Education, Training and Capacity-Building in the Field of Biological Invasions in South Africa:
- Authors: Byrne, Marcus J , du Plessis, Dorette , Ivey, Philip J , Measey, John , Robertson, Mark P , Robinson, Tamara B , Weaver, Kim N
- Date: 2020
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/176250 , vital:42678 , ISBN 978-3-030-32394-3 , 10.1007/978-3-030-32394-3
- Description: Our changing relationship with the biosphere is one of many anxieties that human society currently confronts. The paradox that some biodiversity that has been moved across the planet by human trade could actually be harmful is unknown to many people. They are either oblivious, or perceive nature as being under threat, rather than as threatening in itself.
- Full Text: false
- Date Issued: 2020
The role of ambient temperature and body mass on body temperature, standard metabolic rate and evaporative water loss in southern African anurans of different habitat specialisation
- Authors: Mokhatla, Mohlamatsane , Measey, John , Smit, Ben
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/440571 , vital:73794 , 10.7717/peerj.7885
- Description: Temperature and water availability are two of the most important variables affecting all aspects of an anuran’s key physiological processes such as body temperature (T b), evaporative water loss (EWL) and standard metabolic rate (SMR). Since anurans display pronounced sexual dimorphism, evidence suggests that these processes are further influenced by other factors such as vapour pressure deficit (VPD), sex and body mass (M b). However, a limited number of studies have tested the generality of these results across a wide range of ecologically relevant ambient temperatures (T a), while taking habitat use into account. Thus, the aim of this study was to investigate the role of T a on T b, whole-animal EWL and whole-animal SMR in three wild caught African anuran species with different ecological specialisations: the principally aquatic African clawed frog (Xenopus laevis), stream-breeding common river frog (Amietia delalandii), and the largely terrestrial raucous toad (Sclerophrys capensis).
- Full Text:
- Date Issued: 2019
Soil biota in a megadiverse country current knowledge and future research directions in South Africa
- Authors: Janion-Scheepers, Charlene , Measey, John , Braschler, Brigitte , Chown, Steven L , Coetzee, Louisee , Colville, Jonathan F , Dames, Joanna F , Davies, Andrew B , Davies, Sarah J , Davis, Adrian L V , Dippenaar-Schoeman, Ansi S , Duffy, Grant A , Fouries, Driekie , Griffiths, Charles , Haddad, Charles R , Hamer, Michelle , Herbert, David G , Hugo-Coetzee, Elizabeth A , Jacobs, Adriaanas , Jacobs, Karin , Jansen van Rensburg, Candice , Lamani, Siviwe , Lotz, Leon N , vdm Louw, Schalk , Lyle, Robin , Malan, Antoinette P , Marais, Mariette , Neethling, Jan-Andries , Nxele, Thembeka , Plisko, Danuta J , Prendini, Lorenzo , Rink, Ariella N , Swart, Antionette , Theron, Pieter , Truter, Mariette , Ueckermnn, Eddie , Uys, Vivienne M , Villet, Martin H , Willows-Munro, Sandy , Wilson, R U
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/448682 , vital:74751 , https://doi.org/10.1016/j.pedobi.2016.03.004
- Description: Soils are integral to agricultural productivity, biodiversity, and the maintenance of ecosystem services. However, soil ecosystem research depends on foundational biological knowledge that is often missing. In this review, we present a comprehensive, cross-taxa overview of the soil biota of South Africa. We discuss the literature and sampling methods used to assess soil biota, the available taxonomic expertise and main collections within South Africa, the availability of identification guides and online resources, and the status and distribution of described species. We include species lists for all South African soil biota and, for groups with sufficient distribution records, species richness maps. Despite South Africa being only 0.8% of the earth’s terrestrial area, it contains nearly 1.8% of the world’s described soil species (mean per taxon 3.64%, range 0.17–15%; n = 36 groups), with nematodes and earthworms showing a remarkable (6.4 and 7.7%) proportion of globally described diversity. Endemism is high for most groups, ranging from 33–92%. However, major knowledge gaps exist for most soil biota groups. While sampling has been relatively comprehensive in some areas for a few groups (particularly those with direct socioeconomic impacts), the Nama-Karoo, Northern Cape and Eastern Cape are poorly sampled. Natural soils in biodiversity hotspots, such as the Fynbos Biome, are also understudied. We argue that a more integrative approach to acquiring foundational knowledge in soil biodiversity is needed if applied soil research is to be effective in ensuring sustainable soil health. Considerable investment will be required to bring our understanding of the soil biodiversity in this megadiverse region to a level where the Millennium Development Goals can be reached.
- Full Text:
- Date Issued: 2016