- Title
- Towards defining the tipping point of tolerance to CO2-induced ocean acidification for the growth, development and metabolism of larval dusky kob Argyrosomus japonicus (Pisces: Sciaenidae)
- Creator
- Mpopetsi, Pule Peter
- Subject
- Argyrosomus japonicus
- Subject
- Argyrosomus
- Subject
- Argyrosomus japonicus -- Larvae
- Subject
- Argyrosomus -- Larvae -- Effect of water acidification on
- Subject
- Argyrosomus japonicus -- Larvae -- Nutrition
- Subject
- Argyrosomus -- Larvae -- Nutrition
- Subject
- Ocean acidification
- Date Issued
- 2019
- Date
- 2019
- Type
- text
- Type
- Thesis
- Type
- Masters
- Type
- MSc
- Identifier
- http://hdl.handle.net/10962/71602
- Identifier
- vital:29924
- Description
- Increased CO2 production and the consequent ocean acidification (OA) have been identified as one of the greatest threats to both calcifying and non-calcifying marine organisms. Traditionally, marine fishes, as non-calcifying organisms, were considered to have a higher tolerance to near-future OA conditions owing to their well-developed ion regulatory mechanisms. However, recent studies provide evidence to suggest that they may not be as resilient to near-future OA conditions as previously thought. In addition, earlier life stages of marine fishes are thought to be less tolerant than juveniles and adults of the same species as they lack well-developed ion regulatory mechanisms for maintaining homeostasis. This study follows up on previous studies examining the effects of near-future OA on larval Argyrosomus japonicus, an estuarine-dependent marine fish species, in order to identify the tipping point of tolerance for the larvae of this species. These previous studies showed that elevated pCO2, predicted for the year 2100, had negative effects on growth, development and metabolism and ultimately, survival of larval A. japonicus from post-flexion stage. Larval A. japonicus in the present study were reared from egg up to 22 DAH (days after hatching) under three treatments. The three treatments, (pCO2 353 μatm; pH 8.03), (pCO2 451 μatm; pH 7.93) and (pCO2 602 μatm; pH 7.83) corresponded to levels predicted to occur in year 2050, 2068 and 2090 respectively under the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (IPCC RCP) 8.5 model. Size-at-hatch, growth, development and metabolic responses (standard and active metabolic rates and metabolic scope) were assessed and compared between the three treatments throughout the rearing period. Five earlier larval life stages (hatchling – flexion/post-flexion) were identified by the end of the experiment. There were no significant differences in size-at-hatch (P > 0.05), development or the active metabolic (P > 0.05) or metabolic scope (P > 0.05) of fish in the three treatments throughout the study. However, the standard metabolic rate was significantly higher in the year 2068 treatment but only at the flexion/post-flexion stage which could be attributed to differences in developmental rates (including the development of the gills) between the 2068 and the other two treatments. Overall, the metabolic scope was narrowest in the 2090 treatment, but varied according to life stage. Although not significantly different, metabolic scope in the 2090 treatment was noticeably lower at the flexion stage compared to the other two treatments, and the development appeared slower, suggesting that this could be the stage most prone to OA. The study concluded that, in isolation, OA levels predicted to occur between 2050 and 2090 will not negatively affect size-at-hatch, growth, development, and metabolic responses of larval A. japonicus up to 22 DAH (flexion/post-flexion stage). Taken together with the previous studies of the same species, the tipping point of tolerance (where negative impacts will begin) in larvae of the species appears to be between the years 2090 and 2100.
- Format
- 67 pages
- Format
- Publisher
- Rhodes University
- Publisher
- Faculty of Science, Ichthyology and Fisheries Science
- Language
- English
- Rights
- Mpopetsi, Pule Peter
- Hits: 4341
- Visitors: 4470
- Downloads: 187
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | Adobe Acrobat PDF | 2 MB | Adobe Acrobat PDF | View Details Download |