Effects of differently shaped silver nanoparticles on the photophysics of pyridylsulfanyl-substituted phthalocyanines
- D'Souza, Sarah, Mashazi, Philani N, Britton, Jonathan, Nyokong, Tebello
- Authors: D'Souza, Sarah , Mashazi, Philani N , Britton, Jonathan , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193564 , vital:45348 , xlink:href="https://doi.org/10.1016/j.poly.2015.06.038"
- Description: This paper reports on the photophysical behavior of (2-pyridylsulfanyl)phthalocyaninato zinc(II) and 2,9(10),16(17),23(24)-tetra-(2-pyridylsulfanyl)phthalocyaninato zinc(II) in the presence of differently shaped silver nanoparticles (nanospheres, nanotriangles and nanoflowers). The presence of shaped nanoparticles increased both triplet quantum yields and lifetimes of the tetra-substituted mercaptopyridine zinc phthalocyanine in DMSO. It is apparent from this work that the shape of the silver nanoparticle used is of little consequence in influencing photophysical behavior of the phthalocyanines.
- Full Text:
- Date Issued: 2015
- Authors: D'Souza, Sarah , Mashazi, Philani N , Britton, Jonathan , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193564 , vital:45348 , xlink:href="https://doi.org/10.1016/j.poly.2015.06.038"
- Description: This paper reports on the photophysical behavior of (2-pyridylsulfanyl)phthalocyaninato zinc(II) and 2,9(10),16(17),23(24)-tetra-(2-pyridylsulfanyl)phthalocyaninato zinc(II) in the presence of differently shaped silver nanoparticles (nanospheres, nanotriangles and nanoflowers). The presence of shaped nanoparticles increased both triplet quantum yields and lifetimes of the tetra-substituted mercaptopyridine zinc phthalocyanine in DMSO. It is apparent from this work that the shape of the silver nanoparticle used is of little consequence in influencing photophysical behavior of the phthalocyanines.
- Full Text:
- Date Issued: 2015
Electrocatalytic activity of bimetallic Au–Pd nanoparticles in the presence of cobalt tetraaminophthalocyanine
- Maringa, Audacity, Mashazi, Philani N, Nyokong, Tebello
- Authors: Maringa, Audacity , Mashazi, Philani N , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189719 , vital:44925 , xlink:href="https://doi.org/10.1016/j.jcis.2014.10.056"
- Description: Au and Pd nanoparticles were individually or together electrodeposited on top of polymerized cobalt tetraaminophthalocyanine (poly-CoTAPc). When Pd and Au nanoparticles are co-deposited together, the electrode is denoted as Au–Pd (co-deposited)/poly-CoTAPc-GCE. X-ray photoelectron spectroscopy (XPS) was used to show the successful deposition of AuNPs, PdNPs and Au–Pd (co-deposited). The scanning electrochemical microscopy showed that Au–Pd (co-deposited)/poly-CoTAPc-GCE (with current range of 9.5–13.5 lA) was more conducting than Au–Pd (co-deposited)-GCE (with current range of 8–12 lA). Electrochemical impedance spectroscopy (EIS) showed that there was less resistance to charge transfer for Au–Pd (co-deposited)/poly-CoTAPc-GCE compared to the rest of the electrodes. Au–Pd (co-deposited)/poly-CoTAPc-GCE showed the best activity for the electrooxidation of hydrazine in terms of limit of detection (0.5 lM), hence shows promise as an electrocatalyst for electrooxidation of hydrazine.
- Full Text:
- Date Issued: 2015
- Authors: Maringa, Audacity , Mashazi, Philani N , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189719 , vital:44925 , xlink:href="https://doi.org/10.1016/j.jcis.2014.10.056"
- Description: Au and Pd nanoparticles were individually or together electrodeposited on top of polymerized cobalt tetraaminophthalocyanine (poly-CoTAPc). When Pd and Au nanoparticles are co-deposited together, the electrode is denoted as Au–Pd (co-deposited)/poly-CoTAPc-GCE. X-ray photoelectron spectroscopy (XPS) was used to show the successful deposition of AuNPs, PdNPs and Au–Pd (co-deposited). The scanning electrochemical microscopy showed that Au–Pd (co-deposited)/poly-CoTAPc-GCE (with current range of 9.5–13.5 lA) was more conducting than Au–Pd (co-deposited)-GCE (with current range of 8–12 lA). Electrochemical impedance spectroscopy (EIS) showed that there was less resistance to charge transfer for Au–Pd (co-deposited)/poly-CoTAPc-GCE compared to the rest of the electrodes. Au–Pd (co-deposited)/poly-CoTAPc-GCE showed the best activity for the electrooxidation of hydrazine in terms of limit of detection (0.5 lM), hence shows promise as an electrocatalyst for electrooxidation of hydrazine.
- Full Text:
- Date Issued: 2015
Electrocatalytic studies of covalently immobilized metal tetra-amino phthalocyanines onto derivatized screen-printed gold electrodes
- Mashazi, Philani N, Nyokong, Tebello
- Authors: Mashazi, Philani N , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/249059 , vital:51774 , xlink:href="https://doi.org/10.1007/s00604-010-0438-6"
- Description: Metal tetra-amino phthalocyanine complexes (MTAPc; where M is Co or Mn) were immobilized on screen-printed gold electrodes pre-modified with monolayers of benzylamino groups. The functionalized electrodes were then activated using benzene-1,4-dicarbaldehyde as a linker before MTAPc complexes were immobilized. The surface coverages for the modified electrodes confirmed the perpendicular orientation of the MTAPcs. The apparent electron transfer constant (kapp) for the electrodes is 2.2 × 10−5 cm.s−1 for both CoTAPc and MnTAPc modified electrodes as calculated with data from impedance measurements. The kapp values for the bare and benzylamino modified electrodes were found to be 1.2 × 10−4 cm.s−1 and 4.9 × 10−6 cm.s−1, respectively. The electrocatalysis of the modified electrodes towards detection of H2O2 gave significant peak current densities and electrocatalytic potentials at −0.28 V and −0.31 V for the MnTAPc and CoTAPc modified electrodes, respectively.
- Full Text:
- Date Issued: 2015
- Authors: Mashazi, Philani N , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/249059 , vital:51774 , xlink:href="https://doi.org/10.1007/s00604-010-0438-6"
- Description: Metal tetra-amino phthalocyanine complexes (MTAPc; where M is Co or Mn) were immobilized on screen-printed gold electrodes pre-modified with monolayers of benzylamino groups. The functionalized electrodes were then activated using benzene-1,4-dicarbaldehyde as a linker before MTAPc complexes were immobilized. The surface coverages for the modified electrodes confirmed the perpendicular orientation of the MTAPcs. The apparent electron transfer constant (kapp) for the electrodes is 2.2 × 10−5 cm.s−1 for both CoTAPc and MnTAPc modified electrodes as calculated with data from impedance measurements. The kapp values for the bare and benzylamino modified electrodes were found to be 1.2 × 10−4 cm.s−1 and 4.9 × 10−6 cm.s−1, respectively. The electrocatalysis of the modified electrodes towards detection of H2O2 gave significant peak current densities and electrocatalytic potentials at −0.28 V and −0.31 V for the MnTAPc and CoTAPc modified electrodes, respectively.
- Full Text:
- Date Issued: 2015
Electrode modification using alkynyl substituted Fe (II) phthalocyanine via electrografting and click chemistry for electrocatalysis
- Nxele, Siphesihle R, Mashazi, Philani N, Nyokong, Tebello
- Authors: Nxele, Siphesihle R , Mashazi, Philani N , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189296 , vital:44835 , xlink:href="https://doi.org/10.1002/elan.201500212"
- Description: In this work, tetrakis(5-hexyn-oxy)Fe(II) phthalocyanine was synthesised in order to perform a click reaction between the terminal alkyne groups and an azide group on a glassy carbon electrode (GCE) surface. An azide group was formed on the electrode surface following electrografting using 4-azidobenzene diazonium tetrafluoroborate by electrochemical reduction. The Cu(I) catalyzed alkyne-azide Huisgen cycloaddition reaction was then employed in order to react the terminal alkyne groups on the phthalocyanine with the azide groups on the GCE surface. The modified electrode was employed to catalyse the oxidation of hydrazine. The electrode showed good electrocatalytic ability towards the detection of hydrazine with a sensitivity of 15.38 µA mM−1 and a limit of detection of 1.09 µM.
- Full Text:
- Date Issued: 2015
- Authors: Nxele, Siphesihle R , Mashazi, Philani N , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189296 , vital:44835 , xlink:href="https://doi.org/10.1002/elan.201500212"
- Description: In this work, tetrakis(5-hexyn-oxy)Fe(II) phthalocyanine was synthesised in order to perform a click reaction between the terminal alkyne groups and an azide group on a glassy carbon electrode (GCE) surface. An azide group was formed on the electrode surface following electrografting using 4-azidobenzene diazonium tetrafluoroborate by electrochemical reduction. The Cu(I) catalyzed alkyne-azide Huisgen cycloaddition reaction was then employed in order to react the terminal alkyne groups on the phthalocyanine with the azide groups on the GCE surface. The modified electrode was employed to catalyse the oxidation of hydrazine. The electrode showed good electrocatalytic ability towards the detection of hydrazine with a sensitivity of 15.38 µA mM−1 and a limit of detection of 1.09 µM.
- Full Text:
- Date Issued: 2015
Iodine-Doped Cobalt Phthalocyanine Supported on Multiwalled Carbon Nanotubes for Electrocatalysis of Oxygen Reduction Reaction
- Nyoni, Stephen, Mashazi, Philani N, Nyokong, Tebello
- Authors: Nyoni, Stephen , Mashazi, Philani N , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189434 , vital:44846 , xlink:href="https://doi.org/10.1002/elan.201400499"
- Description: 4-(4,6-Diaminopyrimidin-2-ylthio) phthalocyaninatocobalt(II) (CoPyPc) was iodine doped, and its electrocatalytic properties explored. Physical characterization techniques such as UV-vis, X-ray photoelectron, electron paramagnetic resonance and infra-red spectroscopy were used. Cyclic voltammetry, electrochemical impedance spectroscopy and rotating disk electrode were used for electrochemical characterization of electrodes modified with the prepared phthalocyanine and its nanocomposites. The electrocatalytic effect of a new iodine-doped cobalt phthalocyanine derivative supported on multiwalled carbon nanotubes was then investigated towards oxygen reduction reaction. The electrocatalytic activity of the iodine-doped cobalt phthalocyanine was found to be superior in terms of current over the undoped phthalocyanine nanocomposite.
- Full Text:
- Date Issued: 2015
- Authors: Nyoni, Stephen , Mashazi, Philani N , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189434 , vital:44846 , xlink:href="https://doi.org/10.1002/elan.201400499"
- Description: 4-(4,6-Diaminopyrimidin-2-ylthio) phthalocyaninatocobalt(II) (CoPyPc) was iodine doped, and its electrocatalytic properties explored. Physical characterization techniques such as UV-vis, X-ray photoelectron, electron paramagnetic resonance and infra-red spectroscopy were used. Cyclic voltammetry, electrochemical impedance spectroscopy and rotating disk electrode were used for electrochemical characterization of electrodes modified with the prepared phthalocyanine and its nanocomposites. The electrocatalytic effect of a new iodine-doped cobalt phthalocyanine derivative supported on multiwalled carbon nanotubes was then investigated towards oxygen reduction reaction. The electrocatalytic activity of the iodine-doped cobalt phthalocyanine was found to be superior in terms of current over the undoped phthalocyanine nanocomposite.
- Full Text:
- Date Issued: 2015
Photophysical properties of zinc phthalocyanine–uridine single walled carbon nanotube–conjugates
- Ogbodu, Rachael O, Amuhaya, Edith K, Mashazi, Philani N, Nyokong, Tebello
- Authors: Ogbodu, Rachael O , Amuhaya, Edith K , Mashazi, Philani N , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193586 , vital:45350 , xlink:href="https://doi.org/10.1016/j.saa.2015.04.040"
- Description: The photophysical properties of the conjugate of uridine and zinc mono carboxy phenoxy phthalocyanine (ZnMCPPc–uridine, 4) are reported in this work. The conjugate was also adsorbed onto single walled carbon nanotubes (ZnMCPPc–uridine–SWCNT, 5). The X-ray photoelectron spectroscopy of 4 showed three N 1s peaks while that of 5 showed four N 1s peak, a new peak at 399.4 eV of 5 was assigned to pyrrolidonic nitrogen, due to the interaction of the pyrrolic nitrogen of 4 with the oxygen moiety of SWCNT–COOH in 5. The triplet lifetime, triplet and singlet oxygen quantum yields of the zinc mono carboxy phenoxy phthalocyanine increased by over 40% in the presence of uridine. SWCNTs resulted in only a small quenching of the triplet state parameters of 4.
- Full Text:
- Date Issued: 2015
- Authors: Ogbodu, Rachael O , Amuhaya, Edith K , Mashazi, Philani N , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193586 , vital:45350 , xlink:href="https://doi.org/10.1016/j.saa.2015.04.040"
- Description: The photophysical properties of the conjugate of uridine and zinc mono carboxy phenoxy phthalocyanine (ZnMCPPc–uridine, 4) are reported in this work. The conjugate was also adsorbed onto single walled carbon nanotubes (ZnMCPPc–uridine–SWCNT, 5). The X-ray photoelectron spectroscopy of 4 showed three N 1s peaks while that of 5 showed four N 1s peak, a new peak at 399.4 eV of 5 was assigned to pyrrolidonic nitrogen, due to the interaction of the pyrrolic nitrogen of 4 with the oxygen moiety of SWCNT–COOH in 5. The triplet lifetime, triplet and singlet oxygen quantum yields of the zinc mono carboxy phenoxy phthalocyanine increased by over 40% in the presence of uridine. SWCNTs resulted in only a small quenching of the triplet state parameters of 4.
- Full Text:
- Date Issued: 2015
Synthesis and photophysical properties of nanocomposites of aluminum tetrasulfonated phthalocyanine covalently linked to glutathione capped CdTe/CdS/ZnS quantum dots
- Oluwole, David O, Britton, Jonathan, Mashazi, Philani N, Nyokong, Tebello
- Authors: Oluwole, David O , Britton, Jonathan , Mashazi, Philani N , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241379 , vital:50934 , xlink:href="https://doi.org/10.1016/j.synthmet.2015.04.015"
- Description: Aluminum tetrasulfonated phthalocyanine (ClAlTSPc) was covalently linked with different sizes of glutathione capped CdTe/CdS/ZnS quantum dots (QDs). The photophysical and Förster resonance energy transfer (FRET) properties of the nanoconjugates were investigated. The CdTe/CdS/ZnS(6.3) nanocomposite showed the highest enhancement in its photophysical properties while (CdTe/CdS/ZnS(3.2) nanocomposite showed the least. Highest FRET efficiency was observed in the linked CdTe/CdS/ZnS(6.3) nanocomposites at 93%. Hence, the combination of CdTe/CdS/ZnS with ClAlTSPc exhibited excellent photophysical properties.
- Full Text:
- Date Issued: 2015
- Authors: Oluwole, David O , Britton, Jonathan , Mashazi, Philani N , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241379 , vital:50934 , xlink:href="https://doi.org/10.1016/j.synthmet.2015.04.015"
- Description: Aluminum tetrasulfonated phthalocyanine (ClAlTSPc) was covalently linked with different sizes of glutathione capped CdTe/CdS/ZnS quantum dots (QDs). The photophysical and Förster resonance energy transfer (FRET) properties of the nanoconjugates were investigated. The CdTe/CdS/ZnS(6.3) nanocomposite showed the highest enhancement in its photophysical properties while (CdTe/CdS/ZnS(3.2) nanocomposite showed the least. Highest FRET efficiency was observed in the linked CdTe/CdS/ZnS(6.3) nanocomposites at 93%. Hence, the combination of CdTe/CdS/ZnS with ClAlTSPc exhibited excellent photophysical properties.
- Full Text:
- Date Issued: 2015
Electrocatalytic activity of bimetallic Au–Pd nanoparticles in the presence of cobalt tetraaminophthalocyanine
- Maringa, Audacity, Mashazi, Philani N, Nyokong, Tebello
- Authors: Maringa, Audacity , Mashazi, Philani N , Nyokong, Tebello
- Language: English
- Type: Article
- Identifier: vital:7245 , http://hdl.handle.net/10962/d1020250
- Description: Au and Pd nanoparticles were individually or together electrodeposited on top of polymerized cobalt tetraaminophthalocyanine (poly-CoTAPc). When Pd and Au nanoparticles are co-deposited together, the electrode is denoted as Au–Pd (co-deposited)/poly-CoTAPc-GCE. X-ray photoelectron spectroscopy (XPS) was used to show the successful deposition of AuNPs, PdNPs and Au–Pd (co-deposited). The scanning electrochemical microscopy showed that Au–Pd (co-deposited)/poly-CoTAPc-GCE (with current range of 9.5–13.5 μA) was more conducting than Au–Pd (co-deposited)-GCE (with current range of 8–12 μA). Electrochemical impedance spectroscopy (EIS) showed that there was less resistance to charge transfer for Au–Pd (co-deposited)/poly-CoTAPc-GCE compared to the rest of the electrodes. Au–Pd (co-deposited)/poly-CoTAPc-GCE showed the best activity for the electrooxidation of hydrazine in terms of limit of detection (0.5 μM), hence shows promise as an electrocatalyst for electrooxidation of hydrazine. , Original publication is available at http://dx.doi.org/10.1016/j.jcis.2014.10.056
- Full Text: false
- Authors: Maringa, Audacity , Mashazi, Philani N , Nyokong, Tebello
- Language: English
- Type: Article
- Identifier: vital:7245 , http://hdl.handle.net/10962/d1020250
- Description: Au and Pd nanoparticles were individually or together electrodeposited on top of polymerized cobalt tetraaminophthalocyanine (poly-CoTAPc). When Pd and Au nanoparticles are co-deposited together, the electrode is denoted as Au–Pd (co-deposited)/poly-CoTAPc-GCE. X-ray photoelectron spectroscopy (XPS) was used to show the successful deposition of AuNPs, PdNPs and Au–Pd (co-deposited). The scanning electrochemical microscopy showed that Au–Pd (co-deposited)/poly-CoTAPc-GCE (with current range of 9.5–13.5 μA) was more conducting than Au–Pd (co-deposited)-GCE (with current range of 8–12 μA). Electrochemical impedance spectroscopy (EIS) showed that there was less resistance to charge transfer for Au–Pd (co-deposited)/poly-CoTAPc-GCE compared to the rest of the electrodes. Au–Pd (co-deposited)/poly-CoTAPc-GCE showed the best activity for the electrooxidation of hydrazine in terms of limit of detection (0.5 μM), hence shows promise as an electrocatalyst for electrooxidation of hydrazine. , Original publication is available at http://dx.doi.org/10.1016/j.jcis.2014.10.056
- Full Text: false
Electrode Modification Using Alkynyl Substituted Fe(II) Phthalocyanine via Electrografting and Click Chemistry for Electrocatalysis
- Nxele, Siphesihle R, Mashazi, Philani N, Nyokong, Tebello
- Authors: Nxele, Siphesihle R , Mashazi, Philani N , Nyokong, Tebello
- Language: English
- Type: Article
- Identifier: vital:7284 , http://hdl.handle.net/10962/d1020329
- Description: In this work, tetrakis(5-hexyn-oxy)Fe(II) phthalocyanine was synthesised in order to perform a click reaction between the terminal alkyne groups and an azide group on a glassy carbon electrode (GCE) surface. An azide group was formed on the electrode surface following electrografting using 4-azidobenzene diazonium tetrafluoroborate by electrochemical reduction. The Cu(I) catalyzed alkyne-azide Huisgen cycloaddition reaction was then employed in order to react the terminal alkyne groups on the phthalocyanine with the azide groups on the GCE surface. The modified electrode was employed to catalyse the oxidation of hydrazine. The electrode showed good electrocatalytic ability towards the detection of hydrazine with a sensitivity of 15.38 µA mM−1 and a limit of detection of 1.09 µM. , Original publication is available at http://dx.doi.org/10.1002/elan.201500212
- Full Text: false
- Authors: Nxele, Siphesihle R , Mashazi, Philani N , Nyokong, Tebello
- Language: English
- Type: Article
- Identifier: vital:7284 , http://hdl.handle.net/10962/d1020329
- Description: In this work, tetrakis(5-hexyn-oxy)Fe(II) phthalocyanine was synthesised in order to perform a click reaction between the terminal alkyne groups and an azide group on a glassy carbon electrode (GCE) surface. An azide group was formed on the electrode surface following electrografting using 4-azidobenzene diazonium tetrafluoroborate by electrochemical reduction. The Cu(I) catalyzed alkyne-azide Huisgen cycloaddition reaction was then employed in order to react the terminal alkyne groups on the phthalocyanine with the azide groups on the GCE surface. The modified electrode was employed to catalyse the oxidation of hydrazine. The electrode showed good electrocatalytic ability towards the detection of hydrazine with a sensitivity of 15.38 µA mM−1 and a limit of detection of 1.09 µM. , Original publication is available at http://dx.doi.org/10.1002/elan.201500212
- Full Text: false
Electrode modification using nanocomposites of electropolymerised cobalt phthalocyanines supported on multiwalled carbon nanotubes
- Nyoni, Stephen, Mashazi, Philani N, Nyokong, Tebello
- Authors: Nyoni, Stephen , Mashazi, Philani N , Nyokong, Tebello
- Language: English
- Type: Article
- Identifier: vital:7293 , http://hdl.handle.net/10962/d1020356
- Description: A polymer of tetra(4)-(4,6-diaminopyrimidin-2-ylthio) phthalocyaninatocobalt(II) (CoPyPc) has been deposited over a multiwalled carbon nanotube (MWCNT) platform and its electrocatalytic properties investigated side by side with polymerized cobalt tetraamino phthalocyanine (CoTAPc). X-ray photoelectron spectroscopy, scanning electron microscopy and cyclic voltammetry studies were used for characterization of the prepared polymers of cobalt phthalocyanine derivatives and their nanocomposites. l-Cysteine was used as a test analyte for the electrocatalytic activity of the nanocomposites of polymerized cobalt phthalocyanines and multiwalled carbon nanotubes. The electrocatalytic activity of both polymerized cobalt phthalocyanines was found to be superior when polymerization was done on top of MWCNTs compared to bare glassy carbon electrode. A higher sensitivity for l-cysteine detection was obtained on CoTAPc compared to CoPyPc. , Original publication is available at http://dx.doi.org/10.1007/s10008-015-2985-6
- Full Text: false
- Authors: Nyoni, Stephen , Mashazi, Philani N , Nyokong, Tebello
- Language: English
- Type: Article
- Identifier: vital:7293 , http://hdl.handle.net/10962/d1020356
- Description: A polymer of tetra(4)-(4,6-diaminopyrimidin-2-ylthio) phthalocyaninatocobalt(II) (CoPyPc) has been deposited over a multiwalled carbon nanotube (MWCNT) platform and its electrocatalytic properties investigated side by side with polymerized cobalt tetraamino phthalocyanine (CoTAPc). X-ray photoelectron spectroscopy, scanning electron microscopy and cyclic voltammetry studies were used for characterization of the prepared polymers of cobalt phthalocyanine derivatives and their nanocomposites. l-Cysteine was used as a test analyte for the electrocatalytic activity of the nanocomposites of polymerized cobalt phthalocyanines and multiwalled carbon nanotubes. The electrocatalytic activity of both polymerized cobalt phthalocyanines was found to be superior when polymerization was done on top of MWCNTs compared to bare glassy carbon electrode. A higher sensitivity for l-cysteine detection was obtained on CoTAPc compared to CoPyPc. , Original publication is available at http://dx.doi.org/10.1007/s10008-015-2985-6
- Full Text: false
Iodine-Doped Cobalt Phthalocyanine Supported on Multiwalled Carbon Nanotubes for Electrocatalysis of Oxygen Reduction Reaction
- Nyoni, Stephen, Mashazi, Philani N, Nyokong, Tebello
- Authors: Nyoni, Stephen , Mashazi, Philani N , Nyokong, Tebello
- Language: English
- Type: Article
- Identifier: vital:7242 , http://hdl.handle.net/10962/d1020246
- Description: 4-(4,6-Diaminopyrimidin-2-ylthio) phthalocyaninatocobalt(II) (CoPyPc) was iodine doped, and its electrocatalytic properties explored. Physical characterization techniques such as UV-vis, X-ray photoelectron, electron paramagnetic resonance and infra-red spectroscopy were used. Cyclic voltammetry, electrochemical impedance spectroscopy and rotating disk electrode were used for electrochemical characterization of electrodes modified with the prepared phthalocyanine and its nanocomposites. The electrocatalytic effect of a new iodine-doped cobalt phthalocyanine derivative supported on multiwalled carbon nanotubes was then investigated towards oxygen reduction reaction. The electrocatalytic activity of the iodine-doped cobalt phthalocyanine was found to be superior in terms of current over the undoped phthalocyanine nanocomposite. , Original publication is available at http://dx.doi.org/10.1002/elan.201400499
- Full Text: false
- Authors: Nyoni, Stephen , Mashazi, Philani N , Nyokong, Tebello
- Language: English
- Type: Article
- Identifier: vital:7242 , http://hdl.handle.net/10962/d1020246
- Description: 4-(4,6-Diaminopyrimidin-2-ylthio) phthalocyaninatocobalt(II) (CoPyPc) was iodine doped, and its electrocatalytic properties explored. Physical characterization techniques such as UV-vis, X-ray photoelectron, electron paramagnetic resonance and infra-red spectroscopy were used. Cyclic voltammetry, electrochemical impedance spectroscopy and rotating disk electrode were used for electrochemical characterization of electrodes modified with the prepared phthalocyanine and its nanocomposites. The electrocatalytic effect of a new iodine-doped cobalt phthalocyanine derivative supported on multiwalled carbon nanotubes was then investigated towards oxygen reduction reaction. The electrocatalytic activity of the iodine-doped cobalt phthalocyanine was found to be superior in terms of current over the undoped phthalocyanine nanocomposite. , Original publication is available at http://dx.doi.org/10.1002/elan.201400499
- Full Text: false
- «
- ‹
- 1
- ›
- »