Electrocatalytic activity of a push pull Co (II) phthalocyanine in the presence of graphitic carbon nitride quantum dots
- Nxele, Siphesihle R, Oluwole, David O, Nyokong, Tebello
- Authors: Nxele, Siphesihle R , Oluwole, David O , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186746 , vital:44530 , xlink:href="https://doi.org/10.1016/j.electacta.2019.134978"
- Description: This work reports for the first time on the use of a conjugate of graphitic carbon nitride quantum dots (gCNQDs) with a push-pull asymmetrical cobalt phthalocyanine (CoPc) for electrochemical sensing. The nanocomposite is immobilized on a glassy carbon electrode (GCE) surface for the use in l-cysteine electrocatalysis. The nanocomposites were characterized using techniques such as X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Raman spectroscopy and electrochemical methods. The nanocomposites were immobilized by the drop-dry method, sequentially or when premixed in solution. Good electrocatalytic oxidation of l-cysteine was observed, especially by the sequentially modified electrode surface, with the CoPc on top of gCNQDs. The sensitivity was determined as 3.5 μA.mM-1 and the limit of detection (LoD) as 101.3 μM for GCE-gCNQDs, 0.65 μA.mM-1 and 0.96 μM for GCE-CoPc, 23.41 μA.mM-1 and 0.41 μM for gCNQDs-CoPc (premixed) and 100.5 μA.mM-1 and 0.02 μM for gCNQDs-CoPc (sequential). The electrode surfaces also showed high stability by continuous cyclization.
- Full Text:
- Date Issued: 2019
- Authors: Nxele, Siphesihle R , Oluwole, David O , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186746 , vital:44530 , xlink:href="https://doi.org/10.1016/j.electacta.2019.134978"
- Description: This work reports for the first time on the use of a conjugate of graphitic carbon nitride quantum dots (gCNQDs) with a push-pull asymmetrical cobalt phthalocyanine (CoPc) for electrochemical sensing. The nanocomposite is immobilized on a glassy carbon electrode (GCE) surface for the use in l-cysteine electrocatalysis. The nanocomposites were characterized using techniques such as X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Raman spectroscopy and electrochemical methods. The nanocomposites were immobilized by the drop-dry method, sequentially or when premixed in solution. Good electrocatalytic oxidation of l-cysteine was observed, especially by the sequentially modified electrode surface, with the CoPc on top of gCNQDs. The sensitivity was determined as 3.5 μA.mM-1 and the limit of detection (LoD) as 101.3 μM for GCE-gCNQDs, 0.65 μA.mM-1 and 0.96 μM for GCE-CoPc, 23.41 μA.mM-1 and 0.41 μM for gCNQDs-CoPc (premixed) and 100.5 μA.mM-1 and 0.02 μM for gCNQDs-CoPc (sequential). The electrode surfaces also showed high stability by continuous cyclization.
- Full Text:
- Date Issued: 2019
Evaluation of the photosensitizing properties of zinc and indium tetra cinnamic acid phthalocyanines linked to magnetic nanoparticles on human breast adenocarcinoma cells
- Matlou, Gauta G, Oluwole, David O, Nyokong, Tebello
- Authors: Matlou, Gauta G , Oluwole, David O , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187582 , vital:44673 , xlink:href="https://doi.org/10.1016/j.jlumin.2018.09.054"
- Description: This work reports on the synthesis, photophysico-chemical properties and photodynamic therapy activity of novel zinc (1) and indium (2) tetra substituted cinnamic acid phthalocyanine (Pc) complexes linked to amino functionalized magnetic nanoparticles (AMNPs) through an amide bond. Asymmetric ZnPc complex (3) showed better triplet and singlet oxygen quantum yields as compared to its symmetrical analogues (1 and 2). The AMNPs (1-AMNPs and 2-AMNPs) linked conjugates depicted increased triplet quantum yields in comparison to their unlinked Pcs, while 3-AMNPs showed a decrease compared to 3. The complexes showed increased in-vitro photo-cytotoxic effect against MCF-7 cells with an increase in drug concentration. At 80 µg/mL, 2 and 3, 2-AMNPs and 3-AMNPs with higher singlet oxygen quantum yields caused more cytotoxic effect on the cancer cells in the presence of light as compared to 1 and 1-AMNPs respectively.
- Full Text:
- Date Issued: 2019
- Authors: Matlou, Gauta G , Oluwole, David O , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187582 , vital:44673 , xlink:href="https://doi.org/10.1016/j.jlumin.2018.09.054"
- Description: This work reports on the synthesis, photophysico-chemical properties and photodynamic therapy activity of novel zinc (1) and indium (2) tetra substituted cinnamic acid phthalocyanine (Pc) complexes linked to amino functionalized magnetic nanoparticles (AMNPs) through an amide bond. Asymmetric ZnPc complex (3) showed better triplet and singlet oxygen quantum yields as compared to its symmetrical analogues (1 and 2). The AMNPs (1-AMNPs and 2-AMNPs) linked conjugates depicted increased triplet quantum yields in comparison to their unlinked Pcs, while 3-AMNPs showed a decrease compared to 3. The complexes showed increased in-vitro photo-cytotoxic effect against MCF-7 cells with an increase in drug concentration. At 80 µg/mL, 2 and 3, 2-AMNPs and 3-AMNPs with higher singlet oxygen quantum yields caused more cytotoxic effect on the cancer cells in the presence of light as compared to 1 and 1-AMNPs respectively.
- Full Text:
- Date Issued: 2019
Fabrication of efficient nonlinear optical absorber using Zn phthalocyanine-semiconductor quantum dots conjugates
- Mgidlana, Sithi, Oluwole, David O, Nyokong, Tebello
- Authors: Mgidlana, Sithi , Oluwole, David O , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187496 , vital:44663 , xlink:href="https://doi.org/10.1016/j.poly.2018.11.024"
- Description: In this paper, we report on the synthesis of Zn(II) phthalocyanine derivatives and their conjugates with core/shell and core/shell/shell semiconductor quantum dots (SQDs). Zn(II) mono amino-carboxyethylphenoxy phthalocyanine (1), Zn(II) mono 3-carboxyphenoxy-tris(pyridin-2-yloxy) phthalocyanine (2) and Zn(II) mono aminophenoxy-tris(benzothiazole) phthalocyanine (3) were synthesized. The photophysical and optical limiting properties of the phthalocyanine (Pc) complexes and their conjugates with SQDs were investigated in dimethyl sulfoxide. The optical limiting behaviour of the Pc complexes and their conjugates were measured by the open aperture Z-scan technique at laser excitation wavelength of 532 nm with 10 ns pulse. The conjugates outperformed the Pc complexes alone with the conjugates of 2-SQDs affording highest nonlinear absorption coefficient (βeff) value of ∼80 cm/GW and lowest limiting threshold (Ilim) value of ∼0.27 J·cm−2 as compared to other samples while complex 1 gave low βeff and high Ilim values of 42.2 cm/GW and 1.39 J·cm−2, respectively.
- Full Text:
- Date Issued: 2019
- Authors: Mgidlana, Sithi , Oluwole, David O , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187496 , vital:44663 , xlink:href="https://doi.org/10.1016/j.poly.2018.11.024"
- Description: In this paper, we report on the synthesis of Zn(II) phthalocyanine derivatives and their conjugates with core/shell and core/shell/shell semiconductor quantum dots (SQDs). Zn(II) mono amino-carboxyethylphenoxy phthalocyanine (1), Zn(II) mono 3-carboxyphenoxy-tris(pyridin-2-yloxy) phthalocyanine (2) and Zn(II) mono aminophenoxy-tris(benzothiazole) phthalocyanine (3) were synthesized. The photophysical and optical limiting properties of the phthalocyanine (Pc) complexes and their conjugates with SQDs were investigated in dimethyl sulfoxide. The optical limiting behaviour of the Pc complexes and their conjugates were measured by the open aperture Z-scan technique at laser excitation wavelength of 532 nm with 10 ns pulse. The conjugates outperformed the Pc complexes alone with the conjugates of 2-SQDs affording highest nonlinear absorption coefficient (βeff) value of ∼80 cm/GW and lowest limiting threshold (Ilim) value of ∼0.27 J·cm−2 as compared to other samples while complex 1 gave low βeff and high Ilim values of 42.2 cm/GW and 1.39 J·cm−2, respectively.
- Full Text:
- Date Issued: 2019
Investigation of novel substituted zinc and aluminium phthalocyanines for photodynamic therapy of epithelial breast cancer
- Mohammed, Imadalulla, Oluwole, David O, Nemakal, Majunatha, Sannegowda, Lokesh K, Nyokong, Tebello
- Authors: Mohammed, Imadalulla , Oluwole, David O , Nemakal, Majunatha , Sannegowda, Lokesh K , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186824 , vital:44537 , xlink:href="https://doi.org/10.1016/j.dyepig.2019.107592"
- Description: A series of phthalonitrile ligands were synthesized by nucleophilic substitution reaction using the hydroxyl or sulfanyl group precursors and the nitro moiety of the nitrophthalonitrile to yield corresponding oxy or sulfanyl bridged ligands. These ligands were subsequently subjected to cyclocondensation reaction with diamagnetic metal ions like zinc and aluminium to afford symmetrically substituted zinc and aluminium phthalocyanine (Pc) complexes and polymers. The ligands and Pc complexes were characterized by 1 H nuclear magnetic resonance, fourier transform infrared, ultraviolet visible and mass spectrometric techniques. Additionally, thermal gravimetric, and elemental analyzer were used for characterization of the Pc complexes. The photophysical and photochemical behaviour of the Pc complexes were investigated in dimethyl sulfoxide. Additionally, the complexes were tested against epithelial breast cancer cells for photodynamic therapy (PDT) effect. The substituted ZnPc complexes afforded higher singlet oxygen quantum yields as compared to the AlPc analogue. All the complexes showed innocuous invitro dark cytotoxicity and moderate PDT effect.
- Full Text:
- Date Issued: 2019
- Authors: Mohammed, Imadalulla , Oluwole, David O , Nemakal, Majunatha , Sannegowda, Lokesh K , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186824 , vital:44537 , xlink:href="https://doi.org/10.1016/j.dyepig.2019.107592"
- Description: A series of phthalonitrile ligands were synthesized by nucleophilic substitution reaction using the hydroxyl or sulfanyl group precursors and the nitro moiety of the nitrophthalonitrile to yield corresponding oxy or sulfanyl bridged ligands. These ligands were subsequently subjected to cyclocondensation reaction with diamagnetic metal ions like zinc and aluminium to afford symmetrically substituted zinc and aluminium phthalocyanine (Pc) complexes and polymers. The ligands and Pc complexes were characterized by 1 H nuclear magnetic resonance, fourier transform infrared, ultraviolet visible and mass spectrometric techniques. Additionally, thermal gravimetric, and elemental analyzer were used for characterization of the Pc complexes. The photophysical and photochemical behaviour of the Pc complexes were investigated in dimethyl sulfoxide. Additionally, the complexes were tested against epithelial breast cancer cells for photodynamic therapy (PDT) effect. The substituted ZnPc complexes afforded higher singlet oxygen quantum yields as compared to the AlPc analogue. All the complexes showed innocuous invitro dark cytotoxicity and moderate PDT effect.
- Full Text:
- Date Issued: 2019
Photophysicochemical and photodynamic therapy properties of metallophthalocyanines linked to gold speckled silica nanoparticles
- Dube, Edith, Oluwole, David O, Niemuwa, Nwaji, Prinsloo, Earl, Nyokong, Tebello
- Authors: Dube, Edith , Oluwole, David O , Niemuwa, Nwaji , Prinsloo, Earl , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187472 , vital:44657 , xlink:href="https://doi.org/10.1016/j.pdpdt.2019.01.019"
- Description: This work reports on the linkage of 2(3),9(10),16(17),23(24) tetrakis [(benzo[d]thiazol-2-yl phenoxy) phthalocyaninato] zinc(II) (1) and indium(III) chloride (2) to gold speckled silica (GSS) nanoparticles via gold to sulphur (Au-S) and gold to nitrogen (Au-N) self-assembly to form the conjugates: 1-GSS and 2-GSS. The formed conjugates were characterized using microscopic and spectroscopic techniques, and the photophysicochemical properties and photodynamic therapy (PDT) activity against human breast adenocarcinoma cell line (MCF-7 cells) were studied. The conjugates afforded decrease in fluorescence quantum yields with corresponding increase in triplet and singlet oxygen quantum yields when compared to phthalocyanines alone. Singlet oxygen is cytotoxic to cancer cells hence it is important for PDT. The in vitro dark toxicity of complex 2 and 2-GSS against MCF–7 cells showed ≥93% viable cells within concentration ranges of 10–160 μg/mL. 2–GSS showed enhanced PDT activity with less than 50% viable cells at 80 μg/mL as compared to 2 and GSS alone which showed > 60% viable cells within 10–160 μg/mL. The observed improvements in the PDT activity of 2-GSS could be attributed to the high singlet oxygen generation of 2-GSS compared to 2 alone in addition to the phototoxicity of GSS.
- Full Text:
- Date Issued: 2019
- Authors: Dube, Edith , Oluwole, David O , Niemuwa, Nwaji , Prinsloo, Earl , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187472 , vital:44657 , xlink:href="https://doi.org/10.1016/j.pdpdt.2019.01.019"
- Description: This work reports on the linkage of 2(3),9(10),16(17),23(24) tetrakis [(benzo[d]thiazol-2-yl phenoxy) phthalocyaninato] zinc(II) (1) and indium(III) chloride (2) to gold speckled silica (GSS) nanoparticles via gold to sulphur (Au-S) and gold to nitrogen (Au-N) self-assembly to form the conjugates: 1-GSS and 2-GSS. The formed conjugates were characterized using microscopic and spectroscopic techniques, and the photophysicochemical properties and photodynamic therapy (PDT) activity against human breast adenocarcinoma cell line (MCF-7 cells) were studied. The conjugates afforded decrease in fluorescence quantum yields with corresponding increase in triplet and singlet oxygen quantum yields when compared to phthalocyanines alone. Singlet oxygen is cytotoxic to cancer cells hence it is important for PDT. The in vitro dark toxicity of complex 2 and 2-GSS against MCF–7 cells showed ≥93% viable cells within concentration ranges of 10–160 μg/mL. 2–GSS showed enhanced PDT activity with less than 50% viable cells at 80 μg/mL as compared to 2 and GSS alone which showed > 60% viable cells within 10–160 μg/mL. The observed improvements in the PDT activity of 2-GSS could be attributed to the high singlet oxygen generation of 2-GSS compared to 2 alone in addition to the phototoxicity of GSS.
- Full Text:
- Date Issued: 2019
Physicochemical and antimicrobial photodynamic chemotherapy (against E. coli) by indium phthalocyanines in the presence of silver–iron bimetallic nanoparticles
- Magadla, Aviwe, Oluwole, David O, Managa, Muthumuni, Nyokong, Tebello
- Authors: Magadla, Aviwe , Oluwole, David O , Managa, Muthumuni , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187091 , vital:44564 , xlink:href="https://doi.org/10.1016/j.poly.2019.01.032"
- Description: In this work, Schiff base indium phthalocyanines: In–Cl tetrakis N,N-dimethyl-4-(methylimino) phthalocyanine (complex 1b) and In–Cl tetrakis phenoxy N,N-dimethyl-4-(methylimino) phthalocyanine (complex 2b) are synthesized from tetra amino and tetra phenoxy amino phthalocyanines, respectively. These complexes were further quartenised with 1,3-propanesultone to form zwitterionic complexes 1 and 2, respectively. Silver–iron dimers (Ag–Fe3O4) and silver-iron core shell (Ag@Fe3O4) nanoparticles (NPs) were linked to the synthesised complexes. The photophysical and photochemical behaviour of the complexes and their conjugates with NPs were investigated in dimethyl sulfoxide. Complexes 2 and 2b and their conjugates were then used for photodynamic antimicrobial chemotherapy on Escherichia coli. The zwitter ionic photosensitiser 2 and its conjugates showed better efficiency for photodynamic antimicrobial chemotherapy compared to their neutral counterparts.
- Full Text:
- Date Issued: 2019
- Authors: Magadla, Aviwe , Oluwole, David O , Managa, Muthumuni , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187091 , vital:44564 , xlink:href="https://doi.org/10.1016/j.poly.2019.01.032"
- Description: In this work, Schiff base indium phthalocyanines: In–Cl tetrakis N,N-dimethyl-4-(methylimino) phthalocyanine (complex 1b) and In–Cl tetrakis phenoxy N,N-dimethyl-4-(methylimino) phthalocyanine (complex 2b) are synthesized from tetra amino and tetra phenoxy amino phthalocyanines, respectively. These complexes were further quartenised with 1,3-propanesultone to form zwitterionic complexes 1 and 2, respectively. Silver–iron dimers (Ag–Fe3O4) and silver-iron core shell (Ag@Fe3O4) nanoparticles (NPs) were linked to the synthesised complexes. The photophysical and photochemical behaviour of the complexes and their conjugates with NPs were investigated in dimethyl sulfoxide. Complexes 2 and 2b and their conjugates were then used for photodynamic antimicrobial chemotherapy on Escherichia coli. The zwitter ionic photosensitiser 2 and its conjugates showed better efficiency for photodynamic antimicrobial chemotherapy compared to their neutral counterparts.
- Full Text:
- Date Issued: 2019
Preparation of NIR absorbing axial substituted tin (iv) porphyrins and their photocytotoxic properties
- Babu, Balaji, Amuhaya, Edith K, Oluwole, David O, Prinsloo, Earl, Mack, John, Nyokong, Tebello
- Authors: Babu, Balaji , Amuhaya, Edith K , Oluwole, David O , Prinsloo, Earl , Mack, John , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234592 , vital:50211 , xlink:href="https://doi.org/10.1039/C8MD00373D"
- Description: Sn(IV) porphyrins ([Sn(IV)TTP(3PyO)2] (5) and [Sn(IV)TPP(3PyO)2] (6) [tetrathienylporphyrin (TTP), tetraphenylporphyrin (TPP), and pyridyloxy (PyO)]) were prepared and characterized and their photocytotoxicity upon irradiation with 625 nm light has been studied. The presence of the 3PyO axial ligands was found to limit the aggregation and enhance the solubility of 5 and 6 in DMF/H2O (1 : 1). The photophysical properties and photodynamic therapy (PDT) activity of the meso-2-thienyl and meso-phenyl-substituted Sn(IV) porphyrins are compared. 5 and 6 were found to be photocytotoxic in MCF-7 cancer cells when irradiated with a Thorlabs M625L3 LED at 625 nm but remained nontoxic in the dark. The PDT activity of Sn(IV) meso-tetra-2-thienylporphyrin 5 was found to be significantly enhanced relative to its analogous tetraphenylporphyrin 6. There is a marked red-shift of the Q00 band of 5 into the therapeutic window due to the meso-2-thienyl rings, and 5 has an unusually high singlet oxygen quantum yield value of 0.83 in DMF. The results demonstrate that readily synthesized axially ligated Sn(IV) meso-arylporphyrins are potentially suitable for use as singlet oxygen photosensitizers in biomedical applications and merit further in depth investigation in this context.
- Full Text:
- Date Issued: 2019
- Authors: Babu, Balaji , Amuhaya, Edith K , Oluwole, David O , Prinsloo, Earl , Mack, John , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234592 , vital:50211 , xlink:href="https://doi.org/10.1039/C8MD00373D"
- Description: Sn(IV) porphyrins ([Sn(IV)TTP(3PyO)2] (5) and [Sn(IV)TPP(3PyO)2] (6) [tetrathienylporphyrin (TTP), tetraphenylporphyrin (TPP), and pyridyloxy (PyO)]) were prepared and characterized and their photocytotoxicity upon irradiation with 625 nm light has been studied. The presence of the 3PyO axial ligands was found to limit the aggregation and enhance the solubility of 5 and 6 in DMF/H2O (1 : 1). The photophysical properties and photodynamic therapy (PDT) activity of the meso-2-thienyl and meso-phenyl-substituted Sn(IV) porphyrins are compared. 5 and 6 were found to be photocytotoxic in MCF-7 cancer cells when irradiated with a Thorlabs M625L3 LED at 625 nm but remained nontoxic in the dark. The PDT activity of Sn(IV) meso-tetra-2-thienylporphyrin 5 was found to be significantly enhanced relative to its analogous tetraphenylporphyrin 6. There is a marked red-shift of the Q00 band of 5 into the therapeutic window due to the meso-2-thienyl rings, and 5 has an unusually high singlet oxygen quantum yield value of 0.83 in DMF. The results demonstrate that readily synthesized axially ligated Sn(IV) meso-arylporphyrins are potentially suitable for use as singlet oxygen photosensitizers in biomedical applications and merit further in depth investigation in this context.
- Full Text:
- Date Issued: 2019
The photo-physicochemical properties and in vitro photodynamic therapy activity of differently substituted-zinc (II)-phthalocyanines and graphene quantum dots conjugates on MCF7 breast cancer cell line
- Nene, Lindokuhle C, Managa, Muthumuni E, Oluwole, David O, Mafukidze, Donovan M, Sindelo, Azole, Nyokong, Tebello
- Authors: Nene, Lindokuhle C , Managa, Muthumuni E , Oluwole, David O , Mafukidze, Donovan M , Sindelo, Azole , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187449 , vital:44653 , xlink:href="https://doi.org/10.1016/j.ica.2019.01.012"
- Description: Several differently substituted Zn(II) phthalocyanines (ZnPcs) were prepared and conjugated to GQDs. The photophysical properties were determined for both the Pcs and their respective conjugates including the fluorescence/triplet quantum yields and lifetimes as well as the singlet oxygen generating abilities. Upon conjugation to GQDs, the fluorescence of the Pcs decreased (insignificant decrease in some cases), with an increase in the triplet quantum yields. However, the singlet quantum yields of the Pcs in the conjugates did not show an increase with the increase in the triplet quantum yields, this is suspected to be due to the screening effect. The cytotoxicity of the complexes in vitro decreased upon conjugation, as a result of the reduced actual number of Pcs units provided in the conjugate for therapy. Upon introduction of cationic charges, the photodynamic therapy activity of the complexes increased.
- Full Text:
- Date Issued: 2019
- Authors: Nene, Lindokuhle C , Managa, Muthumuni E , Oluwole, David O , Mafukidze, Donovan M , Sindelo, Azole , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187449 , vital:44653 , xlink:href="https://doi.org/10.1016/j.ica.2019.01.012"
- Description: Several differently substituted Zn(II) phthalocyanines (ZnPcs) were prepared and conjugated to GQDs. The photophysical properties were determined for both the Pcs and their respective conjugates including the fluorescence/triplet quantum yields and lifetimes as well as the singlet oxygen generating abilities. Upon conjugation to GQDs, the fluorescence of the Pcs decreased (insignificant decrease in some cases), with an increase in the triplet quantum yields. However, the singlet quantum yields of the Pcs in the conjugates did not show an increase with the increase in the triplet quantum yields, this is suspected to be due to the screening effect. The cytotoxicity of the complexes in vitro decreased upon conjugation, as a result of the reduced actual number of Pcs units provided in the conjugate for therapy. Upon introduction of cationic charges, the photodynamic therapy activity of the complexes increased.
- Full Text:
- Date Issued: 2019
- «
- ‹
- 1
- ›
- »