Temperature-dependence of time-resolved optically stimulated luminescence and composition heterogeneity of synthetic α-Al2O3: C
- Chithambo, Makaiko L, Costin, G
- Authors: Chithambo, Makaiko L , Costin, G
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124172 , vital:35573 , https://doi.org/10.1016/j.jlumin.2016.10.038
- Description: The relationship of pulse-width, lifetime and measurement temperature in describing intensity of time-resolved luminescence optically stimulated at 470 nm from α-Al2O3:C is reported. The change of luminescence intensity with stimulation temperature is discussed in terms of the signal integrated over a complete time-resolved luminescence spectrum or in terms of ratios of the signal emitted either during or after pulsed stimulation to the total signal obtained per spectrum. The temperature-induced change in these parameters depends on whether the pulse-width is less or more than the luminescence lifetime. This is because the lifetime in α-Al2O3:C varies with measurement temperature. We have developed and applied new models to distinguish thermal assistance from different traps and to use this information as an additional means to analyse thermal quenching by using the luminescence intensity integrated from time-resolved spectra. Using a model based on use of the throughput, the activation energy for thermal assistance was determined for the shallow trap as 0.054±0.001 eV and as 0.53±0.03 eV for the main trap. The activation energy for thermal quenching was then evaluated using luminescence yield during the pulse as 1.09±0.01 eV and as 1.12±0.01 eV using the throughput after the pulse. Using the new analytical method based on integrated intensity, the activation energy for thermal quenching was found as 1.00±0.07 eV. These values are self-consistent and show that the methods for analyzing temperature-induced changes in intensity and the attendant thermal effects, such as thermal assistance can be successfully applied. We have also reported a general mathematical model that accounts for the temperature-dependence of time-resolved luminescence from α-Al2O3:C. The luminescence study was complemented by investigation of the phase and composition heterogeneity of the samples.
- Full Text: false
- Date Issued: 2017
- Authors: Chithambo, Makaiko L , Costin, G
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124172 , vital:35573 , https://doi.org/10.1016/j.jlumin.2016.10.038
- Description: The relationship of pulse-width, lifetime and measurement temperature in describing intensity of time-resolved luminescence optically stimulated at 470 nm from α-Al2O3:C is reported. The change of luminescence intensity with stimulation temperature is discussed in terms of the signal integrated over a complete time-resolved luminescence spectrum or in terms of ratios of the signal emitted either during or after pulsed stimulation to the total signal obtained per spectrum. The temperature-induced change in these parameters depends on whether the pulse-width is less or more than the luminescence lifetime. This is because the lifetime in α-Al2O3:C varies with measurement temperature. We have developed and applied new models to distinguish thermal assistance from different traps and to use this information as an additional means to analyse thermal quenching by using the luminescence intensity integrated from time-resolved spectra. Using a model based on use of the throughput, the activation energy for thermal assistance was determined for the shallow trap as 0.054±0.001 eV and as 0.53±0.03 eV for the main trap. The activation energy for thermal quenching was then evaluated using luminescence yield during the pulse as 1.09±0.01 eV and as 1.12±0.01 eV using the throughput after the pulse. Using the new analytical method based on integrated intensity, the activation energy for thermal quenching was found as 1.00±0.07 eV. These values are self-consistent and show that the methods for analyzing temperature-induced changes in intensity and the attendant thermal effects, such as thermal assistance can be successfully applied. We have also reported a general mathematical model that accounts for the temperature-dependence of time-resolved luminescence from α-Al2O3:C. The luminescence study was complemented by investigation of the phase and composition heterogeneity of the samples.
- Full Text: false
- Date Issued: 2017
Thermoluminescence of K-Mg-Al-Zn fluorophosphate glass
- Thomas, Sunil, Chithambo, Makaiko L
- Authors: Thomas, Sunil , Chithambo, Makaiko L
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124188 , vital:35574 , https://doi.org/10.1016/j.optmat.2016.12.035
- Description: The thermoluminescence of beta irradiated K-Mg-Al-Zn fluorophosphate glass is reported. A glow-curve corresponding to 10 Gy measured at 1 °C/s shows two peaks, a weaker-intensity one at 70 °C and a more prominent one at 235 °C, the subject of this report. The main peak was observed to fade with delay between irradiation and measurement and specifically, by 11% in 15 h. Its dose response is superlinear in the dose range 1–190 Gy although the change was linear for the initial 10 Gy. Regarding kinetic analysis, the activation energy of the higher temperature peak was evaluated as 1.31 eV and that of the lower temperature peak was found as 0.47 eV. It was also noted that the main peak is affected by thermal quenching with an activation energy for thermal quenching equal to 1.37 eV. It is proposed that the mechanism associated with the thermoluminescence in K-Mg-Al-Zn fluorophosphate glass is that electrons trapped by the metal cations are released during heating and then recombine with holes at oxygen sites.
- Full Text: false
- Date Issued: 2017
- Authors: Thomas, Sunil , Chithambo, Makaiko L
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124188 , vital:35574 , https://doi.org/10.1016/j.optmat.2016.12.035
- Description: The thermoluminescence of beta irradiated K-Mg-Al-Zn fluorophosphate glass is reported. A glow-curve corresponding to 10 Gy measured at 1 °C/s shows two peaks, a weaker-intensity one at 70 °C and a more prominent one at 235 °C, the subject of this report. The main peak was observed to fade with delay between irradiation and measurement and specifically, by 11% in 15 h. Its dose response is superlinear in the dose range 1–190 Gy although the change was linear for the initial 10 Gy. Regarding kinetic analysis, the activation energy of the higher temperature peak was evaluated as 1.31 eV and that of the lower temperature peak was found as 0.47 eV. It was also noted that the main peak is affected by thermal quenching with an activation energy for thermal quenching equal to 1.37 eV. It is proposed that the mechanism associated with the thermoluminescence in K-Mg-Al-Zn fluorophosphate glass is that electrons trapped by the metal cations are released during heating and then recombine with holes at oxygen sites.
- Full Text: false
- Date Issued: 2017
Thermoluminescence of SrAl2O4: Eu2+, Dy3+: kinetic analysis of a composite-peak
- Chithambo, Makaiko L, Wako, A H, Finch, A A
- Authors: Chithambo, Makaiko L , Wako, A H , Finch, A A
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124157 , vital:35571 , https://doi.org/10.1016/j.radmeas.2016.12.009
- Description: The kinetic analysis of thermoluminescence of beta-irradiated SrAl2O4:Eu2+,Dy3+ is reported. The glow-curve is dominated by an apparently-single peak. It has been demonstrated using a number of tests including partial dynamic-heating, isothermal heating, phosphorescence and, the effect of fading, that the peak and the glow-curve consists of a set of closely-spaced peaks. In view of the peak being complex, its first few components were abstracted and analysed and for comparison, the peak was also analysed assuming it is genuinely single.
- Full Text: false
- Date Issued: 2017
- Authors: Chithambo, Makaiko L , Wako, A H , Finch, A A
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124157 , vital:35571 , https://doi.org/10.1016/j.radmeas.2016.12.009
- Description: The kinetic analysis of thermoluminescence of beta-irradiated SrAl2O4:Eu2+,Dy3+ is reported. The glow-curve is dominated by an apparently-single peak. It has been demonstrated using a number of tests including partial dynamic-heating, isothermal heating, phosphorescence and, the effect of fading, that the peak and the glow-curve consists of a set of closely-spaced peaks. In view of the peak being complex, its first few components were abstracted and analysed and for comparison, the peak was also analysed assuming it is genuinely single.
- Full Text: false
- Date Issued: 2017
Thermoluminescence of α-Al2O3: C, Mg: kinetic analysis of the main glow peak
- Kalita, Jitumani M, Chithambo, Makaiko L
- Authors: Kalita, Jitumani M , Chithambo, Makaiko L
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/119844 , vital:34788 , https://doi.org/10.1016/j.jlumin.2016.10.031
- Description: The kinetic analysis of the thermoluminescence of aluminium oxide doped with carbon and co-doped with magnesium (α-Al2O3:C,Mg) is reported. Measurements were made at 1 °C/s following beta irradiation to 1 Gy. The glow curve consists of a dominant peak at a peak-maximum Tm of 161 °C and six secondary peaks of weaker intensity at 42, 72, 193, 279, 330 and 370 °C. Kinetic analysis of the main peak, the subject of this report, was carried out using initial rise, whole glow peak, peak shape, curve fitting and variable heating rate methods. The order of kinetics of the main peak was determined as first order using various methods including the Tm–Tstop technique and the dependence of Tm on irradiation dose. The activation energy of the peak is about ~1.36 eV and the frequency factor of the order of 1014 s−1. The peak area changes with heating rate in a manner that shows that the peak is affected by thermal quenching. The activation energy of thermal quenching was evaluated as 0.99±0.08 eV. A comparison of analytical results from the main peak before and after correction for thermal quenching show that the kinetic parameters of the main peak are not that affected by thermal quenching.
- Full Text: false
- Date Issued: 2017
- Authors: Kalita, Jitumani M , Chithambo, Makaiko L
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/119844 , vital:34788 , https://doi.org/10.1016/j.jlumin.2016.10.031
- Description: The kinetic analysis of the thermoluminescence of aluminium oxide doped with carbon and co-doped with magnesium (α-Al2O3:C,Mg) is reported. Measurements were made at 1 °C/s following beta irradiation to 1 Gy. The glow curve consists of a dominant peak at a peak-maximum Tm of 161 °C and six secondary peaks of weaker intensity at 42, 72, 193, 279, 330 and 370 °C. Kinetic analysis of the main peak, the subject of this report, was carried out using initial rise, whole glow peak, peak shape, curve fitting and variable heating rate methods. The order of kinetics of the main peak was determined as first order using various methods including the Tm–Tstop technique and the dependence of Tm on irradiation dose. The activation energy of the peak is about ~1.36 eV and the frequency factor of the order of 1014 s−1. The peak area changes with heating rate in a manner that shows that the peak is affected by thermal quenching. The activation energy of thermal quenching was evaluated as 0.99±0.08 eV. A comparison of analytical results from the main peak before and after correction for thermal quenching show that the kinetic parameters of the main peak are not that affected by thermal quenching.
- Full Text: false
- Date Issued: 2017
- «
- ‹
- 1
- ›
- »