Breast cancer: current developments in molecular approaches to diagnosis and treatment
- de la Mare, Jo-Anne, Contu, Lara, Hunter, Morgan C, Moyo, Buhle, Sterrenberg, Jason N, Dhanani, Karim C H, Mutsvunguma, Lorraine Z, Edkins, Adrienne L
- Authors: de la Mare, Jo-Anne , Contu, Lara , Hunter, Morgan C , Moyo, Buhle , Sterrenberg, Jason N , Dhanani, Karim C H , Mutsvunguma, Lorraine Z , Edkins, Adrienne L
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164819 , vital:41175 , DOI: 10.2174/15748928113086660046
- Description: Due to the high heterogeneity of breast cancers, numerous recent patents describe improved methods of detection and classification which promise better patient prognosis and treatment. In particular, there has been a shift towards more effective genetic screening to identify specific mutations associated with breast tumours, which may lead to “personalised medicine” with improved outcomes. Two challenging areas of breast cancer research involve the development of treatments for the highly aggressive triple negative breast cancer subtype as well as the chemotherapy-resistant cancer stem cell subpopulation. In addition, despite numerous recent advances in breast cancer treatment in woman, male breast cancer remains poorly understood and there are limited therapies available which are developed specifically for men. This review serves to report on important developments in the treatment of breast malignancies patented in the past two years as well as to highlight the current gaps in the field of breast cancer therapeutics and areas which require further study.
- Full Text:
- Date Issued: 2014
- Authors: de la Mare, Jo-Anne , Contu, Lara , Hunter, Morgan C , Moyo, Buhle , Sterrenberg, Jason N , Dhanani, Karim C H , Mutsvunguma, Lorraine Z , Edkins, Adrienne L
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164819 , vital:41175 , DOI: 10.2174/15748928113086660046
- Description: Due to the high heterogeneity of breast cancers, numerous recent patents describe improved methods of detection and classification which promise better patient prognosis and treatment. In particular, there has been a shift towards more effective genetic screening to identify specific mutations associated with breast tumours, which may lead to “personalised medicine” with improved outcomes. Two challenging areas of breast cancer research involve the development of treatments for the highly aggressive triple negative breast cancer subtype as well as the chemotherapy-resistant cancer stem cell subpopulation. In addition, despite numerous recent advances in breast cancer treatment in woman, male breast cancer remains poorly understood and there are limited therapies available which are developed specifically for men. This review serves to report on important developments in the treatment of breast malignancies patented in the past two years as well as to highlight the current gaps in the field of breast cancer therapeutics and areas which require further study.
- Full Text:
- Date Issued: 2014
Assessment of potential anti-cancer stem cell activity of marine algal compounds using an in vitro mammosphere assay:
- de la Mare, Jo-Anne, Sterrenberg, Jason N, Sukhthankar, Mugdha G, Chiwakata, Maynard T, Beukes, Denzil R, Blatch, Gregory L, Edkins, Adrienne L
- Authors: de la Mare, Jo-Anne , Sterrenberg, Jason N , Sukhthankar, Mugdha G , Chiwakata, Maynard T , Beukes, Denzil R , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165184 , vital:41216 , DOI: 10.1186/1475-2867-13-39
- Description: The cancer stem cell (CSC) theory proposes that tumours arise from and are sustained by a subpopulation of cells with both cancer and stem cell properties. One of the key hallmarks of CSCs is the ability to grow anchorage-independently under serum-free culture conditions resulting in the formation of tumourspheres. It has further been reported that these cells are resistant to traditional chemotherapeutic agents.
- Full Text:
- Date Issued: 2013
- Authors: de la Mare, Jo-Anne , Sterrenberg, Jason N , Sukhthankar, Mugdha G , Chiwakata, Maynard T , Beukes, Denzil R , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165184 , vital:41216 , DOI: 10.1186/1475-2867-13-39
- Description: The cancer stem cell (CSC) theory proposes that tumours arise from and are sustained by a subpopulation of cells with both cancer and stem cell properties. One of the key hallmarks of CSCs is the ability to grow anchorage-independently under serum-free culture conditions resulting in the formation of tumourspheres. It has further been reported that these cells are resistant to traditional chemotherapeutic agents.
- Full Text:
- Date Issued: 2013
Human DNAJ in cancer and stem cells:
- Sterrenberg, Jason N, Edkins, Adrienne L, Blatch, Gregory L
- Authors: Sterrenberg, Jason N , Edkins, Adrienne L , Blatch, Gregory L
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165118 , vital:41210 , DOI: 10.1016/j.canlet.2011.08.019
- Description: The heat shock protein 40 kDa (HSP40/DNAJ) co-chaperones constitute the largest and most diverse sub-group of the heat shock protein (HSP) family. DNAJ are widely accepted as regulators of HSP70 function, but also have roles as co-chaperones for the HSP90 chaperone machine, and a growing number of biological functions that may be independent of either of these chaperones. The DNAJ proteins are differentially expressed in human tissues and demonstrate the capacity to function to both promote and suppress cancer development by acting as chaperones for tumour suppressors or oncoproteins. We review the current literature on the function and expression of DNAJ in cancer, stem cells and cancer stem cells. Combining data from gene expression, proteomics and studies in other systems, we propose that DNAJ will be key regulators of cancer, stem cell and possibly cancer stem cell function. The diversity of DNAJ and their assorted roles in a range of biological functions means that selected DNAJ, provided there is limited redundancy and that a specific link to malignancy can be established, may yet provide an attractive target for specific and selective drug design for the development of anti-cancer treatments.
- Full Text:
- Date Issued: 2011
- Authors: Sterrenberg, Jason N , Edkins, Adrienne L , Blatch, Gregory L
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165118 , vital:41210 , DOI: 10.1016/j.canlet.2011.08.019
- Description: The heat shock protein 40 kDa (HSP40/DNAJ) co-chaperones constitute the largest and most diverse sub-group of the heat shock protein (HSP) family. DNAJ are widely accepted as regulators of HSP70 function, but also have roles as co-chaperones for the HSP90 chaperone machine, and a growing number of biological functions that may be independent of either of these chaperones. The DNAJ proteins are differentially expressed in human tissues and demonstrate the capacity to function to both promote and suppress cancer development by acting as chaperones for tumour suppressors or oncoproteins. We review the current literature on the function and expression of DNAJ in cancer, stem cells and cancer stem cells. Combining data from gene expression, proteomics and studies in other systems, we propose that DNAJ will be key regulators of cancer, stem cell and possibly cancer stem cell function. The diversity of DNAJ and their assorted roles in a range of biological functions means that selected DNAJ, provided there is limited redundancy and that a specific link to malignancy can be established, may yet provide an attractive target for specific and selective drug design for the development of anti-cancer treatments.
- Full Text:
- Date Issued: 2011
Novobiocin–ferrocene conjugates possessing anticancer and antiplasmodial activity independent of HSP90 inhibition.
- Mbaba, Mziyanda, de la Mare, Jo-Anne, Sterrenberg, Jason N, Kajewole, Deborah, Maharaj, Shantal, Edkins, Adrienne L, Isaacs, Michelle, Hoppe, Heinrich C, Khanye, Setshaba D
- Authors: Mbaba, Mziyanda , de la Mare, Jo-Anne , Sterrenberg, Jason N , Kajewole, Deborah , Maharaj, Shantal , Edkins, Adrienne L , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/122858 , vital:35359 , https://doi.org/10.1007/s00775-018-1634-9
- Description: A series of tailored novobiocin–ferrocene conjugates was prepared in moderate yields and investigated for in vitro anticancer and antiplasmodial activity against the MDA-MB-231 breast cancer line and Plasmodium falciparum 3D7 strain, respectively. While the target compounds displayed moderate anticancer activity against the breast cancer cell line with IC50 values in the mid-micromolar range, compounds 10a–c displayed promising antiplasmodial activity as low as 0.889 µM. Furthermore, the most promising compounds were tested for inhibitory effects against a postulated target, heat shock protein 90 (Hsp90).
- Full Text:
- Authors: Mbaba, Mziyanda , de la Mare, Jo-Anne , Sterrenberg, Jason N , Kajewole, Deborah , Maharaj, Shantal , Edkins, Adrienne L , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/122858 , vital:35359 , https://doi.org/10.1007/s00775-018-1634-9
- Description: A series of tailored novobiocin–ferrocene conjugates was prepared in moderate yields and investigated for in vitro anticancer and antiplasmodial activity against the MDA-MB-231 breast cancer line and Plasmodium falciparum 3D7 strain, respectively. While the target compounds displayed moderate anticancer activity against the breast cancer cell line with IC50 values in the mid-micromolar range, compounds 10a–c displayed promising antiplasmodial activity as low as 0.889 µM. Furthermore, the most promising compounds were tested for inhibitory effects against a postulated target, heat shock protein 90 (Hsp90).
- Full Text:
- «
- ‹
- 1
- ›
- »