Breast cancer: current developments in molecular approaches to diagnosis and treatment
- Authors: de la Mare, Jo-Anne , Contu, Lara , Hunter, Morgan C , Moyo, Buhle , Sterrenberg, Jason N , Dhanani, Karim C H , Mutsvunguma, Lorraine Z , Edkins, Adrienne L
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164819 , vital:41175 , DOI: 10.2174/15748928113086660046
- Description: Due to the high heterogeneity of breast cancers, numerous recent patents describe improved methods of detection and classification which promise better patient prognosis and treatment. In particular, there has been a shift towards more effective genetic screening to identify specific mutations associated with breast tumours, which may lead to “personalised medicine” with improved outcomes. Two challenging areas of breast cancer research involve the development of treatments for the highly aggressive triple negative breast cancer subtype as well as the chemotherapy-resistant cancer stem cell subpopulation. In addition, despite numerous recent advances in breast cancer treatment in woman, male breast cancer remains poorly understood and there are limited therapies available which are developed specifically for men. This review serves to report on important developments in the treatment of breast malignancies patented in the past two years as well as to highlight the current gaps in the field of breast cancer therapeutics and areas which require further study.
- Full Text:
- Date Issued: 2014
Theiler’s murine encephalomyelitis virus infection induces a redistribution of heat shock proteins 70 and 90 in BHK-21 cells, and is inhibited by novobiocin and geldanamycin:
- Authors: Mutsvunguma, Lorraine Z , Moetlhoa, Boitumelo , Edkins, Adrienne L , Luke, Garry A , Blatch, Gregory L , Knox, Caroline M
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165085 , vital:41207 , DOI: 10.1007/s12192-011-0262-x
- Description: Theiler’s murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex.
- Full Text:
- Date Issued: 2011
Localisation of Theiler's murine encephalomyelitis virus protein 2C to the golgi apparatus using antibodies generated against a peptide region:
- Authors: Jauka, Tembisa , Mutsvunguma, Lorraine Z , Boshoff, Aileen , Edkins, Adrienne L , Knox, Caroline M
- Date: 2010
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165074 , vital:41206 , DOI: 10.1016/j.jviromet.2010.05.009
- Description: The picornavirus 2C protein is highly conserved and indispensible for virus replication. Polyclonal antibodies against Theiler's murine encephalomyelitis virus (TMEV) 2C protein were generated by immunisation of rabbits with a peptide comprising amino acids 31–210 of the protein. Antibodies were used to investigate the localisation of 2C in infected cells by indirect immunofluorescence and confocal microscopy. Analysis of infected cells revealed that the distribution of 2C changed during infection.
- Full Text:
- Date Issued: 2010