- Title
- Impact of intergrating teebus hydro power on the unbalanced distribution MV network
- Creator
- Mthethwa, Lindani
- Subject
- Electric power systems
- Subject
- Renewable energy sources Hydroelectric power plants
- Date Issued
- 2018
- Date
- 2018
- Type
- Thesis
- Type
- Masters
- Type
- MTech
- Identifier
- http://hdl.handle.net/10948/33054
- Identifier
- vital:32512
- Description
- Small hydro power sources have been identified as one of the renewable energy technologies that the South African government is focusing on in order to generate more electricity from renewable/independent resources. Due to the low carbon output of most renewable energy technologies and the carbon intensive power generation technologies that are currently being used in South Africa e.g. Hydro, coal, gas, and etc. further pressure is increasing to incorporate cleaner forms of generation. In 2002 a study focusing on the hydropower potential was compiled providing an assessment according to conventional and unconventional possibilities for all the provinces. Nowadays, the power electricity demand is growing fast and one of the main tasks for power engineers is to generate electricity from renewable energy sources to overcome this increase in the energy consumption and at the same time reduce environmental impact of power generation. Eskom Distribution Eastern Cape Operating Unit (ECOU) was requested to investigate the feasibility of connecting a small hydro power scheme located in the Teebus area in the Eastern Cape. The Eastern Cape in particular, was identified as potentially the most productive area for small hydroelectric development in South Africa for both the grid connected and off grid applications. These network conditions are in contrast to the South African electricity network where long radial feeders with low X/R ratios and high resistance, spanning large geographic areas, give rise to low voltages on the network. Practical simulation networks have been used to test the conditions set out in the South African Grid Code/NERSA standard and to test the impact of connecting small hydro generation onto the unbalanced distribution network. These networks are representative of various real case scenarios of the South African distribution network. Most of the findings from the simulations were consistent with what was expected when comparing with other literatures. From the simulation results it was seen that the performance of the variable speed generators were superior to that of the fixed speed generators during transient conditions. It was also seen that the weakness of the network had a negative effect on the stability of the system. It is also noted that the stability studies are a necessity when connecting the generators to a network and that each case should be reviewed individually. The fundamental cause of voltage instability is identified as incapability of combined distribution and generation system to meet excessive load demand in either real power or reactive power form.
- Format
- xiv, 206 leaves
- Format
- Publisher
- Nelson Mandela University
- Publisher
- Faculty of Engineering, the Built Environment and Information Technology
- Language
- English
- Rights
- Nelson Mandela University
- Hits: 1102
- Visitors: 1403
- Downloads: 357
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | LINDANI MTHETHWA.pdf | 9 MB | Adobe Acrobat PDF | View Details Download |