The ataxia protein sacsin is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1
- Parfitt, David A, Michael, Gregory J, Vermeulen, Esmeralda G M, Prodromou, Natalia V, Webb, Tom R, Gallo, Jean-Marc, Cheetham, Michael E, Nicoll, William S, Blatch, Gregory L, Chapple, J Paul
- Authors: Parfitt, David A , Michael, Gregory J , Vermeulen, Esmeralda G M , Prodromou, Natalia V , Webb, Tom R , Gallo, Jean-Marc , Cheetham, Michael E , Nicoll, William S , Blatch, Gregory L , Chapple, J Paul
- Date: 2009
- Language: English
- Type: Article
- Identifier: vital:6485 , http://hdl.handle.net/10962/d1006262 , http://hmg.oxfordjournals.org/content/18/9/1556
- Description: An extensive protein–protein interaction network has been identified between proteins implicated in inherited ataxias. The protein sacsin, which is mutated in the early-onset neurodegenerative disease autosomal recessive spastic ataxia of Charlevoix-Saguenay, is a node in this interactome. Here, we have established the neuronal expression of sacsin and functionally characterized domains of the 4579 amino acid protein. Sacsin is most highly expressed in large neurons, particularly within brain motor systems, including cerebellar Purkinje cells. Its subcellular localization in SH-SY5Y neuroblastoma cells was predominantly cytoplasmic with a mitochondrial component. We identified a putative ubiquitin-like (UbL) domain at the N-terminus of sacsin and demonstrated an interaction with the proteasome. Furthermore, sacsin contains a predicted J-domain, the defining feature of DnaJ/Hsp40 proteins. Using a bacterial complementation assay, the sacsin J-domain was demonstrated to be functional. The presence of both UbL and J-domains in sacsin suggests that it may integrate the ubiquitin–proteasome system and Hsp70 function to a specific cellular role. The Hsp70 chaperone machinery is an important component of the cellular response towards aggregation prone mutant proteins that are associated with neurodegenerative diseases. We therefore investigated the effects of siRNA-mediated sacsin knockdown on polyglutamine-expanded ataxin-1. Importantly, SACS siRNA did not affect cell viability with GFP-ataxin-1[30Q], but enhanced the toxicity of GFP-ataxin- 1[82Q], suggesting that sacsin is protective against mutant ataxin-1. Thus, sacsin is an ataxia protein and a regulator of the Hsp70 chaperone machinery that is implicated in the processing of other ataxialinked proteins.
- Full Text:
- Date Issued: 2009
- Authors: Parfitt, David A , Michael, Gregory J , Vermeulen, Esmeralda G M , Prodromou, Natalia V , Webb, Tom R , Gallo, Jean-Marc , Cheetham, Michael E , Nicoll, William S , Blatch, Gregory L , Chapple, J Paul
- Date: 2009
- Language: English
- Type: Article
- Identifier: vital:6485 , http://hdl.handle.net/10962/d1006262 , http://hmg.oxfordjournals.org/content/18/9/1556
- Description: An extensive protein–protein interaction network has been identified between proteins implicated in inherited ataxias. The protein sacsin, which is mutated in the early-onset neurodegenerative disease autosomal recessive spastic ataxia of Charlevoix-Saguenay, is a node in this interactome. Here, we have established the neuronal expression of sacsin and functionally characterized domains of the 4579 amino acid protein. Sacsin is most highly expressed in large neurons, particularly within brain motor systems, including cerebellar Purkinje cells. Its subcellular localization in SH-SY5Y neuroblastoma cells was predominantly cytoplasmic with a mitochondrial component. We identified a putative ubiquitin-like (UbL) domain at the N-terminus of sacsin and demonstrated an interaction with the proteasome. Furthermore, sacsin contains a predicted J-domain, the defining feature of DnaJ/Hsp40 proteins. Using a bacterial complementation assay, the sacsin J-domain was demonstrated to be functional. The presence of both UbL and J-domains in sacsin suggests that it may integrate the ubiquitin–proteasome system and Hsp70 function to a specific cellular role. The Hsp70 chaperone machinery is an important component of the cellular response towards aggregation prone mutant proteins that are associated with neurodegenerative diseases. We therefore investigated the effects of siRNA-mediated sacsin knockdown on polyglutamine-expanded ataxin-1. Importantly, SACS siRNA did not affect cell viability with GFP-ataxin-1[30Q], but enhanced the toxicity of GFP-ataxin- 1[82Q], suggesting that sacsin is protective against mutant ataxin-1. Thus, sacsin is an ataxia protein and a regulator of the Hsp70 chaperone machinery that is implicated in the processing of other ataxialinked proteins.
- Full Text:
- Date Issued: 2009
Molecular chaperones in biology, medicine and protein biotechnology
- Boshoff, Aileen, Nicoll, William S, Hennessy, Fritha, Ludewig, M H, Daniel, Sheril, Modisakeng, Keoagile W, Shonhai, Addmore, McNamara, Caryn, Bradley, Graeme, Blatch, Gregory L
- Authors: Boshoff, Aileen , Nicoll, William S , Hennessy, Fritha , Ludewig, M H , Daniel, Sheril , Modisakeng, Keoagile W , Shonhai, Addmore , McNamara, Caryn , Bradley, Graeme , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6457 , http://hdl.handle.net/10962/d1004479
- Description: Molecular chaperones consist of several highly conserved families of proteins, many of which consist of heat shock proteins. The primary function of molecular chaperones is to facilitate the folding or refolding of proteins, and therefore they play an important role in diverse cellular processes including protein synthesis, protein translocation, and the refolding or degradation of proteins after cell stress. Cells are often exposed to different stressors, resulting in protein misfolding and aggregation. It is now well established that the levels of certain molecular chaperones are elevated during stress to provide protection to the cell. The focus of this review is on the impact of molecular chaperones in biology, medicine and protein biotechnology, and thus covers both fundamental and applied aspects of chaperone biology. Attention is paid to the functions and applications of molecular chaperones from bacterial and eukaryotic cells, focusing on the heat shock proteins 90 (Hsp90), 70 (Hsp70) and 40 (Hsp40) classes of chaperones, respectively. The role of these classes of chaperones in human diseases is discussed, as well as the parts played by chaperones produced by the causative agents of malaria and trypanosomiasis. Recent advances have seen the application of chaperones in improving the yields of a particular target protein in recombinant protein production. The prospects for the targeted use of molecular chaperones for the over-production of recombinant proteins is critically reviewed, and current research on these chaperones at Rhodes University is also discussed.
- Full Text:
- Date Issued: 2004
- Authors: Boshoff, Aileen , Nicoll, William S , Hennessy, Fritha , Ludewig, M H , Daniel, Sheril , Modisakeng, Keoagile W , Shonhai, Addmore , McNamara, Caryn , Bradley, Graeme , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6457 , http://hdl.handle.net/10962/d1004479
- Description: Molecular chaperones consist of several highly conserved families of proteins, many of which consist of heat shock proteins. The primary function of molecular chaperones is to facilitate the folding or refolding of proteins, and therefore they play an important role in diverse cellular processes including protein synthesis, protein translocation, and the refolding or degradation of proteins after cell stress. Cells are often exposed to different stressors, resulting in protein misfolding and aggregation. It is now well established that the levels of certain molecular chaperones are elevated during stress to provide protection to the cell. The focus of this review is on the impact of molecular chaperones in biology, medicine and protein biotechnology, and thus covers both fundamental and applied aspects of chaperone biology. Attention is paid to the functions and applications of molecular chaperones from bacterial and eukaryotic cells, focusing on the heat shock proteins 90 (Hsp90), 70 (Hsp70) and 40 (Hsp40) classes of chaperones, respectively. The role of these classes of chaperones in human diseases is discussed, as well as the parts played by chaperones produced by the causative agents of malaria and trypanosomiasis. Recent advances have seen the application of chaperones in improving the yields of a particular target protein in recombinant protein production. The prospects for the targeted use of molecular chaperones for the over-production of recombinant proteins is critically reviewed, and current research on these chaperones at Rhodes University is also discussed.
- Full Text:
- Date Issued: 2004
- «
- ‹
- 1
- ›
- »