Assessment of taste masking of captopril by ion-exchange resins using electronic gustatory system
- Authors: Chikukwa, Mellisa T R , Wesoly, Malgorzata , Korzeniowska, Aleksandra B , Ciosek-Skibinska, Patrycja , Walker, Roderick B , Khamanga, Sandile M M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184710 , vital:44265 , xlink:href="https://doi.org/10.1080/10837450.2019.1687520"
- Description: The objective of the study was to mask the unpleasant taste of captopril (CPT). Taste masking was achieved by complexation of CPT with a basic ion exchange resin, Dowex® 66, using the batch method. Dowex® 66 was used for the adsorption of CPT, and physical and chemical parameters of the CPT resinates complex were evaluated. A central composite design was used to generate the experiments for the manufacture of resinates using different process and formulation variables. In vitro dissolution studies were performed for 2 h in 0.01N HCl (pH 1.6) using USP Apparatus I. The compatibility of CPT and the resin was evaluated by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). The resinates were evaluated for micromeritic properties and further characterised using FTIR, DSC, and PXRD. Response surface methodology was used to determine the significance of input variables on the CPT content and release. The CPT resin ratio was found to have a significant impact on content of the resinates and on CPT release. The formulations were also studied for taste masking ability by means of an electronic gustatory system – electronic tongue.
- Full Text:
- Date Issued: 2020
Formulation and Characterisation of a Combination Captopril and Hydrochlorothiazide Microparticulate Dosage Form
- Authors: Chikukwa, Mellisa T R , Walker, Roderick B , Khamanga, Sandile M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183200 , vital:43926 , xlink:href="https://doi.org/10.3390/pharmaceutics12080712"
- Description: Cardiovascular diseases such as hypertension and cardiac failure in South African children and adolescents are effectively managed long term, using a combination treatment of captopril and hydrochlorothiazide. The majority of commercially available pharmaceutical products are designed for adult patients and require extemporaneous manipulation, prior to administration to paediatric patients. There is a need to develop an age appropriate microparticulate dosing technology that is easy to swallow, dose and alter doses whilst overcoming the pharmacokinetic challenges of short half-life and biphasic pharmacokinetic disposition exhibited by hydrochlorothiazide and captopril. An emulsion solvent evaporation approach using different combinations of polymers was used to manufacture captopril and hydrochlorothiazide microparticles. Design of experiments was used to develop and analyse experimental data, and identifyoptimum formulation and process conditions for the preparation of the microparticles. Characterisation studies to establish encapsulation efficiency, in vitro release, shape, size and morphology of the microparticles were undertaken. The microparticles produced were in the micrometre size range, with an encapsulation efficiency >75% for both hydrochlorothiazide and captopril. The microparticulate technology is able to offer potential resolution to the half-life mediated dosing frequency of captopril as sustained release of the molecule was observed over a 12-h period. The release of hydrochlorothiazide of >80% suggests an improvement in solubility limited dissolution.
- Full Text:
- Date Issued: 2020
Nano-biomimetic drug delivery vehicles: Potential approaches for COVID-19 treatment
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Mweetwa, Larry L , Ntemi, Pascal V , Chikukwa, Mellisa T R , Matafwali, Scott K , Mwila, Chiluba , Mudenda, Steward , Katandula, Jonathan , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183440 , vital:43991 , xlink:href="https://doi.org/10.3390/molecules25245952"
- Description: The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
- Full Text:
- Date Issued: 2020
Stability indicating HPLC-ECD method for the analysis of clarithromycin in pharmaceutical dosage forms: Method scaling versus re-validation.
- Authors: Makoni, Pedzisai A , Chikukwa, Mellisa T R , Khamanga, Sandile M , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183387 , vital:43984 , xlink:href="https://doi.org/10.3390/scipharm87040031"
- Description: An isocratic high-performance liquid chromatographic method using electrochemical detection (HPLC-ECD) for the quantitation of clarithromycin (CLA) was developed using Response Surface Methodology (RSM) based on a Central Composite Design (CCD). The method was validated using International Conference on Harmonization (ICH) guidelines with an analytical run time of 20 min. Method re-validation following a change in analytical column was successful in reducing the analytical run time to 13 min, decreasing solvent consumption thus facilitating environmental and financial sustainability. The applicability of using the United States Pharmacopeia (USP) method scaling approach in place of method re-validation using a column with a different L–designation to the original analytical column, was investigated. The scaled method met all USP system suitability requirements for resolution, tailing factor and % relative standard deviation (RSD). The re-validated and scaled method was successfully used to resolve CLA from manufacturing excipients in commercially available dosage forms. Although USP method scaling is only permitted for columns within the same L-designation, these data suggest that it may also be applicable to columns of different designation.
- Full Text:
- Date Issued: 2019