Coastal dunefields maintain pre‐Holocene genetic structure in a rocky shore red alga
- Mmonwa, Kolobe L, Barker, Nigel P, McQuaid, Christopher D, Teske, Peter R
- Authors: Mmonwa, Kolobe L , Barker, Nigel P , McQuaid, Christopher D , Teske, Peter R
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444784 , vital:74298 , https://doi.org/10.1111/jpy.13182
- Description: Most intertidal algae have limited dispersal potential, and areas that lack hard substratum suitable for attachment are thus expected to isolate regional populations from each other. Here, we used nuclear and mitochondrial genetic data to compare genetic structure in two co‐distributed intertidal red algae with different dispersal potential along the South African coastline. Gelidium pristoides is divided into a south‐eastern and a south‐western evolutionary lineage separated by extensive, continuous sandy shoreline habitat adjacent to coastal dunefields. In contrast, Hypnea spicifera is genetically homogeneous throughout its range. In G. pristoides, the genetic breaks are associated with contemporary coastal dunefields. The age of the divergence event suggests that this may reflect the effect of older dispersal barriers, and that genetic structure was subsequently maintained by the formation of contemporary coastal dunefields.
- Full Text:
- Date Issued: 2021
- Authors: Mmonwa, Kolobe L , Barker, Nigel P , McQuaid, Christopher D , Teske, Peter R
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444784 , vital:74298 , https://doi.org/10.1111/jpy.13182
- Description: Most intertidal algae have limited dispersal potential, and areas that lack hard substratum suitable for attachment are thus expected to isolate regional populations from each other. Here, we used nuclear and mitochondrial genetic data to compare genetic structure in two co‐distributed intertidal red algae with different dispersal potential along the South African coastline. Gelidium pristoides is divided into a south‐eastern and a south‐western evolutionary lineage separated by extensive, continuous sandy shoreline habitat adjacent to coastal dunefields. In contrast, Hypnea spicifera is genetically homogeneous throughout its range. In G. pristoides, the genetic breaks are associated with contemporary coastal dunefields. The age of the divergence event suggests that this may reflect the effect of older dispersal barriers, and that genetic structure was subsequently maintained by the formation of contemporary coastal dunefields.
- Full Text:
- Date Issued: 2021
Rejection of the genetic implications of the “Abundant Centre Hypothesis” in marine mussels
- Ntuli, Noxolo N, Nicastro, Katy R, Zardi, Gerardo I, Assis, Jorge, McQuaid, Christopher D, Teske, Peter R
- Authors: Ntuli, Noxolo N , Nicastro, Katy R , Zardi, Gerardo I , Assis, Jorge , McQuaid, Christopher D , Teske, Peter R
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444839 , vital:74302 , https://www.nature.com/articles/s41598-020-57474-0
- Description: The ‘Abundant-Centre Hypothesis’ is a well-established but controversial hypothesis stating that the abundance of a species is highest at the centre of its range and decreases towards the edges, where conditions are unfavourable. As genetic diversity depends on population size, edge populations are expected to show lower intra-population genetic diversity than core populations, while showing high inter-population genetic divergence. Here, the genetic implications of the Abundant-Centre Hypothesis were tested on two coastal mussels from South Africa that disperse by means of planktonic larvae, the native Perna perna and the invasive Mytilus galloprovincialis. Genetic structure was found within P. perna, which, together with evidence from Lagrangian particle simulations, points to significant reductions in gene flow between sites. Despite this, the expected diversity pattern between centre and edge populations was not found for either species. We conclude that the genetic predictions of the Abundant-Centre Hypothesis are unlikely to be met by high-dispersal species with large population sizes, and may only become evident in species with much lower levels of connectivity.
- Full Text:
- Date Issued: 2020
- Authors: Ntuli, Noxolo N , Nicastro, Katy R , Zardi, Gerardo I , Assis, Jorge , McQuaid, Christopher D , Teske, Peter R
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444839 , vital:74302 , https://www.nature.com/articles/s41598-020-57474-0
- Description: The ‘Abundant-Centre Hypothesis’ is a well-established but controversial hypothesis stating that the abundance of a species is highest at the centre of its range and decreases towards the edges, where conditions are unfavourable. As genetic diversity depends on population size, edge populations are expected to show lower intra-population genetic diversity than core populations, while showing high inter-population genetic divergence. Here, the genetic implications of the Abundant-Centre Hypothesis were tested on two coastal mussels from South Africa that disperse by means of planktonic larvae, the native Perna perna and the invasive Mytilus galloprovincialis. Genetic structure was found within P. perna, which, together with evidence from Lagrangian particle simulations, points to significant reductions in gene flow between sites. Despite this, the expected diversity pattern between centre and edge populations was not found for either species. We conclude that the genetic predictions of the Abundant-Centre Hypothesis are unlikely to be met by high-dispersal species with large population sizes, and may only become evident in species with much lower levels of connectivity.
- Full Text:
- Date Issued: 2020
Stable isotope analysis indicates a lack of inter-and intra-specific dietary redundancy among ecologically important coral reef fishes
- Plass-Johnson, Jeremiah G, McQuaid, Christopher D, Hill, Jaclyn M
- Authors: Plass-Johnson, Jeremiah G , McQuaid, Christopher D , Hill, Jaclyn M
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444611 , vital:74254 , https://doi.org/10.1007/s00338-012-0988-7
- Description: Parrotfish are critical consumers on coral reefs, mediating the balance between algae and corals, and are often categorised into three functional groups based on adult morphology and feeding behaviour. We used stable isotope analysis (δ13C, δ15N) to investigate size-related ontogenetic dietary changes in multiple species of parrotfish on coral reefs around Zanzibar. We compared signatures among species and functional groups (scrapers, excavators and browsers) as well as ontogenetic stages (immature, initial and terminal phase) within species. Stable isotope analysis suggests that ontogenetic dietary shifts occurred in seven of the nine species examined; larger individuals had enriched δ13C values, with no relationship between size and δ15N. The relationship between fish length and δ13C signature was maintained when species were categorised as scrapers and excavators, but was more pronounced for scrapers than excavators, indicating stronger ontogenetic changes. Isotopic mixing models classified the initial phase of both the most abundant excavator (Chlorurus sordidus) as a scraper and the immature stage of the scraper Scarus ghobban (the largest species) as an excavator, indicating that diet relates to size rather than taxonomy. The results indicate that parrotfish may show similar intra-group changes in diet with length, but that their trophic ecology is more complex than suggested by morphology alone. Stable isotope analyses indicate that feeding ecology may differ among species within functional groups, and according to ontogenetic stage within a species.
- Full Text:
- Date Issued: 2013
- Authors: Plass-Johnson, Jeremiah G , McQuaid, Christopher D , Hill, Jaclyn M
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444611 , vital:74254 , https://doi.org/10.1007/s00338-012-0988-7
- Description: Parrotfish are critical consumers on coral reefs, mediating the balance between algae and corals, and are often categorised into three functional groups based on adult morphology and feeding behaviour. We used stable isotope analysis (δ13C, δ15N) to investigate size-related ontogenetic dietary changes in multiple species of parrotfish on coral reefs around Zanzibar. We compared signatures among species and functional groups (scrapers, excavators and browsers) as well as ontogenetic stages (immature, initial and terminal phase) within species. Stable isotope analysis suggests that ontogenetic dietary shifts occurred in seven of the nine species examined; larger individuals had enriched δ13C values, with no relationship between size and δ15N. The relationship between fish length and δ13C signature was maintained when species were categorised as scrapers and excavators, but was more pronounced for scrapers than excavators, indicating stronger ontogenetic changes. Isotopic mixing models classified the initial phase of both the most abundant excavator (Chlorurus sordidus) as a scraper and the immature stage of the scraper Scarus ghobban (the largest species) as an excavator, indicating that diet relates to size rather than taxonomy. The results indicate that parrotfish may show similar intra-group changes in diet with length, but that their trophic ecology is more complex than suggested by morphology alone. Stable isotope analyses indicate that feeding ecology may differ among species within functional groups, and according to ontogenetic stage within a species.
- Full Text:
- Date Issued: 2013
Love thy neighbour : group properties of gaping behaviour in mussel aggregations
- Nicastro, Katy R, Zardi, Gerardo I, McQuaid, Christopher D, Pearson, Gareth A, Serrão, Ester A
- Authors: Nicastro, Katy R , Zardi, Gerardo I , McQuaid, Christopher D , Pearson, Gareth A , Serrão, Ester A
- Date: 2012
- Language: English
- Type: Article
- Identifier: vital:6841 , http://hdl.handle.net/10962/d1010991
- Description: By associating closely with others to form a group, an animal can benefit from a number of advantages including reduced risk of predation, amelioration of environmental conditions, and increased reproductive success, but at the price of reduced resources. Although made up of individual members, an aggregation often displays novel effects that do not manifest at the level of the individual organism. Here we show that very simple behaviour in intertidal mussels shows new effects in dense aggregations but not in isolated individuals. Perna perna and Mytilus galloprovincialis are gaping (periodic valve movement during emersion) and non-gaping mussels respectively. P. perna gaping behaviour had no effect on body temperatures of isolated individuals, while it led to increased humidity and decreased temperatures in dense groups (beds). Gaping resulted in cooler body temperatures for P. perna than M. galloprovincialis when in aggregations, while solitary individuals exhibited the highest temperatures. Gradients of increasing body temperature were detected from the center to edges of beds, but M. galloprovincialis at the edge had the same temperature as isolated individuals. Furthermore, a field study showed that during periods of severe heat stress, mortality rates of mussels within beds of the gaping P. perna were lower than those of isolated individuals or within beds of M. galloprovincialis, highlighting the determinant role of gaping on fitness and group functioning. We demonstrate that new effects of very simple individual behaviour lead to amelioration of abiotic conditions at the aggregation level and that these effects increase mussel resistance to thermal stress.
- Full Text:
- Date Issued: 2012
- Authors: Nicastro, Katy R , Zardi, Gerardo I , McQuaid, Christopher D , Pearson, Gareth A , Serrão, Ester A
- Date: 2012
- Language: English
- Type: Article
- Identifier: vital:6841 , http://hdl.handle.net/10962/d1010991
- Description: By associating closely with others to form a group, an animal can benefit from a number of advantages including reduced risk of predation, amelioration of environmental conditions, and increased reproductive success, but at the price of reduced resources. Although made up of individual members, an aggregation often displays novel effects that do not manifest at the level of the individual organism. Here we show that very simple behaviour in intertidal mussels shows new effects in dense aggregations but not in isolated individuals. Perna perna and Mytilus galloprovincialis are gaping (periodic valve movement during emersion) and non-gaping mussels respectively. P. perna gaping behaviour had no effect on body temperatures of isolated individuals, while it led to increased humidity and decreased temperatures in dense groups (beds). Gaping resulted in cooler body temperatures for P. perna than M. galloprovincialis when in aggregations, while solitary individuals exhibited the highest temperatures. Gradients of increasing body temperature were detected from the center to edges of beds, but M. galloprovincialis at the edge had the same temperature as isolated individuals. Furthermore, a field study showed that during periods of severe heat stress, mortality rates of mussels within beds of the gaping P. perna were lower than those of isolated individuals or within beds of M. galloprovincialis, highlighting the determinant role of gaping on fitness and group functioning. We demonstrate that new effects of very simple individual behaviour lead to amelioration of abiotic conditions at the aggregation level and that these effects increase mussel resistance to thermal stress.
- Full Text:
- Date Issued: 2012
Interacting effects of wave exposure, tidal height and substratum on spatial variation in densities of mussel Perna perna plantigrades
- McQuaid, Christopher D, Lindsay, Justin R
- Authors: McQuaid, Christopher D , Lindsay, Justin R
- Date: 2005
- Language: English
- Type: Article
- Identifier: vital:6879 , http://hdl.handle.net/10962/d1011635
- Description: A fine time-scale study was undertaken on the effects of wave exposure, tidal height and substratum type on mussel recruit densities on the south coast of South Africa. Prior to sampling, an exposed and a sheltered shore were identified at each of 2 sites (Diaz Cross and High Rocks) 7 km apart. Each shore was divided into 3 shore levels (termed zones) within which 3 substrata (adult mussels, coralline and non-coralline macroalgae) were sampled. Destructive sampling of early (<1 mm) and late (1 to 5 mm) plantigrades was performed daily over 30 d during a period of comparatively high recruitment. Recruitment was synchronised among substrata within zones, but not among zones or between sites. This suggests that larvae will settle on all substrata within a zone, but will prefer some substrata over others. They will not, however, search among zones for favoured substrata. Densities of early (but not late) plantigrades were consistently greater at Diaz Cross than High Rocks, indicating important differences in post-settlement mortality between sites. At both sites, densities of both recruit classes were greater on the low and mid shore than on the high shore. Generally (18 out of 20 comparisons), plantigrade densities within each zone were greater on algae than on adult mussels. Approximately 45% of all recruits collected were found on the foliose coralline alga Corallina, 37% on adult mussels and 18% on the rhodophyte Gelidium pristoides. Without secondary relocation from macroalgae to adult mussel beds, juveniles recruiting onto algae are likely to be lost. On low shore algae, densities of both early and late plantigrades were greater for exposed shores. Densities of plantigrades on the mussel bed and on algae on the mid and high shore were not correlated with exposure. Thus, site, substratum and zone all had significant and interacting effects on the density of recruits on both exposed and sheltered shores. The effect of wave exposure on recruitment, at least on the low shore, suggests that spatial subsidies not only in the form of food supply, but also in the form of larval transport, have a role in structuring mussel populations.
- Full Text:
- Date Issued: 2005
- Authors: McQuaid, Christopher D , Lindsay, Justin R
- Date: 2005
- Language: English
- Type: Article
- Identifier: vital:6879 , http://hdl.handle.net/10962/d1011635
- Description: A fine time-scale study was undertaken on the effects of wave exposure, tidal height and substratum type on mussel recruit densities on the south coast of South Africa. Prior to sampling, an exposed and a sheltered shore were identified at each of 2 sites (Diaz Cross and High Rocks) 7 km apart. Each shore was divided into 3 shore levels (termed zones) within which 3 substrata (adult mussels, coralline and non-coralline macroalgae) were sampled. Destructive sampling of early (<1 mm) and late (1 to 5 mm) plantigrades was performed daily over 30 d during a period of comparatively high recruitment. Recruitment was synchronised among substrata within zones, but not among zones or between sites. This suggests that larvae will settle on all substrata within a zone, but will prefer some substrata over others. They will not, however, search among zones for favoured substrata. Densities of early (but not late) plantigrades were consistently greater at Diaz Cross than High Rocks, indicating important differences in post-settlement mortality between sites. At both sites, densities of both recruit classes were greater on the low and mid shore than on the high shore. Generally (18 out of 20 comparisons), plantigrade densities within each zone were greater on algae than on adult mussels. Approximately 45% of all recruits collected were found on the foliose coralline alga Corallina, 37% on adult mussels and 18% on the rhodophyte Gelidium pristoides. Without secondary relocation from macroalgae to adult mussel beds, juveniles recruiting onto algae are likely to be lost. On low shore algae, densities of both early and late plantigrades were greater for exposed shores. Densities of plantigrades on the mussel bed and on algae on the mid and high shore were not correlated with exposure. Thus, site, substratum and zone all had significant and interacting effects on the density of recruits on both exposed and sheltered shores. The effect of wave exposure on recruitment, at least on the low shore, suggests that spatial subsidies not only in the form of food supply, but also in the form of larval transport, have a role in structuring mussel populations.
- Full Text:
- Date Issued: 2005
- «
- ‹
- 1
- ›
- »