Agents sans frontiers: cross-border aquatic weed biological control in the rivers of southern Mozambique
- Langa, Sílvia da Fátima, Hill, Martin P, Compton, Stephen G
- Authors: Langa, Sílvia da Fátima , Hill, Martin P , Compton, Stephen G
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148998 , vital:38794 , DOI: 10.2989/16085914.2020.1749551
- Description: Biological control is an effective ways of controlling aquatic plants, especially in South Africa. Release of biological control agents has been limited to Mozambique, where water hyacinth (Eichhornia crassipes (Mart.) Solms-Laubach (Pontederiaceae)), water lettuce (Pistia stratiotes L. (Araceae)), red water ferns (Azolla spp. (Azollaceae)) and salvinia (Salvinia molesta DS Mitch. (Salviniaceae)) are significant weeds in the south of the country. In 2009, we assessed the status of these weeds in seven rivers across southern Mozambique and recorded whether any biocontrol agents were present.
- Full Text:
- Date Issued: 2020
- Authors: Langa, Sílvia da Fátima , Hill, Martin P , Compton, Stephen G
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148998 , vital:38794 , DOI: 10.2989/16085914.2020.1749551
- Description: Biological control is an effective ways of controlling aquatic plants, especially in South Africa. Release of biological control agents has been limited to Mozambique, where water hyacinth (Eichhornia crassipes (Mart.) Solms-Laubach (Pontederiaceae)), water lettuce (Pistia stratiotes L. (Araceae)), red water ferns (Azolla spp. (Azollaceae)) and salvinia (Salvinia molesta DS Mitch. (Salviniaceae)) are significant weeds in the south of the country. In 2009, we assessed the status of these weeds in seven rivers across southern Mozambique and recorded whether any biocontrol agents were present.
- Full Text:
- Date Issued: 2020
Conservation implications of fine scale population genetic structure of Ficus species in South African forests:
- Deng, Jun-Yin, van Noort, Simon, Compton, Stephen G, Chen, Yan, Greeff, Jaco M
- Authors: Deng, Jun-Yin , van Noort, Simon , Compton, Stephen G , Chen, Yan , Greeff, Jaco M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163838 , vital:41074 , ttps://doi.org/10.1016/j.foreco.2020.118387
- Description: Genetic considerations are rarely applied in forest conservation management strategies, but forest fragmentation can reduce pollen and seed dispersal both between and within isolated fragments. Gene flow and immigration rates determine the extent to which individual plants are related to each other at different distances from themselves. This gradation in relatedness is known as a population's fine scale spatial genetic structure (SGS). Specifically, reduced but clumped immigration from distant fragments reduces fine scale SGS, whereas reduced gene flow within fragments increases fine scale SGS. In addition, non-random mortality caused by post-dispersal ecological processes can also affect SGS. We studied the effects of fragmentation on the fine scale SGS of Ficus species with different habitat preferences and distributional ranges in an archipelago of South African forest patches.
- Full Text:
- Date Issued: 2020
- Authors: Deng, Jun-Yin , van Noort, Simon , Compton, Stephen G , Chen, Yan , Greeff, Jaco M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163838 , vital:41074 , ttps://doi.org/10.1016/j.foreco.2020.118387
- Description: Genetic considerations are rarely applied in forest conservation management strategies, but forest fragmentation can reduce pollen and seed dispersal both between and within isolated fragments. Gene flow and immigration rates determine the extent to which individual plants are related to each other at different distances from themselves. This gradation in relatedness is known as a population's fine scale spatial genetic structure (SGS). Specifically, reduced but clumped immigration from distant fragments reduces fine scale SGS, whereas reduced gene flow within fragments increases fine scale SGS. In addition, non-random mortality caused by post-dispersal ecological processes can also affect SGS. We studied the effects of fragmentation on the fine scale SGS of Ficus species with different habitat preferences and distributional ranges in an archipelago of South African forest patches.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »