An Assessment of the Effect of Rotenone on Selected Non-Target Aquatic Fauna
- Dalu, Tatenda, Wasserman, Ryan J, Jordaan, Martine, Froneman, P William, Weyl, Olaf L F
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Jordaan, Martine , Froneman, P William , Weyl, Olaf L F
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124240 , vital:35579 , https://doi.org/10.1371/journal.pone.0142140.g001
- Description: Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0, 12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplank- ton would be more susceptible to rote none than Decapods, Belostomatids and snails. Experimental results supported this hypothesis and mortality and behaviour effects varied considerably between taxa, ranging from no effect (crab Potamonuates sidneyi) to 100% mortality (Daphnia pulex and Paradiaptomus lamellatus). Planktonic invertebrates were par- ticularly sensitive to rotenone even at very low concentrations. Future research should investigate the recovery time of invertebrate communities after the application of rotenone and conduct field assessments assessing the longer term effects of rotenone exposure on the population dynamics of those less sensitive organisms.
- Full Text:
- Date Issued: 2015
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Jordaan, Martine , Froneman, P William , Weyl, Olaf L F
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124240 , vital:35579 , https://doi.org/10.1371/journal.pone.0142140.g001
- Description: Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0, 12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplank- ton would be more susceptible to rote none than Decapods, Belostomatids and snails. Experimental results supported this hypothesis and mortality and behaviour effects varied considerably between taxa, ranging from no effect (crab Potamonuates sidneyi) to 100% mortality (Daphnia pulex and Paradiaptomus lamellatus). Planktonic invertebrates were par- ticularly sensitive to rotenone even at very low concentrations. Future research should investigate the recovery time of invertebrate communities after the application of rotenone and conduct field assessments assessing the longer term effects of rotenone exposure on the population dynamics of those less sensitive organisms.
- Full Text:
- Date Issued: 2015
An assessment of the effect of rotenone on selected non-target aquatic fauna:
- Dalu, Tatenda, Wasserman, Ryan J, Jordaan, Martine, Froneman, P William, Weyl, Olaf L F
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Jordaan, Martine , Froneman, P William , Weyl, Olaf L F
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/143247 , vital:38214 , https://doi.org/10.1371/journal.pone.0142140
- Description: Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0, 12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplankton would be more susceptible to rotenone than Decapods, Belostomatids and snails.
- Full Text:
- Date Issued: 2015
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Jordaan, Martine , Froneman, P William , Weyl, Olaf L F
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/143247 , vital:38214 , https://doi.org/10.1371/journal.pone.0142140
- Description: Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0, 12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplankton would be more susceptible to rotenone than Decapods, Belostomatids and snails.
- Full Text:
- Date Issued: 2015
An Assessment of the Effect of Rotenone on Selected Non-Target Aquatic Fauna: Reflections on Henri Lefebre, Urban Theory and the Politics of Scale
- Dalu, Tatenda, Wasserman, Ryan J, Jordaan, Martine, Froneman, Pierre William
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Jordaan, Martine , Froneman, Pierre William
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/70425 , vital:29654 , https://doi.org/10.1371/journal.pone.0142140
- Description: Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0,12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplankton would be more susceptible to rotenone than Decapods, Belostomatids and snails. Experimental results supported this hypothesis and mortality and behaviour effects varied considerably between taxa, ranging from no effect (crab Potamonuates sidneyi) to 100% mortality (Daphnia pulex and Paradiaptomus lamellatus). Planktonic invertebrates were particularly sensitive to rotenone even at very low concentrations. Future research should investigate the recovery time of invertebrate communities after the application of rotenone and conduct field assessments assessing the longer term effects of rotenone exposure on the population dynamics of those less sensitive organisms.
- Full Text:
- Date Issued: 2015
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Jordaan, Martine , Froneman, Pierre William
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/70425 , vital:29654 , https://doi.org/10.1371/journal.pone.0142140
- Description: Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0,12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplankton would be more susceptible to rotenone than Decapods, Belostomatids and snails. Experimental results supported this hypothesis and mortality and behaviour effects varied considerably between taxa, ranging from no effect (crab Potamonuates sidneyi) to 100% mortality (Daphnia pulex and Paradiaptomus lamellatus). Planktonic invertebrates were particularly sensitive to rotenone even at very low concentrations. Future research should investigate the recovery time of invertebrate communities after the application of rotenone and conduct field assessments assessing the longer term effects of rotenone exposure on the population dynamics of those less sensitive organisms.
- Full Text:
- Date Issued: 2015
- «
- ‹
- 1
- ›
- »