An analysis of malware evasion techniques against modern AV engines
- Authors: Haffejee, Jameel
- Date: 2015
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:20979 , http://hdl.handle.net/10962/5821
- Description: This research empirically tested the response of antivirus applications to binaries that use virus-like evasion techniques. In order to achieve this, a number of binaries are processed using a number of evasion methods and are then deployed against several antivirus engines. The research also documents the process of setting up an environment for testing antivirus engines, including building the evasion techniques used in the tests. The results of the empirical tests illustrate that an attacker can evade multiple antivirus engines without much effort using well-known evasion techniques. Furthermore, some antivirus engines may respond to the occurrence of an evasion technique instead of the presence of any malicious code. In practical terms, this shows that while antivirus applications are useful for protecting against known threats, their effectiveness against unknown or modified threats is limited.
- Full Text:
- Date Issued: 2015
- Authors: Haffejee, Jameel
- Date: 2015
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:20979 , http://hdl.handle.net/10962/5821
- Description: This research empirically tested the response of antivirus applications to binaries that use virus-like evasion techniques. In order to achieve this, a number of binaries are processed using a number of evasion methods and are then deployed against several antivirus engines. The research also documents the process of setting up an environment for testing antivirus engines, including building the evasion techniques used in the tests. The results of the empirical tests illustrate that an attacker can evade multiple antivirus engines without much effort using well-known evasion techniques. Furthermore, some antivirus engines may respond to the occurrence of an evasion technique instead of the presence of any malicious code. In practical terms, this shows that while antivirus applications are useful for protecting against known threats, their effectiveness against unknown or modified threats is limited.
- Full Text:
- Date Issued: 2015
Testing antivirus engines to determine their effectiveness as a security layer
- Haffejee, Jameel, Irwin, Barry V W
- Authors: Haffejee, Jameel , Irwin, Barry V W
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/429673 , vital:72631 , 10.1109/ISSA.2014.6950496
- Description: This research has been undertaken to empirically test the assumption that it is trivial to bypass an antivirus application and to gauge the effectiveness of antivirus engines when faced with a number of known evasion techniques. A known malicious binary was combined with evasion techniques and deployed against several antivirus engines to test their detection ability. The research also documents the process of setting up an environment for testing antivirus engines as well as building the evasion techniques used in the tests. This environment facilitated the empirical testing that was needed to determine if the assumption that antivirus security controls could easily be bypassed. The results of the empirical tests are also presented in this research and demonstrate that it is indeed within reason that an attacker can evade multiple antivirus engines without much effort. As such while an antivirus application is useful for protecting against known threats, it does not work as effectively against unknown threats.
- Full Text:
- Date Issued: 2014
- Authors: Haffejee, Jameel , Irwin, Barry V W
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/429673 , vital:72631 , 10.1109/ISSA.2014.6950496
- Description: This research has been undertaken to empirically test the assumption that it is trivial to bypass an antivirus application and to gauge the effectiveness of antivirus engines when faced with a number of known evasion techniques. A known malicious binary was combined with evasion techniques and deployed against several antivirus engines to test their detection ability. The research also documents the process of setting up an environment for testing antivirus engines as well as building the evasion techniques used in the tests. This environment facilitated the empirical testing that was needed to determine if the assumption that antivirus security controls could easily be bypassed. The results of the empirical tests are also presented in this research and demonstrate that it is indeed within reason that an attacker can evade multiple antivirus engines without much effort. As such while an antivirus application is useful for protecting against known threats, it does not work as effectively against unknown threats.
- Full Text:
- Date Issued: 2014
- «
- ‹
- 1
- ›
- »