Evidence for Archaean lamprophyre from the Kaapvaal Craton, South Africa

Stephen A. Preveca*, Carl R. Anhaeusserb and Marc Poujolc

A suite of mafic dykes occurs as a late component in a well-characterized trondhjemite–tonalite–diorite–granodiorite assemblage in the Johannesburg Dome of the central Kaapvaal Craton, southern Africa. The dykes have been subdivided into two sets, based on their orientation, and major and trace element geochemistry. Set 1 dykes are characterized by elevated SiO\textsubscript{2}, Al\textsubscript{2}O\textsubscript{3} and TiO\textsubscript{2}, and particularly by enriched LILE and HSFE (e.g. Zr > 200 ppm, Nb > 20 ppm, Ba > 300 ppm), higher than in any of the accompanying felsic rocks. REE and trace element values for Set 1 dykes are similar to those for calc-alkaline lamprophyres. The Set 2 dykes have similar trace element distributions, but are significantly less enriched in general, and are broadly tholeiitic in composition, with enriched MgO (>11 wt.%) indicative of an olivine–phryic tholeiitic basaltic protolith. Field relationships and available U–Pb zircon geochronology indicate that the dykes are contemporaneous with components of the trondhjemitic host rocks, and with late granodiorites. The geochemical, geochronological and field geological setting indicates partial melting of basaltic and eclogitic lithospheres at c. 3120 Myr ago in the basin Kaapvaal Craton, and subsequent emplacement into pre-existing c. 3430 Myr tonalitic to dioritic crust.

Introduction

The advent of precise geochronology and the refinement of geological and geochemical signatures of orogenic settings has allowed what were once characterized only as 'seas of grey gneisses' to be delineated into terranes, domains, and unravelled in a modern plate tectonic context. This approach has been demonstrated in the Mesoproterozoic Grenville Province of the southern Canadian Shield,1,2 for an admittedly younger but high grade metamorphosed orogen. Thorough geochemical and isotopic studies in west Greenland are beginning to decipher the evolution of some of the oldest rocks on earth.3 The ability to apply precise geochronological information to complex terrains is dependent on combining information from field relationships, which are commonly obscured or rendered ambiguous by multiple intrusion and melting events, with geochemical tracing and correlation, which are susceptible to secondary remobilization.

The Kaapvaal Craton of South Africa represents one of the largest and best preserved and exposed cratonic cores on earth, and includes some of the oldest and best preserved mafic volcanic suites yet discovered, in the c. 3.7–3.34 Gyr Barberton greenstone belt.4,5 While most of the early work on the Archaean Kaapvaal Craton focused on its eastern parts such as the mineralized Barberton rocks, a greater breadth of data now exists6 from detailed study of the Murchison greenstone belt to the north,7 the Amalia and Kraaipan greenstone belts in the west,8 the Limpopo province9 which bounds the craton to the north, and insights from the Vredefort Dome10 in the central Kaapvaal.

In this study, we focus on a detailed examination of a complex outcropping of the Johannesburg Dome from the central Kaapvaal Craton (Fig. 1), referred to as the Nooitgedacht migmatite–gneiss platform exposure (Fig. 2), which was mapped and sampled in detail by Anhaeusser11 and the constituent lithologies subsequently dated by U–Pb in single zircon grains.12 The outcrop is dominated by granitoids of various description, comprising tonalites, trondhjemites, and granodiorites, but also includes at least two generations of mafic dykes. One of these dyke sets is characterized by a zircon population apparently dominated by inheritance from its host rocks,12 but has a unique geochemical signature that suggests a complex history.

Geological setting

The Johannesburg Dome is one of a number of gneissic domal structures that punctuate the northern Kaapvaal Craton,13 exposed amidst the extensive overlying Neoarchaean sedimentary packages such as the Witwatersrand and Transvaal supergroups. Detailed mapping and age-dating of the dome11,12,13 indicate the intrusion at c. 3.34 Gyr of trondhjemitic and tonalitic granitoids, hosting (now amphibibolitized) mafic dykes or relict greenstones on the northern half of the dome. This 3.34 Gyr magmatic episode was followed by the emplacement of a 3.2 Gyr hornblende–biotite–tonalite gneiss in the south. A third magmatic event, manifested predominantly as granodiorites and occupying an area of batholithic dimensions extending across most of the southern portion of the dome, was dated at c. 3.12 Gyr. The late mafic dykes exposed at Nooitgedacht are thought to comprise two generations on the basis of distinct orientations and geochemical characteristics,11 which are summarized in Table 1. It may be noted that the geochemical composition of sample N19 is intermediate between those for samples N12 and N20 and those for N4 and N18, albeit slightly closer to that of the latter group, with which it is included.

The dykes display green-schist to amphibibolite-facies mineral assemblages, with a distinct internal fabric defined by alignment of biotite and hornblende grains, amongst saussuritized and sericitized plagioclase feldspar, with accessory titanite, magnetite, quartz, chlorite and apatite.12 The dykes crosscut the fabric in the tonalitic and trondhjemitic rocks, and are themselves crosscut by north–south-trending porphyrritic leucogranodioritic dykes (Fig. 2). Neither chilled margins in the dykes nor recrystallized margins in the granitoids have been recognized.

An attempt was made to date the dykes using zircons12 extracted from a sample taken from the northeast corner of the Nooitgedacht exposure. Although care was taken when sampling to avoid any leucosomatic potential granitoid contaminant, the sample nonetheless contained millimetre-thickness leucocratic veinlets, which could be separated from one another after coarse crushing of the sample. Ultimately, the zircons, which were more abundant in the veinous material, all gave co-linear discordant isotopic results, which produced an age of 3117 ± 12 Myr, within error of the age of the cross-cutting
porphyritic granodiorite at 3114.2 ± 2.4 Myr, and indistinguishable from intrusion ages of 3121 Myr for the granodiorites.\(^3\) The zircons in the mafic dyke were therefore interpreted as ‘linked to the emplacement’ of the leucocratic veinlets, which were correlated with the leucogranodiorite. The granodioritic rocks contained largely dark pink zircons,\(^2\) but also smaller populations of pink translucent grains, which typically gave more concordant results. In the case of the porphyritic granitoid specifically, the pink translucent grains were perfectly concordant, while the three dark pink grains were significantly discordant, although all colinear. The grains found in the mafic dyke were pink and fine-grained (30–50 µm long), but did not include a coarser-grained, darker pink population.

Petrology

An overview of the mineralogy of the mafic dykes has been provided previously.\(^1\) However, in light of their grouping into two geochemical groups as described above (Table 1), it is worth a brief re-examination of the petrology. None of the dykes sampled preserves any pyroxene or olivine, nor any unambiguous pseudomorphs thereof. The mineralogy is dominated by variably sericitized and/or saussuritized plagioclase, plus hornblende and biotite. Accessory titanite, magnetite, haematite, elongated subhedral apatite and zircon are also present. There is no apparent systematic difference in the proportions of the dominant minerals between the Set 1 and the Set 2 dyke samples, which can be related to primary compositional control. The Set 1 dykes include both plagioclase- and hornblende-dominant assemblages (in samples N12 and N20, respectively). While both Set 2 samples (N18 and N4) are hornblende-
dominant (>60 modal %), biotite is present only in sample N18 (and in N12). Similarly, the degree of feldspar alteration to epidote is significant in samples N20 (Set 1) and N4 (Set 2), but minor in samples N12 and N4. Plagioclase composition is estimated (using the Michel-Lévy method) at around An$_{30}$ (oligoclase/andesine), based on the optical properties of the few grains in N12 and N18 with preserved albite twinning.

Geochemistry

The major element characteristics of the granitoids, amphibolites and mafic dykes from Nooitgedacht have been presented by Anhaeusser11 in some detail. He noted the large range in MgO in the mafic dykes, from over 11 wt.% in N4 and N18, down to less than 5 wt.% in N20, and silica ranging from around 48 wt.% up to over 53 wt.%. A comparison of the granitoid compositions based on the optical properties of the samples can be usefully compared directly with the compositional range for alkalies, the dykes are broadly consistent with tholeiitic basalts, the other samples cluster (Fig. 5). In terms of major elements and terms of Zr/Nb ratio, however (Fig. 7b).

Of additional interest are the high field strength elements (HFSE), which, unlike the large ion lithophile (LIL) alkali metals, are not prone to mobilization in typical hydrothermal or regional metamorphic environments. Figure 7 shows Zr vs Nb and Zr/Nb ratio variation against silica, and while the abundances for all units are heterogeneous in comparison with major and compatible element variations, three of the mafic dyke samples (both of 'Set 1' above, plus N19) are richer in Zr than any of their host granitoids (Fig. 7a). Similarly, the same three samples are richer in Nb than their hosts. The observation that no individual unit shows a Zr–Nb distribution consisting of a straight line through the origin indicates that these elements are not behaving especially incompletely in these rocks. There appears to be no systematic variation between rock types in terms of Zr/Nb ratio, however (Fig. 7b).

The rare earth element (REE) contents of the various lithologies were examined individually and characterized by Anhaeusser,11 who noted the distinct patterns of the two sets of mafic dykes (represented by samples N12 and N18). These samples can be usefully compared directly with the compositions of their host rocks, and sample N12 in particular is significantly more enriched in LREE (light REE, typically those from La to Eu) than any of the granitoids (Fig. 8). In terms of both the slope of the REE profile (i.e. Ce/Yb ratio, or its variants) and the magnitude of the Eu anomaly, the mafic dykes are not otherwise distinctive. The trace element compositions may be further

Table 1: Classification criteria for late mafic dykes at Nooitgedacht, based on Anhaeusser.11

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Set 1 dykes</th>
<th>Set 2 dykes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample numbers</td>
<td>N12, N20</td>
<td>N4, N16, N19</td>
</tr>
<tr>
<td>Orientation</td>
<td>060–090°</td>
<td>110–130°</td>
</tr>
<tr>
<td>Major elements (in wt.%)</td>
<td>SiO$_2$ > 50, Al$_2$O$_3$ > 14, TiO$_2$ > 1, Fe$_2$O$_3$$^{>9}$ < 10, MgO < 7, CaO < 8</td>
<td>SiO$_2$ < 10, TiO$_2$ < 1, Fe$_2$O$_3$$^{>9}$ < 10, MgO > 9, CaO > 9</td>
</tr>
<tr>
<td>REE profiles</td>
<td>Steep LREE, minimal Eu anomaly</td>
<td>Flatter LREE, small negative Eu anomaly</td>
</tr>
</tbody>
</table>

![Fig. 3](image)

Fig. 3. Harker diagrams showing alkali compositions from Nooitgedacht. SiO$_2$ vs (a) K$_2$O, (b) Na$_2$O, and (c) K$_2$O + Na$_2$O. Symbols are as used by Anhaeusser: filled squares, mafic dykes; filled triangles, amphibolites; open circles, dioritic gneisses; open diamonds, tonalitic gneisses; plus signs, trondhjemites; filled circles, leucogranodiorite.
examined through the use of primitive mantle-normalized spidergrams, shown in Fig. 9. The mafic dykes (Fig. 9a) are characterized by the enrichments in LILE and REE observed earlier, with a prominent positive spike for Ba, and a small negative spike for Ti. The amphibolite samples (Fig. 9b) show similar, though less pronounced enrichment and depletion patterns to the mafic dykes, with lower overall abundances and typically flatter profiles. The dioritic and tonalitic gneisses (Fig. 9c) share the traits described for the mafic dykes, but, in addition, are characterized by a small but ubiquitous depletion (negative spike) in phosphorus. Finally, the trondhjemitic gneiss and the late leucogranodiorite feature geochemical patterns which are distinctive from the other lithologies, and virtually identical to one another (Fig. 9d). The leucogranodiorite composition represents a more extreme version of the geochemical characteristics which define the suite. These rocks are characterized by a convex, rounded LILE profile, distinct from the more pointed or even slightly concave-sided profiles of the other lithologies. The leucogranodiorite is also characterized by a pronounced negative spike for phosphorus and titanium, and is
distinguished from the trondhjemites by a prominent enrichment in HREE (heavy REE, from Eu to Lu), or perhaps a lack of HREE-depletion, reflecting a flatter normalized profile.

Discussion

The issue under examination here is the nature of the geochemical enrichment of the Set 1 mafic dykes, and the possible implications, if any, regarding its zircon population. It has been established that the Set 1 dykes display enrichment in LILE and HFSE beyond that of any of the granitoid rocks into which they are emplaced or which intrude them. Possible mechanisms for enrichment include the following, which will be evaluated on the basis of the evidence presented above: 1) Secondary enrichment by metamorphism or hydrothermal alteration; 2) syn-emplacement contamination; and 3) enriched primary source characteristics.

1) Secondary enrichment by metamorphism or hydrothermal alteration

There is evidence to support remobilization of the more water-soluble elements, particularly the LILE. The medium-grade metamorphic assemblage which characterizes the mafic dykes was almost certainly associated with an influx of fluids and hydration of an initially anhydrous pyroxene–plagioclase assemblage in the course of regional metamorphism. The observation that the K/Rb ratio of sample N20 (Fig. 5) is well above that of the ‘magmatic trend’ of Shaw,14 which is appropriate for most of the rest of the Nooitgedacht suite, and for other South African Archaean TTG rocks,17 is consistent with secondary mobility. However, not only do the LILE contents of the Set 1 dykes exceed those of their potential donors, the granitoid host rocks, the HFSE (including the REE) are similarly enriched, and they are typically immobile in such settings. Finally, a pervasive metamorphic overprinting should be reflected in rocks other than the Set 1 dykes, such as the adjacent lithologies including the Set 2 dykes.11 So, while metamorphic enrichment of the LILE cannot be ruled out, it cannot be the sole enrichment process involved.

2) Syn-emplacement contamination

The simplest way to enrich a mafic intrusive rock in LILE and HFSE is through crustal contamination during emplacement, wherein relatively cold local crust is assimilated by the hot, intruding liquid. If the mafic dykes intruded the host granitoids while they were warm, as perhaps suggested by the absence of chilled margins or contact aureoles, more wholesale assimilation might be expected. The fact that the tonalites and diorites have a fabric which is crosscut by the dykes, with a distinct fabric of their own, indicates that the country rocks were well-solidified and deformed prior to the emplacement of the dykes, possibly during a regional metamorphic episode (i.e. syn-deformational emplacement), in order to account for the fabric in the dykes which has failed to overprint that already present in the gneisses.
The dykes would therefore have been emplaced into metamorphically heated country rocks, inducing localized partial melting of wet granitoid rocks along the dyke margins.

The similarity between the ages and morphologies of the zircon populations of the mafic dykes and the late granodiorite, and the absence of a darker pink, perhaps more obviously xenocrystic zircon population in the mafic dykes support the previous interpretation\(^{12}\) that infiltration from melts derived from the later granodiorites has contaminated the dykes, perhaps along joints and fractures existing in the dykes at the time of granodiorite intrusion. However, the geochemical signatures of the granodiorites are sufficiently distinct from those of the older rocks, including the mafic dykes (see Fig. 9), requiring that significant contamination from the granodiorites cannot have occurred. Rather, the similarities between the tonalitic and dioritic gneisses and the mafic dykes suggests that these older (TTG) gneisses are the best candidate for partial melting and contamination of the dykes. Clearly, the observation that the Set 1 dykes have HSFE and LILE contents in excess of any of the granites requires that significant bulk contamination cannot account for the enrichment. This not only rules out infiltration by the late granodiorites (which are Zr-poor), but also indicates that any contamination by promixal crustal rocks must have occurred via enriched partial melts (rather than wholesale assimilation) of granitoid crust.

While contamination by tonalite appears to be superficially inconsistent with the zircon population in the dykes, the age-dated TTG rocks\(^{12}\) included a large number of relatively young zircons. The pink translucent grains alone from samples JHBD 98-8, a trondhjemitic gneiss sampled at the Nooitgedacht exposure, have an average\(^{207}\)Pb/\(^{206}\)Pb age of 3116 Myr, and a regression through five of the six grains (Fig. 10) gives an imprecise upper intercept age of 3097 ± 24 Myr (Model 2 age\(^{18}\)). While these ages themselves may not be of great significance, they do suggest that zircons found within the older TTG rocks are contemporaneous (within error) with the zircon ages from the late granodiorites and the dyke-hosted zircons. The zircons in the mafic dykes are thus the same as the zircons from the TTG rocks both in terms of morphology (colour and translucency) and age, as well as being the same as those from the younger granodiorites. If the TTG rocks were locally melted and entrained within the dykes, the zircons would be juvenile, syn-emplacement crystals, rather than xenocrysts, which is consistent with their distinctive (small) size and the absence of older or darker xenocrystic grains.

3) Enriched primary source characteristics

In order to evaluate primary characteristics, the difference between the Set 1 and Set 2 dykes may be briefly examined. The REE profiles of samples N12 and N8 (Fig. 8) show a relationship wherein the LREE have been rotated upwards from Set 1 to Set 2, while the HREE remain anchored. This progression requires contamination by material with HREE abundances around 10× chondrite, and elevated LREE (>200× chondrite), and with minimal Eu anomaly. As illustrated in Fig. 8, this immediately rules out the trondhjemites (near-chondritic HREE) and the late granodiorites (steep LREE, HREE-enriched) as potential candidates. The overall similarity between the trace element profiles and abundances in the tonalites and diorites and the mafic dykes would seem to require large-scale intermingling of a LILE–HFSE-enriched component of the former rocks.

The major element variation indicates that the Set 2 dykes may have been (prior to alteration) olivine–phyric tholeiitic basalts, as they are more magnesian (>11 wt.% MgO) than ‘normal’ tholeiitic basaltic dolerite compositions (around 6–8 wt.% MgO\(^{14}\)), leaning towards picritic or komatiitic basalt compositions. The elevated MgO is manifested as 15–20 wt.% normative olivine in the Set 2 rocks.\(^{11}\) While the high Mg and alkali enrichment are reminiscent of high-Ca boninites, petrogenetically linked with calc-alkaline lamprophyres by Rock,\(^{19}\) the Set 2 dykes lack the characteristic depletions in Ti and P, are too enriched in HFSE, and have insufficient silica to be of boninitic affinity.\(^{20}\) The Set 1 dykes, as suggested earlier, are within the realm of lamprophyric chemical composition. There is not an accepted overall set of geochemical criteria which characterize lamprophyres; they are volatile-rich, and typified by LILE and HFSE enrichment,\(^{19}\) but with MORB-like HREE, Y and Ti, all of which are features of the mafic dykes, as shown in Fig. 9a. The plot of MORB-normalized trace

Fig. 10. U–Pb concordia diagram for pink translucent zircons only, from trondhjemitic gneiss sample location N14.\(^ {12}\)

Fig. 11. NMORB-normalized spidergram (a) and REE profile (b) for selected mafic dykes and average calc-alkaline lamprophyre.\(^ {18}\) See text for discussion.
elements (Fig. 11a) and REE (Fig. 11b) also shows excellent agreement between the Set 1 dykes and a compiled average of nearly 1600 calc-alkaline lamprophyres, as do the REE (Fig. 11b). While the Set 1 and Set 2 dykes are broadly consistent with lamprophyres and olivine–phryic basalts, respectively, in terms of their geochemistry, they do seem to define a continuum which cautions against over-classification. Finally, the suggestion that the Zr abundances in the mafic dykes are primary features suggests that their zircon populations could conceivably be in situ magmatic crystals, rather than inherited or acquired from contemporaneous felsic rocks.

Genetic implications

As paraphrased after Rock, lamprophyres routinely form the mafic members of dyke-suites, part of a compositional continuum from hornblendites and pyroxenites through to apлитes and pegmatitites. Although commonly lamprophyric dyke-swarms immediately postdate their associated granitoid plutons, they may also bracket plutons in both time and space, such that the dykes appear as xenoliths in, and also cut, the granitoids, or they cut some phases of a polyphase pluton but not others. The varieties of granitoid most commonly associated with calc-alkaline lamprophyres appear to be late- to post-orogenic, unfoliated bodies with a wide spectrum of basic–acidic granitoid compositions, from diorites to granites sensu stricto. These observations are entirely consistent with the observations from the Nooitgedacht exposure. The mafic dykes crosscut trondhjemitic rocks, which include a c. 3120 Myr zircon population, in addition to older ones, and are cut by leucotondhjemitic, granodiorite, and pegmatite dykes and veins. The mapped relationships suggest possible cross-cutting of the pegmatite in the southwest of the Nooitgedacht platform (near the N20 sample location), as well, but as this is near a termination of a pegmatitic vein, the relationship is ambiguous.

The geochemical affinity between the mafic dykes and the tonalites is consistent with involvement in a process involving garnet fractionation, as has been proposed for lamprophyres. Garnet fractionation characteristically results in steep REE profiles with concave-upwards HREE or ‘hockey stick-shaped’ REE profiles, which are a feature of the early granitoids and the mafic dykes from Nooitgedacht (but less so for the late granodiorites). A lower crustal or mantle origin is implied for lamprophyric rocks by their occasional employment as hosts for diamonds. Derivation of the TTG-dyke package at c. 3120 Myr is therefore inferred to involve partial melting of an eclogitic (garnetiferous) lower crust, probably related to or instigated by a basalt-producing partial melting of the mantle, in order to produce geochemically primitive granitoid melts intergrown with olivine-phryic basaltic to lamprophyric dykes. The existence of eclogitic lower crust suggests the existence of a thick crustal lithosphere (>30 km, to produce eclogites from basaltic precursors) in the Kaapvaal Craton by at least 3.2 Gyr.

Conclusions

The mafic dykes, particularly those comprising Set 1, are defined by a geochemically evolved signature, and have elevated LILE and HFSE abundances beyond those of any of their host TTG assemblage. The dykes are interpreted, largely on the basis of their geochemistry, as a Mg-tholeiite basaltic to calc-alkaline lamphyrophyric suite emplaced at c. 3120 Myr with contemporaneous and probably partially consanguineous trondhjemitic to granodioritic felsic rocks. They were emplaced into older tonalitic, dioritic and trondhjemitic rocks (a TTG sequence), which may have been melted at depth in the process.

Johan Kruger is thanked for constructive discussion. The manuscript was significantly improved after critical comment from Stephen T. Johnston, to whom the authors are most grateful.