In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: First description of the photophysical and surface enhanced Raman scattering behaviour
- Nwahara, Nnamdi, Achadu, Ojodomo John, Nyokong, Tebello
- Authors: Nwahara, Nnamdi , Achadu, Ojodomo John , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187638 , vital:44682 , xlink:href="https://doi.org/10.1016/j.jphotochem.2018.04.011"
- Description: Owing to the need for new low-dimensional molecular assemblies with tailored electronic properties, the current study presents a facile approach for the synthesis and assembly of gold nanoparticles (AuNPs) onto functional graphene quantum dots (GQDs)-phthalocyanines (Pcs) arrays and the investigation of their photophysical and surface enhanced Raman scattering (SERS) properties. The GQDs were functionalized with L-glutathione (GSH) (to form GQDs@GSH) in order to assist coupling to the low symmetry Zn tris–(tert–butyl) mono carboxyphenoxy (propionic acid) phthalocyanine (complex 1) to form 1@GQDs. The affinity of gold (Au) to sulphur (S) was exploited for the assembly of the AuNPs onto 1@GQDs platform to form 1@GQDs-AuNPs. Transmission electron microscopic investigations confirmed the formation of monodispersed, spherical Pc/GQDs@GSH/AuNPs hybrids. The nanocomposite displayed high triplet quantum yields, which translated into high singlet oxygen quantum yield as high as 87%. Furthermore, the formed composites demonstrated strong surface enhanced Raman scattering (SERS) properties with an unprecedented intrinsic maximal enhancement factor of more than 30-fold. These nanostructures also retain more than 90% of their original SERS intensities after a week of storage, displaying superb stability under ambient conditions. These results highlight the remarkable potential of this composite as a unique Raman-based PDT dosimetric agent.
- Full Text:
- Date Issued: 2018
- Authors: Nwahara, Nnamdi , Achadu, Ojodomo John , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187638 , vital:44682 , xlink:href="https://doi.org/10.1016/j.jphotochem.2018.04.011"
- Description: Owing to the need for new low-dimensional molecular assemblies with tailored electronic properties, the current study presents a facile approach for the synthesis and assembly of gold nanoparticles (AuNPs) onto functional graphene quantum dots (GQDs)-phthalocyanines (Pcs) arrays and the investigation of their photophysical and surface enhanced Raman scattering (SERS) properties. The GQDs were functionalized with L-glutathione (GSH) (to form GQDs@GSH) in order to assist coupling to the low symmetry Zn tris–(tert–butyl) mono carboxyphenoxy (propionic acid) phthalocyanine (complex 1) to form 1@GQDs. The affinity of gold (Au) to sulphur (S) was exploited for the assembly of the AuNPs onto 1@GQDs platform to form 1@GQDs-AuNPs. Transmission electron microscopic investigations confirmed the formation of monodispersed, spherical Pc/GQDs@GSH/AuNPs hybrids. The nanocomposite displayed high triplet quantum yields, which translated into high singlet oxygen quantum yield as high as 87%. Furthermore, the formed composites demonstrated strong surface enhanced Raman scattering (SERS) properties with an unprecedented intrinsic maximal enhancement factor of more than 30-fold. These nanostructures also retain more than 90% of their original SERS intensities after a week of storage, displaying superb stability under ambient conditions. These results highlight the remarkable potential of this composite as a unique Raman-based PDT dosimetric agent.
- Full Text:
- Date Issued: 2018
In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: First description of the photophysical and surface enhanced Raman scattering behaviour
- Nwahara, Nnamdi, Achadu, Ojodomo John, Nyokong, Tebello
- Authors: Nwahara, Nnamdi , Achadu, Ojodomo John , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188183 , vital:44730 , xlink:href="https://doi.org/10.1016/j.jphotochem.2018.04.011"
- Description: Owing to the need for new low-dimensional molecular assemblies with tailored electronic properties, the current study presents a facile approach for the synthesis and assembly of gold nanoparticles (AuNPs) onto functional graphene quantum dots (GQDs)-phthalocyanines (Pcs) arrays and the investigation of their photophysical and surface enhanced Raman scattering (SERS) properties. The GQDs were functionalized with L-glutathione (GSH) (to form GQDs@GSH) in order to assist coupling to the low symmetry Zn tris–(tert–butyl) mono carboxyphenoxy (propionic acid) phthalocyanine (complex 1) to form 1@GQDs. The affinity of gold (Au) to sulphur (S) was exploited for the assembly of the AuNPs onto 1@GQDs platform to form 1@GQDs-AuNPs. Transmission electron microscopic investigations confirmed the formation of monodispersed, spherical Pc/GQDs@GSH/AuNPs hybrids. The nanocomposite displayed high triplet quantum yields, which translated into high singlet oxygen quantum yield as high as 87%. Furthermore, the formed composites demonstrated strong surface enhanced Raman scattering (SERS) properties with an unprecedented intrinsic maximal enhancement factor of more than 30-fold. These nanostructures also retain more than 90% of their original SERS intensities after a week of storage, displaying superb stability under ambient conditions. These results highlight the remarkable potential of this composite as a unique Raman-based PDT dosimetric agent.
- Full Text:
- Date Issued: 2018
- Authors: Nwahara, Nnamdi , Achadu, Ojodomo John , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188183 , vital:44730 , xlink:href="https://doi.org/10.1016/j.jphotochem.2018.04.011"
- Description: Owing to the need for new low-dimensional molecular assemblies with tailored electronic properties, the current study presents a facile approach for the synthesis and assembly of gold nanoparticles (AuNPs) onto functional graphene quantum dots (GQDs)-phthalocyanines (Pcs) arrays and the investigation of their photophysical and surface enhanced Raman scattering (SERS) properties. The GQDs were functionalized with L-glutathione (GSH) (to form GQDs@GSH) in order to assist coupling to the low symmetry Zn tris–(tert–butyl) mono carboxyphenoxy (propionic acid) phthalocyanine (complex 1) to form 1@GQDs. The affinity of gold (Au) to sulphur (S) was exploited for the assembly of the AuNPs onto 1@GQDs platform to form 1@GQDs-AuNPs. Transmission electron microscopic investigations confirmed the formation of monodispersed, spherical Pc/GQDs@GSH/AuNPs hybrids. The nanocomposite displayed high triplet quantum yields, which translated into high singlet oxygen quantum yield as high as 87%. Furthermore, the formed composites demonstrated strong surface enhanced Raman scattering (SERS) properties with an unprecedented intrinsic maximal enhancement factor of more than 30-fold. These nanostructures also retain more than 90% of their original SERS intensities after a week of storage, displaying superb stability under ambient conditions. These results highlight the remarkable potential of this composite as a unique Raman-based PDT dosimetric agent.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »