effluent 
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flow. Tertiary treatments (MP, SSF, and RF) are required for the removal of nitrogen and 

phosphorus, so that the growth of algae and other aquatic plants is reduced. Quaternary 

treatment systems (QTS) (chlorination, ozone, ultraviolet light) are important for the removal 

of obstinate organic compounds while quinary treatment involves the removal of dissolved 

organics, salts and heavy metals (Cowan and Render, 2012).  

 

The advanced facultative pond (AFP) has two separate layers within the pond: anaerobic 

bottom layer and a surface aerobic layer. At the base of the AFP, there is an in-pond digester 

(IPD), where solid sewage sedimentation and anaerobic procedures are carried out (Rose et 

al., 2002b). With these anaerobic procedures, organic solids are converted microbially into 

organic nutrients and methane (Bolan et al., 2009). The IPD is surrounded by a wall so that 

there is no mixing with the oxygenated water (Rose et al., 2002b). The volume of the AFP is 

1500 m
3 

with a surface area of 840 m
2 

and has a HRT of 20 d. If designed properly, the AFP 

has the capability of reducing between 60% and 80% of BOD by methane fermentation, and 

almost all suspended solids (Green et al., 1996; Wells, 2005). 

The IPD is deep (4.5 m) and therefore most of the sewage solids cannot be expelled. The 

volume of the pit is 225 cm
3 

(giving the pit a 3 d HRT) and is designed in such a way, that it 

increases the amount of settleable solid deposits within the IPD (Oswald et al., 1994; Wells, 

2005).  The upflow velocity is usually less than 1.5 m.d
-1

. This is slow in order to prevent 

parasites and pathogens from escaping the pit (Rose et al., 2002b). The velocity is also so low 

so that there is almost 100% removal of suspended solids as well as 70% of BOD removal 

(Oswald, 1990). Bubbles of biogas lift the solid waste to the surface of the pit and as the 

biogas bubbles expand, they break away from solid matter, leaving the solid waste to sink 

and resettle again. This produces anaerobic sludge through solid accumulation where the 

initial wastewater flows through (Rose et al., 2002b). 

The surface aerobic layer of the AFP has a vast quantity of algal growth which is supported 

by carbon dioxide formed as a component of the biogas. Algal growth and the associated 

increase in photosynthetic oxygen production provide the aerobic function. This surface 

aerobic layer causes the oxidation and entrapment of odour compounds found within the raw 

waste due to the anaerobic gases being oxidised by the aerobic layer. Thus, these systems can 

be located very close to urban areas (Rose et al., 2002b; Wells, 2005). 
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Preliminary data derived from the EBRU IAPS has indicated the potential of this technology 

to produce a biogas stream comprising more than 80% methane (Cowan and Render, 2012). 

Since a value of 70% methane is traditionally regarded as good, all indications are that an 

above average biogas stream can be routinely obtained from this system. The only reliable 

data on methane production by the fermentation pit of an IAPS was recorded from a plant in 

Richmond, California, where 0.22 m
3
 CH4. kg

-1
 of biogas was produced. However, only a 

fraction of the wastewater influent was passing through the digester, producing a low 

methane yield (Green et al., 1995). 

The high rate algal oxidation pond (HRAOP) is a paddle-mixed raceway and it is more 

efficient and cost effective than a conventional secondary facultative pond due to the HRAOP 

producing more DO (Craggs et al., 2012). The total volume of the HRAOP‟s is 150 m
3
 and 

the water depth of each HRAOP is 30 cm, therefore the shallow water allows the entire water 

body to become oxygenated (Wells, 2005).  The retention time is very short, normally three 

to five days, but currently the configuration of the Belmont Valley IAPS is 2 and 4 d in 

HRAOP (A) and (B) respectively.  

The pH in both HRAOP systems tends to increase to above 9.5 due to algal photosynthesis, 

therefore killing all E. coli (Wells, 2005). COD levels are increased due to the large 

abundance of algae content found in the HRAOP‟s. Algae are known to excrete small 

photosynthetic organic molecules, which increases the COD concentration levels (Wang et 

al., 2010). The HRAOP system also increases the DO levels caused by photosynthesis of the 

algae which converts sunlight, carbon dioxide and water into oxygen (Wells, 2005). 

Electrical energy is used to drive the paddle wheels. Each paddlewheel requires a 250 to 370 

watt electrical motor to provide a linear velocity of 30 cm.s
-1

 (Wells, 2005). This system 

provides a gentle flow which continuously mixes the algae and allows for formation of algal 

flocs within the channels which remain in suspension close to the water surface and within 

range of light penetration. Larger bacterial flocs move more slowly along the bottom of the 

channels, where they utilize photosynthetic oxygen to oxidise BOD influent. Thermal 

stratification is also prevented by the paddle wheels, which allows the pH and DO to be 

consistent throughout the HRAOP system (Green et al., 1995). 

From HRAOP (A), the water gravitates into the algal settling pond (A) (ASP (A)) as partially 

treated wastewater. From ASP (A), water then gravitates to a splitter box (SB) (as partially 

treated wastewater), where it is then transferred to HRAOP (B) (Fig 1.2). Coagulation/ 
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Flocculation (C/F) of the biomass occurs in HRAOP (B) and is collected in ASP (B) where 

the suspended solids are separated. ASP (B) then gravitates the water via a SB where it is 

released as the final effluent.  

 

Figure 1.2: SB from the IAPS final effluent. From here the effluent flows into 

the different tertiary treatment systems: Maturation Pond; Slow Sand Filter; 

Rock Filter. 

 

The algal settling pond (ASP) has a designed HRT of 0.5 d, which allows 50-80% of algae to 

settle to the bottom of these ponds. The algae can then be removed to the algal drying beds 

(ADB‟s) when required (Cowan and Render, 2012). If the effluent of this system is used for 

agricultural purposes (e.g. irrigation) then algae does not have to be removed but the mean 

probable number (MPN) for bacteria must be less than one thousand. Little evidence has been 

obtained to suggest that the biomass is harmful but precautionary steps still need to be 

provided. Wastewater algae can also be harvested and utilized as a resource for other 

purposes. For example, e.g. plant natural product production, pigment extraction; animal 

feeds etc. (Rose et al., 2002b). 

Algae dewatering occurs on the algal drying beds (ADB‟s) which are sand beds, a 

biomass/sand mix is produced that can be utilized as a soil conditioner, a biofertilizer, animal 

feedstock or as a substrate in biological methane generation (Kothandaraman and Evans 

1972). 

Tertiary treatment units (TTU) are constructed to further improve the microbial quality of 

secondary treated water, especially with regard to wastewater that is to be re-used and then 
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discharged into the environment (Gerba and Pepper, 2011). There are many different types of 

systems that can be used for tertiary treatment, which include a MP series, Slow Sand Filter 

(SSF), Duckweed Ponds (DWP), Rock Filter (RF), Constructed Wetlands (WL) etc. Tertiary 

treatment units are used to remove nutrients, residual organics and pathogens. These systems 

are normally followed by Quaternary Treatment Systems (QTS) which have the capability to 

remove salts, metals and pesticides (Wells, 2005). Examples of QTS include downstream 

chlorination, ozone, and ultraviolet (UV) treatment. 

Chlorination is used to prevent waterborne diseases from spreading and is considered a very 

important process (Spellman, 2008). During the 1960‟s and 1970‟s, there had been many 

studies with regard to chlorine disinfection and these studies revealed that this type of QTS is 

feasible and has the added benefit of reducing suspended solids and improving the water 

turbidity (Davies-Colley, 2005). Chlorine also has the ability to abolish „bad‟ odours e.g. 

mercaptans, hydrogen sulphide etc. (Wells, 2005). There are however a few concerns with 

this treatment process; chlorine has the capability to create unwanted disinfection by-products 

(DBP‟s) when it reacts with organic and inorganic compounds within the water. It is also 

known to cause odour and taste problems in the water if high doses are added (Spellman, 

2008). Chlorination was a common practice for disinfecting water all around the world. 

However, studies eventually showed that chlorine (with the reaction of organic and inorganic 

compounds) formed toxic disinfection by-products (DBP‟s). For example, trihalomethanes, 

haloacetic acids, chlorite etc. (Bayo et al., 2009). 

Ozone has been used as a disinfectant and was first developed as a water purifier in 

Oudshoorn, Holland in 1893 (Vigneswaran and Visvanathan, 1995). Davies-Colley (2005) 

found that ozonation is the preferred choice over chlorination when it comes to disinfecting 

water from mechanical secondary sewage treatment works due to its „potent virucidal action‟. 

Many companies (e.g. Ozonia) have used ozonation for the treatment of municipal and 

industrial wastewater because this treatment is known to improve the DO content and to 

oxidise sulphides. However, it is not an appropriate post-treatment technology for the IAPS 

due to being energy intensive, operationally expensive, toxic and corrosive (Wells, 2005). 

Ultraviolet light is known as an efficient disinfecting technology and no DBP‟s are expected 

to be produced (Vilhunen et al., 2009). UV treatment is becoming a popular disinfectant 

technology for wastewater treatment because it is known as the safer option as it does not 

contain any toxicity which may affect the water effluent (Davies-Colley, 2005; Wells, 2005). 
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Oparaku et al. (2011) have mentioned that UV disinfection is often selected for wastewater 

treatment due to having low energy costs, no harmful by-products, no chemical consumption 

etc., which is beneficial towards safety and environmental problems.  

 

The IAPS has been researched and deployed around the world in various countries. It has 

been used to treat different wastewaters e.g. abattoir, piggery, tannery, aquaculture, sewage, 

cattle, winery etc. Table 1.1 summarises the global distribution of the IAPS for the treatment 

of different wastewaters. 

  

Table 1.1: The global distribution of IAPS systems used for the treatment of wastewater 

(Craggs, 2005). 

 

There are over twenty countries that have deployed an IAPS for the treatment of different 

wastewaters. The studies made on these IAPS systems have shown a decrease in certain 

parameters (e.g. COD, BOD, faecal coliforms, phosphate, nitrate etc.), in terms of percentage 

Country Climate 
Origin 

of waste 
Treatment Performance Effluent Use Year Reference 

Australia Semi-arid- Desert Abattoir HRAOPs 
 Discharge to 

environment 
2002 Evans et al., 2003 

Brazil Tropical-Temperate Domestic HRAOPs 
 Discharge to 

environment 
1983 Kawai et al., 1984 

France Mediterranean Domestic HRAOPs 

41- 45% COD 

67-72% N-NH4 
59-60% P-PO4

3- 
 1997 

Bahlaoui et al., 

1997 

New 

Zealand 
Temperate Domestic Two HRAOPs 

100 % faecal 

coliform 
disinfection 

Nutrient rich 

biomass as 
fertilizer 

2007 
Craggs et al., 

2003 

Germany Temperate Domestic HRAOPs 
 Discharge to 

environment 
1986 

Grobbelaar et al., 

1988 

Singapore Tropical Piggery HRAOPs 
 

 1992 Taiganides, 1992 

United 
States of 

America 

Mediterranean Domestic 

AFP, 

HRAOP, ASP 
and then a 

sand filter or a 

DAF point 

99 % BOD 
99 % TSS 

78 % nitrogen 

92 % phosphate     
99.999% coliform 

removal 

Discharge to  

environment 
1959 

Oswald et al., 

1960 

Kuwait Desert 

Municipal 

and 

Industrial 

Oil and sand 

traps, AFP, 
two HRPs and 

four ASPs. 

95 % BOD 
85 % COD 

99 % coliform 

removal 
pH 9.5 to 10 

Discharge to  
environment 

1990 
Al-Shayji et al., 
1994 

India Tropical Domestic 
AFPs, 
HRAOP, 

ASP, MP 

98 % BOD, 

92 % SS, 
91 % nitrogen 

96 % E. Coli 

removal 

Discharge to  

environment 
1986 

Mahadevaswamy 
& Venkatamaran 

1986 

Ethiopia Tropical Tannery 
AFP, SFP and 
MP 

95 % BOD 

93 % COD 
57 % ammonia 

76 % phosphate 

89 % sulphates 

95 % chromium 

removal 

Discharge to 
environment 

1990 
Tadesse et al., 
2003 
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removal. These systems showed a significant percentage of nutrient and pathogenic removal 

and proved to be effective in most cases. Many communities and farms around the world 

have used multiple pond systems for the treatment of wastewater due to the system‟s ability 

to remove organic solids (Craggs et al., 2012). However, very few countries have 

implemented this technology for commercial use. Multiple pond systems are generally 

inconsistent with regard to algal solids removal, nutrient removal and disinfection. Another 

disadvantage for advanced pond systems is the large land requirements needed compared to 

other electromechanical treatment systems (e.g. activated sludge). The USA has built a full 

scale HRAP‟s as a component of advanced pond systems for the last 50 years. In New 

Zealand, the National Institute of Water and Atmosphere Research Ltd has conducted 

research on pilot-scale and full-scale HRAP systems for the last 13 years and have found that 

the HRAP system is more consistent and improved than oxidation ponds in terms of 

wastewater treatment (Craggs et al., 2012). Craggs et al. (2012) had also recommended 

additional polishing treatments in order to meet discharge requirements. For example, 

maturation ponds, rock filters, UV disinfection and membrane filters.   

1.3.3 The IAPS at Belmont Valley, Grahamstown 

The IAPS was installed in February 1996 at the Belmont Valley Wastewater Treatment 

facility (33º 19‟ 07” South, 26º 33‟ 25” East) in Grahamstown (Fig 1.3). This system was 

constructed as a secondary treatment facility for Grahamstown‟s municipal wastewater. The 

purpose behind the project was to re-design the technology for South African operating 

conditions as well as demonstrate the technology and provide an engineering support base for 

the development of the IAPS process. It was envisaged that the design would be implemented 

in South Africa for treating wastewater (Rose et al., 1996) but this unfortunately has not been 

the case. This pilot scale IAPS continues to operate and treats 80-100 m
3
 domestic 

wastewater daily. Data from a series of investigations to determine efficiencies has revealed 

that this system has the potential to comply with the South African DWA discharge standards 

(Table 1.2) (Rose et al., 2002a, 2002b, 2007). 
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Figure 1.3: The pilot IAPS at the Institute for Environmental Biotechnology, Rhodes 

University (EBRU).  

The difference between IAPS around the world and the pilot IAPS constructed and located at 

the Belmont Valley WWTW in Grahamstown was that it was designed without a final tertiary 

treatment component e.g. maturation pond. The pilot system is then most closely  allied to  

the IAPS Secondary Process (Fig 1.4). Therefore the final effluent generated by the Belmont 

Valley IAPS can only be described as a „secondary treated‟ water, which may explain why 

the system is inconsistent in terms of water quality following treatment of wastewater (Rose 

et al., 2007). 

 

Figure 1.4: Schematic diagram illustrating the process flow for various IAPS designs 

based on technology developed by Oswald to recover nutrients, energy and water from 

influent wastewater. AFP=Advanced Facultative Pond; IPD=In-Pond Digester; 

HRP=High Rate Pond; C/F=Coagulation/Flocculation; ASP=Algae Settling Pond. URL: 

http://www.go2watersolutions.com/process-schematic.html 
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Table 1.2: DWA's recommended standards for environmental discharge. 

 

 

 

 

 

 

The original IAPS designed by Oswald always included a polishing step comprising of either 

a MP or other which would allow the final effluent to meet the discharge specifications as 

required by DWA. Craggs et al. (2012) had designed and implemented a hectare-scale 

HRAOP for enhanced wastewater treatment and recommended that additional treatment is be 

required as an extra polishing step to meet specific discharge standards. These authors 

recommend the inclusion of one or a combination of different post-treatment systems e.g. 

combination of MP and UV treatments prior to discharge, MP and rock filtration in series or 

direct UV treatment if insufficient land is available. If funds are available, then the use of 

membrane filtration is the choice to achieve a high quality final effluent for re-use.  

Without a final polishing step, and as demonstrated in other studies, the COD of the final 

effluent remains elevated resulting in the potential that if discharged water from an IAPS will 

be detrimental to any receiving water bodies (Park and Craggs, 2011b). Clearly, any 

considered implementation of IAPS technology for treatment of domestic wastewater must 

include in the process design a final effluent polishing process. 

1.4 Post-treatment Systems for Integration into the IAPS Wastewater Treatment    

Technologies  

1.4.1 Maturation Ponds 

MP‟s are known for their polishing effect after a conventional system and tend to be 

constructed in series following a facultative pond (Fig 1.5) (Shilton and Walmsley, 2005). 

MP‟s are known to decrease pathogens e.g. viruses and faecal bacteria which are found in the 

effluent of facultative ponds. Removal of pathogens is normally based on the size, design and 

number, geographical location and climate (Liu, 2008).  MP‟s are an aerobic system and 

PARAMETERS STANDARD 

Ammonia (mg. L
-1

) 3 

Phosphate (mg. L
-1

) 10 

Nitrate (mg. L
-1

) 15 

COD (mg. L
-1

) 75 

pH 5.5 – 9.5 

Faecal Coliforms (cfu/100 mL) < 1000 

Total Suspended Solids (mg. L
-1

) 25 

Dissolved Oxygen (mg. L
-1

) >2 

Electrical Conductivity (mS.m
-1

) 70 - 150 
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therefore provide less biological stratification than the facultative ponds and also allow the 

ponds to be fully oxygenated throughout the day.  

 

Figure 1.5: A typical standard pond system and associated maturation pond series 

(Shilton and Walmsley, 2005). 

Maturation ponds normally have a significant removal rate of phosphorus and nitrogen (Liu, 

2008). Picot et al. (2009) confirmed that MP‟s removed the majority of nitrogen and removal 

rates were higher in the summer months than in the winter. Phosphorus is normally reduced 

by algae in MP‟s but this can also have a negative effect on the MP‟s suspended solid and 

turbidity count in the final effluent (Liu, 2008). Removal of phosphorus in WSP‟s (which 

normally include an MP) usually occurs through precipitation as well as a high pH (>9.5) and 

aerobic conditions caused by algae photosynthetic activity in the MP‟s. This inevitably 

causes the formation of insoluble hydroxyapatite at high pH levels (Pearson et al., 2005; 

Mara, 2013). 

Algae diversity increases across the MP series but the algal biomass decreases in the final 

effluent due to the baffle systems, which forces the algae to sink and settle at the bottom of 

each pond (Mara, 2005; Mara 2013). Maturation Ponds need to disallow prolific algae 

growth/production to maximise light penetration and promote zooplankton grazing for 

removal of unsettled algae within the pond. Other natural disinfectants of these ponds are 

protozoan grazing, solar- and UV radiation and sedimentation (Craggs, 2005; Liu, 2008).    

According to the WHO (World Health Organization, 2012), the faecal coliform (FC) 

concentration of water must to be <1000 per 100 ml to prevent water related illnesses when 

consumed by humans. The main principles for faecal bacterial removal are: 

 Long time and high temperature 

 High pH (higher than 9) 

 High dissolved O2 concentration with high light intensity (Kayombo et al., 2005) 
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Liu (2008) mentioned that removal of pathogens in MP‟s is caused mainly by predation, 

adsorption, natural die-off and sedimentation. Normally these systems allow most of the 

pathogens to settle to the bottom of the pond, where sludge is accumulated, (if the system has 

a high retention time). It has been suggested that bacterial reduction mainly depends on 

climatological and environmental constraints (Polprasert et al., 1983). Therefore, long time 

periods and high temperature do increase the mortality of faecal bacteria. MP‟s are an open 

system and therefore unprotected from direct UV exposure, which contributes to coliform 

reduction (Wells, 2005). The bulk of ammonia is found in the algal biomass and with an 

increase in pH, ammonia tends to be extracted from the pond via volatilization (Kayombo et 

al., 2005). Therefore the MP, if designed correctly, can be recommended as a possible 

polishing system to meet specific discharge requirements. 

1.4.2 Sand Filtration 

Filtration is a process where porous material is used to purify water (di Bernardo, 2002). The 

effluent quality from pond systems is usually insufficient to meet the environmental 

objectives and local discharge standards and therefore needs extra treatment to reach these 

objectives (Middlebrooks et al., 2005). Sand filtration systems for wastewater treatment are 

regarded as fixed media bioreactors. Active biofilms on sand particles underpin performance 

of this technology. These biofilms are relatively resistant to changes in concentration of 

metals or fluctuations in pH within the wastewater. In addition, systems like these need very 

little maintenance and the operating costs are reported to be very low compared to other 

conventional wastewater systems. Sand filtration is thus a biofilm-driven process and is used 

for the integration of nutrients into diverse microbial populations to achieve the 

mineralization and biodegradation of organic matter (Gaur et al., 2010). There are many 

types of sand filtration process but the main types are rapid sand filtration (RSF) and slow 

sand filter (SSF). 

1.4.2.1 Rapid Sand Filtration 

A rapid sand filter (RSF) has the same mechanism of filtration as a slow sand filter (SSF), 

except that the biological processes are decreased. This is due to a shorter filter run time 

between cleaning periods, which prevents biological growth (Scholz, 2006). Sand particles 

are usually larger and due to the higher filtration rate, the filter run only lasts from a couple of 
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hours to a few days (Table 1.4). The filtering medium of the RSF is the whole bed depth as 

opposed to the SSF, which uses only the top few inches of the bed (Pizzi, 2011).  This type of 

filtration system often achieves poor water quality results compared to the slow sand filter. 

Improvement can occur if coagulation, flocculation or the use of chemicals prior to filtration 

takes place to break up the suspended solids (Middlebrooks et al., 2005). 

1.4.2.2 Slow Sand Filtration 

Slow sand filters (SSF) were one of the first modern treatment techniques used for the 

purification of drinking water. It is known that SSF produces a high class filtrate and this 

technology is employed extensively throughout the potable water industry. These filters are 

also able to decrease up 99.9% of bacteria within the water (Ellis, 1987). Thus,  SSF is seen 

as a very promising post treatment option, in terms of the cost efficacy, effluent quality and 

operational simplicity and one of the best solutions for wastewater problems (Table 1.3) 

(Gunes and Tuncsiper, 2009).  

According to various studies, SSF are able to remove 86% BOD, 68% suspended solids, 88% 

turbidity and 99% total coliforms (TC).  It is therefore not surprising that SSF have been used 

to treat high quality surface waters and in the treatment of secondary effluents. Sand filters 

are designed based on the hydraulic load as well as organic load and this system is simple 

enough that less skilled manpower can be used in the day-to-day operation (Tyagi et al., 

2009). Reducing pathogens from wastewater, at a low cost and low maintenance, makes this 

type of filtering system very appealing, especially in developing countries (Bauer et al., 

2011). The SSF‟s filtration rate has been estimated to be 50-150 times lower than that of the 

RF (Table 1.4). The flow retention periods for the SSF are 30-90 times longer than that of the 

RF (Galvis et al., 2002). 

 Sand in the filtering system has mechanical techniques in straining out solid 

substances within the raw wastewater and this is done effectively through the upper 

layer of the filter. 

 Nitrifying microorganisms produce a chemical reaction in the sand which oxidise 

organic matter. 

Continuous filtering allows for a slimy gelatinous layer (mainly algae, bacteria and plankton) 

to form on the surface of the filter. This gelatinous layer tends to oxidise ammoniacal 
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nitrogen to nitrates, remove organic matter and yield bacteria-free water. This layer (which 

extends 2- 3 cm into the top part of the bed) acts as a retaining mechanism for all the bacteria 

in the water (Roday, 1998). 

Table 1.3: The advantages and disadvantages of the slow sand filter (Roday, 1998; 

Scholz, 2006). 

Advantages Disadvantages 

No pre-treatment is needed, except for 

preliminary sedimentation 

Large area of land needs to be used 

 

Easy to construct and operate 

Colour removal seems to be poor 

 

Bacteriological, physical and chemical 

quality of water is high 

Removal of turbidity is poor 

 

Total bacteria count and E.coli  is reduced 

to 99.9% 

 

 

No chemicals 

 

 

Less corrosive effluent compared to RF 

system 

 

 

Cheap 

 

 

Cleaning of filters is not done on a regular 

basis 

 

 

Table 1.4: Comparative design between the different sand filtration systems (Purcell, 

2003).  

Design of filtering system 

Filter type Slow Rapid 

Water depth (m) 1.0 - 1.5 1.0 - 1.5 

Bed thickness (m) 0.6 - 1.2 0.6 - 1.2 

Underdrainage depth (m) 0.5 0.5 

Effective sand size (mm) 0.15 - 0.4 0.5 - 1.5 

Uniformity coefficient 2.0 - 3.0 < 1.5 

Filtration rate (m.h
-1

) 0.1 - 0.25 5.0 - 7.0 

Filter run (d) 20.0 - 60.0 1.2 

Cleaning method Surface skim Backwash 
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1.4.3 Rock Filtration 

Rock Filters (RF) are a simple operation process. Effluent from previous pond systems will 

enter and travel throughout the submerged porous rock bed. The algae that enter are stored in 

the void spaces when they settle on the rock surface (Middlebrooks, 1988; Crites et al., 

2005). One of the main advantages of a RF is that it is a simple operation at fairly low cost 

and local material can be used for construction (Crites et al., 2005; Davies-Colley, 2005). 

When liquid media flows through the RF, algal biofilm coatings are formed around the rock 

surface, which enable the entrapment of microbial contaminants (bacteria, fungi, protozoa 

etc.) (Davies-Colley, 2005).  

All over the world, many communities have used rock filters systems for the treatment of 

wastewater. Saidam et al. (1995) operated RF‟s as a post-treatment to a WSP in Jordan and 

demonstrated a reduction in TSS and BOD5 by 60% from the pond final effluent. Mara and 

Johnson (2006) also used RF‟s as a post-polishing system for WSP‟s over an 18 month 

period. The concentration of ammonia and nitrate after filtration was <3 and 5 mg.L
-1

 

respectively and the FC count was 65 cfu per 100 ml. 

Rock Filters have the ability to become anoxic if the system is not aerated; decreasing the 

nitrification process which therefore discourages the removal of ammonia. Aeration of the 

system also improves TSS removal (Hamdan and Mara, 2009). Most odours contain 

hydrogen sulphide and are caused by the anaerobic environment of the system. Studies have 

shown that hydrogen sulphide levels above 1 g.S.m
-3

 in pond water surfaces can cause a 

significant reduction in algal growth (Middlebrooks et al., 2005).    

1.5 Aim 

The aim of the current research project was therefore to design and construct post-secondary 

treatment technologies for incorporation into the IAPS system design and find out whether 

these systems can provide the polishing required allowing for the treated water to meet the 

standards set by DWA for discharge to the environment. The parameters that were considered 

in the design of the tertiary treatment units included maturation ponds, slow sand and rock 

filters. Efficiency of operation of the tertiary treatment units was determined by measuring 

COD, nitrate-N, ammonium-N, phosphate-P, TSS, pH, FC, TC, electrical conductivity (EC) 

and DO. The research hypothesis is: “Post-secondary treatment systems will have an optimal 
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influence on further improving nutrient removal as well as disinfecting the final effluent from 

IAPS to allow for discharge to a water course that is not a listed water course as defined in 

the Water Act and required by the Department of Water Affairs.”  
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CHAPTER 2 

Materials and Methods 

2.1 IAPS configuration and operation 

The Integrated Algae Pond System (IAPS) used in this study is located at the Institute for 

Environmental Biotechnology Rhodes University (EBRU), adjacent to the Belmont Valley 

Wastewater Treatment Works (33° 19‟ 07” South, 26° 33‟ 25” East). This IAPS operates 

continuously to treat 75 m
3
.d

-1
 of municipal sewage and a schematic showing the operating 

configuration and process flow is presented in Figure 2.1. The complete system comprises of 

an advanced facultative pond (AFP) with surface area of 840 m
2
, which contains a single in-

pond digester (IPD) or fermentation pit (225 m
3
), two 500 m

2
 high rate algae oxidation ponds 

(HRAOP), and two algal settling ponds (ASP). Up-flow velocity in the fermentation pit is 

maintained at 1-1.5 m.d
-1

 while hydraulic retention times (HRT) in the fermentation pit and 

AFP are 3 and 20 d, respectively. Screened raw sewage is sourced directly from an off take 

immediately after the inlet works and enters the system via the IPD, where suspended and 

dissolved solids are anaerobically degraded. Effluent then flows into the buffering AFP and is 

detained for 20 d before gravitating to the first HRAOP which has HRT of 2 d and then to an 

ASP for half a day. Mixing, or turbulent flow, is essential to maintain optimum conditions for 

maximum algae productivity in the HRAOP‟s, which is currently flowing at 0.15 m.s
-1

. 

Typically linear velocity is required to prevent stratification and is achieved using paddle 

wheels powered by a small electrical motor (0.25 kW). Due to configuration of the pilot 

demonstration and in accordance with original design parameters (Rose et al., 2002b), 

partially treated water from the first ASP is pumped to the second HRAOP, where it is 

detained for 4 d before release to the second ASP. The latter is where the bulk of suspended 

algae biomass is removed by sedimentation prior to tertiary treatment and eventual discharge 

of the treated water. 
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Figure 2.1: Schematic illustrating the process flow for the pilot IAPS designed, 

constructed and operational at the Belmont Valley WWTW, Grahamstown. The 

system receives 75 m
3
 of raw sewage daily, screened for the removal of plastics, 

and a grit or detritus channel (in duplicate - one operating, one cleaning). Pond 

and reactor surface area, volume and flow rates are shown in parentheses. 

Effluent enters at the bottom of the AFP some 6 m below water level. 

AFP=Advanced Facultative Pond; IPD=In-Pond Digester; HRAOP=High Rate 

Algal Oxidation Pond; C/F=Coagulation/Flocculation; ASP=Algae Settling 

Pond; SB=Splitter Box; TTU=Tertiary Treatment Unit (Maturation Ponds, 

Slow Sand Filters and/or Rock Filters). 

 

2.2 Design and Construction of Tertiary Treatment Systems  

2.2.1 Design of the Maturation Pond Series 

The quantity and size of the MP was determined by what the final bacteriological quality of 

the effluent should be. In South Africa, the recommended concentration of FC is 1000 

counts/100 ml (Republic of South Africa, Water Act 1998). Therefore, the MP‟s were 

constructed in a series of 3 (Fig 2.2 & 2.5) based on suggestion that 2 to 3 MP‟s are most 

suitable for treating wastewater originating from a single facultative pond (Mohammed, 

2006).  

The depth of a MP is typically between 1 and 3 m with a long retention time for maximum 

pathogen removal. Shallower ponds (0.4 m) are more effective for decreasing pathogenic 

organisms and less land area is required (Kruzic and White, 1996). The first maturation pond 

MP 1 was designed with a diameter of 5 m and depth 1.2 m with the water level at 1 m, to 

prevent water overflow and also to increase UV light penetration (Table 2.1).  It was 
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reasoned that this would allow MP 1 to have an area of 19.6 m
2
 and therefore a volume of 20 

m
3
. The positioning and depths of the inlet and outlet pipes tend to have a better outcome on 

the treatment competence than the actual pond geometry itself (Pearson et al., 1995). The 2
nd

 

and 3
rd

 maturation ponds MP 2 and MP 3 were designed to a smaller surface area of 1 m
2
. 

The height of the plastic containers used for these ponds was 1 m and to prevent overflow, 

the water level is maintained at 0.8 m (Table 2.1).  

The pond system must have a sufficiently long retention time in order to remove a significant 

amount of pathogens. Retention time needs to be at least 11 d to be effective, but for more 

effective removal, 37 d has been recommended (Wells, 2005). The retention time for the 

MP‟s in series in the current study was designed at 12 d, with a flow rate calculated to allow a 

retention time of 4 d in each pond (Table 2.1).  According to Craggs (2005), total retention 

time of between 10 and 20 d is adequate for FC removal to levels less 1000 MPN per 100 ml. 

A single vertical baffle system (Fig 2.2) was inserted in each of the MP‟s in order to prevent 

short circuiting (Bracho et al., 2006). Introducing a baffle system allows for optimisation of 

the hydraulic behaviour of the pond through changes in configuration (Bracho and Casler, 

2008). A single baffling system shows a vast improvement compared to unbaffled systems 

with regard to hydraulic efficiency but other studies have revealed that having more than one 

baffle improves the hydraulic efficiency significantly (Shilton and Sweeney, 2005). 

Nevertheless, a single baffled system was used in this study due to the geometry of the ponds 

and the cost involved to building multiple baffles.  

Therefore and in order to construct the first MP in a circular shape, the following equations 

were applied: 

 

Area = π r
2
 

               
= (3.14) (6.25) 

         = 19.63 m
2 

       

Volume = π (r
2
) h 

              = 23.56 m
3 

A working volume of 20 m
3
 was selected for the first MP

  

 

20 = π (6.25) h 
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h = 1.02 m  

 

To determine the flow into the first MP the following equation was used; 

 

A = Q Ɵm1/D 

 

Where A= Area (m
2
) 

Q= Influent Flow (m
3
.d

-1
) 

Ɵm1= Retention time (d) 

D = Depth 

 

19.63 = Q (12)/1.0 

12Q = (19.63) (1.0) 

Q = 1.64 m
3
.d

-1
 (without the other 2 MP‟s) 

 

For 3 MP = 4.9 m
3
.d

-1
 (retention of 4 d) (Mara, 2005). 

 

Therefore the influent needed into the 2
nd

 and 3
rd

 smaller MP‟s to achieve a 4 d retention 

time: 

 

Ɵm1 = AD/Q 

4= (1) (0.8)/Q 

Q = 0.2 m
3
.d

-1
 

2.2.2 Construction of the Maturation Pond Series 

MP 1 was built using PVC lining (5 × 1.2 m) which was supported by steel fencing on the 

outside. The baffle was also made of PVC lining. MP 2 and 3 were constructed from 1 m
3
 

plastic containers with their baffle systems also being made of plastic. The baffles were 

positioned 0.2 m above the ground level which allowed for flow to be directed underneath the 

baffles (Fig 2.2).  
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Figure 2.2: Schematic diagram of MP 1 on the left and MP 2 and 3 on the right. All 3 

MP’s have a single baffle which prevents water from short-circuiting and causes a 

turbulent flow. In MP 1, the water level goes up to 1 m, which gives a water volume of 

20 m
3
. In MP 2 & 3, the water level is at 0.8 m, which gives a water volume of 0.8 m

3
. 

2.2.3 Design of a Slow Sand Filtration Unit  

The SSF was constructed using a 1500 L JoJo
®
 tank (1 × 1.5 m) with a volume of 1.5 m

3
 

(Table 2.1). Gravel sand (15-22 mm) was used as the first layer with fine sand (1-2 mm) used 

as the second and then 0.8 m of water head (Fig 2.3). A two-layer filtering design was used 

because a SSF does not usually have more than one layer of sand above the supporting media 

and to provide sufficient support to the schmutzdecke, the main filtration layer. Both sand 

types were obtained locally from Trencrush Quarries in Grahamstown.  The reason why the 

water head is so deep is because over time, the schmutzdecke causes clogging which 

decreases water flow into the system, hence an increase in water volume on the surface 

(Massmann et al., 2004). Woven type BIDIM
®
, obtained from a BUCO hardware outlet store 

(originally from the GEOfabrics company), was used as a filter matrix between the two layers 

of sand and to cover the top surface to ease cleaning and to prevent mixing of the sand layers 

(Fig 2.3). The system was plumbed using 25 mm piping which connected outflow from the 
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IAPS splitter box (SB) to a second splitter and the various TTU‟s connected to the SSF unit 

using 15 mm piping. 

 

 

Figure 2.3: Schematic diagram of the SSF’s. Both SSF’s contain two layers of sand (fine 

sand and gravel) which are both supported by a layer of BIDIM
®
 for easier cleaning 

and less mixing. Gravel is 0.2 m in depth; fine sand is 0.5 m in depth and 0.8 m water 

head.  

In the present study two SSF‟s were designed and constructed and used separately. The 

reason for approaching implementation of SSF in this way was due to the high amount of 

algae present in the effluent stream which forms a biological mat, also known as a 

schmutzdecke on the surface of the sand filter.  Small unicellular algae increase resistance to 

flow into the filter, causing clogging within the system (McNair et al., 1987). Therefore, two 

SSF‟s were used to ensure continuous operation and avoid down-time required for removal of 

the schmutzdecke. Slow sand filters are normally cleaned by scraping the biological layer 

from the surface of the sand (di Bernardo, 2002). Furthermore, BIDIM
®
 was used to cover 

the surface of the SSF to minimize ingress of algae and for easier cleaning. 

The design criteria for the SSF units used was based on the following; 

 Volume water = π r
2
 h 

                       = (3.14) (0.25) (0.8) 

                       = 0.63 m
3 

                       = (2) (0.63) 

                       = 1.26 m
3
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Volume fine sand = π r
2
 h 

                             = (3.14) (0.25) (0.5) 

                             = 0.39 m
3 

                             = (2) (0.39) 

                             = 0.78 m
3
 

 

Volume gravel = π r
2
 h 

                        = (3.14) (0.25) (0.2) 

                        = 0.16 m
3 

                        = (2) (0.16) 

                        = 0.32 m
3 

Area = π r
2 

                
= 0.785 m

2 

 

The hydraulic loading rate (HLR) plays an important role in the operation of filters. A loading 

rate of 0.1-0.32 m.h
-1

 is usually recommended but the literature has also suggested that a rate 

of 0.6 m.h
-1

 is viable (Tyagi et al., 2009).  Therefore the following equation was implemented 

to determine the HLR for the sand filtration components (McDowall, 2008): 

 

A = Q/ HLR 

 

A = Area (m
2
) 

Q = flow rate (m
3
.d

-1
)  

HLR (hydraulic loading rate) (m.h
-1

) 

 

0.785 = 0.3/ HLR 

HLR= 0.3/ 0.785 

HLR= 0.38 m.h
-1
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2.2.4 Design of a Rock Filter Unit 

The rock filters were constructed using a series of 3 plastic containers each measuring a 1.0 × 

1.0 m each filled with gravel sand to a depth of 0.6 m (Table 2.1). It is suggested that ponds 

in series show good efficiency with regard to the removal of parasites as well as the eggs 

(Konaté et al., 2013). Rock filters have an average particle size of between 5 – 20 mm; 

therefore gravel particles ranging from between 15 – 22 mm in diameter were used 

(Hussainuzzaman and Yokota, 2006). The positioning of the inlet piping (15 mm) to the 3 

gravel sand filters was placed at the bottom of the RF‟s which allowed an upflow of water 

into the systems and tends to give a better result (Fig 2.4) (Middlebrooks et al., 2005).  

 

 

Figure 2.4: Schematic diagram of the rock filters in series. Each container is 1 × 1 m 

with the gravel sand being 0.6 m in depth and a water head of 0.3 m. The flow rate was 

0.5 m
3
.d

-1
 and the rock particles ranged between 15 – 22 mm.  

Hydraulic loading rate (HLR) is one of the most critical factors when it comes to RF design 

and it is important that the flow of the wastewater is under the rock surface to prevent algal 

growth and insect annoyance. It has been suggested that in order to achieve the required 
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efficiency with 1- 2 cm diameter rock, the HLR must be between 0.15-0.30 m
3
.d

-1
 

(Middlebrooks et al., 2005). Thus for the RF unit to be used in the present study the 

following parameters were applied; 

A = Q/ HLR 

A = Area 

Q = flow rate (m
3
.d

-1
)  

HLR (hydraulic loading rate) (m.h
-1

) 

 

1.0 = 0.5/ HLR 

HLR= 0.5/ 1.0 

HLR= 0.5 m.h
-1

 

 

Table 2.1: Design parameters for the TTU’s; Maturation Ponds; Slow Sand Filters; 

Rock Filters. 

 

2.3 Experimental design 

Composite water samples were collected from secondary and tertiary treated effluent at 

intervals spanning 24 h from outlet points of discharge from the various systems. These 

included; the final effluent from the IAPS, the final effluent of the MP (after MP 3), the 

effluent emerging from the bottom of the SSF as well as the effluent from the final RF in 

series (Fig 2.5). Composite samples were prepared using a large container next to each 

treatment unit into which the effluent water would flow over a 24 h period. A thoroughly 

mixed 500 mL grab sample was taken from each of the composite sampling points on a 

weekly basis for a 10 month period from February-November 2013. 

  Maturation Pond Slow Sand Filter Rock Filter 

  

 MP 1 MP 2 & 3     

Area (m
2
) 19.63 1 0.785 1 

Volume (m
3
) 20 0.8 1.5 0.9 

Depth (m) 1.02 0.8 1.5 0.9 

No of Units 1 2 2 (separate) 3 

Flow Rate (m
3
.d

-1
) 4.9 0.2 0.3 0.5 

HLR (m.h
-1

) 0.25 0.2 0.38 0.5 (per filter) 

HRT (d) 4 4 (in both) 5 5.4 (in total) 
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Figure 2.5: Design layout and process flow of the TTU’s positioned after the IAPS 

treatment of domestic wastewater. IAPS effluent, after algae settling, is distributed to 

the MP series, SSF’s and RF series from a SB. SSF’s receive 0.3 m
3
.d

-1
, while the RF’s 

receive 0.5 m
3
.d

-1
. The MP 1 receives 4.9 m

3
.d

-1
 and MP 2 and 3 each 0.2 m

3
.d

-1
. SSF = 

Slow Sand Filter; MP = Maturation Pond series; RF = Rock Filter. Sampling points are 

shown in red.  

2.3.1 Replicates 

All sampling and analyses of the water were in triplicate and carried out within 1 hour 

(Mambo et al., 2014). The pH, DO and EC measurements were analysed 3 times during the 

course of the day (morning, midday and late afternoon) from the composite sampling points. 

2.3.2 Sample Preparation 

pH, EC and DO were measured in situ. EC and temperature were measured immediately 

using an OAKTON EC/TDS/SALT Testr 11 Dual range 68X 546 501 meter (Eutech 

Instruments, Singapore), while DO content was determined using an EUTECH DO 6+ 859 
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346 meter (Eutech Instruments, Singapore). The pH was measured using a Hanna HI8 424 

microcomputer pH meter (Hanna Instruments, Woonsocket, RI) previously calibrated using 

Merck Buffer solution pH 4. SAAR 1461040KF and pH 7. SAAR 1461070KF (Mambo et 

al., 2014). 

TSS was measured according to APHA (1998). This was done by filtering 50 mL of 

wastewater through Whatman GF/C microglass filters, drying the filters for 24 h in an oven at 

105ºC and determining the mass differential.  Filter weight was determined before and after 

filtration and TSS calculated using the following formula: 

                            
(   )     

              (  )
 × 1000 

where: 

A = weight of filter + dried residue (mg) 

B = weight of filter (mg) 

Nutrient analyses were carried out using test kits; Ammonium-N (1.14752.0001), ortho- 

phosphate (1.14848.0001), nitrate-N (1.14773.0001) and COD (1.14538.0065 & 

1.14539.0495) according to the manufacturer‟s instructions (Merck Chem. Co., Darmstadt, 

Germany). These were analysed in triplicate using a Thermo Spectronic Aquamate 

spectrophotometer (ThermoFisher Scientific, Waltham, MA).  

Concerning the testing of COD, an estimated 20 ml of effluent water from all the treatment 

systems was filtered separately through Whatman No. 1 filter paper with a pore size 11 µm. 

The COD testing kit was then used for the effluent water in sealed test tubes according to the 

manufacturer‟s instructions. Once the sample was prepared, the sealed test tubes were then 

placed into a Merck thermoreactor (preheated for 30 min) for 2 h at 148°C. Samples were 

then allowed to cool to room temperature before analysis using the Thermo Spectronic 

Aquamate spectrophotometer.  

The effluent water was also filtered separately through Whatman 2 filter paper (8 µm), where 

the filtered water was then used to test ammonium-N. After filtration, the different effluents 

were then placed in test tubes and analysed using the ammonium-N testing kit in the Thermo 

Spectronic Aquamate spectrophotometer (Mambo et al., 2014). 
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Microbial analyses were carried out in triplicate using either MacConkey agar for total 

coliforms or m-Fc agar for FC, which were obtained from BIOLAB CHEMICALS CC, South 

Africa and prepared according to the manufacturer‟s instructions. Aliquots of water sampled 

from the IAPS, MP, SSF and RF effluents were diluted using 9 ml sodium chloride solution 

and 1 ml of water sampled effluent. Only the IAPS water effluent was diluted again to a 

dilution of 1/100. From these dilutions, 100 µL was inoculated on petri dishes using a 

spreader. The MacConkey and m- Fc agar plates were then  incubated at 30 and 45 ºC 

respectively for 24 h prior to estimation of colony forming units (cfu). All the plates were 

counted and then divided by 3 to get an average for each system. These averages were then 

multiplied by their dilution factor to get the correct microbial count estimation (Mambo et al., 

2014). 

2.3.3 Statistical analysis 

Composite samples were taken as mentioned in the beginning of section 2.3 above. Where 

triplicate samples were taken as mentioned in section 2.3.1. All statistical analyses were 

computed using Microsoft Excel 2010. All measurements are the mean ± the standard 

deviation. Since all the measurements were in triplicate, all 3 data points were used to 

determine the mean and standard deviation. The standard error bars on the graphs (Chapter 3) 

were derived using the standard deviation calculations (Microsoft Excel 2010), for all the 

measurements (with the exception of faecal and total coliform counts). 

A one-tailed distribution t-test was used to analyse two- sample unequal variances 

(heteroscedastic) on Microsoft Excel 2010, to determine the level of significance between the 

IAPS and the TTU systems. Analyses of variance (ANOVA) were also conducted using 

Microsoft Excel 2010 to test the differences between all the data sets.  
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CHAPTER 3 

Effect of tertiary treatment units on water quality from an IAPS treating municipal 

sewage 

3.1 Introduction 

In this chapter, the effect of tertiary treatment on final water quality of the effluent from an 

Integrated Algae Pond System (IAPS) treating municipal sewage is investigated. Most 

wastewater treatment systems (WWTS) have as a component part of the process a tertiary 

treatment step and in South Africa; this typically includes maturation ponds in series (MP‟s). 

The most common form of municipal sewage treatment in South Africa is WSP‟s followed 

by polishing in maturation ponds. Indeed, almost 50% of all WWTS in South Africa are WSP 

systems and for the most part these treat volumes < 1 ML per day and are rural. In many 

instances these systems are dysfunctional due to overloading, poor maintenance or simply 

through neglect. One possibility that has emerged recently is the upgrading of these WWTS 

by implementation of IAPS technology. Unfortunately, IAPS technology in South Africa is 

perceived as being unsuitable due to the apparent inability of this process to produce a final 

effluent of sufficient quality for discharge to the environment (Rose et al., 2007). The Water 

Act (Republic of South Africa, Water Act 1998) requires that WWTS discharge effluent to 

water resource that are not listed water resources according to the following specification: 

ammonia nitrogen ≤ 3 mg. L
-1

; ortho-phosphate ≤ 10 mg. L
-1

; nitrate/nitrite nitrogen ≤ 15 mg. 

L
-1

; COD ≤ 75 mg. L
-1

 (after removal of algae); pH 5.5-9.5; faecal coliforms (per 100 mL) ≤ 

1 000 and electrical conductivity 70-150 mS.m
-1

. Following commissioning of a pilot IAPS 

system at the Belmont Valley WWTW, Grahamstown and after operation of the components 

to test the suitability of IAPS under South African conditions the following was concluded:  

 The system did not achieve the 75 mg. L
-1

 discharge standard for CODt, 

 Although a reduction in phosphate was observed, it was not within the 10 mg. L
-1

 

required for discharge, 

 Residual ammonia levels exceeded the 3 mg. L
-1

 discharge standard, 

 Nitrate removal was at best erratic and at times, nitrate concentration increased (Rose 

et al., 2007). 
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These findings are in contrast to many published studies on the operational efficiency of 

IAPS for treatment of municipal sewage including systems located in Kuwait (Esen et al., 

1987; Banat et al., 1990; Al-Shayji et al., 1994), the U.S.A. (Lundquist et al., 2010) and New 

Zealand (Park and Craggs 2010; 2011a;2011b). 

 

A detailed evaluation of IAPS as a technology and of the pilot system at Belmont Valley 

revealed that the latter was designed and commissioned as a system that would at best deliver 

secondary treated water (Mambo et al., 2014). Although intended as a demonstration unit, it 

was sized to provide credible performance data and is purportedly suitable for engineering 

scale-up requirements. Design rationale and calculations were provided by Prof William 

Oswald and Dr. Bailey Green consulting then as “Oswald Green”, and were used as the basis 

for the conceptual plan for construction of the pilot plant (Rose et al., 2002). The system was 

built to have the capacity to treat the liquid wastes of 500 person equivalents (P.E.) and an 

average water consumption and disposal per capita of approximately 150 L.d
-1

 was assumed. 

Accordingly, the design influent flow was calculated at 75 m
3
.d

-1
. With an ultimate 

Biochemical Oxygen Demand (BODult) assumed to be 80 g BODult P.E. per day, the organic 

loading to the system is 40 kg.d
-1

. Using an assumed conservative BOD loading to the 

HRAOP from the AFP, the depth in the two HRAOP‟s is maintained at 30 cm. The total 

volume of each pond is therefore 150 m
3
, with a surface area of 500 m

2
. Using adjustable 

overflow weirs the hydraulic loading and thus HRT, in the HRAOP‟s can be adjusted to equal 

or less than influent flow (up to a maximum of 75 m
3
.d

-1
 for this design specification) for 

experimental purposes, but is generally operated between 3 and 6 d. The algae floc is kept in 

suspension in the raceways of the HRAOP‟s by a paddlewheel which serves as a pump to 

maintain a linear velocity of 30 cm.s
-1

. 

 

As shown in Table 3.1, the Belmont Valley WWTW pilot IAPS when operated in a fully 

managed mode and without any tertiary treatment, routinely yields treated water close to the 

standard for discharge to a water course that is not a listed water course according to the 

General Authorisations in terms of Section 39 of the national water act (Republic of South 

Africa, Water Act 1998). Efficiency of the system is largely due to COD reduction and 

nutrient abstraction in the HRAOPs which is inextricably linked to algae productivity. 
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Table 3.1: Water quality parameters for discharge into the environment as specified by 

department of water affairs (Republic of South Africa, Water Act 1998). 

  

 

 

 

 

 

A
Following removal of algae 

Even so, this pilot plant affords a secondarily treated water for reclamation according to its 

design specifications which most closely resemble those of the AIWPS
®
 Advanced 

Secondary Process developed by Oswald. As a consequence, and as might be expected, while 

the technology performs well and delivers a final effluent superior to most pond systems 

deployed in South Africa it remains unable to meet The Department of Water Affairs (DWA) 

General Standard for nutrient removal and effluent discharge. Thus, it is foreseen that the 

addition of an appropriate tertiary treatment unit with the capability to remove nutrients, 

residual organics and pathogens will provide the necessary effluent polishing to ensure that 

this technology is compliant. In the present study, several tertiary treatment units were 

investigated to determine whether these would enhance water quality of the IAPS effluent 

and meet the General Authorization limits in terms of both TSS and COD for discharge to a 

water resource. 

3.2 Results 

One of the problems for the IAPS is not producing quality effluent for discharge into the 

environment. After due consideration of available technologies, time, cost of construction, 

implementation and suitability for use, MP‟s, SSF‟s and RF‟s were selected as the process 

units for tertiary treatment of the Belmont Valley IAPS final effluent. Thus, the purpose of 

this chapter is to compare the IAPS final effluent to the TTU‟s final effluent and determine if 

they are effective in further polishing the water from the IAPS final effluent. Parameters 

considered important for due diligence and measured routinely to enable evaluation included; 

chemical oxygen demand (COD), nitrate, ammonium, phosphate, total suspended solids 

PARAMETERS STANDARD 

Ammonia-N (mg. L
-1

) 3 

Phosphate (mg. L
-1

) 10 

Nitrate-N (mg. L
-1

) 15 

COD (mg. L
-1

)
A
 75 

pH 5.5 – 9.5 

Faecal Coliforms (cfu/100 mL) < 1000 

Total Suspended Solids (mg. L
-1

) 25 

Dissolved Oxygen (mg. L
-1

) >2 

Electrical Conductivity (mS.m
-1

) 70 - 150 
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(TSS), pH, faecal coliforms (FC), total bacteria count (TBC), electrical conductivity (EC) and 

dissolved oxygen (DO). 

3.2.1 Maturation Ponds as a tertiary treatment unit 

Maturation ponds are probably the most common form of tertiary treatment in the wastewater 

treatment process. As shown in Figure 3.1, a MP‟s reduced the concentration of ammonium-

N, phosphate-P and nitrate-N in the final effluent during the course of the sampling period. 

The ammonium-N data for the MP final effluent was averaged at 1.08 ± 1.2 which represents 

a 68% removal rate (Fig. 3.1 A). Furthermore, water quality of the final effluent showed that 

using a MP series as a tertiary treatment resulted in a 17% reduction of phosphorus (6.97 ± 

5.4) (Fig 3.1 B). Therefore there was no significant difference between the IAPS and the MP 

(t-test: p= 0.1). (Appendix A) (r
2
= 0.8; v= 29.02; p= 8.06E-10). Nitrate-N level in the final 

effluent revealed that the MP‟s had reduced levels of this nutrient by 40 % (Fig 3.1 C). Thus, 

nitrate-N levels were generally lower than the statutory limit (4.50 ± 3.0) required for 

discharge to a water course. 

 

Figure 3.1: Comparison of the nutrient content and composition of treated water 

between the maturation pond and the IAPS at the point of discharge. A) Ammonium-N, 

B) Phosphate-P, and C) Nitrate-N concentrations in composite samples harvested 
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weekly over a 24 h period for 10 months were determined using testing kits as described 

in the Chapter 2. Data presented are the average of triplicate measurements. 

Chemical oxygen demand removal (CODfiltered), after the removal of algae had a 17% 

removal rate from the IAPS final effluent (Fig 3.2 A). Although COD reduction was 

significant, the levels still fluctuated (78.25 ± 22.7). Total suspended solids were routinely 

out of range and well above the required limit of 25 mg.L
-1

 (45.40 ± 31.5) (Fig 3.2 B). 

However the MP‟s final effluent did have a significant decrease in TSS levels compared to 

the IAPS final effluent (61.48 ± 37.7). Total suspended solids also seemed to increase over 

time, especially from week 16 to week 43. 

 

Figure 3.2: Comparison of the chemical oxygen demand and total suspended solids 

between the maturation pond and IAPS at the point of discharge. A) Chemical oxygen 

demand (CODfiltered), B) Total suspended solids were determined from composite 

samples taken weekly over a 24 h for 10 months. Data presented are the average of 

triplicate measurements. 

Results show that the pH of the MP effluent was routinely above 9.5 and was therefore not 

within DWA‟s statutory limit, especially during the initial testing period (week 5-18) (Fig 3.3 

A). The mean pH was out of range (9.55 ± 0.8), however there was still significance within 
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the results and therefore the null hypothesis was rejected. From week 27 to week 43, the pH 

levels of the MP final effluent declined to within the limited range. The effluent from the 

MP‟s had high DO levels (11.7 ± 4.6 mg. L
-1

) (Fig 3.3 B) and dissolved oxygen in this water 

was significantly higher than that of the IAPS effluent. Regression analyses of data using a 1 

way ANOVA revealed that the variance was minimal (r
2
= 0.07; v= 20.74; p= 1.95E-12) 

(Appendix A). Electrical Conductivity for the MP was 117 ± 4.8 (Fig 3.3 C). Data had 

showed that there was no significance between the MP and the IAPS values (t-test: p= 0.2) 

and therefore the null hypothesis was not rejected.  

 

Figure 3.3: Comparison of the physiochemical characteristics of treated water between 

the maturation pond and the IAPS at point of discharge. A) pH, B) Dissolved oxygen 

(DO) and C) electrical conductivity (EC) were determined for composite samples 

collected weekly for 24 h over a period of 10 months. Data presented are the average of 

triplicate measurements. 

In this study, use of a maturation pond series as tertiary treatment resulted in a 92% removal 

of FC (Fig 3.4 A). From week 19, the FC count showed a good level of consistency (<1000). 

The regression analyses indicated less variance among the data points (r
2
= 0.1; v= 2497519; 

p= 0.003). Total coliform count in the final effluent after passage through a MP‟s showed a 
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94% reduction, which was significant (Fig 3.4 B).  A one way ANOVA test showed the data 

to have very little variance (r
2
= 0.02; v= 80558712; p= 0.02). 

 

Figure 3.4: Comparison of the different coliform counts between the maturation pond 

and IAPS at the point of discharge. A) faecal coliforms (FC), B) total coliforms (TC). 

Composite samples were analysed weekly over a 24 h period. The FC was sampled over 

a period of 9 months while the TC was sampled over 10 months. Data presented are the 

average of triplicate measurements. 

3.2.2 Slow sand filtration as a tertiary treatment unit 

Slow sand filters as a tertiary unit is an efficient method for the treatment wastewater. It is 

shown in Figure 3.5 that the ammonium-N, phosphate-P and nitrate-N concentration levels 

were reduced in the SSF‟s final effluent. The SSF had a 40% removal of ammonium-N with 

an average of 2.02 ± 1.3 (Fig 3.5 A). Regression analyses using a 1 way ANOVA revealed 

that the data showed minimal variance (r
2
= 0.1; v= 1.64; p= 8.06E-14). Phosphate levels of 

the SSF‟s final effluent had an average of 2.57 ± 2.5 which represents a 70% removal rate 

(Fig 3.5 B). Furthermore, the final effluent from the SSF had 9% removal rate of nitrate-N 
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(6.80 ± 5.5) (Fig 3.5 C). Therefore, the data between the SSF and IAPS was not significant (t-

test: p= 0.3). 

 

Figure 3.5: Comparison of nutrient content and composition of treated water between 

the slow sand filters and the IAPS at the point of discharge. A) Ammonium-N, B) 

Phosphate, and C) Nitrate-N concentrations in composite samples harvested weekly 

over a 24 h period for 10 months were determined using testing kits as described in the 

Chapter 2. Data presented are the average of triplicate measurements. 

Chemical oxygen demand (CODfiltered) concentrations from the SSF were generally lower 

than the statutory limit (58.67 ± 13.0) and therefore had a 38% removal rate (Fig 3.6 A). The 

CODfiltered data values were significant and also had less variance according to the ANOVA 

statistical analyses (r
2
= 0.04; v= 173.98; p= 3.11E-12). However, the TSS levels in the SSF 

were above the required limit of 25 mg.L
-1

 (44.17 ± 34.8) (Fig 3.6 B). But, although the TSS 

were generally higher than the statutory limit, there still was a significant decrease in TSS 

levels compared to the IAPS final effluent (t-test: p= 0.03). 
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Figure 3.6: Comparison of the chemical oxygen demand and total suspended solids 

between the slow sand filters and IAPS at the point of discharge. A) chemical oxygen 

demand (CODfiltered), B) total suspended solids were determined from composite 

samples taken weekly over a 24 h for 10 months. Data presented are the average of 

triplicate measurements. 

The pH levels of the SSF final effluent were constantly within DWA‟s statutory limit (8.29 ± 

0.7) (Fig 3.7 A). Regression analyses indicated minimal variance among the data points (r
2
= 

0.02; v= 0.48; p= 2.77E-07). Dissolved oxygen levels in the SSF final effluent were low 

compared to the IAPS and the other TTU systems but still within the required limit (6.07 ± 

2.5) (Fig 3.7 B). There was also minimal variance between the SSF and IAPS according to 

ANOVA statistical analyses (r
2
= 0.1; v= 6.26; p= 1.95E-12). The SSF had electrical 

conductivity levels that were routinely within the required limits (118 ± 11.8) (Fig 3.7 C). 

Data revealed no significant difference between the IAPS and SSF data, therefore, the null 

hypothesis was not rejected (t-test: p= 0.27). 
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Figure 3.7: Comparison of physiochemical characteristics of treated water between the 

slow sand filters and IAPS at point of discharge. A) pH, B) Dissolved oxygen (DO) and 

C) electrical conductivity (EC) were determined for composite samples collected weekly 

for 24 h over a period of 10 months. Data presented are the average of triplicate 

measurements. 

The SSF‟s final effluent had a 66% removal rate of FC (Fig 3.8 A). Faecal coliform counts 

were initially very high (weeks 10-13), but then gradually decreased. From week 19-43, the 

FC count showed a good level of consistency (<1000). The FC data points between the IAPS 

and the SSF were significant (t-test: p= 0.04). Total coliforms in the SSF were reduced by 

61% from the IAPS final effluent (Fig 3.8 B). The TC counts seemed to elevate during the 

initial testing stages (weeks 6-9), but then gradually decreased. There was no significant 

difference between the IAPS and SSF (t-test: p= 0.08). The regression analyses also indicated 

less variance among the data points (r
2
= 0.09; v= 7.45E09; p= 0.02). 
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Figure 3.8: Comparison of the different coliform counts between the slow sand filters 

and the IAPS at the point of discharge. A) faecal coliforms (FC), B) total coliforms (TC). 

Composite samples were analysed weekly over a 24 h period. The FC was sampled over 

a period of 9 months while the TC was sampled over 10 months. Data presented are the 

average of triplicate measurements. 

3.2.3 Rock filtration as a tertiary treatment unit 

The rock filtration system in series proved to be a successful tertiary treatment with regard to 

nutrient and pathogen removal. Ammonium-N, phosphate-P and nitrate-N concentrations 

were reduced significantly in the RF‟s final effluent. The use of a rock filter system resulted 

in the ammonium-N levels having a 90% removal rate from the IAPS final effluent (0.32 ± 

0.3) (Fig 3.9 A).  Data using a 1 way ANOVA revealed that the variance was minimal 

(Appendix A) (r
2
= 0.1; v= 0.07; p= 8.06E-14). Results show that the rock filters were 

effective in reducing phosphate-P levels (Fig 3.9 B). The phosphate-P data for the RF was 

averaged at (1.75 ± 1.4) which represents a 79% removal rate from the IAPS final effluent. 

However, with regard to the 1 way ANOVA test, the variance was large (r
2
= 0.8; v= 1.99; p= 

8.06E-10). Furthermore, the nitrate-N levels were within the limited range (6.59 ± 4.6) (Fig 

3.9 C). Data from the regression analyses indicated a small variance (r
2
= 0.06; v= 20.98; p= 
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0.09). The RF‟s final effluent had a 12% reduction of nitrate-N and according to the t-test, 

there was no significance difference between the IAPS and RF (t-test: p= 0.3).  

 

Figure 3.9: Comparison of nutrient content and composition of treated water between 

the rock filters and IAPS at the point of discharge. A) Ammonium-N, B) Phosphate, and 

C) Nitrate-N concentrations in composite samples harvested weekly over a 24 h period 

for 10 months were determined using testing kits as described in the Chapter 2. Data 

presented are the average of triplicate measurements. 

The RF had a 33% removal rate of CODfiltered with an average of 63.19 ± 13.2 (Fig 3.10 A). 

According to the regression analyses of data using one way ANOVA test from February to 

November 2013, it revealed that the variance was minimal (r
2
= 0.0008; v= 171.73; p= 3.11E-

12). The TSS levels from the RF were routinely above the required limit of 25 mg.L
-1

 (Fig 

3.10 B). The RF had the highest TSS levels on average compared to the other TTU systems 

(61.0 ± 41.8). Minimal variance was obtained using the 1 way ANOVA test (r
2
= 0.002; v= 

1744.588; p= 0.13). The t-test also revealed that the data was not significant (t-test: p= 0.48). 
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Figure 3.10: Comparison of the chemical oxygen demand and total suspended solids 

between the rock filters and IAPS at the point of discharge. A) chemical oxygen demand 

(CODfiltered), B) total suspended solids were determined from composite samples taken 

weekly over a 24 h for 10 months. Data presented are the average of triplicate 

measurements. 

Results show that the pH of the RF was within the recommended range (Fig 3.11 A). The 

RF‟s had a mean value of 8.56 ± 0.7 mg. L
-1

 and therefore the data was not significant (t-test: 

p= 0.18). High DO levels were monitored in the RF systems final effluent (12.34 ± 1.8) (Fig 

3.11 B). Less variance within the data was attained through the 1 way ANOVA test (r
2
= 0.04; 

v= 3.16; p= 1.95E-12). The electrical conductivity (104 ± 11.5) from the RF was within the 

limits (70-150 mS.m
-1

) (Fig 3.11 C). Data between the IAPS and the RF were significant (t-

test: p= 3.01E-5). 
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Figure 3.11: Comparison of the physiochemical characteristics of treated water between 

the rock filters and IAPS at point of discharge. A) pH, B) Dissolved oxygen (DO) and C) 

electrical conductivity (EC) were determined for composite samples collected weekly for 

24 h over a period of 10 months. Data presented are the average of triplicate 

measurements. 

Faecal coliform count in the RF‟s final effluent showed a 98% reduction therefore making all 

the data significant (p=0.002) (Fig 3.12 A). From week 19-43, the RF‟s FC count showed a 

good consistency of being within the required limits (<1000). The RF had reduced the TC 

count by 97% from the IAPS final effluent (Fig 3.12 B). Regression analyses of data using a 

1 way ANOVA revealed that the variance was minimal (r
2
= 0.1; v= 9168897; p= 0.02). Data 

between the IAPS and the RF was also significant (t-test: p= 0.008). 
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Figure 3.12: Comparison of the different coliform counts between the rock filters and 

IAPS at the point of discharge. A) faecal coliforms (FC), B) total coliforms (TC). 

Composite samples were analysed weekly over a 24 h period. The FC was sampled over 

a period of 9 months while the TC was sampled over 10 months. Data presented are the 

average of triplicate measurements. 

Table 3.2 presents the mean values for all the data collected (IAPS, MP, SSF, RF) from 

February 2013 to November 2013. This data determines the quality of the final effluent from 

each system at the Belmont Valley WWTW and then compared to DWA (2010) General 

Authorization limits for discharge into the environment.  
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Table 3.2: Summary of the water quality of IAPS and the tertiary treatment units; 

Maturation Ponds (MP), Slow Sand Filtration (SSF) and Rock Filters (RF). DWA’s 

standard limit for discharge into the environment (DWA, 2010) is also shown. Data was 

collected on a weekly basis over the course of 10 months. 

 

3.3 Discussion 

In this chapter, the data reflect on how tertiary treatment systems have an effect on water 

quality after passage of domestic sewage through an IAPS designed and operated for the 

treatment of municipal wastewater. Several sources have suggested that the IAPS does not 

yield a final effluent that is acceptable for discharging into the environment (Rose et al., 

2007; Meiring and Oellermann, 1995). Tertiary treatment units, which included MP‟s, SSF‟s 

and RF‟s were incorporated into the IAPS design to determine the effect of these on the water 

quality of the effluent. Each system was designed and built accordingly to suit the required 

loading and flow rates. Once the systems were equilibrated (about four weeks), water 

samples were collected from a sampling point after each TTU, and prior to discharge, to 

determine water quality. Nutrient removal by the various TTU systems was shown to be 

effective in the present study and for the most part, the concentration of ammonium-N, 

nitrate-N, and phosphate-P were within the range permissible for discharge to a water course. 

By comparison, while some COD was removed by SSF and RF, none of the TTU‟s used was 

able to reduce TSS. 

3.3.1 Maturation Pond  

The MP showed a good level of ammonium-N reduction (68%) throughout the testing period 

(Fig 3.1 A). According to Pearson (2005), low organic loading and high pH in MP‟s 

Parameters 

DWA 

standard IAPS MP SSF RF 

Ammonium - N (mg. L
-1

) 3 3.34 ± 1.4 1.08 ± 1.2 2.02 ± 1.3 0.32 ± 0.3 

Phosphate (mg. L
-1

) 10 8.43 ± 4.2 6.97 ± 5.4 2.57 ± 2.5 1.75 ± 1.4 

Nitrate - N (mg. L
-1

) 15 7.50 ± 5.6 4.50 ± 3.0 6.80 ± 5.5 6.59 ± 4.6 

COD (mg. L
-1

) 75 94.76 ± 17.5 78.25 ± 22.7 58.67 ± 13.0 63.19 ±13.2 

pH  5.5- 9.5 8.78 ± 0.9 9.55 ± 0.8 8.29 ± 0.7 8.56 ± 0.7 

Faecal Coliforms (cfu per 100 ml) 1000 
    Total Coliforms (cfu per 100 ml) 

 
    Dissolved Oxygen (mg. L

-1
) >2 6.48 ± 3.5 11.7 ± 4.6 6.07 ± 2.5 12.34 ± 1.8 

Total Suspended Solids (mg. L
-1

) 25 61.48 ± 37.7 45.40 ± 31.5 44.17 ± 34.8 61.0 ± 41.8 

Electrical Conductivity (mS.m
-1

) 70 - 150 119 ± 11.6 117 ± 4.8 118 ± 11.8 104 ± 11.5 
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contribute to a high ammonia removal rates. Craggs (2005) illustrated that a MP added to a 

WSP can improve the removal rate of phosphorus. He also suggested that through algal 

biomass assimilation and the increase in pond pH, nutrient removal is improved and that 

phosphorus through precipitation is stimulated (Appendix B).  

Nitrate-N levels in the water emerging from the MP‟s were the lowest compared to the other 

tertiary treatment systems, with a 40% removal rate (Fig 3.1 C). MP‟s are known to 

decompose organic matter, where algae are present and therefore absorb the nitrogen and 

phosphorus as well as increase the pH levels (Camargo Valero et al., 2009; Shilton et al., 

2012). Camargo Valero et al. (2010) found that nitrification-denitrification as well as algal 

uptake of nitrogen were considered the 2 main functions for nitrogen removal in MP‟s.  

The MP‟s had a very low COD removal rate (17% reduction). El-Deeb Ghazy et al. (2008) 

also showed a weak removal of COD using a WSP system with MP‟s in series. They 

illustrated that poor pond design may be to blame e.g. one point entrances into the MP 

systems which causes poor mixing and circulation with the pond microorganisms. Algae can 

increase the COD of the water due to excretion of small organic molecules produced by 

photosynthesis and general metabolism (Wang et al., 2010). However the MP‟s did have an 

effect on COD removal. Since the MP‟s are an open system, the wastewater is exposed to 

direct sunlight. MP‟s use UV radiation as a natural disinfectant and a study has shown that 

UV radiation has the ability to reduce the COD concentration of industrial wastewater to 60 – 

70 % (Craggs, 2005; Chen et al., 1997). MP‟s are known to develop large algal blooms (Van 

Vuuren, Van Duuren, 1965), which determines why the COD levels increased in the MP. It 

also illustrates why the MP‟s TSS count was above DWA‟s statutory limit, with only a 26% 

removal rate from the IAPS final effluent (45.40 ± 31.5) (Fig 3.2 B). 

The MP‟s pH is high during the summer months and then gradually decreases as the winter 

months approach (Fig 3.3 A). Like the IAPS systems, the MP is an open system and therefore 

exposed to the environmental variables e.g. direct sunlight. According to Pearson (2003), FC 

depletion and pH are higher in MP‟s than facultative ponds.  

Maturation ponds have high DO levels compared to the other TTU effluents due to the high 

rate of photosynthesis from the algae (Fig 3.3 B). The less turbid the MP, the more sunlight 

penetration therefore the deeper the photosynthetic activity can extend down into the MP, 

thus providing more oxygen throughout the pond (Pearson, 2005). Electrical conductivity 

levels were low for environmental discharge (70-150 mS.m
-1

) in the MP, indicating that there 
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are minimal total dissolved solids (TDS) i.e. salt in the water (Fig 3.3 C) (McCleskey et al., 

2012). 

The MP‟s main objective is for the removal of pathogens (Egwuonwu et al., 2014). The MP‟s 

FC and TC counts have been reduced by 92% and 94% respectively from the final effluent of 

the IAPS and therefore met DWA‟s standards for environmental discharge (Fig 3.4 A & B). 

A series of a few MP‟s rather than a large individual MP with a long retention time (12 d) 

and of shallow depth (1-3 m) is the better solution for pathogen removal (von Sperling, 2007; 

Mara, 2005). 

3.3.2 Slow Sand Filtration 

Ammonia-N levels in water from the SSF were low compared to the effluent from the IAPS 

(40% reduction) (Fig 3.5 A). This may be caused by the schmutzdecke layer which is capable 

of oxidizing ammoniacal nitrogen into nitrates (Hiremath, 2011). Substantial phosphate 

removal was achieved by the SSF (70%) and this is mainly caused by temperature, redox 

potential, soil moisture tension (reduces phosphate diffusion) and pH (Fig 3.5 B) (Tofflemire, 

Chen, 1977). The nitrate-N had a 9% removal rate in the SSF (Fig 3.5 C). According to Aslan 

(2008), SSF‟s have the capability of removing nitrate-N. He found that the SSF decreased 

nitrate-N levels from 22.6 mg. L
-1

 to below the detection limit.  Although removal of nitrates 

did occur, very little was removed throughout the 10 month trial compared to the other 

TTU‟s. A reason for this may be due to the sand (river sand) still containing absorbed 

fertilizer from agricultural runoff, which leads to an increase of nitrate concentrations 

(Gormly and Spalding, 1979). The increase in nitrate – N levels also corresponds to the 

increase in TSS (Fig 3.6 B) (weeks 22-32). Nutrients such as nitrate-N are known to cause 

proliferation of large quantities of algae (Fried et al., 2003). But this contradicts the 

perception that SSF‟s are known to decrease total suspend solids by 70-90% (Ellis, 1987; 

Langenbach et al., 2009; Tyagi et al., 2009). 

The CODfiltered levels were reduced by SSF by 38% and this is because of its physical and 

biological processes (Fig 3.6 A). The COD adheres to the tightly spaced sand particles (1-2 

mm) when wastewater is filtered through allowing the organic compound to be trapped 

(Lwesya and Li, 2010). The schmutzdecke also plays a vital role in absorbing pollutant 

causing substances such as COD (Xiangsheng et al., 2010). It is known as a surface 

biological mat which consists of algae, bacteria, protozoa, rotifera as well as other 
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microorganisms. The schmutzdecke has the ability to breakdown organic compounds in the 

wastewater and disallow these compounds from entering further into the filter bed. It has 

been reported that 75-80% of COD is removed in the first 25-30 cm of sand, which illustrates 

the fundamental impact of the schmutzdecke on nutrient removal (Lwesya and Li, 2010; 

McNair et al., 1987). There was a 28% reduction in TSS levels in the SSF (Fig 3.6 B). 

Processes such as “biological degradation” and “physical straining” are known to remove 

TSS and organic matter when wastewater is passed through the system (Middlebrooks et al., 

2005). However the TSS levels were still above DWA‟s discharge limit (44.17 ± 34.8). The 

SSF‟s particle size at EBRU may have tended to be too large (gravel= 15 – 22 mm; fine 

sand= 1-2 mm). To get an effective removal of algae (< 30 mg. L
-1

), an effective sand particle 

size should be at least 0.3 mm (Middlebrooks et al., 2005). Spellman (2008) also 

recommended a particle size of 0.25-0.35 mm for an SSF to be effective. 

The pH of water emerging from the SSF remained within the recommended limit due to 

biological activity and CO2 conversion which occurs within the filter (Fig 3.7 A). This then 

decreases the pH levels in the SSF (Rooklidge and Ketchum, 2002). The DO levels were the 

lowest in effluent from the SSF compared to the other TTU‟s but this may be due to the 

overgrowth of microorganisms found within the schmutzdecke which use DO for growth and 

produce a nitrifying environment, hence the high nitrate levels in the SSF (Fig 3.7 B) 

(Burlage, 2011). However, the DO levels still complied with the General Limit values 

because the SSF causes a DO gradient in the supernatant depth, when oxygen gets depleted. 

This allows oxygen to diffuse from the air into the water and therefore assists oxygen 

transportation to the biolayers, providing aerobic condition so that bacteria can survive 

(Collin, 2009).  Electrical conductivity levels were within range and therefore complied with 

DWA‟s limits for environmental discharge (Fig 3.7 C). 

The SSF‟s schmutzdecke plays a vital with regard to removing parasite cysts and oocysts 

(Fox et al., 2011). However the SSF as a post-treatment to the IAPS only attributed a 66% 

reduction of FC and 61% reduction for TC which is significantly less than the other 2 post- 

treatment systems (Fig 3.8 A & B). But this is only because of the increased spikes in both 

the FC and TC which had an effect on the results. The sudden spikes may have been caused 

by the changing of the schmutzdecke (Appendix B), giving the biological layer minimal 

growth and therefore decreases pathogen removal. Schijven et al. (2013) found that, although 

SSF‟s can remove pathogenic microorganisms, they do however have complications in 

removal efficiency due to “variable operational condition” and “detection limits”. 
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3.3.3 Rock Filtration 

Water from the rock filters (RF) contained ammonium-N which was perpetually under 

DWA‟s recommended standard throughout the testing period (Fig 3.9 A). The RF had a 90% 

removal rate. Middlebrooks et al. (2005) found that RF‟s are generally known to be anoxic 

and therefore produces very little nitrification but due to this rock system being slightly 

aerated at times (due to the reasonably high DO levels) it provides a more significant 

reduction in ammonia-N (Crites et al., 2014). The RF‟s had the highest phosphorus removal 

rate (79%) in comparison to the MP and the SSF (Fig 3.9 B). Hamdan (2010) stated the RF as 

being an auspicious technology for wastewater treatment; however she found that phosphorus 

removal was very limited. This is a contradiction of the results obtained as the average 

measurement for the phosphate levels from the RF‟s was 1.75 mg. L
-1

 (Appendix B), which is 

notably low compared to DWA‟s recommended standard (10 mg. L
-1

). The nitrate-N levels, 

although in compliance throughout the testing period, only had a 12% removal of nitrates. 

This may be due to RF‟s having aerobic conditions, which allows nitrification to occur. The 

RF system had high levels of TSS (algae) and algae are also known to remove nitrates by 

using it for growth purposes (Fig 3.10 B) (Abdel-Raouf et al., 2012). 

The RF‟s can be seen as an effective technology with regard to COD reduction (33% 

removal) (Fig 3.10 A). Al-Sa‟ ed et al. (2011) did a design comparison using algae-rock-filter 

ponds (ARP‟s) and algae-based ponds (ABP‟s) in parallel and found that the ARP were more 

successful in removing organic matter (TSS, FC and COD) than the ABP‟s. The results of the 

RF‟s high TSS levels contradict the results found in other research, because RF‟s are 

constructed to remove algae (Liu, 2008). Middlebrooks et al. (2005) stated that RF‟s had 

been designed as a TTU system after an aerated facultative pond in Paeroa, New Zealand and 

had effectively removed large quantities of algal biomass. These RF‟s constantly removed 

TSS to < 25 mg. L
-1

 with averages of < 12 mg. L
-1

 even when the AFP TSS levels were > 100 

mg. L
-1

. According to Hamdan and Mara (2009), aeration is needed to improve TSS removal. 

Hamdan and Mara (2009) had found that aerated RF‟s had a better performance base than a 

subsurface horizontal-flow constructed WL. The possible malfunctioning of the IAPS, which 

prevented water flow into the TTU‟s, may have allowed the water to stagnate and therefore 

facilitated an increase in algae biomass. 

The pH levels of water from the RF remained fairly constant (Fig 3.11 A). This may have 

been due to the minimal amount of calcium carbonate (lime) in the gravel rock which is 

known to increase the pH to more alkaline conditions (Barrett et al., 2008). RF‟s can also be 
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regarded as constructed WL‟s, only without plant matter and WL‟s are known to lower pH 

levels, which is a possible reason why the levels are within range (Davies-Colley, 2005). Like 

the MP, the RF is an open system and therefore exposed to the atmospheric, explaining why 

DO levels increased at times (Fig 3.11 B). DO levels were only tested in the winter/spring 

months and the reasonably high DO levels may have been caused by the low temperatures 

(Appendix B). Electrical conductivity was within the General Limits but although within 

range, a good quality deionized water is between 0-70 mS.m
-1

 (Fig 3.11 C). What is seen 

from the results is that the EC levels are higher than this, which leads to alkalinity and 

salinity problems (DWAF, 1996; Gunduz et al., 2007). 

RF‟s are known to be a low cost operational system, which can be made from locally 

obtained materials, especially the rock media. These rocks have the capability to support 

formation of a biofilm layer on the media which capture pathogens (Davies-Colley, 2005). 

The RF system as a post-treatment to the IAPS showed excellent results for pathogen 

removal (Fig 3.12 A & B). Saidam et al. (1995) used RF‟s as a post-treatment to WSP‟s in 

Jordan and accomplished a FC removal of 94%, where the RF had a FC and TC of 98% and 

97% respectively. Middlebrooks et al. (2005) state that Williamson and Swanson (1978), had 

constructed the Veneta system which treats up to 1000 m
3
.d

-1
 and found that after 20 

operational years, it still produced an effluent of secondary standard for FC counts. 

3.4 Malfunction of the IAPS 

Malfunction of the IAPS was unfortunately a common occurrence during the testing period 

(Appendix B). The paddle wheels presented the most problems and were often stopped for 

long periods of time especially from weeks 18-37 to repair gears, motors and drive-shafts, 

where either one HRAOP functioned and not the other or vice versa. Due to malfunctioning 

problems, testing was postponed during weeks 34-41, so that the IAPS‟s 30 d retention time 

could be normalised throughout the configuration. Power outages also played a role in 

operation of the IAPS but these cuts may have only lasted for one or two days which would 

still be expected to have a significant effect on water treatment and effluent quality. 

The pump from the SB to the HRAOP B was not placed in the correct locality as it was 

supposed to from week 5 to week 16 (Fig 2.1 in Chapter 2). This could have impacted the 

results of the analysed water. The pump was placed in such a way, that the effluent from the 
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SB was not getting the full retention time (2-4 d) because the water had not done a full 

circulation around the HRAOP system. 

Changing of the SSF may have also altered the water quality of this TTU‟s final effluent. The 

SSF produces a biological layer on the surface of the filter called a schmutzdecke. This layer 

is able to treat the water by removing microbial organisms more accessibly. But due to the 

increased density of biological growth, the SSF tends to clog up over time, allowing no 

influent to filter through. Therefore the SSF needs to be constantly changed over time thus 

allowing new schmutzdecke to grow. This initially causes a problem since it does take a 

couple of days for the schmutzdecke to form and therefore eventually have a prominent effect 

on microbial reduction. 

3.5 Conclusion 

The post-treatment systems did have a significant effect with regard to the reduction or 

removal of certain components. On average, the post-treatment systems reduced the 

ammonium-N, phosphate-P, nitrate-N and COD levels in the IAPS final effluent (Table 3.2). 

Water quality of effluent from the three TTU‟s was within the limit of DWA‟s 

recommendations except for COD in water from the MP‟s. Only the SSF‟s and the RF‟s 

COD levels were within the statutory limit. The pH, electrical conductivity and dissolved 

oxygen were within the specified range for all the TTU‟s. However the faecal coliform, total 

coliform and total suspended solid levels were above the standard limit with the exception to 

the MP and RF faecal coliform count. 
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CHAPTER 4 

The IAPS footprint: in retrospect 

4.1 Introduction 

The Integrated Algae Pond System (IAPS) located at the Belmont Valley Wastewater 

Treatment Works is an experimental concept design. Not only was this IAPS built as a 

research facility but it was commissioned to demonstrate the various components of the 

system and to test these under South African conditions (Rose et al., 2002b).  Based on a 

flow rate of 75 m
3
.d

-1
 derived from 500  person equivalents (P.E.) it was reasoned that this 

would approximate the minimum size capable of delivering „credible performance data 

suitable for engineering scale-up requirements‟ (Rose et al., 2002b). 

The design specifications used for the pilot demonstration IAPS were based on a per capita 

water consumption of 150 L/d. This value is close to values reported for many developed 

countries. In Africa by comparison, it is more likely that individuals receive as little as 20 

L/d. The United Nations has indicated a minimum water requirement of 50 L/d to avoid 

diseases and to retain efficiency (Snell, 2014). Data for the Makana Local Municipality, 

home of the Belmont Valley WWTW, indicates an average local water use per person of 75 

L/d. Ignoring losses en route to the WWTW it is reasonable to suggest that the current IAPS 

design configuration might be sufficient to service 1000 P.E.  

Therefore this chapter will evaluate the overall impact and benefit of incorporating TTU‟s 

into the pilot demonstration IAPS designed to treat 75 m
3
.d

-1
 of municipal sewage (for 1000 

P.E.), illustrate and discuss the dimensions (size and volume) of each TTU, if 75 m
3
.d

-1
 were 

to flow through these systems and determine the impact that these may convey, in terms of 

their footprint. 

4.2 Results 

The current design of the IAPS at EBRU, Belmont Valley, Grahamstown, is for the treatment 

of wastewater equivalent to 1000 P.E. The design flow into the IAPS was calculated at 75 

m
3
.d

-1
 which enters a fermentation pit with a volume of 225 m

3
. Wastewater then flows to an 

AFP with a capacity of 1500 m
3
 and surface area of 840 m

2
. Thereafter wastewater enters the 
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first of two HRAP systems operating in series each with a volume of 150 m
3
 and a surface 

area of 500 m
2
. Algae floc (biomass) from each of the two HRAOPs is collected by passive 

settling in ASP‟s which contribute a total of 12 m
2
. The biomass is then dried using one of 

four drying beds which contributes a further 20 m
2
 to the footprint of the technology 

components. Thus, the 1000 P.E. IAPS commissioned at the Belmont Valley WWTW 

requires a land surface area of 1866 m
2
. Accounting for walkways and buffer zones between 

the various components of the IAPS a conservative estimate of the total land requirement is 

2 000 m
2
 or 0.2 ha per 1000 P.E. 

Maturation pond (MP) systems are relatively inexpensive to construct and maintain, require 

no electricity and are suitable to countries with a low income (Kumar and Goyal, 2009). 

However, long narrow ponds or multiple smaller ponds (MP system needs to be in a series of 

2 or more ponds to improve „operational flexibility‟) have a higher land/property cost 

compared to the other TTU‟s (SSF and RF) and therefore this TTU may have an economic 

disadvantage in that it requires more land, particularly when included in the design of an 

IAPS system (Fig 4.1) (Mara, 2005; Shilton and Sweeney, 2005). 

 

Figure 4.1: A) Maturation Ponds in series, designed by the Department of Hydraulics, 

Maritime and Environmental Engineering (DEHMA)© UPC, in Verdú - Lleida, Spain. 

B) Maturation Pond as a tertiary treatment unit in Korba, Tunisia. URL: 

http://athene.geo.univie.ac.at/pucher/gallery/view_album.php and URL: 

http://gemma.upc.edu/ 

 

http://athene.geo.univie.ac.at/pucher/gallery/view_album.php?set_albumName=album57
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According to Luüs (2001), increased urbanisation in South Africa has resulted in an increase 

in land prices which have risen substantially since 1994. For example, a couple of years ago, 

the prices in Johannesburg or Cape Town would range on average between R 10 000 and R 

20 000 per 1000 m
2
, and these have escalated to almost R 500 000 at present (Szymanowski, 

2006). Therefore building MP systems in or near urban areas where land prices are 

exceptionally high would clearly increase the cost of implementing an IAPS for municipal 

sewage treatment. The simplicity of the system suggests that construction costs would not be 

excessive but would still be more than the estimated costs of other TTU systems. Labour is 

usually the most expensive overhead cost in construction. Once the system is built, at least 

one operator is needed to oversee day-to-day operations and management. 

 

If the ponds require clay as a surface liner (prevent filtration through the soil), then it can be 

easily extracted from a local source. Even so, it is usual that all ponds associated with 

WWTW are plastic-lined to increase the longevity of the MP‟s and to protect ground water 

from contamination. Adding a plastic liner would cost approximately R 65.00/m
2
 (Makgae et 

al., 2013). PVC piping also contributes to the overall costs of the system and can range from 

R 100.00 and R 170.00 per 6 m of 110 mm piping (April 2014). 

The objective is to determine the area needed for a MP series comprising 3 ponds each with 

minimum of a 4 d retention time to accommodate a volume of 75 m
3
.d

-1
. A three series MP 

tertiary treatment process with minimum 12 d HRT would need to have capacity equivalent to 

12 × 75 m
3
 or 900 m

3
.Using the following equation: 

 

A = Q Ɵm1/D 

 

A= Area (m
2
) 

Q= Influent Flow (m
3
.d

-1
) 

Ɵm1= Retention time (d) 

D = Depth 

 

Q = 300 m
2
 (Mara, 2005) 

 

The area needed for an additional 2
nd

 and 3
rd

 MP with regard to a 4 d retention time would be 

exactly the same as the first MP - 300 m
2 

each. 
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Total area: 3 × 300 m
2
 = 900 m

2
 

According to Mara (2005), each MP in the series should have a length- breadth ratio of 

approximately 10 to 1 to better improve the plug flow condition within the systems (Brissaud 

et al., 1998); therefore dimensions for the maturation pond should be ± 60 m × 5 m. 

 

The MP as a post treatment system to the IAPS can be classified as having a fairly large 

footprint. If one conjoins the areas needed for the IAPS and all the MP‟s in series, the total 

surface area needed is 2900 m
2
 or 0.3 ha per 1000 P.E. which represents an increase in 

footprint of 45%. 

 

The slow sand filter (SSF), due to its operation and design simplicity, makes it an appropriate 

and most affordable technology for use as a TTU system. Most commercial SSF‟s are 

rectangular in shape and usually built with concrete or masonry materials to increase the 

longevity of the system (Fig 4.2) (Huisman and Wood 1974; Scholz, 2006). Using concrete 

makes the system robust and long lasting. Common materials used are concrete for the floor 

and brick, stone or mass concrete for the walls. Puddled clay can be used as a waterproof 

layer. Sloping walls, for an SSF, can be applied as a design concept if the capital cost for 

building materials is limited; however this design requires a larger area footprint (Huisman 

and Wood 1974).  

One of the major operational costs is to require personnel to clean the system, where cleaning 

is done on a regular basis. Collins (1999) suggested that a 30 d filter run was optional, and 

cleaning of the filter should then occur. The cleaning is either done by scraping the top 

surface of the SSF (schmutzdecke) to prevent clogging of the system or the use of BIDIM
®
 as 

an extra layer between and on top of the system. For easier cleaning purposes, materials like 

BIDIM
®
 are recommended. This allows the personnel to remove the top BIDIM

®
 layer, allow 

the algae to dry and then remove via shaking or scraping. The filter systems should also be 

covered on top to prevent leaf debris and insects from entering the system (Huisman and 

Wood, 1974). When integrating an SSF system with an IAPS, the SSF is required to be on a 

lower ground level than the IAPS to achieve successful passive flow under gravity. Therefore 

it is suggested to build an SSF system below ground level in order for the system to retain 

heat, allow easy access to the top of the SSF and provide support for the vertical walls 
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(Huisman and Wood, 1974). 

 

In order to accommodate a flow rate of 75 m
3
.d

-1
, the construction of  a SSF with a  loading 

rate of between 0.1 and 0.32 m/h, as recommended  by Tyagi et al. (2009), or  the  calculated  

0.38 m/h (Chapter 2, Section 2.2.3) equation proposed by McDowall (2008) was used to 

determine the surface are required.  

 

A = Q/ HLR 

 

A = Area (m
2
) 

Q = flow rate (m
3
.d

-1
)  

HLR (hydraulic loading rate) (m/h) 

 

A = 75/ 0.38 

A = ± 200 m
2
 per SSF 

Total area: 2 × 200 m
2
 = 400 m

2
 

The dimensions of the SSF are usually rectangular in shape with a 2:1 length: breadth ratio. 

Therefore the following was calculated: 

A = L × B 

Therefore: 200 m
2
 = 2: 1 length: breadth ratio 

                   200 m
2
 = 20 m length: 10 m breadth ratio 

                   20 m length: 10 m breadth 

Volume water = L × B × H 

                       = (20) (10) (0.8) 

                       = 160 m
3 

                       = (2) (160) 

                       = 320 m
3
 (Both SSF’s combined)        

 

Volume fine sand = L × B × H 
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                             = (20) (10) (0.5) 

                             = 100 m
3 

                             = (2) (100) 

                             = 200 m
3
 (Both SSF’s combined) 

 

Volume gravel = L × B × H 

                        = (20) (10) (0.2) 

                        = 40 m
3 

                        = (2) (40) 

                        = 80 m
3
 (Both SSF’s combined) 

 

Figure 4.2: Commercial-scale slow sand filters: A) Multiple slow sand filters in 

Portsmouth, Hampshire, England in 1927. Source: Portsmouth Water (n.y.); B) Recent 

slow sand filters for a local community at the Nyabwishongwezi Water Treatment Plant, 

Umatara, Rwanda. Source: Thames Water, University of Surrey (2005). URL: 

http://www.sswm.info and URL: http://www.portsmouthwater.co.uk/ 

Therefore according to the results from the equation, the SFF systems need 200 m
2
 of surface 

area each. But if added as a TTU system for the IAPS, then a combined surface area from the 

IAPS (2000 m
2
) and both SSF‟s (400 m

2
) will net to 2400 m

2
 or 0.24 ha per 1000 P.E. which 

represents an increase in footprint of 20%.   

 

Rock Filters (RF) are popular polishing systems and used globally because they are cheap, 

have no operational complexities and can be easily constructed from local materials (Fig 4.3) 
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(Davies-Colley, 2005). However land area costs depend on how many RF‟s are needed in 

series. To build a single RF system requires less land than the other two polishing systems, 

but if built in series (3 or more), more area would be required, thereby increasing the 

footprint of the RF. 

 

One of the biggest advantages of the RF is the relatively low construction costs needed 

compared to other systems but this is also determined entirely on how many RF‟s need to be 

built in series (Middlebrooks et al., 2005). There are more RF systems in series, compared to 

the SSF, therefore the construction/building costs are higher priced (Appendix B). 

Construction costs will primarily include personnel to design and build the system, 

construction materials as well as the mechanical equipment. The rocks needed for the system 

can be used from a local supply, where the cost would be set around R 800/ton.  

 

Figure 4.3: A) Large-scale indoor rock filtration unit for the treatment of wastewater, 

City of Yakima, Washington, USA. B) Static trickling filter with wastewater being 

dispersed over volcanic rock media, using gravity flow in the Republic of Guatemala. 

URL: http://www.yakimawa.gov/ and URL: http://www.cep.unep.org  

 

The RF requires little maintenance if the hydraulic loading rate is minimal. Infrequent 

clogging does occur, but it usually happens in the “first third of the RF”. If the RF‟s did 

present a problem with solids accumulation, then the filter could quite easily be lifted and 

washed. That is the reason why a system like the RF should include at least two personnel. A 

RF system in Waiuku, New Zealand was successful in removing large quantities of algae did 

not have any clogging problems in their 12 year existence (Middlebrooks et al., 2005). 
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The RF system needs to be constructed in a series to increase the retention time for pathogen 

removal. Therefore a common series of three with a carrying capacity of 75 m
3
.d

-1
 is  to be 

designed. Using the formulae from chapter 2 and substituting for a 75 m
3
 volume of 

wastewater we arrive at the following: 

 

A = Q/ HLR 

 

A = Area 

Q = flow rate (m
3
.d

-1
)  

HLR (hydraulic loading rate) (m/h) 

 

A = 75/ 0.5 

A = 150 m
2
 per RF 

 

Therefore the area for all 3 RF‟s together in series is (150) × (3) = 450 m
2
  

Rectangular dimensions are used (most of the commercial RF‟s are rectangular) to calculate 

the amount of materials needed to build the system: 

A = L × B 

Therefore: 150 m
2
 = 1.5: 1 length: breadth ratio 

                   150 m
2
 = 15 m length: 10 m breadth ratio 

                   15 m length: 10 m breadth 

Volume water = L × B × H 

                       = (15) (10) (0.1) 

                       = 15 m
3 

                       = (3) (15) 

                       = 45 m
3
  (All RF’s combined)         

 

Volume gravel = L × B × H 

                        = (15) (10) (0.8) 

                        = 120 m
3 
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                        = (3) (120) 

                        = 360 m
3
 (All RF’s combined) 

From the results obtained the RF needs 450 m
2
 of surface area, with the addition of the IAPS 

surface area of 2000 m
2
, the surface area required is 2450 m

2
 or 0.245 ha per 1000 P.E. from 

both systems, an increase in footprint of 22.5%.  

4.3 Discussion 

There is a need to establish an appropriate tertiary treatment unit (TTU) for implementation 

with IAPS as a commercial technology and which compliments the low cost, environmental 

aspect of this wastewater treatment system. 

The integrated algal pond system (IAPS) at the Belmont Valley WWTW was designed to 

receive 75 m
3
.d

-1
 of wastewater from the Makana Wastewater Municipal Plant. Initially, a 

MP series, SSF‟s  and RF‟s as TTU‟s for the IAPS were designed, and based on flow and 

loading rates, constructed to receive the required volume of effluent for polishing. However 

in order for this system to be of commercial use, the TTU systems need to treat an effluent 

flow rate equivalent to that of the IAPS, hence 75 m
3
.d

-1
, thereby increasing the footprint. 

The MP as a TTU system was efficient in terms of nutrient and pathogen removal, however it 

still was not as efficient as the SSF and RF systems (Table 4.1). More land area is also needed 

for an MP in series, which implicates higher cost for construction as well as increasing the 

footprint. Material costs were also calculated to be a lot higher than the other systems. 

Although these factors are inconvenient, labour cost would be the least as the MP‟s require 

very few personnel due to the low maintenance requirements (Appendix B).  

 

Slow sand filtration is one of the more feasible option for wastewater treatment due to its low 

cost of installation, material costs and it capability to adapt to a broad variety of production 

systems (Garibaldi et al., 2003; Slezak and Sims, 1984).  

 

The SSF requires an area footprint of 2400 m
2
, which is less than an MP (2900 m

2
) and RF 

(2450 m
2
) (Table 4.1). However, the area required is dependent on how many SSF‟s are 

needed in series. In this case, only two SSF‟s were needed, which is why land and material 

costs for the SSF were slightly less compared to the RF, which had three in series. If the SSF 

had added an extra unit, equivalent to the RF, land requirements and cost would be more than 
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the RF‟s. 

 

Slow sand filter systems entail minimal operating attention and therefore 

operational/maintenance costs are considered low and a few personnel (± 3 personnel) are 

needed. But, this system does require more personnel than the other TTU systems because of 

the maintenance requirements (clogging, cleaning etc.) (Appendix B) (Slezak and Sims, 

1984; Spellman, 2008).  

 

In terms of nutrient and pathogen removal, the SSF was more efficient than the MP but not as 

efficient as the RF. (Table 4.1). In the end, pathogen and nutrient removal play and important 

role for determining which TTU to construct and even though, the RF was more expensive 

than the SSF, it still produced a better quality effluent and therefore was a recommended 

choice (Appendix B). 

 

Rock filtration is the most recommended option in comparison to the MP and SSF. In 

contrast to the MP, the RF requires less material and land costs but more operational cost due 

to cleaning of the system. Johnson et al. (2007) studied a range of polishing technologies for 

MP effluent and found that RF‟s had a “dramatic” cost advantage. Davies-Colley (2005) also 

mentioned that various kinds of filtering systems which include RF‟s are the “least expensive 

polishing option” and provide a smaller footprint in comparison to MP‟s. 

 

The land area needed for the RF is marginally more (2450 m
2
) than that of the SSF (2400 m

2
) 

but this is due to 3 unit system in series, whereby the SSF only has 2 units (Table 4.1). In 

comparison to the RSF, the RF has similar characteristics (larger grain sizes and more porous 

space), and therefore a single system does require less land in general compared to a single 

SSF system because the filtration rate is so much higher (Logsdon and Ratzki, 2007). 

Halling-Sørensen (1993) suggested that filtration in series increases the depth in which the 

wastewater is allowed to flow, hence, a longer and therefore a more efficient filtration rate. 

This explains why the RF had a better quality final effluent compared to the SSF (Table 4.1). 

Building the RF system would be less expensive (individually), due to its sheer simplicity 

compared to other systems. However, the material costs of the RF are still more than the SSF 

(quantity of RF‟s in series), but once the system has been built, it will rely on minimal 

maintenance, unlike the SSF (Appendix B).  
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Table 4.1: The design parameters of the TTU’s needed for the polishing the IAPS final 

effluent for discharge into the environment systems with an influent flow rate of 75 

m
3
.d

-1
. Percentage removal rate of nutrients and pathogens from the IAPS final effluent 

of each TTU system.  

 

 

 

 

 

 

 

 

 

 

 

4.4 Conclusion: 

Since the post-treatment systems (MP, SSF and RF) play a vital role as an extra polishing 

step, they do however need to have the capability to support the flow rate of the IAPS 

effluent, which is 75 m
3
.d

-1
 to support 1000 P.E.  

 

A total area footprint of the IAPS and a TTU system has resulted in the SSF having the 

smallest footprint (2400 m
2
), followed by the RF (2450 m

2
), then by the MP (2900 m

2
). 

Constructing an MP is the most expensive due to it being the largest system and therefore 

needing a larger area to build and this will also contribute to its high construction costs. Yet 

once in operation, very little labour maintenance (the least out of all three systems) or 

electricity is needed. The SSF would require the least footprint compared to the other TTU 

systems but would require more maintenance, compared to the other TTU systems, due to 

constant cleaning of the system. Material costs for the SSF were also the least compared to 

the other systems. The RF would require a higher material and land cost compared to the SSF 

but this is all dependent on how many units are needed and the RF system has more units 

than that of the SSF. However, once the system is functioning, the maintenance costs are 

PARAMETERS MP SSF RF 

IAPS 2000 2000 2000 

Flow Rate (m
3
/day) 75 75 75 

No of units 4 3 4 

Area needed (combined units) (m
2
) 900 400 450 

Total area footprint (IAPS included) (m
2
) 2900 2400 2450 

Nutrient removal efficiency (%) 
   Ammonium-N 68 40 90 

Phosphate 17 70 79 

Nitrate-N 40 9 12 

COD 17 38 33 

Total suspended solids 26 28 0.8 

Pathogen removal efficiency (%) 
   Faecal coliforms 92 66 98 

Total coliforms 94 61 97 
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lower than the SSF.  

 

In terms of nutrient and pathogen removal efficiency in a final effluent, the MP produced a 

final effluent of good quality, however it still did not measure the standards that the other 

TTU‟s produced and therefore not recommended as a TTU for choice. The SSF produced an 

effluent of good quality but on average the water quality was not as sufficient as what the RF 

produced. The RF is the most promising, where all parameters were in compliance with 

DWA‟s specific discharge standards with the exception of the TSS levels.  

To conclude, the RF is the most suitable for commercial use due to having a small footprint, 

reasonably low construction costs and less maintenance required.  
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CHAPTER 5 

General Discussion and Conclusion 

5.1 Discussion 

In South Africa, industrial and sewage pollution pose a major risk to human and 

environmental health due to the high concentration of toxic organic and inorganic molecules 

as well as waterborne pathogens. With the majority (80%) of South Africa‟s wastewater 

treatment systems not performing according to specification, more “environmentally 

friendly”, “easy to deploy”, low maintenance and robust wastewater treatment systems are 

required. 

 

Integrated Algae Pond Systems (IAPS) are a derivation of the Oswald designed Algal 

Integrated Wastewater Pond Systems (AIWPS
®
) and combine the use of anaerobic and 

aerobic bio-processes to effect wastewater treatment. IAPS technology was introduced to 

South Africa in 1996 and a pilot plant was designed and commissioned at the Belmont Valley 

WWTW in Grahamstown. The system has been in continual use since being implemented 

and reclaims secondarily treated water according to its design specifications. These 

specifications resemble those of the AIWPS
®
 Advanced Secondary Process developed by 

Oswald.  

 

While the technology performed well and delivered a final effluent superior to most pond 

systems deployed in South Africa it was unable to meet The Department of Water Affairs 

General Standard for nutrient removal and effluent discharge. Multiple pond systems like the 

IAPS as a domestic wastewater treatment system does not always yield a final effluent 

acceptable for discharge to the environment. Generally the removal of wastewater organic 

solids is very efficient, however, the disinfection of the wastewater, algal solids removal and 

nutrient removal are inconsistent (Craggs et al., 2012). 

 

In fact, a recent report on the operation of hectare-scale high rate algae oxidation ponds 

(HRAOP) for enhanced wastewater treatment by Craggs et al. (2012) strongly advocated  

additional treatment of the outflow from algae settling pond (ASP) by polishing to meet 

specific discharge standards. It was recommended that the inclusion of one or a combination 

of maturation ponds (MP) and UV treatment by storage prior to discharge, or rock filtration 
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of the MP effluent, or direct UV treatment if insufficient land is available, and if funds are 

available, membrane filtration to achieve a high quality final effluent for re-use.  

Clearly, there is therefore a need to establish an appropriate tertiary treatment unit (TTU) for 

implementation with IAPS as a technology and which compliments the low cost, 

environmental aspect of this wastewater treatment system. In addition, any TTU must allow 

for the final effluent to meet the standards as determined by the Department of Water Affairs 

(DWA) for discharge to the environment.  

 

Three suitable post-treatment systems were investigated to determine their water polishing 

efficacy and suitability for incorporation into the IAPS process flow. An MP in series, two 

SSF‟s and a three RF‟s in series were configured in parallel to treat water after secondary 

treatment using an IAPS. According to Gerba and Pepper (2011), TTU systems are used to 

improve the microbial quality of a secondary treated wastewater plant so that the effluent can 

be re-used or discharged into the environment. TTU‟s are also capable of decreasing the 

nutrient content of treated water, and removing residual organics and pathogens. 

From the results obtained, the RF was the most effective post IAPS treatment than either the 

MP or SSF in terms of cost efficacy, effluent quality and operational simplicity. It is also one 

of the best solutions to address wastewater polishing (Hamdan and Mara, 2013).  

 

With regard to land availability, the SSF (400 m
2
) required the least amount area footprint, 

due to having only two units, where the RF (450 m
2
) required fairly more, having three units 

in place. However, in terms of nutrient and coliform removal, the RF was the most efficient, 

even though these systems only treated a fraction of the total IAPS final effluent. A MP series 

is an important additional polishing step in conventional wastewater treatment (Mara, 2005). 

Due to land requirements, and unless a MP series is already in position, SSF and/or RF might 

be preferable due to the smaller footprint and ease of operation. Therefore it is recommended 

that either the SSF and /or the RF should be incorporated as part of the design and process 

flow of the IAPS as a commercial treatment for municipal wastewater.  

 

Nutrient removal was effective for the TTU‟s tested in the present study. Ammonium-N and 

phosphate-P were considerably low in the SSF final effluent compared to the final effluent of 

the IAPS and well below the DWA recommendations for discharge. Ammonium-N and 

phosphate-P were reduced 40% and 70% respectively. Nitrate-N however, was only reduced 
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by 9%. This slight decrease may be due to the sand (river sand) containing adsorbed fertilizer 

from agricultural runoff, which leads to an increase of nitrate concentrations (Gormly and 

Spalding, 1979). In final effluent from the MP series, ammonium-N, phosphate-P and nitrate-

N were reduced 68%, 17% and 40% respectively. MP‟s are able to achieve these reductions 

in nutrients as algae present, effectively absorb the nitrogen and phosphorus while ammonia 

is usually lost through volatilization due to the pH increase (Camargo Valero and Mara, 

2007). The RF system is a promising system for nutrient removal in comparison to 

conventional systems (Hamdan and Mara, 2013). The RF excelled in nutrient removal and 

resulted as the most efficient TTU, in terms of ammonium-N (90%), phosphate-P (79%) 

removal, in comparison to the MP and SSF. The nitrate-N levels were still below DWA‟s 

recommendations for discharge, however, there was only a 12% reduction, indicating the 

occurrence of nitrification, where the ammonium-N will decrease, which in effect, increases 

the nitrate-N levels (Beutel, 2001). Hamdan and Mara (2013) had stated that the removal of 

nitrogen in RF systems was not effective, due to the system rapidly becoming anoxic 

throughout the filtration period.  

 

The filtered chemical oxygen demand (COD) in the IAPS final effluent was above DWA‟s 

recommendations for discharge. This may be due in part, to the system not being effective at 

removing suspended algae (Meiring and Oellermann, 1995). Algae can increase the COD of 

the water due to excretion of small organic molecules produced by photosynthesis (Wang et 

al., 2010) and metabolism in general, and the characterization of these is the subject of 

further investigation. 

 

The COD was reduced by all TTU‟s namely RF‟s, MP‟s and SSF‟s presumably by a 

combination of physical and biological processes. In SSF, solute adheres to the sand particles 

when wastewater is filtered forming a biofilm or „schmutzdecke‟ consisting of algae, 

bacteria, protozoa, rotifers as well as other microorganisms (Lwesya and Li, 2010). The 

schmutzdecke plays a vital role in absorbing pollutants that may contribute to COD by 

breakdown of these organic compounds preventing ingress into the filter bed (Xiangsheng et 

al., 2010). It has been reported that 75-80% of COD is removed in the first 25-30 cm of sand, 

which illustrates the fundamental impact of the „schmutzdecke‟ on nutrient removal (Lwesya 

and Li, 2010; McNair et al., 1987). Tyagi et al. (2009) showed that SSF can reduce TSS by 

up to 89%. The COD in the final effluent of the MP series fluctuated between the DWA limit 

for discharge of treated wastewater. The increase in TSS (algae), throughout the testing 
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period, may have caused the MP series to only reduce COD by 17%. However, the COD 

reduction is presumably by a combination of nutrient removal and photooxidation. Ultra 

violet radiation has for example been shown to reduce the COD of industrial wastewater by 

as much as 60-70 % (Craggs, 2005; Chen et al., 1997). High TSS levels in the RF contradict 

to why the COD was within DWA‟s specified range. The RF only had a 0.8 % removal of 

TSS and therefore not within standard, whereas the COD had a 33% removal. Concern about 

the constant malfunctioning, which allowed the wastewater to be stagnant, was a key factor to 

why the TSS was so high. Total suspended solids (TSS) were reduced for both effluent 

streams indicating that MP‟s and SSF were efficient at reducing suspended solids. However, 

these TSS levels were still not within DWA recommendations for discharge. This may be of 

concern as high TSS levels deplete the rate of photosynthesis and therefore may have an 

effect on the biotic communities when the effluent is released back into the environment 

(DWAF, 1996).  

  

Effluent pH from the MP series did not comply with the DWA standard which is expected as 

algae in this TTU alkalinize the water (Griffiths, 2010). This aspect aside, the 

physicochemical properties (pH, DO and EC) of the final effluent from the MP series, SSF 

and RF complied with General Limit Values throughout the period of analysis.  

 

Faecal coliforms (FC) and total coliforms (TC) were very high in final IAPS effluent between 

weeks 3 and 5 due largely to operating issues. Nevertheless, there was a significant reduction 

in FC and TC by these TTU‟s after necessary reparation and as might be expected. In SSF, no 

algae or solid material should pass through the filter and typically these systems reduce FC 

by 99% and Streptococci by 99% (Tyagi et al., 2009). 

 

There are many other types of tertiary and quaternary treatment units which could have been 

incorporated into the IAPS system as an extra polishing unit. For example: horizontal and 

vertical flow wetland systems, duckweed systems, chlorination, ozonation and UV radiation 

(chlorination, ozonation and UV radiation have already been discussed in chapter 1). 

Wetlands have proved to be an effective technological system for wastewater treatment 

(Kivaisi, 2001). Constructed wetlands are seen to be low-cost methods in trying to improve 

the water quality for domestic wastewater, especially in poverty stricken areas. Wetlands are 

a much cheaper resource (than conventional systems) mainly because it‟s a natural treatment 

for water purification and less electricity is consumed (Ko et al., 2004). The duckweed 
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system is a reliable tertiary treatment unit in terms of BOD and TSS removal but these 

systems require a large land area and the ceasing of duckweed growth seems to occur during 

the winter months (Bonomo et al., 1997). 

 

Algae play a fundamental role within the IAPS system. The pH in the HRAOP is known to 

increase due to algal photosynthesis and therefore kill all E. coli. The HRAOP system also 

increases the DO levels caused by photosynthesis of the algae which converts sunlight, 

carbon dioxide and water into oxygen (Wells, 2005). However, the IAPS and the tertiary 

treatment units all produced final effluents with high TSS levels (which contributes to the 

high COD levels). It is unclear to why the levels were so high in the IAPS, but a reason may 

be due to the constant malfunctioning of the systems, which allows the water to become 

stagnant. Since one algal settling pond (ASP) is used to decrease the algae content in the 

IAPS final effluent, maybe multiple ASP‟s in series could be constructed and observed to see 

whether the algae content will decrease in the final effluent.  

  

High TSS levels somewhat contradict studies shown in other research in which tertiary 

treatment units, in particular SSF‟s and RF‟s, are known to reduce TSS levels. Filtering 

media of the SSF and RF may have been too large therefore allowing minute extracellular 

polysaccharides to filter through each system. Reasons why the MP had such a high TSS 

levels was probably due to the short-circuiting of the system. The baffle system tends to 

prevent short-circuiting but very often, there are minor gaps (especially on the sides of the 

baffle system) which allow minute algae cells to enter and hence, increase the TSS levels in 

the final effluent. Therefore, these are all issues which need to be considered and somewhat 

prevented in order to have a system which provides a good quality effluent for environmental 

discharge. 

5.2 Conclusion 

 

The MP‟s, SSF‟s and RF‟s are all effective tertiary treatment systems for the IAPS as a 

wastewater remediation step. The three post-treatments complied with the majority of the 

parameters according to DWA‟s standards for wastewater discharge into the environment. 

The SSF is seen as a very promising post treatment option and classified as a high class 

filtrate and thoroughly used in the potable water industry but even though it had the cheapest 

cost, it still lacked performance with regard to pathogen and TSS removal. The MP‟s have 
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also proved to be an important additional polishing step to water cleansing (Mara, 2005), 

however it had the highest footprint and material cost compared to the other systems. With all 

the results obtained, the RF was seen to be the most promising due to its small footprint, cost 

efficacy, effluent quality and operational simplicity. Since many countries live in water 

stressed areas, it must be acknowledged that these countries need to implement more 

sustainable solutions in treating and recycling water for environmental discharge (Sowers et 

al., 2011) and the IAPS system with the use of a RF system in series has been found to be 

reliable and effective in this regard.  
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Appendices 

Appendix A 

Table A1: Summary of a 1 way analyses of variance (ANOVA) to test the difference 

between all the treatment units from February 2013 to November 2013. 

Ammonium-N 
      

       SUMMARY 
      Groups Count Sum Average Variance 

  IAPS 31 103.5 3.33871 2.052472 
  MP 30 32.32 1.077333 1.547482 
  SSF 30 60.74 2.024667 1.647412 
  RF 18 5.7 0.316667 0.073471 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 129.8462045 3 43.28207 29.23052 
8.06E-

14 2.691133 

Within Groups 155.4750817 105 1.480715 
   

       Total 285.3212862 108         

 

Table A2: Summary of a 1 way analyses of variance (ANOVA) to test the difference 

between all the treatment units from February 2013 to November 2013. 

 

Phosphate-N 
      

       SUMMARY 
      Groups Count Sum Average Variance 

  IAPS 31 262.4335 8.465598 17.35618 
  MP 30 209.0707 6.969022 29.02414 
  SSF 30 76.99614 2.566538 6.182083 
  RF 18 31.55419 1.753011 1.995457 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 844.7843964 3 281.5948 18.76597 
8.06E-

10 2.691133 

Within Groups 1575.5886 105 15.00561 
   

       Total 2420.372996 108         
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Table A3: Summary of a 1 way analyses of variance (ANOVA) to test the difference 

between all the treatment units from February 2013 to November 2013. 

 

Nitrate-N 
      

       SUMMARY 
      Groups Count Sum Average Variance 

  IAPS 31 232.6034 7.503335 31.18167 
  MP 30 135.0365 4.501217 8.728177 
  SSF 30 204.4607 6.815356 30.47889 
  RF 18 118.6861 6.593674 20.97824 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 151.3241 3 50.44136 2.180386 0.094706 2.691133 

Within Groups 2429.085 105 23.13414 
   

       Total 2580.409 108         

 

Table A4: Summary of a 1 way analyses of variance (ANOVA) to test the difference 

between all the treatment units from February 2013 to November 2013. 

 

CODfiltered 

      

       SUMMARY 
      Groups Count Sum Average Variance 

  IAPS 31 2940.833 94.86559 300.0045 
  MP 30 2341.667 78.05556 531.5773 
  SSF 30 1762.5 58.75 173.9823 
  RF 18 1135 63.05556 171.732 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 23003.68716 3 7667.896 24.86439 
3.11E-

12 2.691133 

Within Groups 32380.8057 105 308.3886 
   

       Total 55384.49286 108         
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Table A5: Summary of a 1 way analyses of variance (ANOVA) to test the difference 

between all the treatment units from February 2013 to November 2013. 

 

pH 
      

       SUMMARY 
      Groups Count Sum Average Variance 

  IAPS 31 272.06 8.776129 0.855458 
  MP 30 286.4 9.546667 0.702395 
  SSF 30 248.73 8.291 0.478837 
  RF 18 154.03 8.557222 0.520904 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 25.53893 3 8.512977 12.99694 
2.77E-

07 2.691133 

Within Groups 68.77483 105 0.654998 
   

       Total 94.31377 108         

 

Table A6: Summary of a 1 way analyses of variance (ANOVA) to test the difference 

between all the treatment units from February 2013 to November 2013. 

 

Faecal Coliforms 
      

       SUMMARY 
      Groups Count Sum Average Variance 

  IAPS 26 240200 9238.462 2.18E+08 
  MP 26 18670 718.0769 2497519 
  SSF 26 80730 3105 81603490 
  RF 18 2900 161.1111 113986.9 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 1.26E+09 3 4.21E+08 5.122457 0.00254 2.703594 

Within Groups 7.55E+09 92 82101136 
   

       Total 8.81E+09 95         
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Table A7: Summary of a 1 way analyses of variance (ANOVA) to test the difference 

between all the treatment units from February 2013 to November 2013. 

 

Total Coliforms 
      

       SUMMARY 
      Groups Count Sum Average Variance 

  IAPS 31 2106500 67951.61 2.03E+10 
  MP 30 125040 4168 80558712 
  SSF 30 796717 26557.23 7.45E+09 
  RF 18 38800 2155.556 9168897 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 7.86E+10 3 2.62E+10 3.327887 0.022475 2.691133 

Within Groups 8.27E+11 105 7.87E+09 
   

       Total 9.05E+11 108         

 

Table A8: Summary of a 1 way analyses of variance (ANOVA) to test the difference 

between all the treatment units from February 2013 to November 2013. 

 

Dissolved 

Oxygen 
      

       SUMMARY 
      Groups Count Sum Average Variance 

  IAPS 31 200.82 6.478065 12.03312 
  MP 30 351.05 11.70167 20.74302 
  SSF 30 182.04 6.068 6.257803 
  RF 18 222.15 12.34167 3.161262 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 869.3285144 3 289.7762 25.40285 
1.95E-

12 2.691133 

Within Groups 1197.759031 105 11.40723 
   

       Total 2067.087545 108         
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Table A9: Summary of a 1 way analyses of variance (ANOVA) to test the difference 

between all the treatment units from February 2013 to November 2013. 

 

Total Suspended 

Solids 
      

       SUMMARY 
      Groups Count Sum Average Variance 

  IAPS 31 1906 61.48387 1421.991 
  MP 30 1362 45.4 995.2828 
  SSF 30 1325 44.16667 1211.868 
  RF 18 1098 61 1744.588 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 7389.038 3 2463.013 1.897056 0.134601 2.691133 

Within Groups 136325.1 105 1298.334 
   

       Total 143714.1 108         

 

Table A20: Summary of a 1 way analyses of variance (ANOVA) to test the difference 

between all the treatment units from February 2013 to November 2013. 

 

Electrical 

Conductivity 
      

       SUMMARY 
      Groups Count Sum Average Variance 

  IAPS 30 3583 119.4333 134.8057 
  MP 30 3522 117.4 22.73103 
  SSF 30 3527 117.5667 140.1161 
  RF 18 1869 103.8333 131.7941 
  

       

       ANOVA 
      Source of Variation SS df MS F P-value F crit 

Between Groups 3143.816667 3 1047.939 10.02403 
7.36E-

06 2.691979 

Within Groups 10872.43333 104 104.5426 
   

       Total 14016.25 107         
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Figure A1: Measurement of Ammonium-N in the final effluent by the IAPS and the 

other tertiary treatments using either a maturation pond, slow sand filtration or rock 

filtration. MP = Maturation Pond Series; SSF = Slow Sand Filtration; RF= Rock 

Filtration; STD = Standard (DWA). A linear regression line was calculated, which 

determined the R-squared value.  

Figure A2: Measurement of Phosphate-P in the final effluent by the IAPS and the other 

tertiary treatments using either a maturation pond, slow sand filtration or rock 

filtration. MP = Maturation Pond Series; SSF = Slow Sand Filtration; RF= Rock 

Filtration; STD = Standard (DWA). A linear regression line was calculated, which 

determined the R-squared value.  
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Figure A3: Measurement of Nitrate-N in the final effluent by the IAPS and the other 

tertiary treatments using either a maturation pond, slow sand filtration or rock 

filtration. MP = Maturation Pond Series; SSF = Slow Sand Filtration; RF= Rock 

Filtration; STD = Standard (DWA). A linear regression line was calculated, which 

determined the R-squared value.  

Figure A4: Measurement of CODfiltered in the final effluent by the IAPS and the other 

tertiary treatments using either a maturation pond, slow sand filtration or rock 

filtration. MP = Maturation Pond Series; SSF = Slow Sand Filtration; RF= Rock 

Filtration; STD = Standard (DWA). A linear regression line was calculated, which 

determined the R-squared value.    
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Figure A5: Measurement of pH in the final effluent by the IAPS and the other tertiary 

treatments using either a maturation pond, slow sand filtration or rock filtration. MP = 

Maturation Pond Series; SSF = Slow Sand Filtration; RF= Rock Filtration; STD = 

Standard (DWA). A linear regression line was calculated, which determined the R-

squared value.  

 

Figure A6: Measurement of Faecal coliforms in the final effluent by the IAPS and the 

other tertiary treatments using either a maturation pond, slow sand filtration or rock 

filtration. MP = Maturation Pond Series; SSF = Slow Sand Filtration; RF= Rock 

Filtration; STD = Standard (DWA). A linear regression line was calculated, which 

determined the R-squared value.  
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Figure A7: Measurement of Faecal coliforms in the final effluent by the IAPS and the 

other tertiary treatments using either a maturation pond, slow sand filtration or rock 

filtration. MP = Maturation Pond Series; SSF = Slow Sand Filtration; RF= Rock 

Filtration; STD = Standard (DWA). A linear regression line was calculated, which 

determined the R-squared value.  

 

Figure A8: Measurement of Total coliforms in the final effluent by the IAPS and the 

other tertiary treatments using either a maturation pond, slow sand filtration or rock 

filtration. MP = Maturation Pond Series; SSF = Slow Sand Filtration; RF= Rock 

Filtration; STD = Standard (DWA). A linear regression line was calculated, which 

determined the R-squared value.  
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Figure A9: Measurement of Total suspended solids in the final effluent by the IAPS and 

the other tertiary treatments using either a maturation pond, slow sand filtration or 

rock filtration. MP = Maturation Pond Series; SSF = Slow Sand Filtration; RF= Rock 

Filtration; STD = Standard (DWA). A linear regression line was calculated, which 

determined the R-squared value.  

 

Figure A10: Measurement of Electrical conductivity in the final effluent by the IAPS 

and the other tertiary treatments using either a maturation pond, slow sand filtration or 

rock filtration. MP = Maturation Pond Series; SSF = Slow Sand Filtration; RF= Rock 

Filtration; STD = Standard (DWA). A linear regression line was calculated, which 

determined the R-squared value.  
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Appendix B 

 

Table B1: Weather conditions (temperature, precipitation and wind speed) from 

January 2013 to December 2013. (Weather History of Grahamstown, South Africa, 

2013). 

 
Temperature (°C) Precipitation (mm) Wind Speed (km/h) 

 
Max Mean Min Max Mean Min Max Mean Min 

January 33 18 9 6 0.4 0 48 15 4 

February 36 17 8 8 0.5 0 43 14 0 

March 36 18 9 20 1.5 0 41 14 0 

April 31 16 6 5 0.3 0 32 12 0 

May 30 13 3 6 0.4 0 39 13 0 

June 25 11 1 1 0.1 0 54 18 0 

July 25 11 1 3 0.2 0 52 17 0 

August 31 11 2 4 0.4 0 46 18 4 

September 30 13 3 0 0 0 50 16 4 

October 34 15 4 30 2.7 0 37 14 0 

November 36 17 8 35 2.4 0 41 16 0 

December 31 18 7 6 0.8 0 39 15 0 
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Table B2: The various basic costs involved for developing the TTU structures (MP, SSF and RF) for commercial use. The costs include 

material costs, land costs and labour costs. 
 

 

 

 

  

MP 

Material cost   Footprint (land) cost   Labour maintenance/operational cost (monthly)   TOTAL 

Plastic liner @ R65.00/m2 (× 2766 m2) (× 3) R 539 370 Plot @ R500 000/1000 m2 (× 2766 m2) (× 1)   Personnel @ R12.00/hr (× 8 hrs) (× 30 d) (× 1 personnel)     

PVC piping @ R150.00/6m (× 3) R 450 

 

  

 

    

TOTAL R 539 820   R 1 383 000   R 2 880 R 1 925 700 

SSF 

Bricks @ R2.50/brick (× 5376 bricks) (× 2) R 26 880 Plot @ R500 000/1000 m2 (× 2266 m2) (× 1)   Personnel @ R12.00/hr (× 8 hrs) (× 30 d) (× 3 personnel)     

Gravel @ R800/ton (× 54 tons) (× 2) R 86 400 

 
  

 
    

Sand @ R100.00/ton (× 7 tons) (× 2) R 1 400 

 
  

 
    

Cement @ R70.00/50 kg bag (× 27 bags) (× 2) R 3 780 

 
  

 
    

Bidim @ R11.00/m2 (200 m2) (× 4) R 8 800 

 
  

 
    

PVC piping @ R150.00/6m (× 2) R 300 

 
  

 
    

TOTAL R 127 560   R 1 133 000   R 8 640 R 1 269 200 

RF 

Bricks @ R2.50/brick (× 3143 bricks) (× 3) R 23 573 Plot @ R500 000/1000 m2 (× 2316 m2) (× 1)   Personnel @ R12.00/hr (× 8 hrs) (× 30 d) (× 2 personnel)     

Gravel @ R800/ton (× 166 tons) (× 3) R 398 400 

 
  

 
    

Sand @ R100.00/ton (× 4 tons) (× 3) R 1 200 

 
  

 
    

Cement @ R70.00/50 kg bag (× 16 bags) (× 3) R 3 360 

 
  

 
    

PVC piping @ R150.00/6m (× 3) R 450 

 
  

 
    

TOTAL R 426 983   R 1 158 000   R 5 760 R 1 590 743 
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Table B3: IAPS malfunctioning during the testing period as well as municipal electrical cuts and changing of the slow sand filter. 

Different colour codes represent the different complications or changes of the system from week 5 to week 43 of 2013. HRAOP = high 

rate algal oxygenated pond.  

 

Table B4: Average measurements recorded of each component (Ammonium, Phosphate, Nitrate, COD, pH, Dissolved Oxygen, EC, FC 

and Total Coliforms) in the different treatment systems over a 43 week period (with the exception of the FC count (33 week period) and 

the EC (42 week period). 

Week 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Misplaced pump to HRAP B

Facultative Pond (anaerobic digestor)

Paddlewheel A

Paddlewheel B

Splitter box

Settling Ponds

Change in SSF

Electricity Cuts

IAPS Malfunctioning Operations

  Ammonium Phosphate Nitrate  COD  TSS pH Dissolved Oxygen Electrical Conductivity  

Faecal 

Coliforms  

Total 

Coliforms 

Measurement mg. L
-1 

mg. L
-1 

mg. L
-1 

mg. 

L
-1 

mg. 

L
-`1 

  mg. L
-1 

mS.m
-1 

cfu per 100 ml cfu per 100 ml 

Standard 3 10 15 75 25 5.5 - 7.5 >2 70 -150 1000   

IAPS 3.34 8.43 7.5 94.8 62 8.78 6.48 119.43 9238 67952 

Maturation Pond 1.08 6.97 4.5 78.3 45 9.55 11.7 117.4 718 4168 

Slow Sand Filter 2.02 2.57 6.8 58.7 44 8.29 6.07 117.57 3105 26557 

Rock Filter 0.32 1.75 6.59 63.2 61 8.56 12.34 103.83 161 2156 
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Table B5: A table showing different COD wavelength results with regard to the 

different concentrations. Measurements were done in triplicate and the average was 

then calculated.  

Concentrations 1 2 3 Average 

0 0 0 0 0 

200 0.071 0.052 0.117 0.08 

400 0.16 0.17 0.175 0.168333 

600 0.25 0.225 0.226 0.233667 

800 0.322 0.32 0.34 0.327333 

 

 

Figure B1: Graph illustrating the increasing concentrations of COD at a wavelength of 

600 nm, the curve was used to determine unknown COD concentrations within the 

samples. 

Table B6: A table showing different Phosphate-P wavelength results with regard to the 

different concentrations. Measurements were done in triplicate and the average was 

then calculated.  

Concentration 1 2 3 Average 

0 0 0 0 0 

1 0.143 0.144 0.149 0.145333 

2 0.299 0.3 0.31 0.303 

3 0.505 0.447 0.448 0.466667 

4 0.561 0.563 0.564 0.562667 
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Figure B2: Graph illustrating the increasing concentrations of Phosphate-P at a 

wavelength of 660 nm, the curve was used to determine unknown Phosphate-P 

concentrations within the samples. 

Table B7: A table showing different Nitrates-N wavelength results with regard to the 

different concentrations. Measurements were done in triplicate and the average was 

then calculated.  

 

Concentrations 1 2 3 Average 

0 0 0 0 0 

5 0.169 0.208 0.191 0.189333 

10 0.456 0.468 0.457 0.460333 

15 0.564 0.672 0.655 0.630333 

20 0.756 0.9 0.715 0.790333 

 

 

 

Figure B3: Graph illustrating the increasing concentrations of Nitrates-N at a 

wavelength of 550 nm, the curve was used to determine unknown Nitrate-N 

concentrations within the samples. 
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Table B8: A table showing different Ammonium-N wavelength results with regard to 

the different concentrations. Measurements were done in triplicate and the average was 

then calculated.  

 

 

 

 

 

 

 

Figure B4: Graph illustrating the increasing concentrations of Ammonium-N at a 

wavelength of 660 nm, the curve was used to determine unknown Ammonium-N 

concentrations within the samples. 
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0.5 0.294 0.305 0.313 0.304 

1 0.606 0.593 0.533 0.577333 

2 1.152 1.097 1.165 1.138 

3 1.583 1.638 1.582 1.601 
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