Assessment of the antibacterial properties of n-Hexane extract of Cocos Nucifera and its interactions with some conventional antibiotics
- Authors: Akinyele, Taiwo Adesola
- Date: 2011
- Subjects: Coconut palm , Microbial sensitivity tests , Gram-negative bacterial infections , Vibrio infections , Antibiotics , Hexane , Extracts
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11245 , http://hdl.handle.net/10353/416 , Coconut palm , Microbial sensitivity tests , Gram-negative bacterial infections , Vibrio infections , Antibiotics , Hexane , Extracts
- Description: Cocos nucifera belong to the family Aracaceae (palm Family). The English name is coconut and it is used extensively as medicinal remedies against infections such as urinary tract infections, gastro intestinal infections, skin and wound infections. The in vitro antibacterial (including anti-listerial and anti-vibrio) properties as well as the evaluation of the combination potentials of the plant extract with six front-line antibiotics were evaluated in this study using standard procedures. The in vitro anti-listerial properties of the crude aqueous and n-Hexane extract of the husk of Cocos nucifera were carried out against 37 Listeria isolates. Twenty-nine of the test organisms were susceptible to the aqueous extract while thirty were susceptible to the n-Hexane extract both at the screening concentration of 25 mg/ml. Minimum Inhibitory Concentration (MIC) values for all the susceptible bacteria ranged between 0.6 - 5.0 mg/ml. For the aqueous extract, average log reduction in viable cell count ranged between 0.32 Log10 and 4.8 Log10 CFU/ml after 8 hours interaction in 1 × MIC and 2 × MIC. For the n-Hexane extract, the log reduction ranged between 2.4 Log10 and 6.2 Log10 CFU/ml after 8 hours interaction in 1 × MIC and 2 × MIC. The time-kill characteristics of the two extracts suggest that at higher concentration (2 × MIC) and longer duration of interaction (8 hr), more bacteria were killed. In vitro anti-vibrio and antibacterial properties experiment revealed that of all the 45 vibrio and 25 bacteria strains that was tested, 37 were susceptible to the aqueous extract and 38 to the n-Hexane extract, while 17 were susceptible to the aqueous extract and 21 to the n-Hexane extract. Minimum Inhibitory Concentration (MIC) values for all the susceptible bacteria ranged between 0.3 - 5.0 mg/ml. viii The time kill studies revealed that for the aqueous extract, average log reduction in viable cell count in time kill assay ranged between 0.12 Log10 and 4.2 Log10 CFU/ml after 8 hr interaction at 1 × MIC and 2 × MIC. For the n-Hexane extract, the log reduction ranged between 0.56 Log10 and 6.4 Log10 CFU/ml after 8 hr interaction in 1 × MIC and 2 × MIC. In the test for the combination interactions, the checkerboard method revealed synergy of 67% and indifferent of 33%, while the time kill assay detected synergy in 72% and indifferent in 28% of the combinations tested. The synergy detected was not specific to any of the antibiotics or the Gram reaction of the bacteria, and no antagonism was detected. We conclude that the aqueous and n-Hexane extract of the husk of C. nucifera contains potential broad spectrum antibiotics resistance modulating compounds that could be relevant in the treatment of infections caused by these pathogens. In addition, the husk which is being discarded as agro waste will opens up a vista of opportunities for utilization for therapeutic purposes
- Full Text:
- Date Issued: 2011
- Authors: Akinyele, Taiwo Adesola
- Date: 2011
- Subjects: Coconut palm , Microbial sensitivity tests , Gram-negative bacterial infections , Vibrio infections , Antibiotics , Hexane , Extracts
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11245 , http://hdl.handle.net/10353/416 , Coconut palm , Microbial sensitivity tests , Gram-negative bacterial infections , Vibrio infections , Antibiotics , Hexane , Extracts
- Description: Cocos nucifera belong to the family Aracaceae (palm Family). The English name is coconut and it is used extensively as medicinal remedies against infections such as urinary tract infections, gastro intestinal infections, skin and wound infections. The in vitro antibacterial (including anti-listerial and anti-vibrio) properties as well as the evaluation of the combination potentials of the plant extract with six front-line antibiotics were evaluated in this study using standard procedures. The in vitro anti-listerial properties of the crude aqueous and n-Hexane extract of the husk of Cocos nucifera were carried out against 37 Listeria isolates. Twenty-nine of the test organisms were susceptible to the aqueous extract while thirty were susceptible to the n-Hexane extract both at the screening concentration of 25 mg/ml. Minimum Inhibitory Concentration (MIC) values for all the susceptible bacteria ranged between 0.6 - 5.0 mg/ml. For the aqueous extract, average log reduction in viable cell count ranged between 0.32 Log10 and 4.8 Log10 CFU/ml after 8 hours interaction in 1 × MIC and 2 × MIC. For the n-Hexane extract, the log reduction ranged between 2.4 Log10 and 6.2 Log10 CFU/ml after 8 hours interaction in 1 × MIC and 2 × MIC. The time-kill characteristics of the two extracts suggest that at higher concentration (2 × MIC) and longer duration of interaction (8 hr), more bacteria were killed. In vitro anti-vibrio and antibacterial properties experiment revealed that of all the 45 vibrio and 25 bacteria strains that was tested, 37 were susceptible to the aqueous extract and 38 to the n-Hexane extract, while 17 were susceptible to the aqueous extract and 21 to the n-Hexane extract. Minimum Inhibitory Concentration (MIC) values for all the susceptible bacteria ranged between 0.3 - 5.0 mg/ml. viii The time kill studies revealed that for the aqueous extract, average log reduction in viable cell count in time kill assay ranged between 0.12 Log10 and 4.2 Log10 CFU/ml after 8 hr interaction at 1 × MIC and 2 × MIC. For the n-Hexane extract, the log reduction ranged between 0.56 Log10 and 6.4 Log10 CFU/ml after 8 hr interaction in 1 × MIC and 2 × MIC. In the test for the combination interactions, the checkerboard method revealed synergy of 67% and indifferent of 33%, while the time kill assay detected synergy in 72% and indifferent in 28% of the combinations tested. The synergy detected was not specific to any of the antibiotics or the Gram reaction of the bacteria, and no antagonism was detected. We conclude that the aqueous and n-Hexane extract of the husk of C. nucifera contains potential broad spectrum antibiotics resistance modulating compounds that could be relevant in the treatment of infections caused by these pathogens. In addition, the husk which is being discarded as agro waste will opens up a vista of opportunities for utilization for therapeutic purposes
- Full Text:
- Date Issued: 2011
Bioactivity and phytochemical analysis of Hydnora Africana on some selected bacterial pathogens
- Authors: Nethathe, Bono Bianca
- Date: 2011
- Subjects: Helicobacter pylori , Medicinal plants -- South Africa -- Eastern Cape , Microbial sensitivity tests , Herbs -- Therapeutic use -- South Africa -- Eastern Cape , Plants -- Analysis , Staphylococcus aureus , Aeromonas hydrophila , Drug resistance in microorganisms , Plant-pathogen relationships
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11247 , http://hdl.handle.net/10353/d1001063 , Helicobacter pylori , Medicinal plants -- South Africa -- Eastern Cape , Microbial sensitivity tests , Herbs -- Therapeutic use -- South Africa -- Eastern Cape , Plants -- Analysis , Staphylococcus aureus , Aeromonas hydrophila , Drug resistance in microorganisms , Plant-pathogen relationships
- Description: Abstract Medicinal plants have been for long remedies for human diseases because they contain components of therapeutic value. The growing problem of antibiotic resistance by organisms demands the search for novel compounds from plant based sources. The present study was aimed at evaluating the bioactivity and phytochemical analysis of Hydnora africana on clinical and standard strains of Helicobacter pylori (PE 252C and ATCC 43526), Aeromonas hydrophila ATCC 35654, and Staphylococcus aureus NCT 6571 in an effort to identify potential sources of cheap starting materials for the synthesis of new drugs against these strains. Ethyl acetate, acetone, ethanol, methanol, and water crude extracts of H. africana were screened for activity against the test organisms using the agar well diffusion assay. The Minimum Inhibitory Concentration (MIC50) and Minimum Bactericidal Concentration (MBC) of the most potent extracts were determined by the microdilution method, followed by qualitative phytochemical analysis. Results were analyzed statistically by ANOVA one - way test. Different concentrations (200,100, 50mg/mL) of the methanol, acetone, ethanol and ethyl acetate extracts showed activity against S. aureus and A. hydrophila while for H. pylori, only methanol and ethyl acetate extracts were active; water showed no activity for all studied bacterial pathogens. Mean zone diameter of inhibition which ranged from 0-22mm were observed for all test bacterial pathogens and 14-17mm for ciprofloxacin. The activity of methanol and ethyl acetate extracts were statistically significant (P< 0.05) compared to all the other extracts. MIC50 and MBC ranged from 0.078 – 2.5mg/mL, 0.78-25mg/mL respectively for all tested bacterial pathogens. For ciprofloxacin, the MIC50 and MBC ranged from 0.00976 – 0.078mg/mL and 0.098– 0.78mg/mL respectively. There was no statistically significant difference between extracts (methanol, acetone, ethanol, ethyl acetate) and the control antibiotic (ciprofloxacin) (P> 0.05). Qualitative phytochemical analysis confirmed the presence of alkaloids, saponins, steroids, tannins and flavonoids in the methanol, acetone,ethanol and ethyl acetate extracts. The results demonstrate that H. africana may contain compounds with therapeutic potentials which can be lead molecules for semi-synthesis of new drugs.
- Full Text:
- Date Issued: 2011
- Authors: Nethathe, Bono Bianca
- Date: 2011
- Subjects: Helicobacter pylori , Medicinal plants -- South Africa -- Eastern Cape , Microbial sensitivity tests , Herbs -- Therapeutic use -- South Africa -- Eastern Cape , Plants -- Analysis , Staphylococcus aureus , Aeromonas hydrophila , Drug resistance in microorganisms , Plant-pathogen relationships
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11247 , http://hdl.handle.net/10353/d1001063 , Helicobacter pylori , Medicinal plants -- South Africa -- Eastern Cape , Microbial sensitivity tests , Herbs -- Therapeutic use -- South Africa -- Eastern Cape , Plants -- Analysis , Staphylococcus aureus , Aeromonas hydrophila , Drug resistance in microorganisms , Plant-pathogen relationships
- Description: Abstract Medicinal plants have been for long remedies for human diseases because they contain components of therapeutic value. The growing problem of antibiotic resistance by organisms demands the search for novel compounds from plant based sources. The present study was aimed at evaluating the bioactivity and phytochemical analysis of Hydnora africana on clinical and standard strains of Helicobacter pylori (PE 252C and ATCC 43526), Aeromonas hydrophila ATCC 35654, and Staphylococcus aureus NCT 6571 in an effort to identify potential sources of cheap starting materials for the synthesis of new drugs against these strains. Ethyl acetate, acetone, ethanol, methanol, and water crude extracts of H. africana were screened for activity against the test organisms using the agar well diffusion assay. The Minimum Inhibitory Concentration (MIC50) and Minimum Bactericidal Concentration (MBC) of the most potent extracts were determined by the microdilution method, followed by qualitative phytochemical analysis. Results were analyzed statistically by ANOVA one - way test. Different concentrations (200,100, 50mg/mL) of the methanol, acetone, ethanol and ethyl acetate extracts showed activity against S. aureus and A. hydrophila while for H. pylori, only methanol and ethyl acetate extracts were active; water showed no activity for all studied bacterial pathogens. Mean zone diameter of inhibition which ranged from 0-22mm were observed for all test bacterial pathogens and 14-17mm for ciprofloxacin. The activity of methanol and ethyl acetate extracts were statistically significant (P< 0.05) compared to all the other extracts. MIC50 and MBC ranged from 0.078 – 2.5mg/mL, 0.78-25mg/mL respectively for all tested bacterial pathogens. For ciprofloxacin, the MIC50 and MBC ranged from 0.00976 – 0.078mg/mL and 0.098– 0.78mg/mL respectively. There was no statistically significant difference between extracts (methanol, acetone, ethanol, ethyl acetate) and the control antibiotic (ciprofloxacin) (P> 0.05). Qualitative phytochemical analysis confirmed the presence of alkaloids, saponins, steroids, tannins and flavonoids in the methanol, acetone,ethanol and ethyl acetate extracts. The results demonstrate that H. africana may contain compounds with therapeutic potentials which can be lead molecules for semi-synthesis of new drugs.
- Full Text:
- Date Issued: 2011
In vitro activity of bioactive compounds of selected South African medicinal plants on clinical isolates of Helicobacter pylori
- Authors: Okeleye, Benjamin Ifeoluwa
- Date: 2011
- Subjects: Helicobacter pylori , Microbial sensitivity tests , Traditional medicine -- South Africa , Gram-negative bacterial infections
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11255 , http://hdl.handle.net/10353/310 , Helicobacter pylori , Microbial sensitivity tests , Traditional medicine -- South Africa , Gram-negative bacterial infections
- Description: The stem bark of Peltophorum africanum and Bridelia micrantha are used in South Africa traditional medicine for treatment of intestinal parasites, relieve problems and human immunodeficiency virus/ acquired immune deficiency syndrome (HIV/AIDS). The growing problem of antibiotic resistance by Helicobacter pylori the major etiological agent in gastritis, gastric cancer, peptic and gastric ulcer demands the search for novel compounds from plant based sources. This study was aimed to determine the antimicrobial activity of five solvent (ethylacetate, acetone, ethanol, methanol and water) extracts of the stem bark of P. africanum and B. micrantha on clinical strains of H. pylori in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs. H. pylori strains were isolated from patients presenting with gastric related morbidities at the Livingstone Hospital, Port Elizabeth for endoscopy and confirmed following standard microbiology procedures. The plant extracts including clarithromycin were tested against 31 clinical strains of H. pylori by the agar well diffusion method. The most potent extract was evaluated by the microdilution method to determine the Minimum Inhibitory Concentration (MIC50&90), followed by the rate of kill. Preliminary phytochemical analysis was carried out. The one way ANOVA test was used to statistically analyse the results. All the extracts demonstrated anti-H. pylori activity with zone diameters of inhibition that ranged from 0 to 23 mm for the extracts and 0 to 35 mm for clarithromycin. Marked susceptibility (100%) was recorded for the ethyl acetate extract of P. africanum (P. afr. EA) and the acetone extract of B. micrantha (B. mic. A), which were statistically significant (P < 0.05) compared to all other extracts and clarithromycin. For B. micrantha ethyl acetate extract, 93.5 percent susceptibility was observed while for the control iv antibiotic, clarithromycin it was 58.1 percent. The MIC50 ranged from 0.0048 to 0.313 mg/mL for P. afr. EA, and from 0.0048 to 0.156 mg/mL for B. mic. EA; MIC90 ranged from 0.156 mg/mL to 0.625 mg/mL and 0.0048 to 2.5 mg/mL for P. afr. EA and B. mic. EA respectively. There was a significant statistical difference observed in potency of both P. afr. EA and B. mic. A compared to the two antibiotics (P < 0.05). One hundred percent killing by P. afr EA was observed at 0.05 mg/mL (½ x MIC) and 0.2 mg/mL (2 x MIC) in 66 h for strain PE466C and PE252C respectively. For B. mic. EA, 100 percent killing effect of both strains (PE430C and PE369C) was observed at 0.1 mg/mL (2 x MIC) in 66 h. Qualitative phytochemical analysis confirmed the presence of alkaloids, flavonoids, steroids, tannins and saponins in the ethyl acetate extracts of both plants, which could be a potential template of lead molecule for the design of new anti- Helicobacter pylori therapies.
- Full Text:
- Date Issued: 2011
- Authors: Okeleye, Benjamin Ifeoluwa
- Date: 2011
- Subjects: Helicobacter pylori , Microbial sensitivity tests , Traditional medicine -- South Africa , Gram-negative bacterial infections
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11255 , http://hdl.handle.net/10353/310 , Helicobacter pylori , Microbial sensitivity tests , Traditional medicine -- South Africa , Gram-negative bacterial infections
- Description: The stem bark of Peltophorum africanum and Bridelia micrantha are used in South Africa traditional medicine for treatment of intestinal parasites, relieve problems and human immunodeficiency virus/ acquired immune deficiency syndrome (HIV/AIDS). The growing problem of antibiotic resistance by Helicobacter pylori the major etiological agent in gastritis, gastric cancer, peptic and gastric ulcer demands the search for novel compounds from plant based sources. This study was aimed to determine the antimicrobial activity of five solvent (ethylacetate, acetone, ethanol, methanol and water) extracts of the stem bark of P. africanum and B. micrantha on clinical strains of H. pylori in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs. H. pylori strains were isolated from patients presenting with gastric related morbidities at the Livingstone Hospital, Port Elizabeth for endoscopy and confirmed following standard microbiology procedures. The plant extracts including clarithromycin were tested against 31 clinical strains of H. pylori by the agar well diffusion method. The most potent extract was evaluated by the microdilution method to determine the Minimum Inhibitory Concentration (MIC50&90), followed by the rate of kill. Preliminary phytochemical analysis was carried out. The one way ANOVA test was used to statistically analyse the results. All the extracts demonstrated anti-H. pylori activity with zone diameters of inhibition that ranged from 0 to 23 mm for the extracts and 0 to 35 mm for clarithromycin. Marked susceptibility (100%) was recorded for the ethyl acetate extract of P. africanum (P. afr. EA) and the acetone extract of B. micrantha (B. mic. A), which were statistically significant (P < 0.05) compared to all other extracts and clarithromycin. For B. micrantha ethyl acetate extract, 93.5 percent susceptibility was observed while for the control iv antibiotic, clarithromycin it was 58.1 percent. The MIC50 ranged from 0.0048 to 0.313 mg/mL for P. afr. EA, and from 0.0048 to 0.156 mg/mL for B. mic. EA; MIC90 ranged from 0.156 mg/mL to 0.625 mg/mL and 0.0048 to 2.5 mg/mL for P. afr. EA and B. mic. EA respectively. There was a significant statistical difference observed in potency of both P. afr. EA and B. mic. A compared to the two antibiotics (P < 0.05). One hundred percent killing by P. afr EA was observed at 0.05 mg/mL (½ x MIC) and 0.2 mg/mL (2 x MIC) in 66 h for strain PE466C and PE252C respectively. For B. mic. EA, 100 percent killing effect of both strains (PE430C and PE369C) was observed at 0.1 mg/mL (2 x MIC) in 66 h. Qualitative phytochemical analysis confirmed the presence of alkaloids, flavonoids, steroids, tannins and saponins in the ethyl acetate extracts of both plants, which could be a potential template of lead molecule for the design of new anti- Helicobacter pylori therapies.
- Full Text:
- Date Issued: 2011
In-vitro anti-vibrio activities of crude extracts of Garcinia Kola seeds
- Authors: Penduka, Dambudzo
- Date: 2011
- Subjects: Microbial sensitivity tests , Drug resistance in microorganisms , Antibiotics , Garcinia , Medicinal plants
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11256 , http://hdl.handle.net/10353/405 , Microbial sensitivity tests , Drug resistance in microorganisms , Antibiotics , Garcinia , Medicinal plants
- Description: The n-Hexane, dichloromethane, methanol and aqueous crude extracts of Garcinia kola (Heckel) seeds were screened for their anti-Vibrio activities against 50 Vibrio bacteria isolated from wastewater final effluents. The 50 isolates consisted of different Vibrio species namely V. fluvialis (14), V. vulnificus (12), V. parahaemolyticus (12), V. metschnikovii (3) and 9 others unidentified to the specie level. The n-Hexane, dichloromethane and methanol extracts had activities against 16 (32 percent) of the Vibrio isolates, while the aqueous extracts had activities against 12 (24 percent) all at a screening concentration of 10 mg/ml. The minimum inhibitory concentrations (MICs) were 0.313-0.625 mg/ml, 0.313-0.625 mg/ml, 0.313-2.5 mg/ml and 10 mg/ml for n-Hexane, dichloromethane, methanol and aqueous extracts respectively. Rate of kill studies were carried out against three different Vibrio species namely V. vulnificus (AL042), V. parahaemolyticus (AL049) and V. fluvialis ( AL040) using the n-Hexane, dichloromethane and methanol extracts at 1× to 4 × MICs and 2 hour exposure. About 96.3 percent, 82.2 percent, and 78.1 percent (V. fluvialis AL040); 92.6 percent, 87.8 percent and 68.9 percent (V. parahaemolyticus AL049); and 91.6 percent, 64.4 percent, 60 percent (V. vulnificus AL042) of the bacteria were killed by the crude n-Hexane, dichloromethane and methanol extracts respectively after 2 hour exposure time at 4× MIC. The patterns of activity were bacteriostatic, with the n-Hexane extracts being most effective in activity. We conclude that the Garcinia kola seeds have promise in the treatment and management of infections caused by Vibrio species.
- Full Text:
- Date Issued: 2011
- Authors: Penduka, Dambudzo
- Date: 2011
- Subjects: Microbial sensitivity tests , Drug resistance in microorganisms , Antibiotics , Garcinia , Medicinal plants
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11256 , http://hdl.handle.net/10353/405 , Microbial sensitivity tests , Drug resistance in microorganisms , Antibiotics , Garcinia , Medicinal plants
- Description: The n-Hexane, dichloromethane, methanol and aqueous crude extracts of Garcinia kola (Heckel) seeds were screened for their anti-Vibrio activities against 50 Vibrio bacteria isolated from wastewater final effluents. The 50 isolates consisted of different Vibrio species namely V. fluvialis (14), V. vulnificus (12), V. parahaemolyticus (12), V. metschnikovii (3) and 9 others unidentified to the specie level. The n-Hexane, dichloromethane and methanol extracts had activities against 16 (32 percent) of the Vibrio isolates, while the aqueous extracts had activities against 12 (24 percent) all at a screening concentration of 10 mg/ml. The minimum inhibitory concentrations (MICs) were 0.313-0.625 mg/ml, 0.313-0.625 mg/ml, 0.313-2.5 mg/ml and 10 mg/ml for n-Hexane, dichloromethane, methanol and aqueous extracts respectively. Rate of kill studies were carried out against three different Vibrio species namely V. vulnificus (AL042), V. parahaemolyticus (AL049) and V. fluvialis ( AL040) using the n-Hexane, dichloromethane and methanol extracts at 1× to 4 × MICs and 2 hour exposure. About 96.3 percent, 82.2 percent, and 78.1 percent (V. fluvialis AL040); 92.6 percent, 87.8 percent and 68.9 percent (V. parahaemolyticus AL049); and 91.6 percent, 64.4 percent, 60 percent (V. vulnificus AL042) of the bacteria were killed by the crude n-Hexane, dichloromethane and methanol extracts respectively after 2 hour exposure time at 4× MIC. The patterns of activity were bacteriostatic, with the n-Hexane extracts being most effective in activity. We conclude that the Garcinia kola seeds have promise in the treatment and management of infections caused by Vibrio species.
- Full Text:
- Date Issued: 2011
Phytochemical analysis and bioactivity of the stem bark of Combretum Molle on some selected bacterial pathogens
- Authors: Nyenje, Mirriam, E
- Date: 2011
- Subjects: Drug resistance in microorganisms , Materia medica, Vegetable , Antibiotics , Microbial sensitivity tests , Gram-negative bacterial infections
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11261 , http://hdl.handle.net/10353/391 , Drug resistance in microorganisms , Materia medica, Vegetable , Antibiotics , Microbial sensitivity tests , Gram-negative bacterial infections
- Description: Antimicrobial resistance is a worldwide problem that has deleterious long-term effects as the development of drug resistance outpaces the development of new drugs. Plants have been used for many generations for healing purposes, and screening of extracts of these plants has often yielded positive outcomes. This study was aimed at isolating and characterizing the major active antimicrobial compounds present in the stem bark of C. molle, in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs. Various solvents (hexane, ethyl acetate, dichloromethane, acetone, ethanol and methanol) were used for extraction. The agar well diffusion technique was used to screen for antimicrobial activity of C. molle extracts against Streptococcus pyogenes ATCC 49399, Plesiomonas shigelloides ATCC 51903, Pseudomonas aeruginosa ATCC 15442, Helicobacter pylori ATCC 43526 and Helicobacter pylori 252C (clinical isolate); minimum inhibition concentration (MIC) of the most active extracts was determined by the broth dilution method. Fractionation of acetone extract was done by thin layer chromatography (TLC) and bioautography to determine the compounds present and their antimicrobial activity respectively. The acetone extract was purified by column chromatography and their MIC determined. The most potent fraction (EA4) was subjected to Gas chromatography- Mass spectrometry (GC-MS) and High performance liquid chromatography (HPLC) for identification of the active compounds. Results were analyzed by the Fisher‟s exact test. All the extracts tested demonstrated antimicrobial activity with zone diameters of inhibition ranging from 0–32 mm. Acetone was the most potent extract with its MIC ranging from 0.078–5.0 mg/mL. Seventeen fractions were collected from column chromatography and the most active fraction against all the organisms was EA 4 (eluted with 100 percent ethyl acetate), with its MIC ranging from 0.078 - 2.5mg/mL. There was no statistically significant difference (P>0.05) in the potency of the xii four extracts (acetone, methanol, ethanol and ethyl acetate) and antibiotic (ciprofloxacin) on the different bacterial strains tested, likewise the crude extract and the fractions. No compound was detected by GC-MS whereas numerous peaks were identified by HPLC implying that the active compounds in this plant are non volatile. We could not identify the compounds thereby proposing further studies using Nuclear magnetic resonance to identify the compounds. The study revealed that the acetone extract of C. molle was the most active against all the test organisms and therefore justifies the use of this plant in traditional medicine.
- Full Text:
- Date Issued: 2011
- Authors: Nyenje, Mirriam, E
- Date: 2011
- Subjects: Drug resistance in microorganisms , Materia medica, Vegetable , Antibiotics , Microbial sensitivity tests , Gram-negative bacterial infections
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11261 , http://hdl.handle.net/10353/391 , Drug resistance in microorganisms , Materia medica, Vegetable , Antibiotics , Microbial sensitivity tests , Gram-negative bacterial infections
- Description: Antimicrobial resistance is a worldwide problem that has deleterious long-term effects as the development of drug resistance outpaces the development of new drugs. Plants have been used for many generations for healing purposes, and screening of extracts of these plants has often yielded positive outcomes. This study was aimed at isolating and characterizing the major active antimicrobial compounds present in the stem bark of C. molle, in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs. Various solvents (hexane, ethyl acetate, dichloromethane, acetone, ethanol and methanol) were used for extraction. The agar well diffusion technique was used to screen for antimicrobial activity of C. molle extracts against Streptococcus pyogenes ATCC 49399, Plesiomonas shigelloides ATCC 51903, Pseudomonas aeruginosa ATCC 15442, Helicobacter pylori ATCC 43526 and Helicobacter pylori 252C (clinical isolate); minimum inhibition concentration (MIC) of the most active extracts was determined by the broth dilution method. Fractionation of acetone extract was done by thin layer chromatography (TLC) and bioautography to determine the compounds present and their antimicrobial activity respectively. The acetone extract was purified by column chromatography and their MIC determined. The most potent fraction (EA4) was subjected to Gas chromatography- Mass spectrometry (GC-MS) and High performance liquid chromatography (HPLC) for identification of the active compounds. Results were analyzed by the Fisher‟s exact test. All the extracts tested demonstrated antimicrobial activity with zone diameters of inhibition ranging from 0–32 mm. Acetone was the most potent extract with its MIC ranging from 0.078–5.0 mg/mL. Seventeen fractions were collected from column chromatography and the most active fraction against all the organisms was EA 4 (eluted with 100 percent ethyl acetate), with its MIC ranging from 0.078 - 2.5mg/mL. There was no statistically significant difference (P>0.05) in the potency of the xii four extracts (acetone, methanol, ethanol and ethyl acetate) and antibiotic (ciprofloxacin) on the different bacterial strains tested, likewise the crude extract and the fractions. No compound was detected by GC-MS whereas numerous peaks were identified by HPLC implying that the active compounds in this plant are non volatile. We could not identify the compounds thereby proposing further studies using Nuclear magnetic resonance to identify the compounds. The study revealed that the acetone extract of C. molle was the most active against all the test organisms and therefore justifies the use of this plant in traditional medicine.
- Full Text:
- Date Issued: 2011
- «
- ‹
- 1
- ›
- »