- Title
- The effects of environmental variability on the physiology and ecology of Cape stumpnose Rhabdosargus holubi (Steindachner, 1881) (Sparidae)
- Creator
- Kisten, Yanasivan
- Subject
- Freshwater fishes -- South Africa
- Subject
- Fishes -- Ecology Freshwater fishes -- Ecology Estuarine ecology -- South Africa Estuaries -- South Africa
- Date Issued
- 2018
- Date
- 2018
- Type
- Thesis
- Type
- Doctoral
- Type
- DPhil
- Identifier
- http://hdl.handle.net/10948/31424
- Identifier
- vital:31374
- Description
- Estuaries are important nursery areas for early stages of marine estuarine-dependent fishes, such as the sparid Rhabdosargus holubi. Estuaries provide food, shelter from predators and optimal habitats and environmental conditions for growth and development. However, estuaries are environmentally dynamic and resident organisms must be able to adapt to rapid changes. Such changes are potentially further exacerbated anthropogenically by water and land use practices such as freshwater abstraction, impoundment, pollution and anthropogenically driven climatic change. An effective approach to better understanding the current and future impacts of these kinds of changes, is by assessing the environmental adaptability of organisms, especially to extreme conditions such as droughts and resulting water shortages, which are prevalent in some parts of southern Africa. This thesis examines the effect of various environmental changes such as salinity, turbidity and temperature on the ecology and physiology of a South African common endemic fish species, the Cape stumpnose, R. holubi. Previous work on the species have investigated short term impacts on physiology while this study investigates medium to short term impacts. The specie’s wide distribution in South Africa and tolerance enabled a range of environmental, ecological and physiological relationships to be tested in the context of a changing world. These included: 1) determining the relationship between environmental variability and the distribution and abundance of R. holubi larvae in 25 estuaries along the temperate coast of South Africa; 2) determining the relationship between environmental variability and the movement of larvae and juveniles within two permanently open estuaries; 3) determining the impact of shock and acclimatization on R. holubi salinity tolerance ranges under hypersaline conditions; 4) II determining the impact of hypersalinity on the potential long term impacts growth and skeletal deformities of juvenile R. holubi in aquaria. The findings of these studies suggest that larval occurrence and density within estuaries is a function of salinity and turbidity, by proxy indicating a preference for high freshwater inflow especially in estuary types such as permanently open estuaries. The movement of larvae and juveniles within these estuaries is also mediated by salinity, turbidity and temperature, indicating the importance of seasonality along with environmental conditions and potential olfactory recruitment cues driven by freshwater flow. Tolerance experiments showed that slower acclimation to higher salinities can expand the previously reported tolerance range indicating the potential for adaptation. Physiological experiments showed negative impacts on respiration at salinities exceeding 45, indicating potential long-term physiological effects in hypersaline conditions. Further, living at high salinities for extended periods may have potentially negative effects on long term physiology, particularly growth and skeletal development. The overall results indicate that low salinity (5–18), high turbidity (20–30 NTU) and high temperature (5–22°C) are integral to the distribution and abundance of the species in permanently open estuaries. This conforms to the general rule that estuarine-associated marine fish have higher growth rates in salinities of 12-19. However, juveniles are also adapted to survive at higher salinities for long periods (2 months in the current thesis). This explains why R. holubi is one of the few species in the estuarine fish community that may persist during droughts. The predicted future changes in coastal temperatures and rainfall by climate change investigators, are likely to result in range shifts and changes in recruitment times of estuarine fish communities. The current work addresses novel aspects of the ecology and physiology of R. holubi and indicates that this species will play an increasingly important role within the estuaries of South Africa.
- Format
- xiv, 115 leaves
- Format
- Publisher
- Nelson Mandela University
- Publisher
- Faculty of Science
- Language
- English
- Rights
- Nelson Mandela University
- Hits: 1113
- Visitors: 1120
- Downloads: 127
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | Yanasivan Kisten PhD Thesis Final.pdf | 1 MB | Adobe Acrobat PDF | View Details Download |