Towards assessing impacts of alien plant infestations on river systems in the Southern Cape using cost-benefit analyses
- Rivers-Moore, Nick A, Dallas, Helen F, Barendse, Jaco, de Moor, Ferdy C
- Authors: Rivers-Moore, Nick A , Dallas, Helen F , Barendse, Jaco , de Moor, Ferdy C
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438336 , vital:73452 , ISBN 978-1-4312-0661-2 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2264.pdf
- Description: Ecosystem resilience is key to the provision of dependable ecosystem goods and services, and it is generally accepted that ecosystem diversity helps to maintain sys-tem resilience. It is therefore reasonable to postulate that changes to the variables that drive species patterns will result in changes to ecosystem community structure and consequently negatively impact on system resilience. Alien vegetation in the riparian zone can impact on water temperatures, flow patterns, degree of shading, channel modification, and changes to natural sediment loads. Climate change is likely to exacerbate the problem both directly through its amplification of thermal extremes in aquatic systems, and indirectly through its impacts on dispersal patterns of alien invasive vegetation.
- Full Text:
- Date Issued: 2015
- Authors: Rivers-Moore, Nick A , Dallas, Helen F , Barendse, Jaco , de Moor, Ferdy C
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438336 , vital:73452 , ISBN 978-1-4312-0661-2 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2264.pdf
- Description: Ecosystem resilience is key to the provision of dependable ecosystem goods and services, and it is generally accepted that ecosystem diversity helps to maintain sys-tem resilience. It is therefore reasonable to postulate that changes to the variables that drive species patterns will result in changes to ecosystem community structure and consequently negatively impact on system resilience. Alien vegetation in the riparian zone can impact on water temperatures, flow patterns, degree of shading, channel modification, and changes to natural sediment loads. Climate change is likely to exacerbate the problem both directly through its amplification of thermal extremes in aquatic systems, and indirectly through its impacts on dispersal patterns of alien invasive vegetation.
- Full Text:
- Date Issued: 2015
Prediction of water temperature metrics using spatial modelling in the Eastern and Western Cape, South Africa
- Rivers-Moore, Nick A, Mantel, Sukhmani K, Dallas, Helen F
- Authors: Rivers-Moore, Nick A , Mantel, Sukhmani K , Dallas, Helen F
- Date: 2012
- Language: English
- Type: text , Article
- Identifier: vital:7071 , http://hdl.handle.net/10962/d1003947 , http://www.scielo.org.za/scielo.php?pid=S1816-79502012000200002&script=sci_arttext
- Description: Key aspects of a river's temperature regime are described by magnitudes, timing and durations of thermal events, and frequencies of extreme exceedance events. To understand alterations to thermal regimes, it is necessary to describe thermal time series based on these statistics. Classification of sites based on their thermal metrics, and understanding of spatial patterns of these thermal statistics, provides a powerful approach for comparing study sites against reference sites. Water temperature regime dynamics should be viewed regionally, where regional divisions have an inherent underpinning by an understanding of natural thermal variability. The aim of this research was to link key water temperature metrics to readily-mapped environmental surrogates, and to produce spatial images of temperature metrics: 37 temperature metrics were derived for 12 months of sub-daily water temperatures at 90 sites in the Eastern Cape and Western Cape provinces, South Africa. These metrics were correlated with 16 environmental variables. Correlations enabled development of multiple regression models which facilitated mapping of temperature metrics over the study area. This approach has the potential to be applied at a national scale as more thermal time series are collected nationally. It is argued that the appropriateness of management decisions in rivers can be improved by including guidelines for thermal metrics at a regional scale. Such maps could facilitate incorporation of a temperature component into management guidelines for water resources.
- Full Text:
- Date Issued: 2012
- Authors: Rivers-Moore, Nick A , Mantel, Sukhmani K , Dallas, Helen F
- Date: 2012
- Language: English
- Type: text , Article
- Identifier: vital:7071 , http://hdl.handle.net/10962/d1003947 , http://www.scielo.org.za/scielo.php?pid=S1816-79502012000200002&script=sci_arttext
- Description: Key aspects of a river's temperature regime are described by magnitudes, timing and durations of thermal events, and frequencies of extreme exceedance events. To understand alterations to thermal regimes, it is necessary to describe thermal time series based on these statistics. Classification of sites based on their thermal metrics, and understanding of spatial patterns of these thermal statistics, provides a powerful approach for comparing study sites against reference sites. Water temperature regime dynamics should be viewed regionally, where regional divisions have an inherent underpinning by an understanding of natural thermal variability. The aim of this research was to link key water temperature metrics to readily-mapped environmental surrogates, and to produce spatial images of temperature metrics: 37 temperature metrics were derived for 12 months of sub-daily water temperatures at 90 sites in the Eastern Cape and Western Cape provinces, South Africa. These metrics were correlated with 16 environmental variables. Correlations enabled development of multiple regression models which facilitated mapping of temperature metrics over the study area. This approach has the potential to be applied at a national scale as more thermal time series are collected nationally. It is argued that the appropriateness of management decisions in rivers can be improved by including guidelines for thermal metrics at a regional scale. Such maps could facilitate incorporation of a temperature component into management guidelines for water resources.
- Full Text:
- Date Issued: 2012
Prediction of water temperature metrics using spatial modelling in the Eastern and Western Cape, South Africa
- Rivers-Moore, Nick A, Mantel, Sukhmani K, Dallas, Helen F
- Authors: Rivers-Moore, Nick A , Mantel, Sukhmani K , Dallas, Helen F
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438180 , vital:73441 , ISBN 1816-7950 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2651.pdf
- Description: Key aspects of a river’s temperature regime are described by magnitudes, timing and durations of thermal events, and frequencies of extreme exceedance events. To understand alterations to thermal regimes, it is necessary to describe thermal time series based on these statistics. Classification of sites based on their thermal met-rics, and understanding of spatial patterns of these thermal statistics, provides a powerful approach for comparing study sites against reference sites. Water tem-perature regime dynamics should be viewed regionally, where regional divisions have an inherent underpinning by an understanding of natural thermal variability. The aim of this research was to link key water temperature metrics to readi-lymapped environmental surrogates, and to produce spatial images of temperature metrics: 37 temperature metrics were derived for 12 months of sub-daily water temperatures at 90 sites in the Eastern Cape and Western Cape provinces, South Africa.
- Full Text:
- Date Issued: 2012
- Authors: Rivers-Moore, Nick A , Mantel, Sukhmani K , Dallas, Helen F
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438180 , vital:73441 , ISBN 1816-7950 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2651.pdf
- Description: Key aspects of a river’s temperature regime are described by magnitudes, timing and durations of thermal events, and frequencies of extreme exceedance events. To understand alterations to thermal regimes, it is necessary to describe thermal time series based on these statistics. Classification of sites based on their thermal met-rics, and understanding of spatial patterns of these thermal statistics, provides a powerful approach for comparing study sites against reference sites. Water tem-perature regime dynamics should be viewed regionally, where regional divisions have an inherent underpinning by an understanding of natural thermal variability. The aim of this research was to link key water temperature metrics to readi-lymapped environmental surrogates, and to produce spatial images of temperature metrics: 37 temperature metrics were derived for 12 months of sub-daily water temperatures at 90 sites in the Eastern Cape and Western Cape provinces, South Africa.
- Full Text:
- Date Issued: 2012
First steps in the development of a water temperature model framework for refining the ecological Reserve in South African rivers
- Rivers-Moore, Nick A, Hughes, Denis A, Mantel, Sukhmani K, Hill, Trevor R
- Authors: Rivers-Moore, Nick A , Hughes, Denis A , Mantel, Sukhmani K , Hill, Trevor R
- Date: 2008-10-05
- Language: English
- Type: text , Article
- Identifier: vital:7092 , http://hdl.handle.net/10962/d1012425
- Description: Ecological Reserve determination for rivers in South Africa presently does not include a water temperature component, in spite of its importance in determining species distribution patterns. To achieve this requires an understanding of how lotic thermographs from South African rivers differ from northern hemisphere rivers, to avoid mismanaging rivers based on incorrect regional assumptions. Hourly water temperatures from 20 sites in four river systems, representing a range of latitudes, altitudes and stream orders, were assessed using a range of metrics. These data were analysed using principal component analyses and multiple linear regressions to understand what variables a water temperature model for use in ecoregions within South Africa should include. While temperature data are generally lacking in low- and higher-order South African rivers, data suggest that South African rivers are warmer than northern hemisphere rivers. Water temperatures could be grouped into cool, warm and intermediate types. Based on temperature time series analyses, this paper argues that a suitable water-temperature model for use in ecological Reserve determinations should be dynamic, include flow and air temperature variables, and be adaptive through a heat exchange coefficient term. The inclusion of water temperature in the determination and management of river ecological Reserves would allow for more holistic application of the National Water Act's ecological management provisions. Water temperature guidelines added to the ecological Reserve could be integrated into heuristic aquatic monitoring programmes within priority areas identified in regional conservation plans.
- Full Text:
- Date Issued: 2008-10-05
- Authors: Rivers-Moore, Nick A , Hughes, Denis A , Mantel, Sukhmani K , Hill, Trevor R
- Date: 2008-10-05
- Language: English
- Type: text , Article
- Identifier: vital:7092 , http://hdl.handle.net/10962/d1012425
- Description: Ecological Reserve determination for rivers in South Africa presently does not include a water temperature component, in spite of its importance in determining species distribution patterns. To achieve this requires an understanding of how lotic thermographs from South African rivers differ from northern hemisphere rivers, to avoid mismanaging rivers based on incorrect regional assumptions. Hourly water temperatures from 20 sites in four river systems, representing a range of latitudes, altitudes and stream orders, were assessed using a range of metrics. These data were analysed using principal component analyses and multiple linear regressions to understand what variables a water temperature model for use in ecoregions within South Africa should include. While temperature data are generally lacking in low- and higher-order South African rivers, data suggest that South African rivers are warmer than northern hemisphere rivers. Water temperatures could be grouped into cool, warm and intermediate types. Based on temperature time series analyses, this paper argues that a suitable water-temperature model for use in ecological Reserve determinations should be dynamic, include flow and air temperature variables, and be adaptive through a heat exchange coefficient term. The inclusion of water temperature in the determination and management of river ecological Reserves would allow for more holistic application of the National Water Act's ecological management provisions. Water temperature guidelines added to the ecological Reserve could be integrated into heuristic aquatic monitoring programmes within priority areas identified in regional conservation plans.
- Full Text:
- Date Issued: 2008-10-05
Links between water temperatures, ecological responses and flow rates: a framework for establishing water temperature guidelines for the ecological reserve
- Rivers-Moore, Nick A, Hughes, Denis A, Mantel, Sukhmani K
- Authors: Rivers-Moore, Nick A , Hughes, Denis A , Mantel, Sukhmani K
- Date: 2008
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438295 , vital:73449 , ISBN 978-1-77005-738-8 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/KV214-CONSERVATION.pdf
- Description: Global ecosystems face unprecedented crises in habitat fragmentation, destruction and ultimately extinction (Groves, 2003), and of all the vary-ing ecological systems rivers are the most neglected and endangered (Groves, 2003; Driver, et al., 2005; Roux et al., 2005). The greatest threat to these systems is the loss or degradation of natural habitat and processes (Driver et al., 2005), and water temperatures, after flow vol-umes, are a primary abiotic driver of species patterns within river sys-tems. Stuckenberg (1969) highlighted the links between temperature, topography and faunal assemblages, while Rivers-Moore et al.(2004) highlights the major impacts of water temperatures on organisms, and illustrate how water temperatures are one of the primary environmental drivers structuring fish communities in the Sabie River, arguably the most icthyologically species-rich river in South Africa.
- Full Text:
- Date Issued: 2008
- Authors: Rivers-Moore, Nick A , Hughes, Denis A , Mantel, Sukhmani K
- Date: 2008
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438295 , vital:73449 , ISBN 978-1-77005-738-8 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/KV214-CONSERVATION.pdf
- Description: Global ecosystems face unprecedented crises in habitat fragmentation, destruction and ultimately extinction (Groves, 2003), and of all the vary-ing ecological systems rivers are the most neglected and endangered (Groves, 2003; Driver, et al., 2005; Roux et al., 2005). The greatest threat to these systems is the loss or degradation of natural habitat and processes (Driver et al., 2005), and water temperatures, after flow vol-umes, are a primary abiotic driver of species patterns within river sys-tems. Stuckenberg (1969) highlighted the links between temperature, topography and faunal assemblages, while Rivers-Moore et al.(2004) highlights the major impacts of water temperatures on organisms, and illustrate how water temperatures are one of the primary environmental drivers structuring fish communities in the Sabie River, arguably the most icthyologically species-rich river in South Africa.
- Full Text:
- Date Issued: 2008
Optimisation of Bacillus thuringiensis var. israelensis (Vectobac®) applications for the blackfly control programme on the Orange River, South Africa
- Rivers-Moore, Nick A, Bangay, Shaun D, Palmer, R W
- Authors: Rivers-Moore, Nick A , Bangay, Shaun D , Palmer, R W
- Date: 2008
- Language: English
- Type: Article
- Identifier: vital:7090 , http://hdl.handle.net/10962/d1012421
- Description: The Orange River, South Africa's largest river, is a critical water resource for the country. In spite of the clear economic benefits of regulating river flows through a series of impoundments, one of the significant undesirable ecological consequences of this regulation has been the regular outbreaks of the pest blackfly species Simulium chutteri and S. damnosum s.l. (Diptera: Simuliidae). The current control programme, carried out by the South African National Department of Agriculture, uses regular applications, by helicopter, of the target-specific bacterial larvicide Bacillus thuringiensis var. israelensis. While cost-benefit analyses show significant benefits to the control programme, benefits could potentially be further increased through applying smaller volumes of larvicide in an optimised manner, which incorporates upstream residual amounts of pesticide through downstream carry. Using an optimisation technique applied in the West African Onchocerciasis Control Programme, to a 136 km stretch of the Orange River which includes 31 blackfly breeding sites, we demonstrate that 28.5% less larvicide could be used to potentially achieve the same control of blackfly. This translates into potential annual savings of between R540 000 and R1 800 000. A comparison of larvicide volumes estimated using traditional vs. optimised approaches at different discharges, illustrates that the savings on optimisation decline linearly with increasing flow volumes. Larvicide applications at the lowest discharge considered (40 m3·s-1) showed the greatest benefits from optimisations, with benefits remaining but decreasing to a theoretical 30% up to median flows of 100 m3·s-1. Given that almost 70% of flows in July are less than 100 m3·s-1, we suggest that an optimised approach is appropriate for the Orange River Blackfly Control Programme, particularly for flow volumes of less than 100 m3·s-1. We recommend that trials be undertaken over two reaches of the Orange River, one using the traditional approach, and another using the optimised approach, to test the efficacy of using optimised volumes of B.t.i.
- Full Text:
- Date Issued: 2008
- Authors: Rivers-Moore, Nick A , Bangay, Shaun D , Palmer, R W
- Date: 2008
- Language: English
- Type: Article
- Identifier: vital:7090 , http://hdl.handle.net/10962/d1012421
- Description: The Orange River, South Africa's largest river, is a critical water resource for the country. In spite of the clear economic benefits of regulating river flows through a series of impoundments, one of the significant undesirable ecological consequences of this regulation has been the regular outbreaks of the pest blackfly species Simulium chutteri and S. damnosum s.l. (Diptera: Simuliidae). The current control programme, carried out by the South African National Department of Agriculture, uses regular applications, by helicopter, of the target-specific bacterial larvicide Bacillus thuringiensis var. israelensis. While cost-benefit analyses show significant benefits to the control programme, benefits could potentially be further increased through applying smaller volumes of larvicide in an optimised manner, which incorporates upstream residual amounts of pesticide through downstream carry. Using an optimisation technique applied in the West African Onchocerciasis Control Programme, to a 136 km stretch of the Orange River which includes 31 blackfly breeding sites, we demonstrate that 28.5% less larvicide could be used to potentially achieve the same control of blackfly. This translates into potential annual savings of between R540 000 and R1 800 000. A comparison of larvicide volumes estimated using traditional vs. optimised approaches at different discharges, illustrates that the savings on optimisation decline linearly with increasing flow volumes. Larvicide applications at the lowest discharge considered (40 m3·s-1) showed the greatest benefits from optimisations, with benefits remaining but decreasing to a theoretical 30% up to median flows of 100 m3·s-1. Given that almost 70% of flows in July are less than 100 m3·s-1, we suggest that an optimised approach is appropriate for the Orange River Blackfly Control Programme, particularly for flow volumes of less than 100 m3·s-1. We recommend that trials be undertaken over two reaches of the Orange River, one using the traditional approach, and another using the optimised approach, to test the efficacy of using optimised volumes of B.t.i.
- Full Text:
- Date Issued: 2008
Derivation of quantitative management objectives for annual instream water temperatures in the Sabie River using a biological index
- Rivers-Moore, Nick A, Jewitt, G P W, Weeks, D C
- Authors: Rivers-Moore, Nick A , Jewitt, G P W , Weeks, D C
- Date: 2005
- Language: English
- Type: text , Article
- Identifier: vital:7093 , http://hdl.handle.net/10962/d1012426
- Description: Adaptive management of river systems assumes uncertainty and makes provision for system variability. Inherent within this management approach is that perceived limits of 'acceptable' system variability are regarded not only as testable hypotheses, but also as playing a central role in maintaining biodiversity. While the Kruger National Park currently functions as a flagship conservation area in South Africa, projected increases in air temperatures as a consequence of global climate change present challenges in conserving this biodiversity inside the established land boundaries. Within the rivers of the Kruger National Park, a management goal of maintaining biodiversity requires a clearer understanding of system variability. One component of this is water temperature, an important water quality parameter defining the distribution patterns of aquatic organisms. In this study, Chiloglanis anoterus Crass (1960) (Pisces: Mochokidae) was selected as a biological indicator of changes in annual water temperatures within the Sabie River in the southern Kruger National Park. Relative abundances of C. anoterus were determined using standard electro-fishing surveys. The presence or absence of C. anoterus was linked to cumulative annual heat units using a logistic regression model, and a critical annual cumulative water temperature threshold estimated. A correlative relationship between this temperature threshold and a biological index using a C. anoterus condition factor provides river ecologists with a tool to assess ecologically significant warming trends in Sabie River water temperatures. A similar approach could be applied with relative ease to other Southern African river systems. Further testing of this hypothesis is suggested, as part of the adaptive management cycle.
- Full Text:
- Date Issued: 2005
- Authors: Rivers-Moore, Nick A , Jewitt, G P W , Weeks, D C
- Date: 2005
- Language: English
- Type: text , Article
- Identifier: vital:7093 , http://hdl.handle.net/10962/d1012426
- Description: Adaptive management of river systems assumes uncertainty and makes provision for system variability. Inherent within this management approach is that perceived limits of 'acceptable' system variability are regarded not only as testable hypotheses, but also as playing a central role in maintaining biodiversity. While the Kruger National Park currently functions as a flagship conservation area in South Africa, projected increases in air temperatures as a consequence of global climate change present challenges in conserving this biodiversity inside the established land boundaries. Within the rivers of the Kruger National Park, a management goal of maintaining biodiversity requires a clearer understanding of system variability. One component of this is water temperature, an important water quality parameter defining the distribution patterns of aquatic organisms. In this study, Chiloglanis anoterus Crass (1960) (Pisces: Mochokidae) was selected as a biological indicator of changes in annual water temperatures within the Sabie River in the southern Kruger National Park. Relative abundances of C. anoterus were determined using standard electro-fishing surveys. The presence or absence of C. anoterus was linked to cumulative annual heat units using a logistic regression model, and a critical annual cumulative water temperature threshold estimated. A correlative relationship between this temperature threshold and a biological index using a C. anoterus condition factor provides river ecologists with a tool to assess ecologically significant warming trends in Sabie River water temperatures. A similar approach could be applied with relative ease to other Southern African river systems. Further testing of this hypothesis is suggested, as part of the adaptive management cycle.
- Full Text:
- Date Issued: 2005
- «
- ‹
- 1
- ›
- »