Nitrogen fertilisation improves growth of Chromolaena odorata (Asteraceae) and the performance of the biological control agent, Pareuchaetes insulata (Erebidae)
- Uyi, Osariyekemwen O, Zacharariades, Costas, Hill, Martin P
- Authors: Uyi, Osariyekemwen O , Zacharariades, Costas , Hill, Martin P
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416880 , vital:71393 , xlink:href="https://doi.org/10.1080/09583157.2015.1118615"
- Description: Recent studies have demonstrated, through their contrasting results, that relationships between nitrogen levels in host plants and phytophagous insect performance are not simple. This study examined the effect of varying fertilisation regimes on the invasive alien plant, Chromolaena odorata (L.) (Asteraceae) and the response of a specialist folivore (a biological control agent), Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae). C. odorata plants were treated with 3 different levels of fertilisation and plant characteristics were measured within 2–3 months of fertiliser application. Leaves from each of the three treatments were fed to newly hatched larvae until pupation in order to determine the effect of nitrogen fertilisation on herbivore performance metrics such as survival, development time, fecundity and longevity. High and medium fertilisation significantly increased foliar nitrogen concentrations, basal stem diameter, leaf length, shoot height and above-ground biomass of C. odorata plants relative to low fertilisation. When individuals of P. insulata were fed on leaves from medium- or high-fertilisation treatments, they developed faster, grew to a larger size (by 8%) and achieved higher fecundity (19–22%) than leaves from the low-fertilisation treatment. The results suggest that in mass-rearing, increased production of this biological control agent will occur in high- or medium-fertilised plants.
- Full Text:
- Date Issued: 2016
- Authors: Uyi, Osariyekemwen O , Zacharariades, Costas , Hill, Martin P
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416880 , vital:71393 , xlink:href="https://doi.org/10.1080/09583157.2015.1118615"
- Description: Recent studies have demonstrated, through their contrasting results, that relationships between nitrogen levels in host plants and phytophagous insect performance are not simple. This study examined the effect of varying fertilisation regimes on the invasive alien plant, Chromolaena odorata (L.) (Asteraceae) and the response of a specialist folivore (a biological control agent), Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae). C. odorata plants were treated with 3 different levels of fertilisation and plant characteristics were measured within 2–3 months of fertiliser application. Leaves from each of the three treatments were fed to newly hatched larvae until pupation in order to determine the effect of nitrogen fertilisation on herbivore performance metrics such as survival, development time, fecundity and longevity. High and medium fertilisation significantly increased foliar nitrogen concentrations, basal stem diameter, leaf length, shoot height and above-ground biomass of C. odorata plants relative to low fertilisation. When individuals of P. insulata were fed on leaves from medium- or high-fertilisation treatments, they developed faster, grew to a larger size (by 8%) and achieved higher fecundity (19–22%) than leaves from the low-fertilisation treatment. The results suggest that in mass-rearing, increased production of this biological control agent will occur in high- or medium-fertilised plants.
- Full Text:
- Date Issued: 2016
Temperature-dependent performance and potential distribution of Pareuchaetes insulata, a biological control agent of Chromolaena odorata in South Africa
- Uyi, Osariyekemwen O, Zachariades, Costas, Hill, Martin P, McConnachie, Andrew J
- Authors: Uyi, Osariyekemwen O , Zachariades, Costas , Hill, Martin P , McConnachie, Andrew J
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/418067 , vital:71505 , xlink:href="https://doi.org/10.1007/s10526-016-9760-1"
- Description: Despite the release of about 1.9 million individuals of Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae) in KwaZulu-Natal for the biological control of Chromolaena odorata (L.) King and Robinson (Asteraceae) in South Africa, the moth probably only established at one of the 30 release sites and its population level is generally low in the field. To determine whether climate incompatibility in South Africa is responsible for the poor performance of P. insulata, the effects of temperature on life-history traits were investigated under several constant temperatures. Although a degree-day model estimated between 3.9 and 10.0 generations of the moth per year in the weed’s invaded range, survival and fecundity declined while development time was prolonged at constant temperatures below 25 °C, indicating that both direct and indirect negative impacts of low winter temperatures, such as increased mortality, slow development and reduced fecundity as well as exposure to natural enemies, may partly explain the poor performance of P. insulata in South Africa.
- Full Text:
- Date Issued: 2016
- Authors: Uyi, Osariyekemwen O , Zachariades, Costas , Hill, Martin P , McConnachie, Andrew J
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/418067 , vital:71505 , xlink:href="https://doi.org/10.1007/s10526-016-9760-1"
- Description: Despite the release of about 1.9 million individuals of Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae) in KwaZulu-Natal for the biological control of Chromolaena odorata (L.) King and Robinson (Asteraceae) in South Africa, the moth probably only established at one of the 30 release sites and its population level is generally low in the field. To determine whether climate incompatibility in South Africa is responsible for the poor performance of P. insulata, the effects of temperature on life-history traits were investigated under several constant temperatures. Although a degree-day model estimated between 3.9 and 10.0 generations of the moth per year in the weed’s invaded range, survival and fecundity declined while development time was prolonged at constant temperatures below 25 °C, indicating that both direct and indirect negative impacts of low winter temperatures, such as increased mortality, slow development and reduced fecundity as well as exposure to natural enemies, may partly explain the poor performance of P. insulata in South Africa.
- Full Text:
- Date Issued: 2016
- «
- ‹
- 1
- ›
- »