- Title
- The oxidative coupling of phenols using stoichiometric metal oxidants
- Creator
- Hoffmann, Eric
- Subject
- Phenols
- Subject
- Oxidation
- Subject
- Stoichiometry
- Date Issued
- 2005
- Date
- 2005
- Type
- Thesis
- Type
- Doctoral
- Type
- DTech
- Identifier
- vital:10977
- Identifier
- http://hdl.handle.net/10948/180
- Identifier
- Phenols
- Identifier
- Oxidation
- Identifier
- Stoichiometry
- Description
- The oxidative coupling of 2,6-di-t-butylphenol under mild reaction conditions is well documented and the subject of many patents. However, the coupling of other monoand di- substituted phenols is not as well documented and thus there is scope for further investigation for providing a convenient, environmentally friendly and economically viable method for the oxidative coupling of these phenols. In this study, the oxidative coupling of a variety of alkylated phenolic substrates, 2-tbutylphenol, 2,6-di-t-butylphenol, 2,4 -di-t-butylphenol and ,4-dimethylphenol, using a range of different oxidizing agents, were investigated by means of experimental and/or theoretical means. The dibutylated aromatics provided the highest selectivities to their respective coupled products, with results obtained with the dimethyl analogue being only satisfactory, and that for 2 -t-butylphenol being totally inefficient. PM3 Molecular orbital (MO) calculations were used to predict the possible modes of coupling for the substrates 2,6 -di-t-butylphenol and 2,4-di-t-butylphenol, and these results were then compared with those obtained experimentally in the laboratory. Preliminarily, the coupling of unsubstituted phenolics was also assessed by means of MO calculations. Much emphasis was placed on Ce(IV) as the oxidant, and the reaction conditions under which it was used and the results that were obtained have not been reported before and are therefore novel. The oxidation of 2,4-di-t-butylphenol using Ce(IV) in the presence of methanesulphonic acid was optimized to afford high yields and selectivities to the desired ortho C-ortho C coupled product under mild reaction conditions. Various reaction parameters were also investigated in this case, such as varying the MeSO3H concentration, the solvent, the reaction temperature, the reaction time, the substrate loading, the rate of oxidant addition and the substrate to oxidant ratio. Ce(IV) also gave a high selectivity to the para C-para C coupled product when IX using 2,6-di-t-butylphenol as the substrate. However, it was not as effective with 2,4- dimethylphenol, and even less so with 2-t-butylphenol. The oxidation reactions of 2-t-butylphenol and 2,4-dimethylphenol with various coupling agents were also investigated with the intention of obtaining high selectivities to the respective desired coupled products. In these studies, 2-t-butylphenol afforded a large number of products, irrespective of the oxidant used. The dimethyl analogue was more selective, but results were not optimal. It was clear that the number of substituents on the phenol ring, their nature and their position with regards to the hydroxyl moiety was of great importance and made a significant impact on the preferred coupling mode of the substrate. It was observed that steric effects also played a major role in the outcome of these reactions: 2,6-di-t-butylphenol never afforded any C-O coupled products whereas 2-t-butylphenol, 2,4-di-t-butylphenol and 2,4-dimethylphenol all appeared to undergo some C-O coupling. Finally, reaction mechanisms were provided for both the K3Fe(CN)6 and Ce(IV) work, these reacting in basic and acidic media, respectively. It was proposed that both of these mechanisms operate through the initial formation of the phenoxyl radical.
- Format
- ix, 173 leaves
- Format
- Publisher
- Nelson Mandela Metropolitan University
- Publisher
- Faculty of Chemistry
- Language
- English
- Rights
- Nelson Mandela Metropolitan University
- Hits: 2594
- Visitors: 2600
- Downloads: 120
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCEPDF | 621 KB | Adobe Acrobat PDF | View Details Download |