13C pulse-chase labeling comparative assessment of the active methanogenic archaeal community composition in the transgenic and nontransgenic parental rice rhizospheres
- Zhu, Weijing, Lu, Haohao, Hill, Jaclyn Marie, Wang, Hailong, Wu, Weixiang
- Authors: Zhu, Weijing , Lu, Haohao , Hill, Jaclyn Marie , Wang, Hailong , Wu, Weixiang
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/122993 , vital:35389 , https://doi.org/10.1111/1574-6941.12261
- Description: Rhabdosargus holubi (Steindachner, 1881) is a small (maximum size = 450 mm total length; Heemstra and Heemstra 2004) sparid that is distributed along the south-east coast of Africa from St Helena Bay, South Africa, to Maputo, Mozambique (Götz and Cowley 2013). Spawning occurs in the nearshore marine environment primarily during winter, specifically May–August in KwaZulu-Natal (KZN) (Wallace 1975) and July–February in the South-Eastern Cape (Whitfield 1998). Individuals reach 50% sexual maturity at approximately 150 mm standard length (SL) in the Eastern Cape (Whitfield 1998). The early life stages are transported by the south-westward-flowing Agulhas Current, and recruit as post-flexion larvae and early juveniles into estuaries during late winter and early summer (Blaber 1974). The warm temperatures and high nutrient levels in estuaries favour fast growth (Blaber 1973a), and fish spend their first year of life in these environments, migrating back out to sea after reaching approximately 120 mm SL. Some individuals remain trapped in closed estuaries, where they may reach sizes greater than 200 mm SL (James et al. 2007a). Rhabdosargus holubi is the dominant estuarine-dependent marine teleost species recorded in permanently open and temporarily open/closed estuaries in the warm-temperate region, which spans the south, south-east and east coast of South Africa (Harrison 2005). The species is also an important component of the linefishery in many SouthAfrican estuaries (10–15.6% by number) (Pradervand and Baird 2002), particularly in Eastern Cape estuaries (Cowley et al. 2003). These figures underestimate the presence of R. holubi, as most individuals making use of estuaries are young, feeding predominately on filamentous macroalgae and diatom flora, and are generally too small to be caught with hook and line (De Wet and Marais 1990). James et al. (2007b) showed that R. holubi made up 34–92% of the annual seine-net catch in the East Kleinemonde Estuary. Rhabdosargus holubi is also important in the KZN shorebased linefishery, representing 4.6% of the total landed catch (Dunlop and Mann 2012)More and more investigations indicate that genetic modification has no significant or persistent effects on microbial community composition in the rice rhizosphere. Very few studies, however, have focused on its impact on functional microorganisms. This study completed a 13C-CO2 pulse-chase labeling experiment comparing the potential effects of cry1Ab gene transformation on 13C tissue distribution and rhizosphere methanogenic archaeal community composition with its parental rice variety (Ck) and a distant parental rice variety (Dp). Results showed that 13C partitioning in aboveground biomass (mainly in stems) and roots of Dp was significantly lower than that of Ck. However, there were no significant differences in 13C partitioning between the Bt transgenic rice line (Bt) and Ck. RNA-stable isotope probing combined with clone library analyses inferred that the group Methanosaetaceae was the predominant methanogenic Archaea in all three rice rhizospheres. The active methanogenic archaeal community in the Bt rhizosphere was dominated by Methanosarcinaceae, Methanosaetaceae, and Methanomicrobiaceae, while there were only two main methanogenic clusters (Methanosaetaceae and Methanomicrobiaceae) in the Ck and Dp rhizospheres. These results indicate that the insertion of cry1Ab gene into the rice genome has the potential to result in the modification of methanogenic community composition in its rhizosphere.
- Full Text:
- Authors: Zhu, Weijing , Lu, Haohao , Hill, Jaclyn Marie , Wang, Hailong , Wu, Weixiang
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/122993 , vital:35389 , https://doi.org/10.1111/1574-6941.12261
- Description: Rhabdosargus holubi (Steindachner, 1881) is a small (maximum size = 450 mm total length; Heemstra and Heemstra 2004) sparid that is distributed along the south-east coast of Africa from St Helena Bay, South Africa, to Maputo, Mozambique (Götz and Cowley 2013). Spawning occurs in the nearshore marine environment primarily during winter, specifically May–August in KwaZulu-Natal (KZN) (Wallace 1975) and July–February in the South-Eastern Cape (Whitfield 1998). Individuals reach 50% sexual maturity at approximately 150 mm standard length (SL) in the Eastern Cape (Whitfield 1998). The early life stages are transported by the south-westward-flowing Agulhas Current, and recruit as post-flexion larvae and early juveniles into estuaries during late winter and early summer (Blaber 1974). The warm temperatures and high nutrient levels in estuaries favour fast growth (Blaber 1973a), and fish spend their first year of life in these environments, migrating back out to sea after reaching approximately 120 mm SL. Some individuals remain trapped in closed estuaries, where they may reach sizes greater than 200 mm SL (James et al. 2007a). Rhabdosargus holubi is the dominant estuarine-dependent marine teleost species recorded in permanently open and temporarily open/closed estuaries in the warm-temperate region, which spans the south, south-east and east coast of South Africa (Harrison 2005). The species is also an important component of the linefishery in many SouthAfrican estuaries (10–15.6% by number) (Pradervand and Baird 2002), particularly in Eastern Cape estuaries (Cowley et al. 2003). These figures underestimate the presence of R. holubi, as most individuals making use of estuaries are young, feeding predominately on filamentous macroalgae and diatom flora, and are generally too small to be caught with hook and line (De Wet and Marais 1990). James et al. (2007b) showed that R. holubi made up 34–92% of the annual seine-net catch in the East Kleinemonde Estuary. Rhabdosargus holubi is also important in the KZN shorebased linefishery, representing 4.6% of the total landed catch (Dunlop and Mann 2012)More and more investigations indicate that genetic modification has no significant or persistent effects on microbial community composition in the rice rhizosphere. Very few studies, however, have focused on its impact on functional microorganisms. This study completed a 13C-CO2 pulse-chase labeling experiment comparing the potential effects of cry1Ab gene transformation on 13C tissue distribution and rhizosphere methanogenic archaeal community composition with its parental rice variety (Ck) and a distant parental rice variety (Dp). Results showed that 13C partitioning in aboveground biomass (mainly in stems) and roots of Dp was significantly lower than that of Ck. However, there were no significant differences in 13C partitioning between the Bt transgenic rice line (Bt) and Ck. RNA-stable isotope probing combined with clone library analyses inferred that the group Methanosaetaceae was the predominant methanogenic Archaea in all three rice rhizospheres. The active methanogenic archaeal community in the Bt rhizosphere was dominated by Methanosarcinaceae, Methanosaetaceae, and Methanomicrobiaceae, while there were only two main methanogenic clusters (Methanosaetaceae and Methanomicrobiaceae) in the Ck and Dp rhizospheres. These results indicate that the insertion of cry1Ab gene into the rice genome has the potential to result in the modification of methanogenic community composition in its rhizosphere.
- Full Text:
A moderate elevation in [CO 2] results in potential hypervirulence on SABBIErica
- Gallagher, S, Hill, Jaclyn Marie, Murugan, N, Botha, C E J
- Authors: Gallagher, S , Hill, Jaclyn Marie , Murugan, N , Botha, C E J
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68835 , vital:29329 , https://doi.org/10.1016/j.sajb.2017.10.010
- Description: The Russian Wheat Aphid (Diuraphis noxia Kurdjumov, 1913) (RWA) is a serious pest of grain crops and is of considerable concern in South Africa, particularly in terms of barley grown specifically for the brewing industry. This paper highlights the effect of a small (50 ppm) increase in [CO2] on the growth rate of the four South African RWA biotypes on the SABBIErica barley cultivar. Controlled environment experiments revealed that the colony growth rate for RWASA4 was significantly lower than SA1 under ambient conditions as well as significantly lower than SA1, SA2 or SA3 under elevated CO2 conditions. The unexpected difference suggested an atypical, non-preferential feeding habit on SABBIErica, for RWASA4. The small RWASA4 colonies inflicted similar morphological damage to the significantly larger RWASA1 – RWASA3 biotype populations — indicative of potential hypervirulence under elevated CO2. The continuous feeding of RWASA biotypes causes damage to the transport system as well as substantial, catastrophic damage to mesophyll chloroplasts as well as mitochondria within the host plant's leaves. The TEM study revealed evidence of sequential/systematic degeneration of chloroplasts and mitochondria with continued aphid feeding, which we suggest is an indication of potential emergent hypervirulence under elevated CO2 conditions.
- Full Text: false
- Authors: Gallagher, S , Hill, Jaclyn Marie , Murugan, N , Botha, C E J
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68835 , vital:29329 , https://doi.org/10.1016/j.sajb.2017.10.010
- Description: The Russian Wheat Aphid (Diuraphis noxia Kurdjumov, 1913) (RWA) is a serious pest of grain crops and is of considerable concern in South Africa, particularly in terms of barley grown specifically for the brewing industry. This paper highlights the effect of a small (50 ppm) increase in [CO2] on the growth rate of the four South African RWA biotypes on the SABBIErica barley cultivar. Controlled environment experiments revealed that the colony growth rate for RWASA4 was significantly lower than SA1 under ambient conditions as well as significantly lower than SA1, SA2 or SA3 under elevated CO2 conditions. The unexpected difference suggested an atypical, non-preferential feeding habit on SABBIErica, for RWASA4. The small RWASA4 colonies inflicted similar morphological damage to the significantly larger RWASA1 – RWASA3 biotype populations — indicative of potential hypervirulence under elevated CO2. The continuous feeding of RWASA biotypes causes damage to the transport system as well as substantial, catastrophic damage to mesophyll chloroplasts as well as mitochondria within the host plant's leaves. The TEM study revealed evidence of sequential/systematic degeneration of chloroplasts and mitochondria with continued aphid feeding, which we suggest is an indication of potential emergent hypervirulence under elevated CO2 conditions.
- Full Text: false
A stable isotope approach to trophic ecology resolving food webs in intertidal ecosystems
- Authors: Hill, Jaclyn Marie
- Date: 2008
- Subjects: Stable isotopes , Food chains (Ecology) , Stable isotopes in ecological research , Intertidal ecology , Mussels -- South Africa
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5771 , http://hdl.handle.net/10962/d1005459
- Description: There are broad differences in regional oceanography and primary production around the South African coast, which we might expect to give rise to major differences in trophic pathways. δ⁻¹³C and δ⁻¹⁵N isotopic ratios of suspended particulate matter (SPM), mussels, various intertidal consumers and common macroalgae along the South African coastline were explored using stable isotope analysis to investigate biogeographic and temporal variability of isotopic signatures of marine intertidal consumers and their food sources around the coast of South Africa, with a focus on evaluating the dependence of intertidal mussels on phytoplankton and macroalgal-derived organic carbon. Isotopic equilibration rates of four mussel tissues were determined through laboratory feeding experiments, which established that adductor tissue had the slowest isotopic turnover rate, and was subsequently used as an indication of overall mussel diet. Biogeographic, temporal and nearshore/offshore trends of isotopic ratios of SPM were investigated along 10km transects perpendicular to the coast and SPM exhibited overall trends of carbon depletion when moving from west to east along the coastline and from nearshore to offshore water, in both cases suggesting a shift from macrophyte detritus to a phytoplankton signature. δ⁻¹³C signatures of SPM also revealed temporal and biogeographic variation that had strong ties to local oceanography, being closely correlated to regional hydrographic features and tidal influences. Mixing models indicated filter feeders demonstrated over 50% dependence on nearshore SPM for organic carbon and it was possible to categorize them into geographic groups based on their carbon and nitrogen signatures, suggesting biogeographic shifts in resources. Biogeographic shifts in diet were also seen in some grazers. Difficulties in relating macroalgae to mussel diet led to investigations into the isotopic changes associated with macroalgal decomposition. Variation in photosynthetic fractionation, leaching and microbial mineralization are believed to have resulted from species-specific patterns of degradation. Although the strong links between carbon signatures and local oceanography indicate that stable isotope analysis is a powerful tool for the study of water mixing and coastal hydrography in relation to food-web analyses, substantial variation in fractionation of primary consumers, along with different periods of time integration between consumers and their food sources must be considered in future studies, to resolve trophic links in marine food webs successfully.
- Full Text:
- Authors: Hill, Jaclyn Marie
- Date: 2008
- Subjects: Stable isotopes , Food chains (Ecology) , Stable isotopes in ecological research , Intertidal ecology , Mussels -- South Africa
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5771 , http://hdl.handle.net/10962/d1005459
- Description: There are broad differences in regional oceanography and primary production around the South African coast, which we might expect to give rise to major differences in trophic pathways. δ⁻¹³C and δ⁻¹⁵N isotopic ratios of suspended particulate matter (SPM), mussels, various intertidal consumers and common macroalgae along the South African coastline were explored using stable isotope analysis to investigate biogeographic and temporal variability of isotopic signatures of marine intertidal consumers and their food sources around the coast of South Africa, with a focus on evaluating the dependence of intertidal mussels on phytoplankton and macroalgal-derived organic carbon. Isotopic equilibration rates of four mussel tissues were determined through laboratory feeding experiments, which established that adductor tissue had the slowest isotopic turnover rate, and was subsequently used as an indication of overall mussel diet. Biogeographic, temporal and nearshore/offshore trends of isotopic ratios of SPM were investigated along 10km transects perpendicular to the coast and SPM exhibited overall trends of carbon depletion when moving from west to east along the coastline and from nearshore to offshore water, in both cases suggesting a shift from macrophyte detritus to a phytoplankton signature. δ⁻¹³C signatures of SPM also revealed temporal and biogeographic variation that had strong ties to local oceanography, being closely correlated to regional hydrographic features and tidal influences. Mixing models indicated filter feeders demonstrated over 50% dependence on nearshore SPM for organic carbon and it was possible to categorize them into geographic groups based on their carbon and nitrogen signatures, suggesting biogeographic shifts in resources. Biogeographic shifts in diet were also seen in some grazers. Difficulties in relating macroalgae to mussel diet led to investigations into the isotopic changes associated with macroalgal decomposition. Variation in photosynthetic fractionation, leaching and microbial mineralization are believed to have resulted from species-specific patterns of degradation. Although the strong links between carbon signatures and local oceanography indicate that stable isotope analysis is a powerful tool for the study of water mixing and coastal hydrography in relation to food-web analyses, substantial variation in fractionation of primary consumers, along with different periods of time integration between consumers and their food sources must be considered in future studies, to resolve trophic links in marine food webs successfully.
- Full Text:
Community entomology: insects, science and society
- Weaver, Kim N, Hill, Jaclyn Marie, Martin, Grant D, Paterson, Iain D, Coetzee, Julie, Hill, Martin Patrick
- Authors: Weaver, Kim N , Hill, Jaclyn Marie , Martin, Grant D , Paterson, Iain D , Coetzee, Julie , Hill, Martin Patrick
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123343 , vital:35429 , https://hdl.handle.net/10520/EJC-c859bebd5
- Description: Educative outreach programmes have been found to be effective ways in which to raise awareness around basic scientific concepts. The Biological Control Research Group (BCRG) in the Department of Zoology and Entomology at Rhodes University, South Africa, is involved in community engaged initiatives that aim to be interactive and informative around entomology, and more specifically, the use of biological control against invasive alien plants. As a higher education institution, Rhodes University has a civic responsibility to engage with local communities and work with them around local challenges. Three groups of activities undertaken by the BCRG in partnership with local schools and other community partners are described and assessed in this paper as a way of assessing them and exploring future research areas around the aims and outcomes of these programmes.
- Full Text:
- Authors: Weaver, Kim N , Hill, Jaclyn Marie , Martin, Grant D , Paterson, Iain D , Coetzee, Julie , Hill, Martin Patrick
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123343 , vital:35429 , https://hdl.handle.net/10520/EJC-c859bebd5
- Description: Educative outreach programmes have been found to be effective ways in which to raise awareness around basic scientific concepts. The Biological Control Research Group (BCRG) in the Department of Zoology and Entomology at Rhodes University, South Africa, is involved in community engaged initiatives that aim to be interactive and informative around entomology, and more specifically, the use of biological control against invasive alien plants. As a higher education institution, Rhodes University has a civic responsibility to engage with local communities and work with them around local challenges. Three groups of activities undertaken by the BCRG in partnership with local schools and other community partners are described and assessed in this paper as a way of assessing them and exploring future research areas around the aims and outcomes of these programmes.
- Full Text:
Comparing the fish assemblages and food web structures of large floodplain rivers
- Taylor, Geraldine C, Weyl, Olaf L F, Hill, Jaclyn Marie, Peel, Richard A, Hay, Clinton J
- Authors: Taylor, Geraldine C , Weyl, Olaf L F , Hill, Jaclyn Marie , Peel, Richard A , Hay, Clinton J
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68961 , vital:29343 , https://doi.org/10.1111/fwb.13032
- Description: The Upper Zambezi, Kavango and Kwando are large floodplain rivers with substantial biodiversity, providing water and ecosystem services to a large tract of southern Africa. These rivers differ in hydrological regime. The Upper Zambezi and Kavango rivers are in flood for 4 months (March, April, May, June) while, in the Kwando River, floods are later and last for 1–2 months in July and August. The Upper Zambezi River has the largest annual flood pulse, followed by the Kavango River, while the Kwando River experiences small and unreliable floods. During years of exceptional flooding of the Upper Zambezi and Kavango rivers, the rivers are interconnected at peak flows and therefore share a common ichthyofauna. This provided a natural experiment to investigate the responses of fish communities comprised of the same species to differing flood regimes by comparing the fish assemblages and food‐web structures between rivers.
- Full Text: false
- Authors: Taylor, Geraldine C , Weyl, Olaf L F , Hill, Jaclyn Marie , Peel, Richard A , Hay, Clinton J
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68961 , vital:29343 , https://doi.org/10.1111/fwb.13032
- Description: The Upper Zambezi, Kavango and Kwando are large floodplain rivers with substantial biodiversity, providing water and ecosystem services to a large tract of southern Africa. These rivers differ in hydrological regime. The Upper Zambezi and Kavango rivers are in flood for 4 months (March, April, May, June) while, in the Kwando River, floods are later and last for 1–2 months in July and August. The Upper Zambezi River has the largest annual flood pulse, followed by the Kavango River, while the Kwando River experiences small and unreliable floods. During years of exceptional flooding of the Upper Zambezi and Kavango rivers, the rivers are interconnected at peak flows and therefore share a common ichthyofauna. This provided a natural experiment to investigate the responses of fish communities comprised of the same species to differing flood regimes by comparing the fish assemblages and food‐web structures between rivers.
- Full Text: false
Contrasting responses in the niches of two coral reef herbivores along a gradient of habitat disturbance in the Spermonde Archipelago, Indonesia
- Plass-Johnson, Jeremiah G, Bednarz, Vanessa N, Hill, Jaclyn Marie, Jompa, Jamaluddin, Ferse, Sebastian C A, Teichberg, Mirta
- Authors: Plass-Johnson, Jeremiah G , Bednarz, Vanessa N , Hill, Jaclyn Marie , Jompa, Jamaluddin , Ferse, Sebastian C A , Teichberg, Mirta
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69135 , vital:29398 , hhttps://doi.org/10.3389/fmars.2018.00032
- Description: Habitat modification of coral reefs is becoming increasingly common due to increases in coastal urban populations. Coral reef fish are highly dependent on benthic habitat; however, information on species-specific responses to habitat change, in particular with regard to trophic strategies, remains scarce. This study identifies variation in the trophic niches of two herbivorous coral reef fishes with contrasting trophic strategies, using Stable Isotopes Bayesian Ellipses in R, along a spatial gradient of changing coral reef habitats. In the parrotfish Chlorurus bleekeri, a roving consumer, the range of δ15N and δ13C and their niche area displayed significant relationships with the amount of rubble in the habitat. In contrast, the farming damselfish, Dischistodus prosopotaenia, showed a narrow range of both δ15N and δ13C, displaying little change in niche parameters among sites. This may indicate that parrotfish vary their feeding according to habitat, while the damselfish continue to maintain their turf and invertebrate resources. Assessing isotopic niches may help to better understand the specific trophic responses to change in the environment. Furthermore, the use of isotopic niches underlines the utility of stable isotopes in studying the potential impacts of environmental change on feeding ecology.
- Full Text:
- Authors: Plass-Johnson, Jeremiah G , Bednarz, Vanessa N , Hill, Jaclyn Marie , Jompa, Jamaluddin , Ferse, Sebastian C A , Teichberg, Mirta
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69135 , vital:29398 , hhttps://doi.org/10.3389/fmars.2018.00032
- Description: Habitat modification of coral reefs is becoming increasingly common due to increases in coastal urban populations. Coral reef fish are highly dependent on benthic habitat; however, information on species-specific responses to habitat change, in particular with regard to trophic strategies, remains scarce. This study identifies variation in the trophic niches of two herbivorous coral reef fishes with contrasting trophic strategies, using Stable Isotopes Bayesian Ellipses in R, along a spatial gradient of changing coral reef habitats. In the parrotfish Chlorurus bleekeri, a roving consumer, the range of δ15N and δ13C and their niche area displayed significant relationships with the amount of rubble in the habitat. In contrast, the farming damselfish, Dischistodus prosopotaenia, showed a narrow range of both δ15N and δ13C, displaying little change in niche parameters among sites. This may indicate that parrotfish vary their feeding according to habitat, while the damselfish continue to maintain their turf and invertebrate resources. Assessing isotopic niches may help to better understand the specific trophic responses to change in the environment. Furthermore, the use of isotopic niches underlines the utility of stable isotopes in studying the potential impacts of environmental change on feeding ecology.
- Full Text:
Russian wheat aphids: Breakfast, lunch, and supper. Feasting on small grains in South Africa
- Botha, C E J, Sacranie, S, Gallagher, S, Hill, Jaclyn Marie
- Authors: Botha, C E J , Sacranie, S , Gallagher, S , Hill, Jaclyn Marie
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69031 , vital:29374 , https://doi.org/10.1016/j.sajb.2016.12.006
- Description: The Russian Wheat Aphid (Diuraphis noxia, RWA) negatively impacts commercially grown barley and wheat in South Africa. Climate change, the attendant rise in [CO2], and the appearance of new RWA biotypes have the potential to induce severe crop yield loss in agriculturally important wheat and barley cultivars. This study presents data showing changes in relative aphid population numbers, concurrently with assessments of plant damage under controlled environmental conditions, under ambient and elevated (450 ppm) [CO2]. Extensive structural damage to the vascular tissue and disruption to the transport systems were revealed using light, fluorescence and electron microscopy. This, coupled with biotype population studies, demonstrated that RWA has the capacity to inflict severe, potentially permanent damage to vegetative small grain plants. Furthermore, some currently ‘resistant’ cultivars may well lose resistance as a direct result of increasing atmospheric [CO2]. A small (50 ppm) increase in atmospheric [CO2] may result in increased aphid population numbers, potentially serious plant damage and, by implication, a potentially negative impact on yield, as increased aphid density per plant leads to an accelerated disruption of the assimilate and transpiration transport pathways. These outcomes pose a direct threat to the commercial small grain industry of South Africa and by extension, to other small grain production areas elsewhere.
- Full Text: false
- Authors: Botha, C E J , Sacranie, S , Gallagher, S , Hill, Jaclyn Marie
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69031 , vital:29374 , https://doi.org/10.1016/j.sajb.2016.12.006
- Description: The Russian Wheat Aphid (Diuraphis noxia, RWA) negatively impacts commercially grown barley and wheat in South Africa. Climate change, the attendant rise in [CO2], and the appearance of new RWA biotypes have the potential to induce severe crop yield loss in agriculturally important wheat and barley cultivars. This study presents data showing changes in relative aphid population numbers, concurrently with assessments of plant damage under controlled environmental conditions, under ambient and elevated (450 ppm) [CO2]. Extensive structural damage to the vascular tissue and disruption to the transport systems were revealed using light, fluorescence and electron microscopy. This, coupled with biotype population studies, demonstrated that RWA has the capacity to inflict severe, potentially permanent damage to vegetative small grain plants. Furthermore, some currently ‘resistant’ cultivars may well lose resistance as a direct result of increasing atmospheric [CO2]. A small (50 ppm) increase in atmospheric [CO2] may result in increased aphid population numbers, potentially serious plant damage and, by implication, a potentially negative impact on yield, as increased aphid density per plant leads to an accelerated disruption of the assimilate and transpiration transport pathways. These outcomes pose a direct threat to the commercial small grain industry of South Africa and by extension, to other small grain production areas elsewhere.
- Full Text: false
Synergies between research organisations and the wider community in enhancing weed biological control in South Africa
- Martin, Grant D, Hill, Martin Patrick, Coetzee, Julie, Weaver, Kim N, Hill, Jaclyn Marie
- Authors: Martin, Grant D , Hill, Martin Patrick , Coetzee, Julie , Weaver, Kim N , Hill, Jaclyn Marie
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68452 , vital:29258 , https://doi.org/10.1007/s10526-017-9846-4
- Description: Biological control offers a cost effective and ecologically sustainable tool for the management of invasive alien plants. Its implementation, however, has historically been slow and poorly co-ordinated. In South Africa, as in many other countries, most aspects of biological control programmes were done by researchers, but from 1995 onwards, with the advent of the Working for Water Programme, a more inclusive approach to biological control has been adopted. In this paper, we report on the development of community-based biological control implementation programmes in South Africa, after 1995, and highlight a number of initiatives, including employing persons with disabilities at mass-rearing facilities and in particular, we outline a suite of educational and outreach programmes for the general public and for schools, which have increased capacity, education and employment in the field of weed biological control.
- Full Text:
- Authors: Martin, Grant D , Hill, Martin Patrick , Coetzee, Julie , Weaver, Kim N , Hill, Jaclyn Marie
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68452 , vital:29258 , https://doi.org/10.1007/s10526-017-9846-4
- Description: Biological control offers a cost effective and ecologically sustainable tool for the management of invasive alien plants. Its implementation, however, has historically been slow and poorly co-ordinated. In South Africa, as in many other countries, most aspects of biological control programmes were done by researchers, but from 1995 onwards, with the advent of the Working for Water Programme, a more inclusive approach to biological control has been adopted. In this paper, we report on the development of community-based biological control implementation programmes in South Africa, after 1995, and highlight a number of initiatives, including employing persons with disabilities at mass-rearing facilities and in particular, we outline a suite of educational and outreach programmes for the general public and for schools, which have increased capacity, education and employment in the field of weed biological control.
- Full Text:
The abundance of an invasive freshwater snail Tarebia granifera (Lamarck, 1822) in the Nseleni River, South Africa
- Jones, Roy W, Hill, Jaclyn Marie, Coetzee, Julie, Hill, Martin Patrick, Avery, T S, Weyl, Olaf L F
- Authors: Jones, Roy W , Hill, Jaclyn Marie , Coetzee, Julie , Hill, Martin Patrick , Avery, T S , Weyl, Olaf L F
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69077 , vital:29382 , https://doi.org/10.2989/16085914.2017.1298984
- Description: The invasive freshwater snail Tarebia granifera (Lamarck, 1822) was first reported in South Africa in 1999 and it has become widespread across the country, with some evidence to suggest that it reduces benthic macroinvertebrate biodiversity. The current study aimed to identify the primary abiotic drivers behind abundance patterns of T. granifera, by comparing the current abundance of the snail in three different regions, and at three depths, of the highly modified Nseleni River in KwaZulu-Natal, South Africa. Tarebia granifera was well established throughout the Nseleni River system, with an overall preference for shallow waters and seasonal temporal patterns of abundance. Although it is uncertain what the ecological impacts of the snail in this system are, its high abundances suggest that it should be controlled where possible and prevented from invading other systems in the region.
- Full Text: false
- Authors: Jones, Roy W , Hill, Jaclyn Marie , Coetzee, Julie , Hill, Martin Patrick , Avery, T S , Weyl, Olaf L F
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69077 , vital:29382 , https://doi.org/10.2989/16085914.2017.1298984
- Description: The invasive freshwater snail Tarebia granifera (Lamarck, 1822) was first reported in South Africa in 1999 and it has become widespread across the country, with some evidence to suggest that it reduces benthic macroinvertebrate biodiversity. The current study aimed to identify the primary abiotic drivers behind abundance patterns of T. granifera, by comparing the current abundance of the snail in three different regions, and at three depths, of the highly modified Nseleni River in KwaZulu-Natal, South Africa. Tarebia granifera was well established throughout the Nseleni River system, with an overall preference for shallow waters and seasonal temporal patterns of abundance. Although it is uncertain what the ecological impacts of the snail in this system are, its high abundances suggest that it should be controlled where possible and prevented from invading other systems in the region.
- Full Text: false
The contributions of biological control to reduced plant size and biomass of water hyacinth populations
- Jones, Roy W, Hill, Jaclyn Marie, Coetzee, Julie, Hill, Martin Patrick
- Authors: Jones, Roy W , Hill, Jaclyn Marie , Coetzee, Julie , Hill, Martin Patrick
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68803 , vital:29326 , https://0-doi.org.wam.seals.ac.za/10.1007/s10750-017-3413-y
- Description: Water hyacinth is invasive in many countries, where it reduces aquatic biodiversity and limits water resource utilisation. Biological control of water hyacinth has been successful in South Africa, but has suffered from a lack of empirical data to prove causation. Insect exclusion trials were conducted to quantify the contribution of Neochetina eichhorniae and N. bruchi to the integrated control of water hyacinth on the Nseleni River, South Africa. Insecticide was not expected to induce phytotoxicity, but would prevent weevil damage in water hyacinth plants; and weevil herbivory was predicted to reduce plant petiole length, and above/below surface biomass. Results showed that insecticide had no phytotoxic effects and excluded weevils for 3 weeks, providing a baseline for field applications. Biological control on the Nseleni River directly affected water hyacinth biomass and petiole length, but did not affect plant cover. Plants subject to weevil herbivory demonstrated reductions in above and below surface biomass and had shorter petioles compared to insect-free plants. Dead biomass was also higher in biological control treatments. Biological control strongly affects plant size, biomass and vigour; however, further integrated control is required to facilitate reduction in mat cover, which is the goalpost for successful control of floating aquatic plants.
- Full Text: false
- Authors: Jones, Roy W , Hill, Jaclyn Marie , Coetzee, Julie , Hill, Martin Patrick
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68803 , vital:29326 , https://0-doi.org.wam.seals.ac.za/10.1007/s10750-017-3413-y
- Description: Water hyacinth is invasive in many countries, where it reduces aquatic biodiversity and limits water resource utilisation. Biological control of water hyacinth has been successful in South Africa, but has suffered from a lack of empirical data to prove causation. Insect exclusion trials were conducted to quantify the contribution of Neochetina eichhorniae and N. bruchi to the integrated control of water hyacinth on the Nseleni River, South Africa. Insecticide was not expected to induce phytotoxicity, but would prevent weevil damage in water hyacinth plants; and weevil herbivory was predicted to reduce plant petiole length, and above/below surface biomass. Results showed that insecticide had no phytotoxic effects and excluded weevils for 3 weeks, providing a baseline for field applications. Biological control on the Nseleni River directly affected water hyacinth biomass and petiole length, but did not affect plant cover. Plants subject to weevil herbivory demonstrated reductions in above and below surface biomass and had shorter petioles compared to insect-free plants. Dead biomass was also higher in biological control treatments. Biological control strongly affects plant size, biomass and vigour; however, further integrated control is required to facilitate reduction in mat cover, which is the goalpost for successful control of floating aquatic plants.
- Full Text: false
- «
- ‹
- 1
- ›
- »