- Title
- Synthesis and biolgical screening of potential plasmodium falciparum DXR inhibitors
- Creator
- Adeyemi, Christiana Modupe
- Subject
- Plasmodium falciparum
- Subject
- Enzyme inhibitors
- Subject
- Malaria
- Subject
- Antimalarials
- Subject
- Drug development
- Subject
- Malaria -- Chemotherapy
- Subject
- Isopentenoids -- Synthesis
- Subject
- Fosmidomycin
- Subject
- 1-Deoxy-D-xylulose 5-phosphate
- Date Issued
- 2017-04
- Date
- 2017-04
- Type
- Doctoral theses
- Type
- text
- Identifier
- http://hdl.handle.net/10962/61790
- Identifier
- vital:28060
- Description
- The non-mevalonate isoprenoid pathway, also known as the 1-deoxy-D-xylulose-5- phosphate DXP pathway, is absent in humans, but present in the anopheles mosquito responsible for the transmission of malaria. DXP reductoisomerase - a key enzyme in the DXP pathway in Plasmodium falciparum (PfDXR) has been identified as a target for the design of novel anti-malarial drugs. Fosmidomycin and its acetyl analogue (FR900098) are known to be inhibitors of PfDXR and, in this study, synthetic variations of the fosmidomycin scaffold have led to four series of novel analogues. Particular attention has been centred on the introduction of various substituted benzyl groups in each of these series in order to occupy a recently discovered vacant pocket in the PfDXR active-site and thus enhance ligand-enzyme binding. In the process 160 ligands and precursors have been prepared, no less than 119 of them novel. Fistly, a series of C-benzylated phosphonate esters and phosphonic acids were synthesised, in which the fosmidomycin hydroxamate Mg2+- coordinating moiety was replaced by an amide funtionality and the number of methylene groups in the “hydrophobic patch” between the phosphonate and the hydroxamate moiety was decreased from two to one. Several approaches were explored for this series, the most successful involving reaction of 3- substituted anilines with a-bromo propanoic acid in the presence of the coupling agent 1,1'- carbonyldiimidazole (CDI), followed by Michaelis-Arbuzov phosphonation using triethyl phosphite. Reaction of the resulting chiral phosphonate esters with bromotrimethylsilane gave the corresponding phosphonic acids in good yields. In order to obviate chirality issues, a second series of potential “reverse” fosmidomycin analogues was synthesised by replacing the methylene group adjacent to the the phosphonate moiety with a nitrogen atom. Deprotonation, alkylation and phosphorylation of various amines gave diethyl #-benzylphosphoramidate ester intermediate. Aza-Michael addition of these intermediates, followed by hydrolysis gave the corresponding carboxylic acids which could be reacted with different hydroxylamine hydrochloride derivatives to afford the novel hydroxamic acid derivatives in good yields. Thirdly, a series of a novel #-benzylated phosphoramidate derivatives were prepared as aza- FR900098 analogues. Alkylation of different amines using bromoacetalde-hyde diethylacetal gave a series of N-benzyl-2,2-diethoxyethylamine compounds, which were then elaborated via a futher six steps to afford novel #-benzylated phosphoramidate derivatives. Finally, in order to ensure syn-orientation of the donor atoms in the Mg - coordinating group and, at the same time, introduce conformational constraints in the ligand, the hydrophobic patch and the hydroxamate moiety were replaced by cyclic systems. Several approaches towards the synthesis of such conformationally constrained phosphoramidate analogues from maleic anhydride led to the unexpected isolation of an unprecedented acyclic furfuryl compound, and 1H NMR and DFT-level theoretical studies have been initiated to explore the reaction sequence. A series of #-benzylated phosphoramidate derivatives containing dihydroxy aromatic rings (as the conformationally constrained groups) to replace the hydroxamate moiety, were successfully obtained in six steps from the starting material, 3,4-dihydroxylbenzaldehyde. While in vitro assays have been conducted on all of the synthesised compounds, and some of the ligands show promising anti-malarial inhibitory activity - most especially the conformationally constrained cyclic #-benzylated phosphoramidate series. Interestingly, a number of these compounds has also shown activity against T.brucei - the causative agent of sleeping sickness. In silico docking studies of selected compounds has revealed the capacity of some of the ligands to bind effectively in the PfDXR active-site with the newly introduced benzyl group occupying the adjacent vacant pocket. The physico-chemical properties of these ligands were also explored in order to predict the oral-bioavailability. Most of the ligands obeyed the Lipinski rule of 5, while QSAR methods have been used in an attempt to correlate structural variations and calculated molecular properties with the bioassay data.
- Description
- Thesis (PhD) -- Faculty of Science, Chemistry, 2017
- Format
- computer
- Format
- online resource
- Format
- application/pdf
- Format
- 1 online resource (262 pages)
- Format
- Publisher
- Rhodes University
- Publisher
- Faculty of Science
- Language
- English
- Rights
- Adeyemi, Christiana Modupe
- Rights
- All Rights Reserved
- Rights
- Open Access
- Hits: 10845
- Visitors: 10557
- Downloads: 240
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | 21 MB | Adobe Acrobat PDF | View Details Download |