Photoantimicrobial activity of Schiff-base morpholino phthalocyanines against drug resistant micro-organisms in their planktonic and biofilm forms
- Sindelo, Azole, Sen, Pinar, Nyokong, Tebello
- Authors: Sindelo, Azole , Sen, Pinar , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360437 , vital:65088 , xlink:href="https://doi.org/10.1016/j.pdpdt.2023.103519"
- Description: Antimicrobial photodynamic inactivation (aPDI) is a treatment for the eradication of drug-resistant micro-organisms. One of the advantages of this technique, is that there is minimal possibility of microbial resistance. Hence, herein, the preparation and characterization of novel neutral and cationic morpholine containing Schiff base phthalocyanines are reported. The cationic complexes gave moderate singlet oxygen quantum yields (ΦΔ) of ∼0.2 in aqueous media. Conversely, the neutral complexes generated very low ΦΔ values making them very poor candidates for antimicrobial studies. The cationic phthalocyanines showed excellent photodynamic activity against planktonic cells of all micro-organisms (Candida albicans, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica subspecies enterica serovar Choleraesuis, vancomycin-resistant Enterococcus faecium, and methicillin-resistant Staphylococcus aureus). The efficiency of aPDI was shown to be both concentration and light-dose-dependent. Mono biofilms were susceptible when treated with 200 µM of cationic Pcs at 108 J/cm2. However, ∼10% of the mixed biofilm survived after treatment.
- Full Text:
- Date Issued: 2023
- Authors: Sindelo, Azole , Sen, Pinar , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360437 , vital:65088 , xlink:href="https://doi.org/10.1016/j.pdpdt.2023.103519"
- Description: Antimicrobial photodynamic inactivation (aPDI) is a treatment for the eradication of drug-resistant micro-organisms. One of the advantages of this technique, is that there is minimal possibility of microbial resistance. Hence, herein, the preparation and characterization of novel neutral and cationic morpholine containing Schiff base phthalocyanines are reported. The cationic complexes gave moderate singlet oxygen quantum yields (ΦΔ) of ∼0.2 in aqueous media. Conversely, the neutral complexes generated very low ΦΔ values making them very poor candidates for antimicrobial studies. The cationic phthalocyanines showed excellent photodynamic activity against planktonic cells of all micro-organisms (Candida albicans, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica subspecies enterica serovar Choleraesuis, vancomycin-resistant Enterococcus faecium, and methicillin-resistant Staphylococcus aureus). The efficiency of aPDI was shown to be both concentration and light-dose-dependent. Mono biofilms were susceptible when treated with 200 µM of cationic Pcs at 108 J/cm2. However, ∼10% of the mixed biofilm survived after treatment.
- Full Text:
- Date Issued: 2023
Photodynamic inactivation of methicillin-resistant Staphylococcus aureus using pyrrolidinium containing Schiff base phthalocyanines
- Sindelo, Azole, Sen, Pinar, Nyokong, Tebello
- Authors: Sindelo, Azole , Sen, Pinar , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360449 , vital:65089 , xlink:href="https://doi.org/10.1016/j.jphotochem.2022.114535"
- Description: New tetra-substituted zinc and indium Schiff base phthalocyanines (ZnPc and InPc, respectively) are synthesized and characterized herein. The ethyl pyrrolidine (ZnPc-2, InPc-2) and propyl pyrrolidine (ZnPc-3, InPc-3) substituted Schiff base Pcs were reacted with methyl iodide to form their cationic derivatives (ZnPc-2Q, InPc-2Q, ZnPc-3Q, and InPc-3Q, respectively). The photophysical and photochemical properties of the Pcs were studied. The cationic Pcs generated higher singlet oxygen quantum yield in aqueous media than the neutral Pcs. The photoinactivation of Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-sensitive Staphylococcus aureus (MSSA) strains was evaluated. 5 µM ZnPc-3Q and InPc-3Q inactivated 100 % of the MSSA and MRSA while 5 µM ZnPc-2Q and InPc-2Q eradicated 100 % for MSSA and 97.2 % and 98.7 % (respectively) of the MRSA. The photodynamic antimicrobial chemotherapy studies depended on singlet oxygen ability, the charges, and the extension of the alkyl groups.
- Full Text:
- Date Issued: 2023
- Authors: Sindelo, Azole , Sen, Pinar , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360449 , vital:65089 , xlink:href="https://doi.org/10.1016/j.jphotochem.2022.114535"
- Description: New tetra-substituted zinc and indium Schiff base phthalocyanines (ZnPc and InPc, respectively) are synthesized and characterized herein. The ethyl pyrrolidine (ZnPc-2, InPc-2) and propyl pyrrolidine (ZnPc-3, InPc-3) substituted Schiff base Pcs were reacted with methyl iodide to form their cationic derivatives (ZnPc-2Q, InPc-2Q, ZnPc-3Q, and InPc-3Q, respectively). The photophysical and photochemical properties of the Pcs were studied. The cationic Pcs generated higher singlet oxygen quantum yield in aqueous media than the neutral Pcs. The photoinactivation of Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-sensitive Staphylococcus aureus (MSSA) strains was evaluated. 5 µM ZnPc-3Q and InPc-3Q inactivated 100 % of the MSSA and MRSA while 5 µM ZnPc-2Q and InPc-2Q eradicated 100 % for MSSA and 97.2 % and 98.7 % (respectively) of the MRSA. The photodynamic antimicrobial chemotherapy studies depended on singlet oxygen ability, the charges, and the extension of the alkyl groups.
- Full Text:
- Date Issued: 2023
Synthesis and photophysicochemical properties of novel axially di-substituted silicon (IV) phthalocyanines and their photodynamic antimicrobial chemotherapy (PACT) activity against Staphylococcus aureus
- Sen, Pinar, Sindelo, Azole, Mafukidze, Donovan M, Nyokong, Tebello
- Authors: Sen, Pinar , Sindelo, Azole , Mafukidze, Donovan M , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186757 , vital:44531 , xlink:href="https://doi.org/10.1016/j.synthmet.2019.116203"
- Description: In this study, novel silicon (IV) phthalocyanine axially di-substituted with benzimidazole moieties (3) and its quaternized derivative (4) have been synthesized and fully characterized. The photophysical and photochemical properties of both phthalocyanines such as absorption, fluorescence and, singlet oxygen quantum yields, triplet state quantum yields and exited state lifetimes were investigated in solutions. These new silicon phthalocyanines exhibited low fluorescence but produced high singlet oxygen yields in both DMSO (compound 3 and 4) and aqueous media (compound 4). The quaternization of Si(IV)Pc (3) improved the triplet state quantum yield (ΦT) 0.61 to 0.83, consequently singlet oxygen generation (ΦΔ) increased to 0.69 from 0.42. Photodynamic antimicrobial chemotherapy activities (PACT) of Si(IV)Pc photosensitizers were determined towards Staphylococcus aureus. The higher efficiency was obtained with cationic derivative (4) giving reduction percentage value of 99.75%.
- Full Text:
- Date Issued: 2019
- Authors: Sen, Pinar , Sindelo, Azole , Mafukidze, Donovan M , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186757 , vital:44531 , xlink:href="https://doi.org/10.1016/j.synthmet.2019.116203"
- Description: In this study, novel silicon (IV) phthalocyanine axially di-substituted with benzimidazole moieties (3) and its quaternized derivative (4) have been synthesized and fully characterized. The photophysical and photochemical properties of both phthalocyanines such as absorption, fluorescence and, singlet oxygen quantum yields, triplet state quantum yields and exited state lifetimes were investigated in solutions. These new silicon phthalocyanines exhibited low fluorescence but produced high singlet oxygen yields in both DMSO (compound 3 and 4) and aqueous media (compound 4). The quaternization of Si(IV)Pc (3) improved the triplet state quantum yield (ΦT) 0.61 to 0.83, consequently singlet oxygen generation (ΦΔ) increased to 0.69 from 0.42. Photodynamic antimicrobial chemotherapy activities (PACT) of Si(IV)Pc photosensitizers were determined towards Staphylococcus aureus. The higher efficiency was obtained with cationic derivative (4) giving reduction percentage value of 99.75%.
- Full Text:
- Date Issued: 2019
- «
- ‹
- 1
- ›
- »